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Chapter 1

Introduction to Kriging Metamodeling for
Simulation

1.1 Real systems and mathematical models

Many scientific disciplines use mathematical models (including simulation; see below) to
describe complicated real systems. The goal of such models is getting more insight into the real
system, to answer questions such as: What is the output's sensitivity to the inputs; what is the

optimal combination of the input values?

To obtain such insight, analytical methods (e.g., differential calculus) often turn out to
fail. In such cases, numerical methods may be tried; i.e., experimentation with the model may
answer the questions about the real system. This experimentation often implies that the model is
converted into a computer code (or computer program) that is run for a number of different input

combinations. Next, the resulting input/output (I/0) behavior of the model should be analyzed.
We emphasize that the selection of the input combinations should be guided by scientific

principles (e.g., changing one input at a time can be proven to be ineffective if inputs interact, and
inefficient else). These principles are investigated in mathematical statistics under the name

Design Of Experiments (DOE). In numerical experiments (as opposed to experiments with the

real system) these principles need adjustment; see Kleijnen et al. (2005) and Chapters 4 and 5.

We focus on computer expensive simulation experiments; i.e., experiments that require

much computer time. In these situations, DOE is certainly needed.

Moreover, the analysis of these I/0 data should also be guided by scientific principles.
Making scatter plots and other graphs may be the beginning of such an analysis. Objective
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analysis requires formal methods. Most popular are Least Squares (LS) curves fitted to the I/0

data. We, however, focus on an alternative method known as Kriging; see Section 1.4.

Next, we shall discuss the key terms in the title of this chapter and this thesis.

1.2 Simulation types

A simulation model might be a physical model, e.g., a scale model of a racing car in a wind

tunnel. We, however, limit ourselves to mathematical models (also see the preceding section).

Following Kleijnen (1974), we define simulation as experimenting with a model over time.This

definition indicates that the variable time plays a special role in simulation. Indeed, Law and

Kelton (2000) also emphasize the role of time, by using the term dynamic simulation. Besides

this simulation type, there is static simulation, in which time plays no role; an example is the

Monte Carlo (MC) method. By definition, the MC method uses Pseudo-Random Numbers

(PRN); i.e., computer generated numbers between zero and one that are independent and

uniformly distributed over this interval. We shall also use MC models in this dissertation (see

Chapters 2,3, and 4).

There are deterministic and random simulation models. If the simulation model contains

no random components, the simulation model is called deterministic. For example, such

simulation might solve a set of complicated differential equations describing the airflow around

air wings. Simpson et al. (2001) mention applications of deterministic simulation in various

disciplines. Typically, in this type of simulation, an input combination needs simulation only

once (repeated computer runs with the same input combination give exactly the same output

value, provided we do not make any changes in the computer software or hardware).

Whenever there are probabilistic components (or modules) in the simulation model, the

simulation is called random or stochastic. Then, an input combination should be simulated

several times, and the outputs' average or quantile may be computed to estimate the model's

output of interest. Typical examples are queueing and inventory simulations. Table 1 summarizes

the four different simulation types; each cell refers to a chapter of this thesis that uses the specific
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simulation type. Note that we do not study dynamic, deterministic simulation models (often used
in Computer Aided Engineering, CAE; see for example De Geest et al. (1999)).

Table 1: Simulation types with appropriate dissertation chapters

Deterministic Random
Static Chapter 4 Chapters 2 and 3

Dynamic Chapter 5

Finally, we discuss a third way to distinguish various simulation types: continuous versus

discrete-event simulation. Continuous simulation experiments with models consisting of
differential equations (so state variables change continuously). Computer codes approximate
these differential equations by difference equations. These models are usually deterministic (see
the preceding discussion, summarized in Table 1). Obviously, random elements may be added to

the differential equations; for example, econometric models may consist of difference equations

plus additive noise.

Discrete-event simulation has state variables that change instantaneously, at points in time
that are not necessarily equidistant; for example, customers arrive at a server at random points of
time. An event is the change in the system's state; for example, the number of waiting customers

increases. Random simulation includes discrete-event event simulation; see Van Beers and

Kleijnen (2005).

Simulation-in its many forms-is applied in many scientific disciplines. We focus on

the discipline known as Operations Research/Management Science (OR/MS). In OR/MS,
simulation is also often applied-,even though simulation is described as method of last resort

'when all else fails...' in the famous Chapter 21 in Wagner (1975).

1.3 Metamodels

A metamodel is also called a response su,face, auxiliary model, emulator, etc. Metamodeling
originates from neuro-linguistics in the beginning of the twentieth century; see Korzybski and

Meyers 1958. Kleijnen et al. (2005) define a metamodel as an approximation of the true I/O
function implicitly defined by the given simulation model. Obviously, a metamodel is much
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simpler than the underlying simulation model; an example is a first-order polynomial regression

(meta)model of the I/0 function of a queueing simulation. A metamodel treats the simulation

model as a black box; i.e., it uses the VO data without knowledge of the way the simulation

model processes these inputs to get the outputs.

A metamodel is a tool for the systematic experimentation and analysis of a simulation

model, to gain insight (again see Section 1.1). Kleijnen (1998) discusses the use of metamodeling

for

(i) sensitivity analysis

(ii) optimization
(iii)  validation and verification.

We shall focus on sensitivity analysis.

There are many types of metamodels; see Kleijnen (2005). Most popular are low-order

polynomial regression models. However, Kriging is also applied frequently in deterministic

simulation; see Den Hertog and Stehouwer (2002), and Simpson et al. (1998). Because other

types of metamodels do not play a role in this thesis and we wish to avoid errors of omission, we

refrain from listing (and defining) these types and giving key references. In this thesis, we focus

on Kriging, and compare its performance with classical regression.

Atkinson (1989 , ch.3) defines interpolation as the selection of a function in such a way

that its graph passes through a finite set of given data points. Kriging applied to deterministic

simulation meets that definition, as we shall see in the next section. In practice, the term

interpolation is also used to mean a function that approximates the VO data: for example, a

regression model may fit the I/0 data such that it minimizes the sum of squared approximation

errors (LS criterion).

1.4 Kriging

In the 195Os, the South African mining engineer D.G. Krige  (born  in  1919, and still alive)

devised an interpolation method to determine true ore-bodies, based on samples. The basic idea is

that these predictions are weighted averages of the observed outputs, where the weights depend

on the distances between the input location to be predicted and the input locations already
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observed. The weights are chosen so as to minimize the prediction variance, i.e., the weights

should provide a Best Linear Unbiased Estimator (BLUE) of the output value for a given input.
Therefore, Kriging is also called Optimal Interpolation.

The dependence of the interpolation weights on the distances between the inputs was

mathematically formalized by the French mathematician Georges Matheron (1930-2000) in his
monumental 'Traitd de gdostatistique appliqude' (1962). He introduced a function, which he

called a variogram, to describe the variance of the difference between two observations; also see

Chapter 2.

So Kriging originated in geostatistics to answer concrete questions in the gold mining

industry: Drilling for ore-deep under the ground-is expensive, so efficient prediction methods

are necessary. Later on, Kriging was successfully introduced into deterministic simulation by
Sacks et al. (1989). In this thesis we introduce Kriging interpolation into the area of random

simulation.

Kriging provides 'exact' interpolation, i.e., predicted output values at inputs already
observed equal the observed output values. Such interpolation is attractive in deterministic

simulation, and Kriging is often applied in CAD (mentioned in Section  1.2). In discrete-event

Simulation, however, Kriging has just started.

Above, we mentioned that the variogram is the cornerstone in Kriging. Hence, accurate

estimation of the variogram, based on the observed data, is essential. Journel and Huijbregts

(1978, pp. 161-195) present various parametric variogram models. The values of its parameters
are obtained by either Weighted Least Squares (WLS) or Maximum Likelihood Estimation

(MLE); see Cressie (1993). In this thesis, we shall use both methods: WLS in Chapters 2,3, and

4, and MLE in Chapter 5.

1.5 Kriging applications area

After the introduction of Kriging in the mining industry, it became very popular in other areas of

geostatistics, such as meteorology, oceanography, agriculture and environment studies; see

Cressie (1993).



6 Chapter 1

After the pioneering article of Sacks (1989), Kriging has also been widely applied in

deterministic simulation for engineering, aimed  at the design of better computer chips, television

screens, aircraft, and automobiles.

In this thesis we introduce Kriging for simulation in OR/MS, covering both deterministic and

random simulations (in different chapters). We limit ourselves to sensitivity analysis; we feel that

sensitivity analysis precedes optimization, so we leave Kriging for optimization as future research

(also see Chapter 6).

1.6    Summary of thesis

This thesis contains the full text of four papers that either have already been published or have

been submitted for publication. It is the verbatim text, except for three sentences in Chapter 2,

indicated by footnotes. In this section we summarize each paper.

In Chapter 2, we introduce Kriging interpolation for random simulation. We develop a

novel type of Kriging interpolation, and call it Detrended Kriging. We demonstrate Kriging

through two numerical examples:

(i)     a hyperbole inspired by the single-server queueing simulation with Poisson

(Markov) arrival and service processes (known as the M/M/1 queueing model)

(ii)   an artificial model, namely a fourth degree polynomial with multiple modes plus

additive noise.

We test our novel method through cross-validation, and compare it to low-order regression

metamodels fitted through Ordinary Least Squares (OLS). The main conclusion of this chapter is

that Kriging gives better predictions than these regression models. Furthermore, tests show that

the Kriging's so-called nugget effect equals the variance of the additive noise.

In Chapter 3, we drop the classic Kriging assumption of outputs with consmnt variances.

In practice, this assumption is not realistic. Therefore we investigate the consequences of Kriging

in case of a true I/0 function that is a hyperbole plus noise with variances differing with the

input. The main conclusion of this chapter is that Kriging is not sensitive to variance
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heterogeneity; i.e, Kriging is a robust method that still outperforms low-order polynomial

regression.

In Chapter 4, we propose a novel method to select experimental designs for Kriging. Our
method is sequential, because we focus on expensive deterministic simulation. Our design differs

from traditional designs such as Latin Hypercube Sampling (LHS); see McKay, Beckman, and

Conover (1979), and also Koehler and Owen (1996), and Kleijnen et al. (2005). More
specifically, our method accounts for the specific I/0 function implied by the underlying

simulation model. Our customized, tailor-made designs are constructed through cross-validation

and jackknifing. We test our method through the two academic applications that we also used in

Chapter 2. Our main conclusions are that the novel method simulates relatively more inputs in the

more interesting parts of the underlying I/0 function, and it gives better predictions than

traditional LHS designs.

In Chapter 5, we extend the method of Chapter 4 to random simulation, especially

discrete-event simulation. However, customization is now based on bootstrapping instead of

cross-validation. We test our method through two discrete-event simulation models that are

classic in OR/MS, namely the M/M/1 queueing model and an (s, S) inventory management
model. We again compare the performance of our method with classical LHS designs. It turns out

that our design indeed gives better results.

Finally, in Chapter 6 we summarize the conclusions of the preceding chapters. We also
discuss the advantages and the disadvantages of Kriging. We finish with possible topics for future

research.
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Chapter 2

Kriging for Interpolation in Random Simulation

Abstract

Whenever simulation requires much computer time, interpolation is needed. Simulationists use

different interpolation techniques (for example, linear regression), but this paper focuses on

Kriging. This technique was originally developed in geostatistics by D. G. Krige, and has

recently been widely applied in deterministic simulation. This paper, however, focuses on

random or stochastic simulation. Essentially, Kriging gives more weight to 'neighbouring'
observations. There are several types of Kriging; this paper discusses-besides Ordinary Kriging
-a novel type, which 'detrends' data through the use of linear regression. Results are presented
for two examples of input/output behaviour of the underlying random simulation model:

Ordinary and Detrended Kriging give quite acceptable predictions; traditional linear regression

gives the worst results.

2.1 Introduction

A primary goal of simulation is what  ifor sensitivity analysis: What happens if inputs of the
simulation model change? Therefore simulationists run a given simulation program-or
computer code-for (say) n different combinations of the k simulation inputs. We assume that

Paper by Van Beers, W.C.M. and J.P.C. Kleijnen, Journal Ofthe Operational Research Society, no. 54,2003, pp
255-262
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these inputs are either parameters or quantitative input variables of the simulation model.

Typically, Kriging assumes that the number of values per input variable is quite 'big', certainly

exceeding two (two values are used in simulation experiments based on 2k -P designs).

Given this set of n input combinations, the analysts run the simulation and observe the

outputs. Note that most simulation models have multiple outputs, but in practice these outputs are

analysed per output type.

The crucial question of this paper is: How to analyse this simulation input/output (I/0)

data? Classic analysis uses linear-regression (meta)models; see Kleijnen (1998). A metamodel is

an approximation of the I/0 transformation implied by the underlying simulation program. Many

other terms are popular in certain disciplines: Response surface, compact model, emulator, etc.

Such a metamodel treats the simulation model as a black box; that is, the simulation model's VO

is observed, and the parameters of the metamodel are estimated. This black-box approach has the

following advantages and disadvantages.

An advantage is that the metamodel can be applied to all types of simulation models,

either deterministic or random, either in steady-state or in transient state. A disadvanmge is that it

cannot take advantage of the specific structure of a given simulation model, so it may take more

computer time compared with techniques such as perturbation analysis and score function.

Metamodelling can also help in optimization and validation of the simulation model. In

this paper, however, we do not discuss these two topics, but refer to the references of this paper.

Further, if the simulation model has hundreds of inputs, then special 'screening' designs are

needed, discussed in Campolongo, Kleijnen, and Andres (2000). In our examples-but not in our

methodological discussion-we limit the number of inputs to the minimum, namely a single

input.
Whereas polynomial-regression metamodels have been applied extensively in discrete-

event simulation (such as queueing simulation), Kriging has hardly been applied to random

simulation: A search of IAOR (International Abstracts of Operations Research) gave only two

hits. However, in deterministic simulation (applied in many engineering disciplines; see our

references), Kriging has been applied frequently, since the pioneering article by Sacks et

al. (1989). In such simulation, Kriging is attractive because it can ensure that the metamodel's

prediction has exactly the same value as the observed simulation output as we shall see below.
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In random simulation, however, this Kriging property may not be so desirable, since the observed

(average) value is only an estimate of the true, expected simulation output. Unfortunately,

Kriging requires extensive computation, so adequate software is needed. We discovered that for

random simulation no software is available, so we developed our own software, in Mattab.

Note that several types of random simulation may be distinguished:

(i) Deterministic simulation with randomly sampled inputs. For example, in investment analysis
we can compute the cash flow development over time through a spreadsheet such as Excel. Next,
we sample the random values of inputs-such as the cash flow growth rate-by means of either

Monte Carlo or Latin Hypercube Sampling (LHS) through an add-on such as @Risk or Crystal

Ball; see Van Groenendaal and Kleijnen (1997)

(ii) Discrete-event simulation. For example, classic queueing simulation is applied in logistics
and telecommunications.

(iii) Combined continuous/discrete-event simulation. For example, simulation of nuclear waste

disposal represents the physical and chemical processes through deterministic non-linear

difference equations and models the human interventions as discrete events (see Kleijnen and

Helton, 1999).

Our research contribution consists in the development of a novel (namely, detrended)
Kriging type, and the exploration of how well this Kriging type performs compared with

Ordinary Kriging and traditional polynomial-regression modeling. The main conclusion of our

examples is: A perfectly specified detrending function gives best predictions; Ordinary Kriging is
acceptable; the usual linear regression gives the worst results.

We organize the remainder of this paper as follows. First we sketch the history of Kriging
and its application in geology, metereology, and deterministic simulation. Then we describe the

basics of Kriging, and give a formal Kriging model. Next we introduce our novel model for
detrending the I/0 data through low-order polynomial regression, including a classic cross-

validation test. We illustrate this Kriging through two simple examples. In a separate section we
give a third random simulation example to study the so-called nugget effect in Kriging. Finally,
we present conclusions and mention possible future research topics.
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2.2 Kriging

2.2.1  History of Kriging

Kriging is an interpolation technique originally developed by D. G. Krige, a South African

mining engineer. In the 1950s he devised this method to determine true ore-grades, based on

samples. Next, he improved the method in cooperation with G. Matheron, a French

mathematician at the 'Ecole des Mines'. At the same time, in meteorology L. Gandin (in the

former Soviet Union) worked on similar ideas, under the name 'optimum interpolation' (see

Cressie, 1993).

Nowadays, Kriging is also applied to 1/0 data of deterministic simulation models; we

refer again to Sacks et al. (1989)'s pioneering article. Many more publications followed; for

example, Meckesheim et al. (2001) give 35 references. Also see Koehler and Owen (1996), and

Jones, Schonlau, and Welch (1998).

2.2.2  Basics of Kriging

Kriging is an approximation method that can give predictions of unknown values of a random

function, random field, or random process. These predictions are best linear unbiased estimators,

under the Kriging assumptions presented in the next subsection.

Actually, these predictions are weighted linear combinations of the observed values.

'Kdging assumes that the closer the input data are,  the more positively correlated the prediction

errors are. Mathematically, this assumption is modeled through a second-order stationary

covariance process: The expectations of the observations are constant and do not depend on the

location (the input values), and the covariances of the observations depend only on the 'distances'

between the corresponding inputs. In fact, these covariances decrease with the distance between

the observations. The prediction criterion is minimum mean squared prediction errors. The result

is an estimated metamodel such that observations closer to the prediction point get more weight

in the predictor. When predicting the output for a location that has already been observed, then
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the prediction equals the observed value. (In deterministic simulation this property is certainly

attractive, as we said above.)

In Kriging, a crucial role is played by the variogram: A diagram of the variance of the
difference between the measurements at two input locations; also see Figure 1. which has
symbols explained in the next subsection. The assumption of a second-order stationary

covariance process implies that the variogram is a function of the distance (say) h between two

locations. Moreover, the further apart two inputs are, the smaller this dependence is-until the
effect is negligible.

2.2.3 Formal model for Kriging

A randomprocess Z(•) can be described by  {Z(s) :s E D}  where D i s a fixed subset of Rd and

Z(s) is a random function at location  s   D; see Cressie  (1993, p. 52).
There are several types of Kriging, but we limit this subsection to Ordinary Kriging,

which makes the following two assumptions (already mentioned above, but not yet formalized):

(i) The model assumption is that the random process consists of a constant 11 and an

error term  O (s):

Z(s)=B+O (s)     with    seD,BER                                                        (1)

(ii) The predictor assumption is that the predictor for the point so -denoted by

p(Z(so))-is a weighted linear function of all the observed output data:

p(Z(So))=Elli,Z(st) with TIi,1,=1        (2)
To select the weights A,  in (2), the criterion is minimal mean-squared prediction error (say) a 
defined as

03 =E[{Z(so)-p(Z(so))}21                                            (3)

To minimize (3) given (2), the constraint  X 1,1,  =l is added to the objective function through

the Lagrangian multiplier m: Then we can write the prediction error as

1 Sentence in original paper revised
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E[{Z(so)-63:.,A,z(s,)}2]-2m[Ili,1 -11.                    (4)

To minimize (4), we utilize the variogram; also see Figure 1. By definition, the variogram is

2, (h) = var[Z(s + h) - Z(s)], where  h =s,  -si as explained by the stationary covariance process

assumption with  h e  Rd  and  i,j - 1,..., n. Obviously, we have

var[Z(s + h) - Z(s)] = 23(st - s,) = 22(h). The spacing h is also called the lag.

After some tedious manipulations, (4) gives

- X l,T "=,A;.1, »,-st)+261 1,·1, Aso -s,)-2mC X liA,-1).                          (5)

Differentiating (5) with respect to  Ai ,   · · · , A„  and m. gives the optimal  ,11,   . . . , A„ :

f 1-1'r-'TY_
11= 7+1

11-1 and m=-(1-1'r-ly)/(1'r-'1),      (6)

ir-1 1    3

where y denotes the vector of (co)variances  (y(so-st)....,y(so-s„))', r denotes the  nx n

matrix whose (i, j)th element is  )(s,-s,),  1 -(1,  ...,  1)'is the vector ofones; also see Cressie

(1993, p. 122).

We emphasize that these optimal Kriging weights 1 depend on the specific point so that

is to be predicted, whereas linear-regression metamodels use fixed estimated parameters  (say)  B

Note further that some of the weights  1  may be negativez.

The optimal weights (6) give the minimal mean-squared prediction error: (3) becomes

(also see Cressie (1993, p. 122)

Cr; = Il,ly(so-st)+m
(1'r-'7-1)2                                 (7)

= y'r-'y
1,  r -1  1

However, in (6) and (7) 2 (h) is unknown. The usual estimator \s

- Sentence added to original paper
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29(17) =-LY (Z(st)-Z(s,))2                  (8) N(hM
 - Nth) \

where |N(h)| denotes the number ofdistinct pairs in  N(11)={(s,.s,):st-sj=h; i, j =1,....n};

see Matheron (1962). The estimator in (8) is unbiased, if the process Z(•) is indeed second-order

stationary; see Cressie (1993, p. 71).

Given (8) for different Ilhll values, the variogram is estimated by fitting a curve through
the estimated values  2f (11). This curve displays the following important characteristics (see

Figurel):

(i) For large values of 1|h||, the variogram  2 f (h) approaches a constant C(0), called the

sit!'. 'For these large Ilhll values, all variances of the differences  Z(s + h) - Z(s)  are invariant with

respect to h.

To prove this property, we define the covariogram  C(h) = Cov(Z(s), Z(s + h)).

Obviously, COV(Z(S), Z(S)) = Var(Z(s)). Then it is easy to derive

22 (h) = 2(((0) - C(h)).                                                           (9)

Because C(h) 1 0  as 11 h Ill' -, the variogram has the upper limit 2C(0).

(ii) The interval of Ilhll on which the curve does increase (to the sill), is called the range

(say) r; that is,  C(11) < E   for  11 h 11> r + r,. We shall give a specific model in (10).

(iii) Although (9) implies gamma  3 (0) =0, the fitted curve does not always pass through

zero: It may have a positive intercept-called the nugget variance.  This variance estimates noise.

variogram  2y(h) = 2(C(0) - C(h))

2C(0)

2y(h)

T              , sm

ranqe
> -  nugget

0                        -,111111

Figure 1: An example variogram
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For example, in geostatistics this nugget effects means that when going back to the 'same' spot, a

completely different output (namely, a gold nugget) is observed.

We add that in random simulation, the same input (say, the same traffic rate in queueing

simulation) gives different outputs because different pseudo-random numbers are used. Below we

shall return to this issue.

To fit a variogram curve through the estimates resulting from (8), analysts usually apply

the exponential model

[co+ct(1-e-Alita) if h#0
Y(h) = 4 (10)

[0                                if    h=0

where obviously  co  is the nugget,  co + ct the sill, and a the range. However, other models are

also fitted; for example, the linear model

Y(h)= 4 (11)
[co+bllhll if h#0
[0                if   h=0

where again co is the nugget; see Cressie (1993, p. 61). Actually, we shall apply (11) in our

experiments, because it is the simplest model and yet gives acceptable results (for example, it

estimates the nugget effect very well).

In deterministic simulation. analysts use more general distance formulas than (8). For

example, Sacks et al. (1989, p. 413) and Jones et al. (1998, p. 5) use for the k-dimensional inputs

xi = (X,(„, ..., X'. k,)' and xj = (xjct,•..., x,(k,)' the weighted distance formula

h(xi,xi) = E:.1 0: IX, g,-XM, i (12)

where  19,  (with  d: 2 0) measures the importance of the input xg, and pg controls the

smoothness of the distance function. To estimate dg, maximum likelihood estimation (MLE) is

used. The p: are fixed such that 0<p, 52.(We shall briefly return to (12) in our section

Conclusions and Future Research.)
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2.3 Detrended Kriging

Ordinary Kriging was defined by (1), where v E R  was the constant mean of the random process

Z(•). This assumption, however, limits the application of Ordinary Kriging to rather simple

models of the process Z(•). A more general assumption is that v  is not a constant, but an

unknown linear combination of known functions {fo(s),  -:f„(s)}, se D. Thisis called

Universal Kriging: see Huijbregts and Matheron (1971, p. 160) and also Cressie (1993, p. 151).
Cressie (1993) discusses real (non-simulated) coal-ash data, and Regniere and Sharov (1999)
discuss simulated spatial and temporal output data of a random simulation model for ecological

processes.

Now we introduce a novel type of Kriging that we call Detrended Kriging. Detrended

Kriging pre-processes the original data, and then applies Ordinary Kriging to the resulting data so

we can apply software for Ordinary Kriging. For Universal Kriging, however, software is
available only for spatial and temporal data, not for simulation with an arbitrary number of
inputs-to the best of our knowledge3.

We assume that the process mean *(s) satisfies the decomposition

#(S)= S (S)+71(S) (13)

where  S(s)  is a known signal function (see, however, the text below (14)) and 11(s)  is a white

noise process that models the measurement error; that is, 11(s) is normally identically and

independently distributed with zero mean (NIID). So, we replace (1) by

ZCS) = SCS) + 11(S) + a (S). (14)

In practice, the signal function S(s) in (14) is unknown. Therefore we estimate S(s)

through S(s), from the set of observed (noisy) I/O data  {(st,Z(s, )). i =l, ..., n}. Because of the

assumed white noise, we use ordinary least squares (OLS) to obtain the estimator S(s).

Next we apply Ordinary Kriging to the detrended set  <(st,Z(s, ) - S(st ) ) :i= 1, . . . . n . Our

predictor for the output of location  so  is the sum of this Ordinary Kriging prediction and the

3 After this paper was accepted, the Matlab Kriging toolbox of Lophaven, Nielsen, and Spndergaard became
available.
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estimator S(so)

To test our new Detrended Kriging, we apply classic cross-validation: see Kleijnen and

van Groenendaal (1992, p. 156). Cross-validation eliminates one I/0 combination,

say (sk I Z (s k )), from to the original data set  {(st,Z(s,)): i =l,..., n},so the remaining  n -1  data

combinations are {(st,Z(s,)): i -1,..., k -1, k +1...., n}.This new set gives a prediction

p( Z(sk )) · This process of elimination and prediction is repeated for (say) c different

combinations (c C n) . Obviously, if we sort the original set such that the first c observations are

deleted one at a time, then we get  k =1,2, . . . ,c.

To summarize the resulting prediction accuracy, we use the  I,  norm of the difference

I   2 \B
vector li p(Z(sk))-Z(sk) 11 (the 4 norm 11 x11 is defined as  Ek-ixk 11   ). In our experiments

we find that the  l,  and L- norms give similar conclusions.

Note that in Kriging, all prediction errors may be zero at the 1/0 points that are actually

used to estimate the Kriging model. Therefore we use cross-validation.

2.4 Two examples and five metamodels

We are interested in the application of Kriging to discrete-event simulation models, such as

simulated queueing systems. As Law and Kelton (2000»-the best selling textbook on

simulation-states (on  page  12), a single server queueing system is quite representative of more

complex, dynamic, stochastic simulation models. For further simplification, we suppose that the

output of interest is  the mean waiting time  in the steady state,   E(W). This output can  be

estimated through a simulation that uses the following non-linear stochastic difference equation:

W(i) =max{W(i-1) + S(i- 1) - A(i),0} with i=1,2,... (15)

where W(0 denotes the waiting time of customer i, S(i) the service time of customer i, and A(i)

the interarrival time between customers i and  i -1. It is standard to start the simulation run in the

empty (idle) state: W(0) = 0. For additional simplification, we assume that the arrival times form

a Poisson process, and so do the service times. This gives the well-known M/M/1 (which can

actually be solved analytically; see equation 18 below). By definition, M/M/1 implies that both
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S(i) and A(i) are identically and independently distributed (IID), so simulation is straightforward.
The output E(W) is usually estimated through the simulation run's average

iii _r,     W(i) with OEb<n (16)6Abn-b+1
where b denotes the length of the initialization (start-up, transient) phase (which may be zero),

and n the run length. (In M/M/1 analysis and simulation through renewal analysis, this

initialization is no issue; in practical simulations, however, it is a major problem; see Law and

Kelton (2000, pp. 496-552).) In other words, the dynamic simulation model generates the time

series (15), but this series is characterized through the single statistic (16).

Actually, simulation is done for sensitivity analysis (possibly followed by optimization).

Such an analysis aims at estimating the input/output (I/0) function (say)

E(Z(s)) = S(s) (17)

where-following (14)-Z denotes the (multiple) output and s the (multiple) input. In the M/M/1

example we have Z=W and s= 1/# with arrival rate A and service rate v.

In general, S(s) in (17) has unknown shape and parameters. However, when studying the

performance of a specific simulation methodology, researchers often use the M/M/1 simulation

model because the I/0 function S(s) is then known-assuming that the methodology has

selected an appropriate initialization length b in (16) (obviously, knowledge of S(s) may not be
used by the methodology itself):

E(W) =        1            with 1<1. (18)
BCM- A)                   B

Unfortunately, the latter assumption is very questionable: it is well known that selecting an

appropriate transient-phase length b and run length n in (16) is difficult.

Moreover, Kriging assumes that-in general-the simulation observations Z have

additive white noise: see (14). In the M/M/1 example, (14) gives (i) Z=W, (ii)

S(s) = A/(v (1-A)),(iii) normality holds if W in (16) uses a sample size (n - b +1) such that an

asymptotic central limit theorem holds, (iv) constant variances result if different simulated traffic
rates use different and appropriate sample sizes-see Kleijnen and Van Groenendaal (1995)-
and (v) independence results if no common pseudorandom numbers are used. Altogether,

Kriging's (1) or (14) applies to the M/M/1 example only if a slew of assumptions hold!
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Hence, it is much more efficient and effective to generate Kriging test data through

sampling from (13) with S(s) = 1/(51(1 -A)) instead of (15) and (16). Indeed, our approach

requires less computer time, and guarantees that the white noise assumption holds, including the

desired value for the variance of the white noise. The alternative using (15) and (16) would

require very long runs. especially for high traffic rates  A/# T 1 this alternative requires  n T. .

In conclusion, to test the Kriging methodology we generate data through a static, random

Monte Carlo model like (13) instead of a dynamic stochastic simulation model such as (15)

combined with  (16). So, the Monte Carlo technique is both efficient and effective.

Besides Example I, we study Example II representing simulations with multiple local

maxima, which are interesting when optimizing simulation outputs. Example I represents
queueing simulations that show 'explosive' mean waiting times as the traffic rate approaches the

value one. Example II has no specific interpretation.

We sample the white noise-term 11(s) in (14) through the Matlab function called 'randn',

which gives standard NIID variates; that is, 11(s) has zero mean and unit variance. We also

experiment with a larger variance namely 25; this results in larger error terms, but not in other

conclusions.

To estimate possible values of the  L2 norm (defined above), we use 100 rnacro-

replications. From these macro-replications we estimate 4's median, 0.10 quantile Qo 1, and

0.90 quantile Q09.

In both examples we take n = 21 equally spaced input values: s, with i = l,..., 21. For

cross-validation we select (rather arbitrarily) c=5 inputs values: We eliminate i=2,8,9,1 5,1 6

respectively. We compared the following five metamodels.

i) Ordinary Kriging

ii) second-degree detrending:  S(s) is a second-degree polynomial

iii) perfectly specified detrending function: S(s) is a hyperbola in Example I, and a fourth

degree polynomial in Example II

iv) fifth-degree detrending:  S(s)  is a fifth-degree polynomial (overfitting)

v) linear regression model that is a second-degree polynomial estimated through OLS.
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Note that we also study a perfectly specified detrending function (see iii), because this function
provides a utopian situation: This function gives the minimum prediction error; in practice, this

function is unknown (otherwise simulation would not be used). Furthermore, it helps us to verify

the correctness of our computer program.

2.4.1  Example I: M/M/1 hyperbola

We take S(s) = s/(1-s)  on  D=[0.01,0.99] c R: this hyperbolic function may represent the

mean steady-state waiting time for a traffic rate s in an M/M/1 queueing system. This function

gives Figure 2, which also displays an example of the noisy output Z(s). The input locations are

s, c  <0.01,0.05,0.10,..., 0.95,0.99}. The cross-validation is carried out at

s = 0.05,0.35,0.40,0.70 and 0.75.

25

20
S(S)

15     1-Cs)0      eliminated data

10

5
0   .   70-7%1'    a:--*-::0::'$4                  '4

0     0.2 0.4 0.6 0.8   S .
-5

Figure 2:    S(s) = s/(1 - s) and example sample output Z(s)

The estimated distribution of the prediction accuracy  L  is summarized in Table 1. This

example suggests that metamodel iii (perfectly specified detrending function) gives the best

results. Model i (Ordinary Kriging) is not too bad. Model v (OLS) is simply bad.
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Table 1: Prediction accuracy: estimated quantiles of Le distribution for Example I (M/M/1 )

metamodel

L2               i             ii            iii           iv            V
00 i 1.2429 1.3622 1.1972 2.7411 17.593

median 1.8832 2.1522 1.8419 3.6678 18.17

00, 2.5698 2.925 2.5829 4.4677 18.652

2.4.2  Example II: fourth-degree polynomial

We take the following specific polynomial:  S(s) = -0.0579s4 + 1.11 s' - 6.845 sl +14.1071 s+2

on  D = [0,10] c R'. This polynomial has two maxima: A local one and a global one; see

Figure 3. We obtain output for the following 21 input locations  st  €  0,0.5,1,...,10}. We cross-

validate at  s = 0.5,3.5,4,7 and 7.5.

15

10 -2
S(s)a \ . . .

... ..CO .  .0

5     5                                             -:-I.
A .......Z(s)

0                                              i              i                      I    eliminated data

-5 0     2     4     6     8  s 1 0
-10

-15

Figure 3:   S(s) = -0.0579 s4 + 1.1 l s' -6.845 s2 +14.107ts + 2 and example sample output Z(s)

The estimated distribution of 4 is summarized in Table 2. This example suggests that

metamodel iii (perfectly specified detrending function) gives the best results. Model i (Ordinary

Kriging) is not too bad. Model v (OLS) is simply bad.
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Table 2: Example II ; also see Table 1

metamodel

4                i              ii             iii            iv             V
Qo.i 1.5976 1.515 1.2094 1.2173 5.5965

median 2.4713 2.41 1.8748 1.9117 6.0363

00.9 3.3226 3.246 2.6424 2.6959 6.5048

2.5 Nugget effect

We also wish to better understand the relationship between the nugget effect in (11) and the
variance of the noise 11(s) in (13). Therefore we perform a simple Monte Carlo experiment: We

take  Z(s) =1 0+ 11(s) where  11(s)  is NIID with  v =0  and  0 2=  1,4,9,16,  and 25 respectively.

We sample two macro-replicates, setting the seed of Matlab's 'randn'-rather arbitrary-to the
values 10 and 20. In the various Kriging metamodels, we fit the linear variogram of (11); see

Figure 4 (we display results for the seed value of 10 only; note the different scales for the y-axis

in the four plots).

6            ·                                                                               25
seed: 10

5                                                        
   seed: 10

sigma: 1 20· sigma: 2

4.
15-

3-

• 10-               •
2 .

..

1                •
5-

0.                   ·                                  0

100
50· seed: 10 90 seed: 10

sigma: 3 80- Sigma: 4
40· 70-

30-                        ·            
        60

50·
*                          4020-      *   . ·         • ..

30·  •

10                  +                        20
10

0· · · · ·      0· · · · ·02 46 8 10 0 2 46 8   10

Figure 4: Variogram estimates for different variances
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The intercept in (11) estimates the nugget effect; this intercept is presented for different

02  values in Table 3. Obviously, these results confirm our conjecture: The nugget effect is the

variance of the noise.

Table 3: Estimated nugget effects for different white noise variances a 2

Q  2                          seed 10 seed 20

1             1.1          0.9

444
9 9.6 8.5

16 17.1 15.5

25 26.5 24.1

2.6   Conclusions and future research

We assume that in practice the mean  v  of the Kriging metamodel (1) is not a constant, but is a

composition of a signal function and white noise. We presented results for two examples of

inpuUoutput behavior of the underlying random simulation model: Ordinary Kriging and

Detrended Kriging gives quite acceptable predictions, whereas traditional linear regression gives

the worst results.

0LS predicts so poorly, because OLS assumes that the fitting errors are white noise,

whereas Kriging allows errors that are correlated; more specifically, the closer the inputs are, the

more positive correlation. Moreover, 0LS uses a single estimated function for all input values,

whereas Kriging adapts its predictor as the input changes. Note that OLS may be attractive when

looking for an explanation-not a prediction-of the simulation's I/0 behavior; for example,

which inputs are most important; does the simulation show a behavior that the experts find

acceptable (also see Kleijnen, 1998)?

0LS is also compared with (universal) Kriging by Regniere and Sharov (1999). Their

0LS model, however, is a rather complicated metamodel (involving terms of order six). The

resulting prediction accuracies are similar for OLS and Kriging.
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Further, we found that tile nugget effect equals the noise variance.

We restricted our examples to a single input. Therefore we gave each weight    in the

more general distance formula (12), the fixed value of one. In design optimization, however,

these parameters are used to control the importance of the input variable  x  ; see for example

Simpson et al. (2001, p. 8) and Jones et al. (1998, p. 5). In future work we shall investigate

multiple inputs.

Further, we shall relax the assumption of white noise: We shall investigate the effects of

non-constant variances (which occur in queueing simulations), common random number usage

(which creates correlations among the simulation outputs), and non-normality (Kriging uses

maximum likelihood estimators of the weights 4, which assumes normality). Finally, we shall

apply Kriging to practical queueing and inventory simulations.
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Chapter 3

Robustness of Kriging when Interpolating in
Random Simulation with Heterogeneous
Variances: Some Experiments

Abstract

This paper investigates the use of Kriging in random simulation when the simulation output

variances are not constant. Kriging gives a response surface or metamodel that can be used for
interpolation. Because Ordinary Kriging assumes constant variances, this paper also applies

Detrended Kriging to estimate a non-constant signal function, and then standardizes the residual
noise through the heterogeneous variances estimated from replicated simulation runs. Numerical

examples, however, suggest that Ordinary Kriging is a robust interpolation method.

3.1 Introduction

Given a set of inpuVoutput (I/O) data Kriging fits a metamodel (also called response surface,

emulator, auxiliary model, etc.). Kriging is an interpolation method; that is, at the observed 1/O
values its predictions are exactly equal to the observed output values. However, classic least

Paper by Kleijnen, J.P.C. and W.C.M. Van Beers, European Journal of Operational Research Volume 165, Issue 3,
16 September 2005, pp. 826-834
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squares (LS)-used in regression-typically fits a low-degree polynomial, which results in non-

zero fitting errors (or residuals) such that the sum of these squared errors is minimized.

Originally, the South African mining engineer D.G. Krige modeled real world I/0 data to

predict gold quantities; see Cressie (1993). Later on, Kriging was applied to deterministic

simulation 1/O data (modeling the performance of computer chips, cars, etc.); see Sacks et al.

(1989). More recently, the application of Kriging to random simulation (for queuing problems,

etc.) was proposed by Barton (1994), and was investigated in detail by Van Beers and Kleijnen

(2003). The latter authors suggested that it may be better to replace classic Ordinary Kriging by

their novel method called Detrended Kriging, which corrects or 'detrends' the original output

data through an estimated signal function (see S(s) below). However, both Ordinary and

Detrended Kriging assume that the outputs have constant variances.

In practice, this constant variance assumption is often completely unrealistic. For

example, the so-called M/M/1 queue is an important building block in discrete-event simulation;

see Law and Kelton (2000). For the M/M/1, Cohen (1969) proves analytically that the steady-

state waiting time (say) Z for a traffic load s with 0<s<1  has mean

E(Z(s))=-1                                        (1)
1-s

and variance

\     3(2 - s)Var(Z(s))=                                                    (2)
(1 -s) 2

so this variance is definitely not constant when the traffic load changes. Therefore we now

investigate the consequences of variance heterogeneity when applying Kriging to the I/0 of

random simulation.

Whereas linear-regression analysis of low-order polynomial metamodels has been applied

extensively in discrete-event simulation (such as queueing simulation), Kriging has hardly been

applied to random simulation.

The main conclusion of our (limited) experiments will be that Ordinary Kriging seems a

robust interpolation method; that is, it predicts better than its competitors do.
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The remainder of this paper is organized as follows. Section 3.2 summarizes the basics of

Kriging. Section 3.3 discusses solutions for the problems of non-constant and exploding

variances in random simulation. Section 3.4 proposes a novel Kriging method, which estimates a

non-constant signal function and the non-constant variances. Section 3.5 presents numerical
examples, which suggest that Ordinary Kriging is a robust prediction method whereas the novel

Kriging method is better only in utopian situations. Section 3.6 gives conclusions and proposes
future research topics.

3.2 Kriging basics

Kriging assumes the following model:

Z(s) = S(s) + '1(s)    with    11(s) - NID(0, 02 (s))                                                 (3)

where  S(s)  is the so-called signal function and 4(s) the additive noise; we use the notation

x -  NID(a, b) when x is normally and independently distributed (NID) with mean a and

variance b. Below, we shall discuss the classic assumption ofwhite noise, which means that

02(s)  in (3) reduces to a constant (say)  0 2.

Note: The model in (3) may generate negative output values, whereas M/M/1 generates

non-negative values only. Nevertheless, we use (3) because it provides better control over our
experiment and it is faster than M/M/1 simulation; see Van Beers and Kleijnen (2003).

Ordinary Kriging assumes a stationary covariance process for Z(s) in (3) (see Cressie

1993). That assumption implies that the expected values  E (Z(s)) are constant, and the

covariances of  Z(s, + h)  and   Z(si)  depend only on the distance (or lag) h. The predictor for the

point  so -denoted by  p(Z(so))-is a weighted linear combination of all the (say) n observed

output data:

P(Z(so))=62,11.1,Z(st)  with  X1,4 - 1.                          (4)
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To select the weights /1, in (4), Kriging minimizes the mean-squared prediction error. The

technique uses the variogram, defined as  23 (11) =var(Z(s + h)-Z(s)), see Figure l  discussed

below. The optimal weights turn out to be

" -t' +1 1 i,;, i, j r-1                                                             (5)

where  7  denotes the vector  (7(so  -s, ) . . . . , y(so -s„))',r denotes the n x n matrix whose

(i, j)* element is 2 (s, -sj),and 1  denotes a vector ofones; also see Cressie (1993, p.  122).

Note that the weights A, in (5) vary with the prediction point, whereas polynomial-regression

metamodels use the same estimated metamodel for all these points.

3.3 Random simulation with heterogeneous variances

In this paper, we allow heterogeneous variances; hence, the Kriging assumption of a stationary

covariance process does not hold. Therefore, we do not expect a smooth variogram. Furthermore,

Van Beers and Kleijnen (2003) found that the intercept of the fitted linear variogram estimates

the so-called nugget efect. The term 'nugget' originated in the Kriging of gold mining data:

when going back to the 'same' spot (lag h 1 0; see the text above equation 4), a completely

different output-namely, a gold nugget-may be observed. In general, Kriging interprets a

nugget effect as an estimate of noise; for example, measurement noise in geostatistics. Random

simulation models produce noisy data-by definition. In this paper we shall investigate whether

the intercept of the variogram still estimates a nugget effect in case of heterogeneous variances.

Moreover, in simulation the variance may be so large that simulation is actually

impractical: as the traffic load approaches the value one, the variance explodes-as the M/M/1

illustrates; see (2). Therefore Cheng and Kleijnen (1999) recommend that

(i)  in such a situation we should simulate a load much lower than one, and extrapolate;

(ii) the higher the simulated load is, the larger the number of replicated simulation runs should be.
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Likewise, Asmussen (1992) recommends not to simulate the M/M/1 for a traffic rate  s > 0.9; he

too suggests to extrapolate in those cases. Van Beers and Kleijnen (2003), however, simulated
loads up to 0.99-but they art(ticially kept the variances constant and small over their whole

range of simulated values,  0.01 5 3 5 0.99.

Initially, we sample a single output value for each of 21 input (traffic rate) values, as

follows. We use (3) where we insert (1) and (2), which model the signal and the variance

functions of the M/M/1. We do so for 21 traffic rates  s e *101,0.05,0.10,...,0.95,0.99}. We
ignore the variance heterogeneity and the variance explosion, and proceed as in Van Beers and

Kleijnen (2003). We then get estimated variograms like Figure 1. This figure shows a wildly
oscillating variogram; obviously, the linear approximation is poor. This poor fit gives an

inaccurate Kriging metamodel with the weights A, defined in (5).

15000

10000 -

21(h) ...........

5000- , I

..-I-.............
0 01 0.2 0.3 04 05 0.6 0 7 0 8 0.           1

h

Figure 1: Estimated variogram for  Z(s) = s/(1 - s) + 11(s)  with  11(s) - NID ), 3(2 - s)/(1 - s)2 )

Figure 1 illustrates that in random simulation we should ensure that the signaYnoise ratio
is 'adequate'. To realize such a signal/noise ratio, we should-first of all-avoid variance

explosion; that is, we should simulate a non-saturated trairic  load: that is. a load much lower than

the value one. We therefore eliminate the observations for s = 0.99 ; this yields Figure 2.
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Comparison with the values on the y-axis of Figure 1 shows that the range of the variogram is

much smaller, so variances have indeed been decreased.

.          ..

14- *

12-

10-

..

2,(h)    '
6.

-

,

...............
0       0.1 02 03 04 05 06 07 0. 09   1

h

Figure 2: Variogram after elimination of s = 0.99 in Figure 1

Besides avoiding variance explosion, we may reduce the magnitudes of the remaining

variances through increasing the number of replicates (say) m-whenever the noise of a single

replicate is too big. We denote the number of identically and independently distributed (IID)

replicates for input value s  by m(s). Then one option is to select these m(s)  such that the

variances of the average responses become a constant (say)  02:

t- 1 Var(Z(s))
Var(Z(s))=            ,      = 02,                                                   (6)

m(s)

see Kleijnen and Van Groenendaal (1995).

Note: In steady-state simulation-as opposed to terminating simulation-we may make a

single long run and partition that run into subruns that play the role of replicates; see Law and

Kelton (2000).

In practice, however, the experimental design implied by (6) may be impractical (see

Kleijnen and Van Groenendaal 1995). Therefore we allow unequal variances of the sample
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averages Z(s). These averages are 'the' observations at the inputs s to which we fit a Kriging

metamodel, as follows.

3.4 Novel Kriging method: Studentization

To solve the variance heterogeneity problem, we first apply Van Beers and Kleijnen (2003) 's
Detrended Kriging, which assumes

Z(s)= SCS)+11(s)+ a (s)                                                      (7)

where S(s) is the signal function, 11(s) - NID(9,02)  is the white noise model for measurement

error, and  b (s) denotes fitting error. However, unlike Van Beers and Kleijnen  (2003) we now

allow 11(s) to have heterogeneous variances determined by the input s; see (3).

Unbiased estimators of these variances-not depending on a metamodel such as (7»are
the classic estimators

I ", 4,(s,) - 2(s, ,)'a2 (st)= "'             (8)
m(st)-1

where  Z, (s,) denotes the r  replicated observation on  Z(s,)  and

zcs,)= Ir:.)z.(st) (9)
m(si)

denotes its sample average.

Like Van Beers and Kleijnen (2003), we may estimate the signal function S(s) through

different models S(s) (see below). Unlike Van Beers and Kleijnen (2003), we now permit
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unequal variances, so the best linear unbiased estimator (BLUE) is given by weighted least

squares (WLS)-not ordinary least squares (OLS).

Next, we apply Ordinary Kriging to the detrended and standardized observations

Z (S) = (10)
Z(S) - S(S)

0(s)/ fm

Because (10) resembles Student's t StatistiC, we call the transformation in (10) 'Studentizing'.

If we neglect the random character of S(S), then we conjecture that the transformed data

Z(s)  in (10) have a constant mean (namely zero) and a constant variance, namely IN(m -2).So

2(s) then satisfies the Ordinary Kriging assumptions.

Finally, the predictor for  so  (say) p(Z(so)) follows from (10):

d(so)p(Z(S )) = P(Z(sonx--+ SWA, (11)
qm

where  p(Z(so)) is the Ordinary Kriging predictor for so based on the transformed data in (10);

d (so) is given by (8) if so -st; otherwise, we use piecewise linear interpolation between the

variances at the two neighboring points that have already been observed. (This interpolation

avoids negative estimated variances.)

3.5 Numerical examples

As the signal jiinction in (3) we first select  S(s)  = s/(1 - s), which equals the M/M/1 hyperbola

in (1). Following Van Beers and Kleijnen (2003), we experiment with five detrending models,

S(s):
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(i) Ordinary Kriging: S(s) is a constant

(ii) second-degree detrending: S(s)  is a second-degree polynomial

(iii) perfect detrending:  S(s) = S(s) = s/(1- s)

(iv) fifth-degree detrending: S(s) is a fifth-degree polynomial

(v) second-degree polynomial regression model, estimated through WLS.

Note that '(i) Ordinary Kriging' does use the m replications, but not the Studentization in (10).
Note  further that  we also study '(iii) perfect detrending', even though this  is a utopian situation:

in practice, this detrending function is unknown; otherwise simulation would not be used. This

function, however, gives the minimum prediction error; furthermore, it helps us to verify the

correctness of our computer program.

We examine four variance heterogeneity cases; we select the coefficients such that 0 (S)

in the cases I, II, and III have a mean value of one for s i n the interval  0<s<1:

I        a (s) = 1 (constant standard deviation)

II     a (s)=1/2 + s (linearly increasing standard deviation)

III   a(s) = 1/4 + 1 23 +3/2s2 (parabola)

IV a(s)=(s(2-s)72 (1-s) (hyperbola; see M/M/1).

To generate the noise in (3), we first generate standard normal variables (say) x through

the Matlab function 'randn';  then   Tl(s) = XXO(S) where 0 (s) is quantified by the cases

I through IV.
To estimate this noise, we experiment with various replication numbers m(s). We assume

constant replication numbers: m(s) =m.W e vary this m between its minimum-namely,
m= 2-and its maximum-namely m= = (known variances). We also examine m=2 5  and

m = 100. When we consider known variances, we compute Z(st)  from only 100 replicates.

We take 21 'old' observation points  s E  0.01,0.05, 0.10,..., 0.95,0.99}, as mentioned in

section 3.1.
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We evaluate Be Kriging  models  (i)  through  (v)  at ten  new  input values  (or  'test  set'),

namely at  si €  0.095,0.185,0.275,..., 0.905}. We quantify the prediction accuracy of these five

Kriging models through the L  norm
"  \vz

p(Z(st)) - E(Z(sk)) 11 = (Xk (p(Z(sk)) - E(Z(sk))).11    .

To estimate the statistical distribution of this L   norm,  we  use 100 macro-replicates,  and

characterize the resulting distribution by its median, its 0.10 quantile, and its 0.90 quantile.

Note: Many criteria have been used to compare performance; see Kleijnen and Sargent

(2000). Here we select the La norm, which is classic in mathematics. Anyhow, we select a

criterion that does not seem to bias our results in favor of any particular metamodel. Moreover,

only relative values of the norm for the various metamodels are important.

In Table  la we summarize the results of our hyperbola (M/M/1) experiments for case II

C o (s) = 1/2 + s); we obtain similar results for the other cases. This table shows that:

-    In Kriging the accuracy increases as the number of replicates m increases; for example,

Ordinary Kriging (model i) has a median L2 value of 1.7772 when  m= 2, which decreases to

0.5519 when m = 100.

- Polynomial regression (model v), however, does not improve with m: its median L  remains

29.1.

- Utopian detrending (model iii) does not always give minimum inaccuracy. For example,

when m=2 Ordinary Kriging (model i) has a median L, of 1.7772, whereas utopian

detrending has 3.5355. However, when m = 100 Ordinary Kriging (model i) has a median La

of 0.5519, whereas utopian detrending has 0.2490.

-    The practical detrending models (ii) and (iv) do not give significantly lower inaccuracies than

Ordinary Kriging (model i).
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Table la: Hyperbola experiments: Quantiles of distribution of prediction accuracy L2, for
variance heterogeneity case Il, O (s) = 1/2 +s,for different number of simulation replicates
m, detrending models S(s) (i) through (v), estimated from 100 macro-replicates

m=2

l.2                   (i)            (ii)           (iii)          (iv)           (V)
Qo io 1.2978 5.1792 1.7786 3.5183 28.6030

Median 1.7772 25.0581 3.5355 12.5414 29.1393

Qo 90 2.4125 96.7104 11.5393 106.1171 29.7689

m=25

4                   (i)            (ii) (iii) (iv)            (V)

Qo.io 0.4517 0.4867 0.3664 0.7160 28.8867

Median 0.6681 0.7064 0.5169 0.9951 29.0978

Qo.90 0.9769 1.0500 0.7071 1.3466 29.2946

m = 100

4                    (i)             (ii) (iii) (iv)            (V)

Qo.10 0.4109 0.4004 0.1768 0.6859 29.0104

Median 0.5519 0.5502 0.2490 0.8522 29.1054

Qo.90 0.6632 0.6571 0.3415 1.0093 29.1949

m = 100, theoretical variances

l·2                   (i)            (ii) (iii) (iv)            (V)

Qo.to 0.4109 0.4041 0.1743 0.7173 29.0104

Median 0.5519 0.5429 0.2477 0.8147 29.1054

Qo.90 0.6632 0.6516 0.3399 0.9577 29.1949

Like Van Beers and Kleijnen (2003), we add a second set of experiments: we replace the

hyperbola by a fourth-degree polynomial that has two local tops (hills):

S(s) = -0.0579s4 + 1.1 ls' - 6.845s2 + 14.107s + 2 with Ofs 510.



40 Chapter 3

We again take 21 observation points, now spread over the experimental domain as follows:

s€{b,  0.5,1,...,  9.5,10}. We again estimate the Kriging models (i) through (v). The first two

models represent different degrees of underfitting, whereas model (iv) represents overfitting. We

evaluate these five alternative models at the test set  sk €  *195,  1.85,  2.75,  . . . ,  9.05}. We present

our results for a heterogeneity case similar to II-namely 0 (s) = 0.5 + O. ls-in Table lb.

Table lb: Fourth-degree polynomial experiments: see Table  1 a for remaining symbols

m=2

l.2                     (i)             (ii) (iii) (iv)            (V)

QO.10 1.2583 3.3673 1.3326 1.6863 9.1334

Median 1.8657 8.4217 1.8517 2.8940 9.6088

Qo.90 2.4607 60.1548 2.4381 9.9289 10.0154

m=25

4                     (i)             (ii) (iii) (iv)            (V)

Qo.to 0.3997 0.4032 0.3334 0.3335 9.3816

Median 0.5297 0.5409 0.4867 0.4840 9.5065

Qo.90 0.7179 0.7381 0.6897 0.6979 9.6165

m = 100

l·2                     (i)             (ii) (iii) (iv)            (V)

QO.10 0.2818 0.2651 0.1798 0.1795 9.4574

Median 0.3754 0.3579 0.2543 0.2557 9.5094

Qo.90 0.4584 0.4563 0.3287 0.3284 9.5734

m = 100, theoretical variances

la                   (i)            (ii) (iii) (iv)            (V)

Qoto 0.2818 0.2684 0.1732 0.1813 9.4574

Median 0.3754 0.3560 0.2470 0.2555 9.5094

Qo.90 0.4584 0.4449 0.3401 0.3283 9.5734
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From Table 1, we conclude that Ordinary Kriging is a robust method; polynomial regression

analysis gives the worst prediction results.

Finally, we examine the nugget effect. It is well-known that in case of a known and

constant variance 0 2, the intercept of the variogram estimates this 0 2: also see Section 3.3.

Now we conjecture that the Studentized observations Z(s)  in (10) behave like white noise, so

that the intercept estimates the variance of Student's t--1, namely  a 2 = m/(m - 2)  where m

denotes the number of simulation replicates per input value. Therefore we formulate the

following null-hypothesis:

Ho:     ECA)=
m

(12)m-2

where A denotes the estimated intercept of the linear variogram. Note that in (10) we now use

S(s) = Z(s). To test the hypothesis in (12), we experiment with various m values, namely 25,

100 and 500. Further, the random numbers for the case of 500 replicates include those for 100

and 25 replicates, so the results are not statistically independent. Because the same number of
replicates implies that the studentized data have the same mean and the same standard deviation
in all variance heterogeneity cases, we examine only one case-namely case III

(a(s) = 1/4 + 1/23 + 3/2s2).  We use 500 macro-replicates to estimate the mean and standard

deviation of #o ; see Table 2. Because we obtain these estimates for more than one value of m,

we apply Bonferroni's inequality: we select the estimate that deviates most from the hypothesized

value  m/(m - 2), and reject  Ho  in (12) if its t value is significant at a/2k where k denotes the

number of values of m (here  k =3) and the factor 2 is used because we have a two-sided test.

Ho  in (12) is rejected at the significance level a = 0.20: 15001  = -2.605 while the critical value is

-1.83. Therefore we repeat the experiment with other random numbers, now we find a non-

Significant t value. So we conclude that m/(m -2)  in (12) provides an adequate approximation.
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Table 2: Mean and standard deviation of the variogram intercepts  A, for m = 25,100 and
500 simulation replicates (estimated from n = 500 macro-replicates)

m=25 m = 100 m = 500

rnean st.dev. mean st.dev. mean st.dev.

1.079 0.44512 0.97367 0.40125 0.99095 0.3835

We also examine the nugget effect in case of Ordinary Kriging with constant and non-

constant signal function respectively, namely  S(s) = 10  and  S(s) = sl(1- s). Furthermore, we

experiment with several variance functions. From Table 3 we conclude that in case of a constant

Signal function the intercept of the linear variogram estimates the square of the average standard

deviation,  (-Y  (also see Van Beers and Kleijnen 2003). However, in case of non-constant signal

function  we do not know  what the intercept estimates !

Table 3: Estimated nugget effect (variogram intercept)-estimated from 200 macro-replicates-
with Ordinary Kriging for various variance cases 02 (s), constant and non-constant signal  S(s)

Constant signal  S(s) = 10 and Homogeneous variances
noise variance a (s) = 0.5 o (s) = 1 0(s)=4

variogram intercept 0.2307 0.9227 14.7629

Constant signal  S(s) = 10 and Heterogeneous variances

noise variance 0 (S) = 0.5 + s 0 (s) = 0.5 + 10s a(s)=X + As+Uts
variogram intercept 0.9385 32.4869 1.0844

Non-constant signal S(s) = s/(1-s) and Homogeneous variances

noise variance a (s) = 0.5 0 (S) = 1 o (s) = 4

variogram intercept 782.3001 783.6247 800.9322

Non-constant signal S(s) = s/(1 -s) and Heterogeneous variances

noise variance 0 (S) = 0.5 + s o (s)  = 0.5  + 103 a(s)=A+KS+Uts
variogram intercept 784.9352 822.6294 787.7666
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3.6   Conclusions and further research

We examined whether Kriging is a practical interpolation method for random simulation models

with non-constant output variances. Based on our (limited) numerical results, we draw the

following conclusions.

1. Ordinary Kriging is an interpolation method that seems not very sensitive to variance

heterogeneity.

2. In practice, the signal function S(s) is unknown so Detrended Kriging must use an

approximation (for example, a polynomial). However, this performs worse than Ordinary

Kriging.
3. A second-degree polynomial regression model estimated through least squares-ordinary or

weighted-is the worst of the metamodels considered for a hyperbolic I/0 function, which

applies in M/M/1. (This regression analysis may be useful if only a few observations are

available-say, two or three instead of twenty-and a rough sensitivity analysis suffices. The
role of classic regression metamodels in simulation is also discussed by Van Beers and Kleijnen
2003.)

4. Increasing the number of replications improves the accuracy of any Kriging prediction (as is to

be expected).

5. For both homogeneous and heterogeneous variances, the intercept of the estimated linear
variogram estimates a nugget effect only i f the signal functions remain constant as the input

changes.

In future research, we might try to generalize Ordinary Kriging in case of random

simulation with heterogeneous variances; that is, we might relax the assumption of a stationary

covariance process. We might then assume that correlations decrease with the distance between

the observations:

p(zcs),Z(s'))10   as   Is-s'IT=

We might still try to compute the Kriging predictor as a weighted linear function of the observed

Outputs. These weights would decrease as the distance between observations or their variances
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increase. It is unclear whether an explicit formula for the optimal weights can be derived or

whether a numerical procedure must be resorted to.

Our results may be further generalized by applying Kriging to other types of simulation

models with known I/0 functions, such as M/G/1 and M/M/1/K
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Chapter 4

Application-driven Sequential Designs for
Simulation Experiments: Kriging Metamodeling

Abstract

This paper proposes a novel method to select an experimental design for interpolation in

simulation. Though the paper focuses on Kriging in deterministic simulation, the method also
applies to other types of metamodels (besides Kriging), and to stochastic simulation. The paper

focuses on simulations that require much computer time, so it is important to select a design with
a small number of observations. The proposed method is therefore sequential. The novelty of the

method is that it accounts for the specific input/output function of the particular simulation model

at hand; i.e., the method is application-driven or customized. This customization is achieved

through cross-validation and jackknifing. The new method is tested through two academic

applications, which demonstrate that the method indeed gives better results than either sequential

designs based on an approximate Kriging prediction variance formula or designs with prefixed
sample sizes.

4.1 Introduction

We are interested in expensive simulations; that is, we assume that a single simulation run takes

'much' computer time (say, its time is measured in days, not minutes). Therefore we devise a

Paper by Kleijnen, J.P.C. and W.C.M. Van Beers, Journal of the  Operational Research Society, 55. issue 9, August
2004, pp. 876-883
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method meant to minimize the number of simulation runs-that number is called the 'sample

size' in statistics or the 'design size' or 'scheme size' in design of experiments (DOE).

We tailor our design to the actual simulation; that is, we do not derive a generic design

such as a classic 9-pdesign or a Latin Hypercube Sampling (LHS) design. We can explain the

differences between our designs on one hand and classic and LHS designs on the other hand, as

follows.

Classic designs assume a simple 'metamodel' (also called approximate model, emulator,

response surface, surrogate, etc.). A metamodel is a model of an input/output (I/0) function. We

denote the metamodel by Y(x) where x denotes the k -dimensional vector of the k inputs-called

'factors' in classic DOE. In simulation, the true I/0 function is implicitly defined by the

simulation model itself (in real-life experiments, 'nature' defines this function). Classic 2*-P

designs of resolution III assume a first-order polynomial function (optimal resolution-III designs

are orthogonal matrices, under various criteria). Central composite designs (CCD) assume a

second-order polynomial function. See, for example, the well-known textbook Box, Hunter, and

Hunter (1978) or the recent textbook, Myers and Montgomery (2002).

LHS-much applied in Kriging-assumes I/0 functions more complicated than classic

designs do-but LHS does not specify a specific function for Y(x). Instead, LHS focuses on the

design space formed by the k-dimensional unit cube, defined by  O S x,  5 1(j=1, . . . , k) after

standardizing (scaling) the inputs. LHS tries to sample that space according to some prior

distribution for the inputs, such as independent uniform distributions on  [O, 1] (or some non-

uniform distribution in risk or uncertainty analysis); see McKay, Beckman, and Conover (1979),

and also Koehler and Owen (1996) and Kleijnen et al. (2002).

Unlike LHS, we explicitly account for the 1/O function; unlike classic DOE, we use a

more realistic I/0 function than a low-order polynomial. Therefore we estimate the true I/0

function through cross-validation; i.e., we successively delete one of the I/0 observations already

simulated (for cross-validation see Stone (1974); for an update see Meckesheimer et al. (2002),

Mertens (2001)). In this way we estimate the uncertainty of output at input combinations not yet

observed. To measure this uncertainty, we use the jackkn(fed variance. For jackknifing see the

classic article by Miller (1974); for an update see again Meckesheimer et al. (2002) and
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Mertens (2001). We also compare our designs (based on cross-validation and jackknifing) to
sequential designs based on a formula that approximates the variance of the Kriging predictor.

It turns out that our procedure concentrates on input combinations (design points,

simulation scenarios) in sub-areas that have more interesting VO behavior. In our Example I, we
spend most of our simulation time on the challenging 'explosive' part of a hyperbolic function

(which may represent mean steady-state waiting time of single-server waiting systems). In

Example II, we avoid spending much time on the relatively flat part of the fourth-degree

polynomial VO function with multiple local hills. (The reader may take a peek at Figures 3 and 6

discussed later.)

We make our procedure sequentiat for the following two reasons:

1. Sequential procedures are known to be more 'efficient'; that is, they require fewer observations

than fixed-sample procedures; see the statistics literature, for example, Ghosh and Sen (1991) and

Park et al. (2002).

2. Simulation experiments proceed sequentially (unless parallel computers are used).
Our Application-Driven Sequential Design (ADSD) does not provide tabulated designs;

instead, we present a procedure for generating a sequential design for the actual (simulation)

experiment.

Note that a different ADSD is developed by Sasena, Papalambros, and Govaerts (2002).
They, however, focus on optimization instead of sensitivity analysis (we think that optimization
is more applied in engineering sciences than in management sciences, because the latter sciences

involve softer performance criteria). Moreover, they use the 'generalized expected improvement

function' assuming a Gaussian distribution, as proposed by Jones, Schonlau, and Welch (1998).
We, however, use distribution-free jackknifing and cross-validation for a set of candidate input
combinations. Sasena et al. (2002) examine several criteria for selecting the next input

combination to be simulated, including the 'maximum variance' criterion; the latter criterion is

the one we use. (An alternative to their single, globally fitted Kriging metamodel for constrained

optimization is a sequence of locally fitted first-order polynomials; see Angun et al. (2002))

Related to Sasena et al. (2002) is Watson and Barnes (1995). More research is needed to compare

our method with Sasena et al.'s method (also see our final section, called 'Conclusions and

further research').
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The remainder of this paper is organized as follows. First we summarize the basics of

Kriging. Then we summarize DOE and Kriging. Subsequently we explain our method, which

uses cross-validation and jackknifing to select the next input combination to be simulated; this

section also discusses sequentialization and stopping. Next we demonstrate the procedure through

two academic applications, which shows that our method gives better results than a design with a

prefixed sample size; moreover, estimated Gaussian and linear correlation functions

(variograms)-used in Kriging-give approximately the same results. The final section presents

conclusions and topics for further research.

4.2 Kriging basics

Kriging is named after the South-African mining engineer D.G. Krige. It is an interpolation

method that predicts unknown values of a random function or random process; see Cressie

(1993)'s classic Kriging textbook and equation (1) below. More precisely, a Kriging prediction is

a weighted linear combination of all output values already observed. These weights depend on

the distances between the location to be predicted and the locations already observed. Kriging

assumes that the closer the  input data are,  the more positively correlated the prediction errors

are. This assumption is modeled through the correlogram or the related variogram, discussed

below.

Nowadays, Kriging is also popular in deterministic simulation 00 model the performance

of computer chips, television screens, etc.); see Sacks et al. (1989)'s pioneering article, and-for

an update-see Simpson et al.  (2001 a). Compared with linear regression analysis, Kriging has an

important advantage in deterministic simulation: Kriging is an exact inteipolator; that is,

predicted values at observed input values are exactly equal to the observed (simulated) output

values.

Kriging assumes the following metamodet.

Y(x) =/1(x) + b(x)  with 8(x) - NLD(O, al(x))                             (1)
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whereg   is the mean of the stochastic process  Y(·), and  J (x)  is the additive noise, which is

assumed normally independently distributed (NID) with mean zero and variance  02(x).

Ordinary Kriging further assumes a smtionary covariance process for  Y(x) in (1): the expected

values#(x) are constant and the covariances of  Y(x + h) and Y(x) depend only on the distance

(or lag)Ih I=1(x+h)-(x)1.

As we mentioned above, the Kriging predictor for the unobserved input xo-denoted by

f(xo)-is a weighted linear combination of all the (say) n observed output data:

f(xo)=  4.y(x,)=1'·Y                        (2)

with X11,1, =1, 1= (,11...., A. )'and Y .,  y„)'.  To choose these weights,  the  'best'= Cy"..

linear unbiased estimator (BLUE) is derived: this estimator minimizes the mean-squared

prediction error MSE(r(x,))= E(6'(x, ) - f(x,))1 j. with respect to 1. Obviously, this solution

depends on the covariances, which may be characterized by the variogram, defined as

22 (11) = var(Y(x + h) - Y(x)). (We follow Cressie (1993), who uses variograms, whereas Sacks

et al. (1989) use correlation functions; also see our discussion on the estimation of variograms in

the section called 'Two examples'.) An example variogram is given in Figure  1.

variogram *h)

2vaix)                                                                   -

2Kh)

t

e
0                        - Ihl

Figure 1: An example variogram
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It can be proven that the optimal weights in (2) are

" -1,+11 It:1111'  r-,                                                      0,

where 7  is the vector of (co)variances (y(xo -xi),..., y(xo -x„))';  f  is the nxn matrix whose

(i, 11* element is  3 (x,-x,);1=(1,...,1)'is the vector ofones. We point out that the weights in

(3) vary with the prediction point, whereas regression analysis uses the same estimated

metamodel for all prediction points.

Because the (co)variances in (3) are unknown, they are based on the estimated variogram.

If the random character of the resulting estimated optimal weights  1 is ignored, then the variance

of the resulting linear estimator at a fixed point  zo  is

aki(xo 1 1 -A)=2· EX,y(xo-xi)- II,1,·,137(x,-xj) ,                   (4)
i j

see Cressie (1993, p. 122), who does not explicitly mention the conditional character of (4).

Further details on Kriging are provided by Cressie (1993); an update is Van Beers and

Kleijnen (2003).

4.3   DOE and Kriging

A design is a set of (say) n combinations of the k factor values. These combinations are usually

bounded by 'box' constraints:  a, 5 xi 5 bi, where  ai, bj   R with  j =l, ..., k . The set of all

feasible combinations is called the experimental region (say) H. We suppose that H is a k-

dimensional unit cube, after rescaling the original rectangular area (also see the Introduction)

Our goal is to find a design-for Kriging predictions within H-with the smallest size that

satisfies a certain criterion. The literature proposed several criteria: see Sacks et al. (1989,

p. 414). Most of these criteria are based on the Mean Squared prediction Error,
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MSE Y(x) = E(Y(x)- Y(x))
2 where the predictor f(x) follows from (2) and the true output

Y(x) was defined in (1). (An alternative considers  100(1 - a)% prediction regions for  y(x)  and

inter-quantile ranges for 9(x) ; see Cressie 1993, p. 108.) However, most progress has been made

through the Integrated Mean Squared Error (IMSE); see Bates et al. (1996): choose the design

that minimizes

IMSE = L MSE(r(x))0(x)«Ix                                            (5)

for a given weight function 0(X).

To validate the design, Sacks et ill. (1989, p. 416) compare the predictions with the known

true values in a test set of size (say) m. They assume 0(x) to be uniform, so IMSE in (5) can be

estimated by the Empirical Integrated Mean Squared Error (EIMSE):
2

1

EIMSE =   I G, (x) - y, (x))   .                                                          (6)

Note that criteria such as (5) are more appropriate in sensitivity analysis than in

simulation optimization; see Sasena et al. (2002) and also Kleijnen and Sargent (2000) and

Kleijnen (1998).

4.4 Application-driven sequential design

4.4.1 Pilot input combinations

We start with a pilot design of size (say) no. To select no specific points, we notice that Kriging
gives very bad predictions in case of extrapolation G.e., predictions outside the convex hull of the

observations obtained so far). Indeed, in our examples we find very bad results (not displayed).
Therefore, we select the 2k vertices of H as a subset of the pilot design. In our two examples with

a single input (k=l) , this choice implies that one input value is the minimum and one is the

maximum of the input's range; see Figure 2 (other parts of this figure will be explained below, in

next subsections).
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Figure 2: Fourth-order polynomial example, including four pilot observations and three candidate

inputs with predictions based on cross-validation, where (-i) denotes which observation i is
dropped in the cross validation

Besides these 2k vertices, we must select some more input combinations to estimate the

variogram. Like Cressie (1993) we assume either a Gaussian variogram

7 (h) = co  + ci (1 -exp(-h/a))                                                                  (7)

or a linear variogram

2(h)=co +c·h.               (8)
Obviously, estimation of the variogram (7) requires at least three different values of h (for

example, the values  O, %,1 ); thus at least three different I/0 combinations. Moreover-as we

shall see-our approach uses cross-validation, which implies that we drop one of the no

observations and re-estimate the variogram; i.e., cross-validation necessitates one extra 1/0

combination.

In practice, we may select a 'small' set of additional observations-besides the 2k corner

points-using a standard space-jilling design, which ensures that no two design points are too

Close to each other. More specifically, we propose a maximin design, which packs all design

points in hyper spheres with maximum radius; see Koehler and Owen (1996, p. 288). In our

examples, we take-besides the two endpoints of the factor's range-two additional points. The

latter points we place such that all four observed points are equidistant; see again Figure 2.

(Future research may investigate alternative sizes,to and components x.)
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4.4.2 Candidate input combinations

After selecting and actually simulating a pilot design, we choose additional input combinations-
accounting for the particular simulation model at hand. Because we do not know the I/0 function

of this simulation model, we choose (say) c candidate points-without actually running any

expensive simulations for these candidates (as we shall see in next subsection).

First we must select a value for c. In Figure 2 we select three candidate input values (had

we taken more candidates, then we would have to perform more Kriging calculations; in general,

the latter calculations are small compared with the 'expensive' simulation computations).

Next we must select c speci#c candidates. Again, we use a space-filling design (as we did
for the pilot sample). In Figure 2 we select the three candidates hal»ay between the four input

values already observed. (Future research may investigate how to use a space filling design to
select candidates, ignoring candidates that are too close to the points already observed. In

practice, LHS designs are attractive since they are so simple: LHS is part of spreadsheet add-ons

such as @Risk.)

4.4.3 Cross-validation

To select a 'winning' candidate for actual (expensive) simulation, we estimate the variance of the

predicted output at each candidate input-without any actual simulation. Therefore we use cross-

validation and jackknifing, as follows.

Given a set of observed I/O data  (x„ Y, ) with  i = l, ..., n (initially,  n = no ), we eliminate

observation i and obtain the cross-vatidation sample (with only n-1 observations):

S(-i  = *Xl, Yl  ,(XZ ' Y2  ' ···• (xi- 1, Y,-t),(Xi+1, Y,+1),.... (x„,y„)}.                 (9)

From the sample in (9), we could compute the Kriging prediction for the output for each

candidate. However, to avoid extrapolation (see previous subsection 'Pilot input combinations'),
we do not eliminate the observations at the vertices: of the cross-validation sample in (9) we use

only (say) nc observations. The predictions are analogous to (2) replacing n by nc; in case of
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k = 1  we taken. = no -1. Obviously, we must re-estimate the optimal weights in (2), using (3)

(also see the 'binning' discussion at the end of next subsection). Figure 2 shows the

nc= n o-1=3 Kriging predictions (say) f (-O after deleting observation i as in (9), for each of the

c = 3 candidates.

Figure 2 suggests that it is most difficult to predict the output at the candidate point

x = 8.33. To quanti fy this prediction uncertainty, we use jackknifing.

4.4.4 Jackknifing

First, we calculate the jackknife's pseudo-value for candidate j, which is defined as the following

weighted average of the original and the cross-validation predictors:

4 i =n, x fjc-°) -(n, -1)xY,c-'  with j =l...., c and i -1,....ne (10)

where 2j<4' is the original Kriging prediction for candidate input j based on the complete set of

observations (zero observations eliminated: see the superscript - 0).
From the pseudo-values in (10), we estimate the jackknife variance for candidate j:

32=  1  SCY,·,i-Y,)2 with y,=1 E-Yi:,· (11)
nc (n e-1) , -1 nc ,=1

Note that we also experimented with other measures of variability, for example, the 90%

interquantile; all these measures gave the same type of design.

Finally, to select the winning candidate (say) w for actual simulation, we find the

maximum of thejackknife variances in (11):

w= arg(max{  1 } ) . (12)

Note that a candidate location close to a deleted observation lies relative far away from

the remaining observations. Hence, such a candidate is less correlated with its neighboring points.
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Consequently. its Kriging predictor becomes rather uncertain. However, this phenomenon holds

for each deleted observation.

Note further that to reduce the computer time needed by our procedure (not by the

simulation itself), we estimate the variogram from binned distances: for n inputs, we classify the

n(n - 1)/2 possible distances h in (say)  n   < n equally sized intervals or 'bins'. These intervals

should be as small as possible to retain spatial resolution, yet large enough to stabilize the

variogram estimator. Journel and Huijbregts (1978) recommend at least thirty distinct pairs in

each interval. For the n  midpoints of these intervals, we calculate the average squared

difference to estimate the variogram; see Cressie (1993, p. 69). In our examples we use n  = 15.

4.4.5 Sequentialization

Once we have simulated the 'winning' candidate selected through (12), we add the new

observation to the set of observations; see S i n (9)-now with superscript ( -0) and with  n+1

members.

Next, we choose a new set of candidates with respect to this augmented set. For example,

in Figure 2 we add as new candidates  x - 1.67,  x = 5.  x = 7.5  and  x = 9.17; these candidates are

not shown in Figure 2, but the winning candidate is shown as part of Figure 3.

• sequential design 0   initial data -model * sequential design 0   initial data       -model

15-
15  

10 /*3%\ 51 --,\- 5,                            -
9   0                                                                                        Y   O                                                                   i      p502468\°sf246

10 1     10 1                                            

-15 15 1

X                                                          X

Figure 3a Figure 3b

Figures 3: Figure 2 continued with n = 19  (3a) or n = 54 (3b) observations
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The 'dynamics' of our procedure is demonstrated by Figure 4, which shows the order in

which input values are selected-in a total sample size  n = 50.

- sequential inputs 0 initial inputs
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Figure 4: Dynamics of sequential sampling for Example 1

4.4.6  Stopping rule

To stop our sequential procedure, we measure the Successive Relative Improvement (SRI) after n

observations:

SRIn = I max{I; }, -mar{U 1.-1 1 mar{i& }„-1 (13)
J j                                   J

where  max{ Sj 1„ denotes the maximum jackkni fe variance (see (12)) after n observations.

Figure 5 shows SRI for Up to n = 50 in Example I (detailed in next subsection). There are no

essential changes in (13) beyond n = 15. In the literature (including Sasena et al. (2002) and

Jones et al. (1998)), we did not find an appealing stopping criterion for our sequential design;

future research may be needed.
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Figure 5: Successive relative improvements for 50 observations in hyperbole example

We stop our sequential procedure as soon as we find no 'substantial' reduction for SRI.

However, SRI may fluctuate greatly in the first stages, so we might stop prematurely. To avoid

such stopping, we select a minimum value (say) na, so that the complete design contains

n =no + nmin observations. Figure 38 used  nmi, = 15, whereas Figure 3b used  nmin  = 50 (Figure 2

is the part of Figure 3 that corresponds with n=4. )

In practice-as Kleijnen et al (2002) point out-simulation experiments may stop
prematurely (e.g., the computer may break down). Our procedure then still gives useful

information.

4.5 Two examples

4.5.1  Example I: a hyperbolic I/O function

Consider the following hyperbole:

y=x with O<x<1 (14)1-x

We are interested in this example, because y in (14) equals the expected waiting time in the
steady state of a single-server system with Markovian (Poisson) arrival and service times
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(denoted by M/M/1). This system has a single input parameter, namely the traffic load x, which is

the ratio of the arrival rate and the service rate. This system is a building block in many realistic

discrete-event simulation models; see Law and Kelton (2000, p. 12) and also Van Beers and

Kleijnen (2003).

When applying our approach to (14), we decided to select a pilot sample size no = 4 and

a minimum sample size value  n-  = 10. We stop the sequential procedure as soon as the SRI in

(13) drops below 5%; this results in a total sample size n = 19. Also see Figure 6a. Replacing 5%

by 1 % gives  n = 36; see Figure 6b.

Figures 6 demonstrate that our final design selects relative few input values in the area

that generates an approximately linear [/O function, whereas it selects many input values in the

exploding part (where x approaches one).

10                                                                                                                                                     10  -·-··-···------····"····----·-···     ···-··-····         ····--·······--····-·--·······-····--····  ·····"·····

r E37  6-                                         6
Mx) 5 Y(x)  5 -               -                    -

4                                                                     -                                  4
3-

2-                                       2-
1 5-.-*--' 8o FF          O -

0.0           0.2 0.4 0.6 0.8 1.0
0.0 02 0.4 0.6 0.8 1.0

X                                                                     I

Figure 6a Figure 6b

Figures 6: Hyperbole example, including four pilot observations and with n = 19 (6a) or n = 36
observations

We think that our design is intuitively appealing-but we also use a test set to quantify its

performance. In this test, we compare our design with two alternative design types of the same

size (n=1 9  or  n=3 6) :
i. A sequential design based on the approximate Kriging variance formula (4). We then

select as the next point the input value that maximizes this variance (we do not need to specify

candidate points); see Figure 7. The figure illustrates that this approach selects as the next point

the input farthest away from the old inputs, namely x = 0.5 (also see Goovaerts's statement on

http:Uwww.sph.urnich.edu/geomed/mods/geostats_lite/lec/krigvariance.html). This results in a



Application-driven Sequential Designs for Simulation Experiments:                                               61
Kriging Metamodeling

final design that spreads all its points evenly across the experimental area (so it resembles the

next design).

ii. A single-smge LHS design. LHS divides the total range of the input variable into n

mutually exclusive and exhaustive intervals of equal length. Within each interval, LHS samples a
uniformly distributed value. To estimate the resulting variability, we decided to obtain ten LHS
samples, from which we estimate the mean and the standard deviation (standard error).

,„
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11  ilipk
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0
01 02 0. 04 0. 06 07 08 09

Figure 7: Approximate Kriging variance in initial design

From the n observations per design we compute the Kriging predictors for the 32 true test

values, and calculate the squared error per test value. From the 32 values we compute the average

-see EIMSE in (6), which corresponds with the l.2 norm-and the maximum or L- norm. We

find substantially better results for our designs; see Table  1.

Table l:   IMSE of three design types for hyperbole (Example I)
ADSD Krig Var LHS

EIMSE L- EIMSE L- EIMSE          L-
n = 19 8.90 * 104 0.0759 80.08 * 104 0.3460 61.4 * 10-4 0.3559

(48.1 * 104)   (0.1740)
n=36 1.19 * 104 0.0303 8.11 * 10-4 0.1501 2.76*10-4 0.0791

(0.98 * 104) (0.0185)

4.5.2 Example II: a fourth-order polynomial I/0 function

As Van Beers and Kleijnen (2003) did, we consider

y = -0.0579 x4 + 1.11 x ' - 6.845 x 2 + 14.1071x + 2, (15)

which is a multi-modal function; see again Figure 2.
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For our design, we select  no =4,  nmi. =10, and a SRI smaller than 5%. This gives a

sequential design with 18 observations. A SRI smaller than 1 % gives a final (sequential) design

with 24 observations (Example I resulted in 36 observations).

Figure 8 demonstrates that our final design selects relative few input values in the area

that generates an approximately linear I/0 function, whereas it selects many input values near the

edges, where the function changes much.

We again compare our design with the two alternative designs discussed above. We find

substantially better results for our designs; see Table 2.

Table 2:   IMSE for three types of designs for fourth degree polynomial (Example II)

ADSD Krig Var LHS
EIMSE L- EIMSE L- EIMSE         L-

n = 18 0.1741 1.0470 0.5793 0.6718 0.5855 3.3011
(0.5574) (1.9706)

n=24 0.0121 0.2503 0.2690 0.5133 0.2473 2.1212
(0.2112) (1.3837)

Note that we focus on sensitivity analysis, not optimization. For example, our method

selects input values-not only near the 'top'-but also near the 'bottom' of (15). If we were

searching for a maximum, we would adapt our procedure such that it would not collect data near

an obvious minimum.

• sea,ential design -model            0    idu data

15-

10 /'*- \.. -\
Y 00 2 4 6 8  13-5

1O

-15

X

Figure 8: Final design for fourth-order polynomial example with SRI < 1% and n = 24
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4.5.3 Estimated variograms: Gaussian versus linear

We also investigate the influence of the assumed variognm, namely a Gaussian variogram and a
linear variogram; see (7) and (8). We use a single-stage design with 21 observations. We use

ordinary least squares for these estimators (whereas Sacks et al. (1989) assume a Gaussian

correlation function and use maximum likelihood estimation, which takes much more computer

time and may involve numerical problems).

The Gaussian and the linear variograms result in two designs that look very similar, for

both Example I and Example II. More precisely, when using a test set of nine equidistant input
values, Kriging predictions based on a Gaussian variogram give an EIMSE of 0.3702, whereas a

linear variogram gives 0.3680 for Example I. Analogously, Example II gives 0.0497 and 0.0482.

So the Gaussian and linear variograms give similar values for EIMSE. The linear variogram,

however, is simpler: no data transformation is needed.

4.6   Conclusions and further research

To avoid expensive simulation runs, we propose cross-validation and jackknifing to estimate the

variances of the outputs for candidate input combinations. We actually simulate only the

candidate with the highest estimated variance. This procedure we apply sequentially.
Our two examples show that our procedure simulates relatively many input combinations

in those sub-areas that have interesting I/0 behavior. Our design gives smaller prediction errors

than either sequential designs based on the approximate variance formula in (4) or single-stage

designs do.

In future research, we may extend our approach to

1. alternative pilot-sample sizes  no  with alternative space-filling input combinations x

(Jones et al. (1998, p. 21), propose no = 1Ok  and an adjusted LHS design)

2. alternative space-filling designs for the selection of candidate input combinations,
ignoring candidates that are too close to the points already observed in any preceding
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stages (such an alternative design may be a nearly-orthogonal LHS design; see

Kleijnen et al. (2002))
3.    a stopping criterion for our sequential design

4. multiple inputs (k>1)
5. realistic simulation models (instead of our Examples I and  II)

6.    comparison of our approach with Sasena et al. (2002)' s  approach

1. stochastic simulation models (focus of our current research)

8.  other metamodels, such as linear regression models (see Kleijnen and Sargent (2000))

and neural nets (see Simpson et al.  (2001 b)).
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Chapter 5

Customized Sequential Designs for Random

Simulation Experiments: Kriging Metamodeling

and Bootstrapping

Abstract

This paper proposes a novel method to select an experimental design for interpolation in random

simulation, especially discrete event simulation. (Though the paper focuses on Kriging, this
design approach may also apply to other types of metamodels such as linear regression models.)

Assuming that simulation requires much computer time, it is important to select a design with a
small number of observations (or simulation runs). The proposed method is therefore sequential.
Its novelty is that it accounts for the specific input/output behavior (or response function) of the
particular simulation at hand; i.e., the method is customized or application-driven. A tool for this

customization is bootstrapping, which enables the estimation of the variances of predictions for
inputs not yet simulated. The new method is tested through two classic simulation models:

example 1  estimates the expected steady-state waiting time of the M/M/1 queueing model;

example 2 estimates the mean costs of a terminating (s, S) inventory simulation. For these

simulations the novel design indeed gives better results than Latin Hypercube Sampling (LHS)
with a prefixed sample of the same size.

Paper by Van Beers, W.C.M. and J.P.C. Kleijnen, submitted to INFORMS Journal on Computing



68                                                                                                          Chapter 5

5.1 Introduction

In this paper, we focus on expensive simulations: that is, we assume that a single simulation run

takes 'much' computer time. Consequently, 'interpolation' is needed; i.e., from the simulated

input/output (I/O) data, the outputs are predicted for input combinations not yet simulated. We

devise a method that is meant to minimize the number of simulation runs for such interpolation.

We tailor our design of experiments (DOE) to the actual simulation; that is, we do not derive a

generic design such as a classic design (for example. a 2*-p design) or a LHS design. The

differences between customized and generic designs are as follows (also see Kleijnen and Van

Beers (2004), who focus on deterministic simulation).

A metamodel is a model of the I/0 function (or  'response function') implied by the

underlying simulation model. We denote the metamodel by Y(x) where x denotes the k-

dimensional vector of the k inputs (factors) so  x  =  (xt,...,xj . . . . ,x t) : Classic DOE assunnes a

simple metamodel. For example, designs of resolution III (including certain 2*-p designs)

assume a first-order polynomial 1/0 function. Composite designs (CCD) assume a second-order

polynomial. These designs are discussed for physical experiments in (for example) the well-

known textbook Box, Hunter, and Hunter (1978) and the recent textbook Myers and Montgomery

(2002); for simulation experiments we refer to Kleijnen (1987).

LHS (much applied in Kriging, described below) assumes that an adequate metamodel is

more complicated than a low-order polynomial. LHS, however, does not assume a specific

metamodel. Instead, LHS focuses on the design space formed by the k-dimensional unit cube,

defined by  O E x,  5 1 (j=l, . . . ,k) after standardizing (scaling) the inputs. LHS is one of the

space filling designs: LHS samples that space according to some prior distribution for the inputs,

such as independent uniform distributions on [0,1]; see McKay, Beckman, and Conover (1979),

and also Kleijnen et al. (2005), Koehler and Owen (1996), and Santner, Williams, and Notz

(2003).

Unlike LHS, we explicitly account for the 1/0 function. Unlike classic DOE, we assume

that a low-order polynomial (estimated through regression analysis) gives an inadequate

approximation of the I/0 function. Ill our method we estimate the uncertainty of predicted
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outputs at unobserved input combinations (these combinations are also called scenarios, design
points, combinations of factor levels, or simulation inputs). To estimate the uncertainty of these

predictions-caused by the noise and the shape of the I/0 function-we use bootstrapping: i.e.,
we resample the outputs for each scenario already simulated (for bootstrapping in general see the

classic textbook, Efron and Tibshirani  1993; for bootstrapping in the validation of regression

metamodels in simulation see Kleijnen and Deflandre 2005)

We make our procedure sequential for the following two reasons.

1. Sequential statistical procedures are known to be more 'efficient'; that is, they require fewer

observations than fixed-sample (one-shot) procedures; see, for example, the handbook by Ghosh

and Sen (1991) and the recent article by Park et al. (2002).
2. Simulation experiments proceed sequentially (unless parallel computers are used; our

procedure also fits parallel computers).

The literature on deterministic simulation shows several designs that-like ours-account

for the specific simulation' s I/O function,  and are sequential. For example, Crary (2002)

discusses G-optimal and I-optimal designs, which the DOE literature defines as follows. G-

optimal designs minimize the maximum Mean Squared Error (MSE) of the predicted output; I-
optimal or Integrated MSE (IMSE) designs minimize the average MSE (obviously, the MSE
reduces to the variance if the predictor is unbiased; see (5) and (6) below). Williams, Santner, and

Notz (2000,2002) use a Bayesian approach to derive sequential IMSE designs. Sasena,

Papalambros, and Govaerts (2002) derive sequential designs for the optimisation of deterministic

simulation models. Kleijnen and Van Beers (2004) derive customized sequential designs for
deterministic simulations. We, however, focus on DOE for random simulations, and we seem to

be the first to apply bootstrapping for this problem. (Random simulation includes Discrete Event

Dynamic Systems or DEDS simulation such as M/M/1 simulation, but also simulation models

consisting of stochastic difference equations.)

We shall see that our designs select most of their input combinations in sub-areas that

have more interesting I/0 behavior.  In our first example we spend most of our computer
simulation time on the challenging 'explosive' part of the metamodel that estimates the mean

steady-state waiting time for various traffic rates of single-server queueing systems with

Markovian (Poisson) arrival and service times-known as the M/M/1 model. (The reader may
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take a peek at Figure 1, discussed in subsection 5.1.) In our second example, we estimate the

average total costs in an (s, S) inventory model; there are several variations on this model, but we

take the specification given by Law and Kelton (2000). Again, we find a concentration of the

input combinations in the sub-area where the metamodel shows steep slopes. (See Figure 5,

detailed in subsection 5.2.) In both examples, we compare our designs with LHS; our designs

give better predictions.

The remainder of this paper is organized as follows. Section 2 summarizes the basics of

Kriging. Section 3 summarizes DOE and Kriging. Using the M/M/1 model, section 4 explains

our method, which applies bootstrapping-to estimate the variances of the Kriging predictions

for candidate inputs not yet simulated-and sequentially selects as the next input to be simulated,

the one with the largest bootstrap variance. Section 5 demonstrates the procedure through two

classic examples: subsection 5.1 uses M/M/l simulations, and subsection 5.2 uses an (s, S)

inventory model with two inputs. For both examples our method gives better results than LHS

with a prefixed sample size. Section 6 presents conclusions and topics for further research.

5.2 Kriging basics

Kriging (named after the South-African mining engineer Krige) is an interpolation method that

predicts unknown values of a random function or random process; see Journel and Huijbregts

(1978) and Cressie's (1993) classic Kriging textbook on spatial (geo)statistics. Whereas spatial

statistics considers the two-dimensional 'location' as the known input of this process, simulation

considers the k-dimensional 'scenario' as input; see Sacks et al.'s (1989) classic article on the

Design and Analysis of Computer Experiments (DACE»these computer experiments concern

deterministic simulation. Random (stochastic) simulation-including DEDS simulations-is the

topic of our paper.

More precisely, a Kriging prediction is a weighted linear combination of all output values

already observed. The weights depend on the distances between the new input to be predicted and

the old inputs already observed. Kriging assumes that the closer the inputs are, the more
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positively correlated the outputs are. Mathematical formulations follow in equations (1) through

(4).

Currently, Kriging is frequently applied in deterministic simulation, which is much used

in engineering; again see Sacks et al. (1989); for an update see Simpson et al. (2001). In
deterministic simulation, Kriging has an important advantage over regression analysis: the

predicted values at old inputs are exactly equal to the observed (simulated) outputs.

In random simulation, however, this property disappears. Now, each scenario is simulated

several times-with non-overlapping pseudo-random number (PRN) streams. Van Beers and

Kleijnen (2003) show that Kriging interpolates the average output per scenario. These averages,

however, are still random, so the property that at scenarios already simulated the Kriging

predictions equal the averages, loses its intuitive appeal. Still, Kriging may be attractive because

it may decrease the prediction bias (and hence the MSE) at scenarios close together. Indeed, in
the examples presented by Van Beers and Kleijnen (2003) the Kriging predictions are much

better than the regression predictions (regression analysis may be useful for other goals such as

screening and validation; see Kleijnen et al. 2004). Therefore we do not further discuss regression

analysis in this paper.

Mathematically formulated, Kriging assumes the following metamodel:

Y(x)=#(x)+b(x) with 8(x) -IID(0,02(x))                                           (1)

where #(x)  is the mean of the stochastic process Y(x), and 6 (x)   is the additive noise, which is

assumed independently and identically distributed (IID) with mean zero and variance ai (x).

'Ordinary' Kriging-to which we limit ourselves-further assumes a stationary covariance

process for Y(x) in (1); i.e., the expected values v(x)  are a constant v  and the covariances of

Y(x + h)  and Y(x) depend only on the Euclidean d i s tan c e (l ag )  11 h 11 = 11 ( x + h ) - ( x ) 11. (Th e

assumption #(x)  = v is standard in Ordinary Kriging, and does not imply a flat response

surface; see Sacks et al. 1989.)
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The Kriging predictor for the unobserved (non-simulated) input (say) xo-denoted by

f(xo) - is a weighted linear combination of all the n observed outputs:

f(xo)=  1,·Y(xi)=11.Y                              (2)

with X:=,1  = 1,   1 =(At,.... A.)'  and Y =(yi:..,y„)'.To select these weights, Kriging

derives the Best Linear Unbiased Predictor (BLUP), which (by definition) minimizes the MSE of

the predictor:

m n<MSE(r(x,))It-mjn E(Y(x,)-f(x,))' 1                                                (3)

Obviously, this solution depends on the output's covariances. It can be proven that the optimal

weights in (2) resulting from (3) are

At= 7+11-1'1"-17''tr-1             (4)1' r-il     )

with the following symbols:

y  is the vector of covariances between the outputs at the input to be predicted and at the inputs

already observed. so y =  (7(xo -x, Y(xo -x„))';

1 = (1,...,1)' is the vector with n ones;

r   is the n x n matrix whose element (i, j) is the (co)variance at the inputs already observed

1(x, -xi) with i, j=l,...,n .
Note that the weights in (4) vary with xo (input to be predicted), whereas regression

analysis uses the same estimated metamodel for all inputs x.

Note further that the literature on (deterministic) simulation speaks of covariances and

corresponding correlations, whereas the geostatistics literature speaks of the variogram, defined
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as  27 (11) = var(Y(x+h)-Y(x)). Since we shall use the Matlab Kriging toolbox DACE-made

available free of charge by Lophaven, Nielsen, and S0ndergaard (2002)-we avoid the term

variogram. (Recent alternative free software is made available via http://www.stat.ohio-

state.edu/-comp_exp/; see Santner, Williams, and Notz 2003.)
We emphasize that in practice the covariances y and I' in (4) are unknown so they must

be estimated. The classical estimator for  y(h)  is   (h) =  Nw, (Y(x ) - Y(xj)) 1/(2NCh)), where

N(h) I  denotes the number of distinct pairs in N(h) = {(xi, xj):x,-xi =h}. Consequently, the

weights in (4) become random variables (say) i. These weights make the Kriging predictor

resulting from (2) non-linear. This characteristic is often neglected in the Kriging literature. In

general, non-linear functions of random variables are hard to analyze-a simple computer-

intensive solution is bootstrapping; see Efron and Tibshirani (1993).

Ignoring the randomness of the estimated optimal weights i tends to underestimate the true

variance of the Kriging predictor. For example, in the bivariate normal case this follows from the

formula for the conditional variance, namely var(Y IX)= (1 -p' ) · var(Y) ; see,for example,

Kreyszig (1970, p. 343). To tackle this problem, Cressie (1993,9 146) proposes cross-

validation. Cross-validation is also used by Kleijnen and Van Beers (2004) for deterministic
simulation. For deterministic simulation, Den Hertog, Kleijnen, and Siem (2005) apply

parametric bootstrapping-assuming normally distributed prediction errors-and find that
ignoring the randomness of the Kriging weights leads to serious errors. Because random

simulation may have non-normal outputs (for example, queueing simulations have distributions

with heavy right-hand tails), we use distribution-free bootstrapping-as we shall explain in

Section 4.

5.3   DOE and Kriging

By definition, an experimental design is a set of n combinations of k factor values. These

combinations are usually bounded by 'box' constraints: a, 5 xi 5 b, with a„bi€ R and
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j=1, . . . ,k. The set of all feasible combinations is called the experimental region (say) H. We

suppose that H is a k-dimensional unit cube, after rescaling the original rectangular area (see

Section 1).

Our goal is to find the 'best' design for Kriging predictions within H; the Kriging

literature proposed several criteria (see Sacks et al.  1989, p. 414). Most of these criteria are based

on the predictor's MSE. Most progress has been made for the IMSE (see Bates et al. 1996):

/MSE = j MSE(P(x))0(x)dx                                                              (5)

where MSE follows from (3), and 0(x) is a given weight function-usually assumed to be a

constant.

To evaluate a design, Sacks et al. (1989, p. 416) compare the predictions with the known

output values of a test set consisting of (say) N inputs. Assuming a constant 0(x) in (5),the

IMSE can then be estimated by the Empirical IMSE (EIMSE):

1 N
EIMSE=-EG, (x)-Y, (x) .                            (6)

iv i=1

Besides this EIMSE, we will also study the maximum MSE; that is, we also consider risk-

averse users (also see Van Groenigen, 2000). So IMSE-defined in (5»is replaced by

M«,MSE= max<MSE (x)                                                     (7)I € /1

and EIMSE in (6) by

EMaxiMSE =   mal  \19, 00 - y , (x) Y }                                                                 (8)ie It.....mi
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5.4   Sequential DOE

We devise the following sequential DOE procedure with eight steps, which we illustrate through

the M/M/1 model with experimental region  H= {p: 0.1 S P S O.9} where p denotes the traffic

rate.

Step  I. We start with a small pilot design with (say) 4 input combinations; for example,

no =5.W e select the specific n. values such that they are equally spread over the experimental

region. There are various 'space filling' designs; for example, LHS designs.  In the first example

in Section 5-namely the M/M/1-we use a maximin design, which (by definition) maximizes

the minimum distance between any two points of the design; see Koehler and Owen (1996,

p.  288).  SO in this example, we select the traffic rates  x,  E  *).1,0.3,0.5,0.7,0.9} (i=1. . . . ,5) .

Step 2: For each input value x,, we initially generate (say)  mo IID replicates-because

bootstrapping requires IID observations; see Efron and Tibshirani (1993). To obtain III

observations in our M/M/1 simulation example, we apply renewal (regenerative) analysis (see,

for example, Kleijnen and Van Groenendaal 1992, and Law and Kelton 2000). As 'the' renewal

state, we choose the idle (empty) state. We therefore start the simulation run in the empty state-

for each traffic rate xi. Next we observe mo cycles-each with (random) cycle lengths (say)  L,

(the higher  x, the higher L, tends to be). Besides the mo cycle lengths  L„i  (j=1, . . . ,m o) per

traffic ratex„ we observe the sum of the waiting times over that cycle:

Ssw,:i = lw..i„ (i -1,...,no; j=1....,mo).                                          (9)

To reduce the variance when comparing the (random) outputs for different inputs (i.e., to

improve the signal/noise ratio), we use common random numbers (CRN). This is a popular
variance reduction technique (VRT). It is well known that-in M/M/l simulation-the variance

decreases substantially if the PRN (say)  r are manipulated as follows: successive PRN are used

alternatively to simulate the arrival time (say) a and the service time s ; in other words,
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a,  = -ln r:,-1 E(a)  and  s,  = -lnr2, E(s)  (t  =1,2, . . . ) . The correlation coefficients for the average

waiting times of two neighboring traffic rates turn out to be very high, namely roughly 0.99.

To generate the PRN, we use the Matlab command  'rand'. To initialize the PRN, we set

the Matlab generator (rather arbitrarily) to its initial state so =0. The Matlab web site further

states: 'The uniform random number generator in MATLAB 5 (and above) uses a lagged

Fibonacci generator, with a cache of 32 floating point numbers, combined with a shift register

random integer generator. The integer generator uses shifts and exclusive OR's.';  see

(http://www.mathworks.com/support/solutions/data/8542.shtml) and also Moler (1995).

For further details on CRN, VRT, and PRN we refer to Law and Kelton (2000).

Step 3. Based on these mo bivariate IID outputs (L, i' sw, i) (j=l, . . . ,m o) per input

value  x„ we estimate the mean waiting times through

.(

I swi i
9,(mo)=M (10)

IL'.,
j=/

This ratio estimator is consistent; for references see again Kleijnen and Van Groenendaal (1992)

and Law and Kelton (2000). We do not try to improve the small-sample performance of this

estimator (for example, through jackknifing-which is closely related to bootstrapping), because

this estimator suffices for our Kriging metamodel.

To estimate the precision of the estimate defined in (10), we use the following probability

statement that holds asymptotically per input value x,:

8,1 50 0,15,1Pl y, (m«)- 4_ '. ,_«n SE(w,)5*,(mo)+4.-'.,-0/2 r j=1-a (11)
L
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where 42=vk(sw,)+ y,2. vA«4) -29; ·c6v(swi, 4) and 4 =St,L /n ; again see Kleijnen and
'.,

Van Groenendaal (1992).  Note that this interval does not have an asymptotic joint (or

experimentwise) probability (1- a ) over all simulated input values.

Next, we add replicates one-at-a-time-sequential sampling-until the desired half-width
of the interval in (11) has reduced to a prefixed relative error (say)  b ; for example,  b = 0.15

(again see Kleijnen and Van Groenendaal 1992 and Law and Kelton 2000). We denote the final

number of replicates per input  x,  by  m, . This gives the average output  9, (m ) per input xi based

on m,  replicates; see (10) with m, replaced by m .

Step 4. Based on these no average outputs y (m )  for the n, inputs xi, we compute the

Kriging predictors for the expected outputs of a new set of  (say) n' candidate input values x;

(g  =1, . . . ,n' ) . We again select these candidates in a space-jilling way;  in the M/M/1 example,

we choose the candidate inputs halfway between two old neighboring inputs so we avoid

extrapolation:  x;  = (x:  + xg +1)/2  (with  g=l, . . . ,n o -1) .

By definition, the Kriging predictor is a weighted linear combination of all outputs

already observed; see (2). So now Kriging weights the no values already observed in steps 1

through 3:

9(x:)=S  A, · 9(x,)                                                                 (12)

with  St, A, =1.T o estimate the weights  At  in (12), Kriging uses the old data set (x, i (mi))

(i=l,...,no).To estimate the variance of this non-linear predictor, we use bootstrapping-as

follows.

Step 5. Per input  x,, we bootstrap the m; bivariate IID outputs  ( L,:i,  sw„, );  i.e.,  we

resample-with replacement-the outputs resulting from steps 1 through 3. We denote these

bootstrap observations by the superscript *  (as is traditional in the bootstrap literature):

{ (sw'.1.  Li , ) . . . . ,  (sw; 4, 4 4) } . (13)
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Using these bootstrapped observations and (10), we compute the bootstrap averages:

mi

ESW  f
9..(m; ) =  /2 . (14)

EL: 1
1=/

Using the bootstrapped 1/0 data  (x,, 9. (m ))  (i=l, . . . .n o ) and (12), we compute the

bootstrapped Kriging predictor:

MO

9'(xi)-,T,
Ai·y'(x,). (15)

We again estimate the bootstrap weights  g in (15) through the Matlab Toolbox DACE; see

Section 2.

Note that DACE aims to obtain the maximum likelihood estimator (MLE) of the Kriging

weights g  in (15). For the numerical search that leads to this MLE, DACE uses starting values.

As starting values, we use the MLE for A  based on the original 1/0 data in (12).

Step 6. The resampling per input x, in step 5 is repeated (say) B times (this B is called the

bootstrap sample size). Hence, (13) through (15) give 9;(x'g) with b -1,..., B.

For each of the n' candidate inputs  x;, we compute the bootstrap variance of the Kriging

predictor 9;' at x;:

var(9%*)= 8· -·ix,(95'b- 9:.)2                                                     (16)

where  K. is the predicted value at candidate input x; based on the bootstrapped I/0 data

(X,  5(m ))   (i=l. . . . .n o)  and    9;' = T,1,9;., /B.
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Step 7. We determine which candidate input has the largest bootstrap prediction variance

(16):

v =argfg max„, <vdr(9 )} ,                                                           (17)

and we add this 'winning' input x' to the old design.

Now, we run the simulation model with this input xv' -until we have mo replicates for

this input. We still apply CRN (so we initialize the PRN with the seed so). Furthermore, we again

start with the empty system as the renewal state. We continue the simulation until the confidence

interval reaches the threshold b ; see (11).

Step 8. We repeat the steps 4 through 7-until we have reached a stopping criterion. In

other words, we bootstrap the old I/O set augmented with the candidate selected in step 7. We

select a new set of candidates. For these candidates, we compute the Kriging predictors and their
bootstrap variances. Alternative stopping criteria may be: (i) the computer budget has been

exhausted, (ii) the project has reached its deadline, (iii) the precision of the Kriging metamodel is

acceptable.

We observe that adding one point at a time-as we do in our sequential DOE-is not

necessarily optimal. However, it is a simple-albeit myopic-heuristic; also see Banjevic and

Switzer (2002), who refer to Ferri and Piccioni (1992).

5.5 Two examples

We test our customized sequential design (CSD) through two classic academic simulation

models, namely the M/M/1 model and an (s, S) model.

5.5.1 M/M/1 model

An M/M/1 has as true I/0 function the hyperbole

y=-1-with o<x<1 (18)
1-x
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where y denotes the expected steady-state waiting time assuming a unit service rate, and x

denotes the traffic rate.

We apply the procedure described in section 4, selecting the following parameters.

Step 1:W e select a pilot design of size  no  =5.

Step 2: We obtain  mo  = 10 replicates to get initial estimates of the variances; we select as the

initial PRN seed so =0.

Step 3: We experiment with two values for the precision, namely  d = 0.05  and  b = 0.15, and

two values for the type-I error rate, namely a = 0.01 and 0.05-so (11) gives four confidence

intervals. For higher traffic rates (say,  x > 0.7 ), the numbers of cycles and the cycle lengths may

be very large. To limit computer time, we limit the number of cycles ( L, i) to 1000. This limit

preserves the renewal property, but may decrease the precision 8.

Step 6: We experiment with the bootstrap sample sizes:   B = 50  and  B = 100.

Step 8: We experiment with a stopping criterion that specifies that the total design size is either

n = 15  or  n = 100.

Figure 1 displays simulation results for both our design and a LHS design. This figure is

based on the confidence intervals in (11) with  a = 0.05 and  O = 0.15. The bootstrap sample size

is only  B = 50. The stopping criterion is that n = 15 traffic rates have been simulated. This figure

corresponds with one scenario (labeled 7) of the eight scenarios in our experiment; see Table  1

below. LHS turns out to simulate fewer 'challenging' inputs; i.e., high traffic rates.

10       '       '      '                             '      .

9-                                        -
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8 -        .     S,mulatcd a14'u, 4Cusk*nized Sequcnbal Deign                        -L
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.

6-                                        -

:i
5-
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9..

*.5.
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Figure  1: Two designs for M/M/1  with 15 traffic rates  x and average simulation outputs  y
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To evaluate our procedure, we use a test set with  N = 32 equidistant traffic rates, namely

0.1125, 0.1375,..., 0.8875} (Sacks et al.  1989 also use test sets to evaluate their procedure).  We

compare the Kriging predictions of the two designs with the 'true' outputs of the test set,

computed from (18).  (The two designs may contain some members of the test set, but we ignore

this phenomenon.) Figure 2 illustrates the 32 predictions for replicate 1 of scenario 1.

10              '            '            '                                      *

9.   ···:  True 1/0 4/le,

':  C™tornized Design preaa:,10
8 ·    o  ... p.....

6-

95                        ,
4 -                                 

                      0.2

3.                         
e"

/'                    8.0//

 „"S" „ 07 „ 09
2

Figure 2: Predictions  9  for the test set for M/M/1, for two designs in replicate 1 of scenario 1

To compare the predictions of our design and LHS, we might use the EIMSE criterion,
defined in (6). However, the final numbers of replicates in the two designs may differ, so we
calculate the corrected E/MSE, denoted by e later on:

e = CEIMSE = C x.1- t19(x,')-  y(x.'fi  , (19)
n,    At

where C is the ratio of the total number of replicates in the LHS design and in our design,  n,  is

the number of I/0 combinations in the test set (so  n, = 32), and  x;  is the i input of the test set.

We compute this criterion for eight scenarios; i.e., eight combinations of values of the

type-I error rate a, the relative error 6 , the bootstrap sample size B, and the final design size n.

These scenarios are specified through a 2'-p design with  k=4  and  p=l. This design is

expressed in standardized values in Table  la (see Kleijnen and Van Groenendaal  1992); note that

all  columns are orthogonal. The original values are displayed in Table  1 b.
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Table  12  A 24- 1 design expressed in standardized factor values

factor            a                d                B                n
scenario          1               2               3         4 - 1.2.3
1- - - -
2- - + +
3- + - +
4+ - - +
5- + + -
6+ - + -
7+ + - -
8+ + + +

Table  1 b: Eight scenarios or combinations of type-I error rate a, relative error 6, bootstrap
sample size B, and final design size n

scenario a6Bn
1 0.01 0.05                50                  10
2 0.01 0.05 100         50

3 0.01 0.15                50                  50
4 0.05 0.05                50                  50
5 0.01 0.15 100        10
6 0.05 0.05 100         10

7 0.05 0.15                50                  10
8 0.05 0.15 100         50

To decrease the randomness of CE/MSE in (19), we replicate each scenario in Table 1

R = 5 times. To ensure that the PRN streams do not overlap, we start Matlab's PRN generator in

the initial state  so  = 0 (using the command RAND('state'. 0)) in the first replication of each

scenario.  Next we  save the generator' s state of the scenario that requires the largest number of

simulation runs; we use that state as the initial state for each of the eight scenarios in the next

replication, and so on. Table 2a shows the R=5 CEIMSEs per scenario, denoted by e,

(r =1, . . . ,R) , for the Customized Sequential Design; Table 2b shows  e,  for LHS.
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Table 2a: CEIMSE e, for Customized Sequential Designs
in 8 scenarios replicated 5 times, computed from test set with 32 values

scenario            4             4             el             4             4
1 0.015026 0.028725 0.005305 0.15052 0.11056
2 0.010669 0.027213 0.010518 0.17480 0.12000
3 0.011028 0.027209 0.010513 0.17480 0.11951
4 0.010669 0.028481 0.010518 0.17636 0.11762
5 0.014915 0.029568 0.005417 0.15051 0.11044
6 0.015026 0.028725 0.005305 0.15052 0.11056
7 0.014645 0.028676 0.004749 0.12363 0.10993
8 0.011019 0.027314 0.010347 0.17486 0.12167

Table 2b: CEIMSE e,  for LHS designs
in 8 scenarios replicated 5 times, computed from test set with 32 values

scenario            el             e2            el             £4             25
1 0.045243 0.036466 0.024428 0.15382 0.126451
2 0.003626 0.026059 0.008152 0.17114 0.12551
3 0.003649 0.025891 0.007919 0.17000 0.12209
4 0.003626 0.026059 0.008152 0.17114 0.12551
5 0.041051 0.035814 0.023546 0.15164 0.124033
6 0.045243 0.036466 0.024428 0.15382 0.126451
7 0.037169 0.033886 0.018249 0.12648 0.112403
8 0.002993 0.024671 0.007233 0.14924 0.10047

We analyze the results in Table 2 as follows. Comparing Tables 2a and 2b shows that our

designs do not have smaller CEIMSE than LHS designs, in all cases (scenarios and replicates).
More precisely, our designs give better results only if the design size n is 'small'; see the

scenarios  1,5,6, and 7.  But it is exactly these cases that we are interested in, since (as we stated

in Section  1) we focus on 'expensive' simulations, which imply that big design sizes are

infeasible. So, we compute the differences

d i.r = et:.:LHS - e....C D with  i=l, . . . ,8;      r =l,...,5. (20)
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Lumping all scenarios together, the Student t teSt does not give significant differences at a

type-I error rate of 5% (the variation of the differences  d is large). However, Figure 3 suggests
...

that each of the four scenarios with small n (design size) gives significantly positive differences.

We therefore investigate which factors explain the performance of our design relative to LHS, as

follows.

0.04
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002
* : : .

0.01

d                                       :8o Il •
i l l

-0.01                                                          0

-0.02
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0                   2                   4                   6                   8                   10

scenario

Figure 3: Differences d,., = ei...115 - e for scenario  i=l, . . . , 8  and replicate  r=1, . . . , 5i.r,CSD

Remember that we have the k=4 factors corresponding with a, b,B, and n. So we

estimate the first-order polynomial, which has the main effects B,:

d,. =  B.+L Bxi, + £i,. (21)

We wish to account for variance heterogeneity:   var(E,) 0 0 2. Moreover we use CRN, so  d     and

di.,  (i, i' =1, . . . ,8) are not independent. Therefore we compute the OLS estimator of the

parameters in (21) per replication:

B,=ix'Xy'X'd, (22)
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where  X   is the 8 x 5 matrix following from (21) and Table  la. This gives the average OLS
estimator based on all R=5 replications:

B -lt B. (23)
A l==1

Hence the standard error for the/' main effect is

6 (P" - A )2/R-1)-            48,)        Y  '=1

s( j)-   4#   =                                                                                             (24)

so the Student statistic with  p =R-1 degrees of freedom is

1
-Bj--4.

(25)1 5(li)
This statistic assumes normality, which probably holds because the Central Limit Theorem may

be applied.

The classic null-hypothesisis that   i  =0(j=1, . . . ,4) in (21).We display tile

corresponding t-statistics defined by (25) in Table 3 for three values of the type-I error rate,

namely 0.10,0.05, and 0.01.

Table 3:  Significance of estimated main effects B,

t-Statistic two-sided significance level
ti:,                      a -0.10 a = 0.05 a = 0.01

Pi -2.2962201 significant significant not signif.
 2 -2.4742393 significant significant not signif.
P, -1.079914 not signif. not signif. not signif.
 4 -3.8774691 significant significant significant

Table 3 shows that the design size n (factor 4) has a significant negative effect on the

difference d (for any of the three type-I error rates); i.e., the advantage of our design becomes

smaller as the design size n increases. Further, the bootstrap sample size B (factor 3) has no
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significant effect: our procedure uses the bootstrap only to estimate which candidate input has the

largest variance of the Kriging predictor; see (17). So in practice the smaller size,  B = 50, may be

used. (Most bootstrap applications require the estimation of the whole distribution function, so B

is much higher than 50; for example, B = 1000.) Changes in a and d (factors 1 and 2) affect the

number of replicates, but this effect is incorporated in CEIMSE via the factor C; see (19).

Risk-averse users may be guided by EMaxIMSE, defined in (8). Again, our designs

outperform LHS designs for the smaller design sizes n. Table 4a shows the five EMaxIMSE

values for scenario i, denoted by e-'  for our design, and Table 4b shows the analogous values
...

for LHS; Figure 4 shows the differences, d,   = em. u,s - ercso.

Table 4a: EMaxIMSE e " for Customized Sequential Designs
in 8 scenarios replicated 5 times, computed from test set with 32 values

EMaxIMSE et for Customize Sequential Designs

scenario            4             e2             4             e4             es
1 0.068502 0.52477 0.024872 0.22247 1.0878

2 0.047377 0.52477 0.1374 0.22247 1.2755

3 0.047378 0.52477 0.1374 0.22247 1.2755
4 0.047377 0.52477 0.1374 0.22247 1.2755
5 0.068502 0.52477 0.024872 0.22247 1.0878

6 0.068502 0.52477 0.024872 0.22247 1.0878
7 0.068502 0.52477 0.024872 0.22247 1.0878

8 0.049059 0.52477 0.1374 0.22247 1.2755

Table 4b: EMaxIMSE  e   for LHS designs
in 8 scenarios replicated 5 times, computed from test set with 32 values

EMaxIMSE e, for LHS

scenario            4             ez             el             e4             e5
1 0.57114 0.34262 0.1845 0.2689 1.80351
2 0.023245 0.52006 0.11484 0.27878 1.183
3 0.023245 0.52006 0.11484 0.27878 1.183

4 0.023245 0.52006 0.11484 0.27878 1.183

5 0.57114 0.34262 0.1845 0.2689 1.80351
6 0.57114 0.34262 0.1845 0.2689 1.80351

7 0.57114 0.34262 0.1845 0.2689 1.80351
8 0.023245 0.52006 0.11484 0.27878 1.183
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maxFigure 4: Differences d™" =  LIES - e...: CSD for scenario    i = l,...,8 and replicate  r=1, . . . , 5

Note that m (number of required cycles) indeed increases with x (traffic rate). For

example, for the precision requirements a= 0.05  and J= 0.15,x= 0.1 requires 489 cycles,
whereas  x = 0.9 requires the maximum number of cycles, namely 1000; see Figure 5. Moreover,
a cycle is likely to be longer as the traffic rate increases. For example, if x = 0.1  then the average

cycle length is  L = 4.8  for m0 = 10 replicates; if x = 0.9  then  L = 45.9. For a high traffic rate,

the maximum number of cycles (1000) is reached,  in this figure. For higher accuracy (d  = 0.05)

this maximum is also reached for moderate traffic rates.

1200

1000

m-„-0

0.1 0.3 0.5 0.7 0.9

X

Figure 5: Number of cycles m per traffic rate x for M/M/1, given  a - 0.05  and  b - 0.15
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A question about our design might be: is the concentration of the simulation runs in the

input range with high traffic rates caused by the high signal ( E(y)) or the high noise ( var(y))

(both the mean and the variance of the M/M/1 's steady-state waiting time increase with the traffic

rate)? To answer this question, we run some Monte Carlo experiments inspired by the M/M/1

model. In these experiments we use the relative precision b = 0.15, the type-I error rate

a = 0.05, and the final design size n = 15. We use the same PRN seed for the same macro-

replicate of the four experiments. We run six macro-replicates; the results across the six macro-

replicates look very much alike, so-to save space-we do not display the figures for all macro-

replicates; Figure 6 gives results for one macro-replicate.
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Figure 6: Monte Carlo experiments with four combinations of signal and noise functions;
--- denotes signal and *** denotes I/0 of Customized Sequential Design
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(a)         Increasing signal and constant noise:   y=x 111 - x)+r with   0.1  5 x 5 0.9   and

re  U (-1,1) ; in other words, the signal follows (18), but the noise is uniformly distributed

between    -1  and  1, for any input value x. Figure 6(a) shows that our design allocates its

runs to the area with rapidly changing signal-as our design did for the M/M/1 in Figure

(b) Consmnt signal and increasing noise:  y=5+ 10rx. Figure 6(b) shows that our design

again allocates its runs to the high input values with high noise.

(c)        Constant signal and constant noise: y=5+r. Figure 6(c) shows that now our design

spreads its runs uniformly across the experimental area.

(d)         Increasing s ignal and decreasing no ise:   y=x 1(1 - x) +r 1(\Ox) . Figure 6(d) shows that

now our design allocates most of its runs to the middle of the experimental area. Our

explanation is that the increasing signal pulls the runs to the high input values, whereas

the decreasing noise pulls them to the low values-so that the net result is a

'compromise'.

5.5.2 (s, S) inventory model

In an (s, S) model (with s<S) with random demand D, the inventory /i s replenished to the

order up-to level S whenever the inventory decreases to a value smaller than the reorder level s;

i.e., the order quantity Q is

Q =IS -1    if  1<s10 9/23.
There are several variations on this basic model, but we simulate Law and Kelton (2000,

p.  60, 651)'s example 12.9-which has the following features. Times between demands are IID

exponential random variables with a mean of 0.1 month. If a demand arrives, its size is given by

the probability function

D        1 2 3 4
P r(D}                                     t                           1                           1                            
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The inventory is reviewed at the beginning of each month. Law and Kelton define an

auxiliary variable  d=S-s to estimate the optimal values for s and S; the (re)order quantity,

however, is not a fixed quantity (the order quantity Q varies with the actual 'inventory position',

defined as stock on hand, minus customer backorders, plus outstanding supplier orders; see

Bashyam and Fu (1998)). The lead-time of an order is uniformly distributed between 0.5 and  1

month. Demand is satisfied immediately if the inventory level / is at least as large as the demand

size D. Otherwise, the demand is-possibly partly-backlogged and delivered as soon as the

inventory is replenished. The backlog costs are $5 per month per item backlogged. Holding costs

per item per month are $1. Ordering costs consist of a setup cost of $32 per order plus

incremental costs of $3 per item.

Law and Kelton simulate the system for 120 months, starting with an initial inventory

/(0) = 60; i.e., this simulation model is terminating (example 1 estimates a steady-state mean of

an M/M/1 ). Law and Kelton obtain five replicates for each of the 36 combinations formed by

s = 0, 20,40,60,80,100 and d = 0,20,40,60,80,100. Based on these 180 I/O data, they fit the

following second-order polynomial regression (meta) model  for the average monthly total costs

called R:

R(s, d) = 188.51-1.49s -1.24d + 0.014sd + 0.007s2 + 0.010d2. (26)

They compare this model's predictions with the 'true' E(R) estimated from 10 replicates for

each of 420 new and old combinations formed by  s = 0,5,10,..., 100, and  d = 5,10,15,..., 100.

We, however, replace (26) by a Kriging model, fitted to the same I/0 data (implying 36

average outputs), and compare our Kriging predictions with the 'true' outputs. We find that our

Kriging model gives more accurate predictions than the regression model (26); see the Appendix

for details.

Next, we change the design from Law and Kelton's grid (with  16 combinations of the two

inputs s and d with  (s, d) E  [20,80]x[20,80]) into our design (with the same final design size,

namely  16); see Figure 7.
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Figure 7: I/0 simulation data for (s, S) inventory model with 16 scenarios denoted by 0

Like Law and Kelton, we obtain 5 replications per input combination. Next, we fit a Kriging
model, and predict 81 'true' outcomes for the test set  (s, d) €  {10,20,...,90}x {10,20,...,90}  (a

subset of Law and Kelton's  'true' set). Again, we calculate EIMSE and EMaxIMSE defined in

(6) and (8). To reduce noise, we repeat this procedure 5 times (using non-overlapping PRN

streams) for our designs and LHS. Our designs give substantial better EIMSE and EMaxIMSE;
see Table 5.

Table 5: EIMSE and EMaxIMSE for CSD and LHS for (s, S) inventory simulation, based on test

set with 81 true values

CSD LHS
replicate EIMSE EMaxIMSE EIMSE EMaxIMSE

1 234.2 1724.4 432.9 4282.6
2 319.3 2536.9 686.9 6293.1
3 262.2 1933.3 726.4 6031.1
4 236.2 1732.9 554.5 5017.1
5 213.2 1546.5 666.5 5909.8

We conclude that in this example, our sequential design also gives more accurate Kriging

predictions than LHS with a fixed design size.
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5.6   Conclusions and future research

In practice, simulation often requires much computer time per run (or replicate)-so it is
desirable to have an efficient experimental design for interpolation. It is well known in

mathematical statistics that sequential designs are more efficient than fixed-sample designs. Our

specific sequential designs add as the next input to be simulated, the input with the maximum

estimated variance for the output predicted at specific candidate inputs. To obtain such

predictions, we use Kriging; to estimate the variances of the Kriging predictors, we use

bootstrapping. We applied this procedure to estimate (i) the expected steady-state waiting time in

M/M/1 simulation, and (ii) the expected cost in terminating inventory (s, S) simulation. We

compared the Kriging prediction errors of our sequential designs and those of fixed-sample LHS.

Our results show that our procedure gives indeed smaller prediction errors.

In future research, (asymptotic) proofs of the performance of our procedure might be

derived. More experimentation and analyses may be done to derive rules of thumb for our

procedure' s parameters,  such  as the initial design  size   no   and the initial number of replicates   mo .

Our procedure may be applied to examples more complicated than the M//M/1 queueing model

or the (s, S) inventory model. Stopping rules based on a measure of accuracy or precision may be

investigated. Besides LHS, other designs with prefixed sizes may be explored; for example, min-

max designs. Besides Ordinary Kriging, other metamodels may be used to analyze the I/0 data.

For example, the 'optimal' weights in Ordinary Kriging assume that the predictors equal the

average outputs at the inputs already observed; dropping this constraint implies that new Kriging

software must be developed. New Kriging weights may be derived, replacing the IMSE criterion

by the maximum squared error criterion. Besides Kriging, other interpolation models may be

used; for example, linear or nonlinear regression metamodels. We focus on sensitivity analysis;

searching for the optimal input of the simulation model requires further research.

5.7 Appendix
Law &  Kelton's (2000, p. 651) data set consists of 5 replicates for each of the 16 input

combinations formed by  s, E {20,40,60,80}  and  di c {20,40,60,80}  (this set is a subset of the

one in the main text). Based on this input set, we find the following estimates
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B = (130.6285, - 0.2630, - 0.5303, 0.0088, 0.0052, 0.0038)', which agrees with their values up

to two decimals.

As a test set (used to compare regression and Kriging metamodels), we use their 'true' 1/O

set, which consists of 10 replicates of each of 420 = 21 x 20 input combinations with

s, c {0,5,10,...,100}  and dj € {5,10,15,....100} . For the regression model we find an EIMSE

of 1450.5, whereas for the Kriging model we find an EIMSE of 1200.7. So Kriging does result in

a smaller EIMSE. This EIMSE, however, is still rather large, because we have to extrapolate the

data outside the region [20,80]x [20,80] . In general, we strongly recommend avoiding

extrapolation when fitting a metamodel; indeed, in simulation it is easy to avoid extrapolation

because we can select our own input combinations.

Law and Kelton also use a data set consisting of 180 I/O combinations, namely 5

replicates for each of 36 input combinations with st € {0,20,40,60,80,100}  and

dj € {0, 20, 40, 60, 80,100} . We use their computer program (imported from their web page

http://www.mhhe. com/engcs/industrial/lawkelton/student/code. mhtml) to generate the output.

Again, we fit both a second-order regression model and a Kriging model. We compare the two

fitted models via the 'true' data set. For the regression model, we find an EIMSE of 152.0,
whereas for the Kriging model we find an EIMSE of only 14.0 (in this case extrapolation is

indeed avoided.

Acknowledgements

We thank Dick den Hertog (Tilburg University) for his comments on an earlier version, which

lead to the additional Monte Carlo experiments reported in Section 5, and Ruud Brekelmans

(Tilburg University) for helping us to import Law and Kelton's C-program codes into our Matlab

program.



94                                                                                                          Chapter 5

References

Banjevic, M. and P. Switzer (2002), Bayesian network designs for variance as a function of the

location. Proceedings of the 2002 JSM Conference,  Section on Statistics and the

Environment, New York, NY

Bashyam, S. and M.C. Fu (1998), Optimization of (s, S) inventory systems with random lead

times and a service level constraint. Management Science. 44, no. 12, pp. 243-256

Bates, R.A., R.J. Buck, E. Riccomagno and H.P. Wynn (1996), Experimental design and

observation for large systems. Royal Statistical Society. 58, no. 1, pp. 77-94

Box, G.E.P., W.G. Hunter and J.S. Hunter (1978), Statistics for experimenters: an introduction

to design, data analysis and model building. John Wiley & Sons, Inc., New York

Crary, S.B. (2002), Design of computer experiments for metamodel generation, Analog

Integrated Circuits  and Signal Processing, 32, pp. 7-16

Cressie, N.A.C. (1993), Statistics for spatial data, John Wiley & Sons, Inc., New York

Efron, B. and R.J. Tibshirani (1993). An introduction to the bootstrap. Chapman & Hall, New

York

Ferri, M. and M. Piccioni (1992), Optimal selection of statistical units. Computational Statistics

& Data Analysis, 13, pp. 47-61

Ghosh, B.K. and P.K. Sen (editors), 1991, Handbook of sequential analysis. Marcel Dekker, Inc.,

New York

Den Hertog, D., J.P.C. Kleijnen, and A.Y.D. Siem (2005), The correct Kriging variance

estimated by bootstrapping. Journal of the Operational  Research Society (accepted;

preprint: http://center.kub.nl/staff/kleijnen/papers. html)

Journel, A.G. and C.J. Huijbregts (1978), Mining geostatistics, Academic Press, London

Kleijnen, J.P.C. (1987), Statistical  tools for  simulation practitioners. Marcel Dekker, Inc., New

York

Kleijnen, J.P.C. and D. Deflandre (2005), Validation of regression metamodels in simulation:

Bootstrap approach. European Journal of Operational Research (in press)



Customized  Sequential  Designs for  Random Simulation  Experiments:                                                  95
Kriging Metamodeling and Bootstrapping

Kleijnen, J.P.C., S.M. Sanchez, T.W. Lucas and T.M. Cioppa (2005), A user's guide to the brave

new world of designing simulation experiments. INFORMS Journal on Computing

(accepted as State-of-the-Art Review)

Kleijnen, J.P.C. and W.C.M. van Beers (2004), Application-driven sequential designs for

simulation experiments: Kriging metamodeling. Journal  of the Operational Research

Society, no. 55, pp. 876-883

Kleijnen, J.P.C. and W. van Groenendaal (1992), Simulation: a statistical perspective. John

Wiley, Chichester (England)

Koehler, J.R. and A.B. Owen (1996), Computer experiments. Handbook of statistics,by S. Ghosh

and C.R. Rao, vol. 13, pp. 261-308

Kreyszig. E. 0970), Introductory mathematical statistics:  principles and methods.  lohn Wiley &
Sons, Inc., New York

Law, A.M. and W.D. Kelton (2000), Simulation modeling and analysis, third edition, McGraw-

Hill, Boston

Lophaven, S.N., H.B. Nielsen and J. Spndergaard (2002), A Matlab Kriging toolbox. Technical

report IMM-TR-2002-12, Technical University of Denmark

McKay, M.D., R.J. Beckman and W.J. Conover (1979), A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.

Technometrics, 21, no. 2, pp. 239-245 (reprinted in 2000: Technometrics, 42, no. 1, pp.
55-61

Moler, C. (1995), Random thoughts. MATLAB News & Notes, pp. 12-13

Myers, R.H. and D.C. Montgomery (2002). Response sut:face methodology: process andproduct

optimization using designed experiments; second edition. Wiley,New York
Park, S., J.W. Fowler, G.T. Mackulak, J.B. Keats, and W.M. Carlyle (2002), D-optimal

sequential experiments for generating a simulation-based cycle time-throughput curve.

Operations Research, 50, no. 6, pp. 981-990

Sacks, J., W.J. Welch, T.J. Mitchell and H.P. Wynn (1989), Design and analysis of computer

experiments. Statistical Science, 4, no. 4, pp. 409-435

Santner, T.J., B.J. Williams, and W.I. Notz (2003), The design and analysis  of computer

expenments. Springer-Verlag, New York



96 Chapter 5

Sasena, M.J, P. Papalambros, and P. Goovaerts (2002), Exploration of metamodeling sampling

criteria for constrained global optimization. Engineering Optimization 34, no.3, pp. 263-

278

Simpson, T.W., T.M. Mauery, J.J. Korte, and F. Mistree (2001), Kriging metamodels for global

approximation in simulation-based multidisciplinary design optimization. AMA Journal,

39, no. 12, 2001, pp. 2233-2241

Van Beers, W. and J.P.C. Kleijnen (2003), Kriging for interpolation in random simulation.

Journal of the Operational Research Society. no. 54. pp. 255-262

Van Groenigen, J.W. (2000), The influence of variogram parameters on optimal sampling

schemes for mapping by Kriging. Geoderma, no. 97, pp. 223-236

Williams, B.J., T.J. Santner, and W.I. Notz (2000), Sequential design of computer experiments

to minimize integrated response functions, Statistica Sinica,  10,1133-1152

Williams, B.J., T.J. Santner, and W.I. Notz (2002), Sequential design of computer experiments

for constrained optimization of integrated response functions, Working Paper. Ohio State

University



Chapter 6

Conclusions and future research

6.1 Conclusions

in this thesis, we studied Sensitivity Analysis (SA) of expensive discrete-event simulation.
Running a simulation model for different input combinations may be time-consuming. Therefore,

interpolation is applied. The number of necessary simulation runs may be reduced through

accurate interpolation methods and appropriate experimental designs (run plans).

To realize this efficiency, we applied Kriging interpolation and introduced a new type Of

Kriging interpolation, which we named Detrended Kriging. We compared both the usual

Ordinary Kriging and our new Detrended Kriging with classical low-order polynomial regression
metamodels estimated through Ordinary Least Squares (OLS). Tests on two random models-

namely a hyperbole inspired by the M/M/1 queueing model and a fourth degree polynomial, both
augmented with additive noise-showed that Ordinary Kriging gives good predictions, perfectly

Detrended Kriging gives the best predictions, and OLS gives the worst predictions. Obviously,
these results are based on examples with a single input; in later research (discussed below),

however, we found that Kriging also gives better predictions for an (s, S) inventory model with a

two inputs. Further, we found that the intercept of the estimated linear variogram-a variogram is

a basic element in Kriging-estimates the so-called nugget effect·, this result confirmed our

conjecture that the nugget effect is the variance of the simulation model's noise. Both, Ordinary

Kriging and Detrended Kriging assume that the outputs have constant variances. In practice,

however, this assumption is not realistic. For example, the steady-state waiting times in an

M/M/1 queueing model have variances that increase with the traffic load. Therefore, we



98 Chapter 6

investigated the importance of this assumption. We used a hyperbole plus noise with variances

changing with the input values. Our conclusion was that Kliging is not sensitive to variance

heterogeneity; i.e., it is a robust technique.

For expensive simulation, it is important to find an efficient design for the experiments

with the simulation model. Classic standard designs-such as 2k-p or LHS designs-are general

designs that do not account for the characteristics of the input/output (I/0) function that is

implied by the simulation model at hand. As an alternative design we derived a Customized

Sequential Design (CSD) for metamodeling in simulation. Our design is sequential, because in

general it is known that sequential procedures are more 'efficient' than fixed-sample procedures;

our tests confirmed that property. Moreover, our method generates a design that is specific for the

given simulation model: it is customized (tailor-made). For deterministic simulation, this

customization is achieved through cross-valWation andjackkn(Bng-which are two general

statistical techniques. For that simulation type, our method is tested through two academic

applications, namely a hyperbolic I/0 function and a fourth degree polynomial. For random

simulation experiments, our customization uses bootstrapping-which is also a general statistical

technique (related to jackknifing). We tested our procedure for this simulation type through two

classic Operations Research/Management Science (OR/MS) applications, namely the M/M/1

queueing model and an (s, S) inventory management model. Our tests showed that for both

deterministic simulation and random simulation, our customized designs performed better than

the classic LHS designs with the same sample size. An interesting property of our procedure is

that it simulates relatively many input combinations in those sub-areas that have interesting 1/O

behavior.

We summarize the main contributions of our research as follows:
- Kriging metamodels give more accurate predictions than low-order polynomial

regression models do,
- Customized Sequential Designs for Kriging metamodels give smaller prediction errors

than standard one-shot LHS designs of the same size.
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6.2 Future research

During our study, we raised several questions that we did not answer yet. Future research may

concern the following three topics.

Kriging technique

Ordinary Kriging assumes a stationary covariance process. We might give up the stationarity

assumption in case of random simulation with heterogeneous variances. We might then still
assume that the Kriging predictor is a weighted linear combination of the observed outputs, and

that the correlation function decreases with the distance between the input locations. We do not

know whether an explicit formula for the Kriging weights may be derived; maybe a numerical

search will need to be used.

Furthermore, the correlation function is often estimated through maximum likelihood
estimation assuming normality.We estimated this correlation function without the normality

assumption, using WLS. Which estimation method is better?

We focused on sensitivity analysis, not on optimization. Kriging for optimization in

deterministic simulation has already been widely applied. Optimization in random simulation

certainly deserves future research.

In our tests, we compared the performance of Kriging metamodels with classical low-

order polynomial regression metamodels. Further tests may estimate the performance of Kriging
compared with more sophisticated metamodels, such as rationalfunctions and neural nets.

Customized Designs
The procedure for our customized designs starts with a space-filling pilot-sample of a rather

arbitrary size. It is unclear whether this pilot-size is an efficient procedure. Further research may

yield more efficient methods for sampling the pilot set of minimal size.  Moreover, similar
considerations hold for the selection of the candidate set, i.e. it cost not much computer time to

expand the candidate set.
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In the first stage of experimenting with random simulation models, our procedure

simulates a candidate input combination a few times; in the second stage, this number is

augmented until a given prediction accuracy is reached. We experimented with several numbers

of simulation runs for the first stage, but we did not derive an optimal value to start with. Further

research may tackle this issue.

We terminated our customized procedure when a given number of I/0 combinations was

reached, or when no relative improvement of the prediction error was found. We did not find

satisfying stopping rules in literature, so more research on this topic might be profitable.

We demonstrated the advantage of our customized designs by applying Kriging

metamodels. Further tests may show that alternative memmodets also may benefit from

customized designs.

Furthermore, Kriging assumes a single output per input combination (a simple solution

computes the Kriging predictor per output). Multivariate Kriging has already been developed in

geostatistics. It is unclear whether customized designs may be developed for multivariate

Kriging.
As mentioned above, we focused on SA; we do not know whether optimization may profit

from customized designs. While searching for an optimum, our procedure might select more

observations in sub domains centered around the true optimum. This might be a challenging topic

to further research.

We demonstrated the advantage of our customized designs through several tests on classic

OR/MS models. However, we did not derive theoretical proofs of the superiority of our design

over classic designs.

Our customized design is a sequential method; i.e. an I/0 combination is added

successively to the current design. Each time the design is augmented with a new I/0

combination, a new correlation function was estimated. It might be profitable to implement

updating techniques for the correlation function into the Kriging program codes.
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Case studies

We demonstrated and verified the results of our study through simple academic simulation

models. Our results might be generalized by applying Kriging to other types of simulation

models with known I/0 functions, such as OR/MS models known as M/G/1 and M/M/1/K.

Moreover, we did not yet apply our methods to realistic models with many input factors and

uncertain statistical behavior. Future studies might demonstrate the performance of Kriging

metamodeling for complicated OR/MS simulations.
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Samenvatting

Dit proefschrift gaat over Kriging als metamodel voor computersimulaties. Het onderzoek richt

zich op computerintensieve simulatie-experimenten in Operations Research/ Management
Science (OR/MS); bijvoorbeeld wachttijd- en voorraadbeheersingsystemen.

Om gecompliceerde reele systemen te beschrijven worden vaak wiskundige modellen

gebruikt. Die modellen beogen meer inzicht te verschaffen in de reele systemen. Modellen

kunnen bijvoorbeeld informatie geven over de gevoeligheid van de uitvoer bij verandering van de
invoer. Voor het oplossen van die modellen blijken analytische methoden vaak niet toereikend;
numerieke methoden - zoals simulatie - moeten dan gebruikt worden. Tijdrovende simulatie-

experimenten noodzaken tot interpolatie tussen berekende waarden.

Kriging  is een interpolatietechniek die is ontwikkeld omstreeks  1950 in  de  Zuid-

Afrikaanse mijnbouw door D.G. Krige. In 1989 is Kriging succesvol geYntroduceerd voor
deterministische simulatie door J. Sacks, W. Welch, T. Mitchell en H. Wynn. In dit proefschrift
wordt Kriging gerntroduceerd voor stochastische simulatie, met nadruk op simulatie van discrete

gebeurtenissen - zoals aankomsten van klanten in een wachttijdsysteem of van orders in een

voorraadsysteem.

Kriging-interpolaties voorspellen de uitvoerwaarde voor een nog niet gesimuleerde
invoercombinatie. Die voorspelde waarde is een gewogen gemiddelde van de al eerder

gesimuleerde uitvoerwaarden. De gewichten in die voorspelling hangen af van de 'afstanden'

tussen enerzijds de invoercombinatie waarvoor een voorspelde uitvoerwaarde verlangd wordt en

anderzijds de invoercombinaties waarvoor de uitvoerwaarden gesimuleerd zijn. De gewichten
worden zo gekozen dat de variantie van de voorspelfout wordt geminimaliseerd. De voorspelde
uitvoerwaarde is dan de 'Beste Lineaire Zuiver Schatter' van de werkelijke uitvoerwaarde. De

afhankelijkheid tussen de uitkomsten en de afstanden tussen hun invoercombinaties wordt

beschreven door de correlatiefunctie. De correlatiefunctie wordt op basis van de beschikbare
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waarnemingen geschat volgens 6f de 'kleinste kwadratenmethode' 6f volgens de methode van de

'meest aannemelijke schatting'.

Dit proefschrift bevat de volledige tekst van vier artikelen die al eerder zijn gepubliceerd

of zijn ingediend voor publicatie in internationale tijdschriften.

Hoofdstuk 1 geeft een toelichting op begrippen die in dit proefschrift gebruikt worden,

zoals 'metamodel' en 'simulatie'. Dit hoofdstuk beschrijft verder de historie van Kriging en geeft

een overzicht van de toepassingsgebieden.

Hoofdstuk 2 introduceert Kriging-interpolatie als metamodel voor stochastische simulatie.

Tevens wordt een nieuw type Kriging geYntroduceerd, namelijk Detrended Kriging. Kriging

wordt gedemonstreerd via twee numerieke voorbeelden: (1) een hyperbolische functie,

geYnspireerd door het M/M/1 wachtrij-model, en (2) een artificieel model, namelijk een

meertoppig vierdegraads-polynoom met additieve ruis. De nieuwe methode wordt getest door

middel van 'kruis-validatie'. De voorspelfout van Kriging wordt vergeleken met de voorspelfout

van de gebruikelijke polynomiale regressiemodellen die geschat zijn volgens de 'gewone kleinste

kwadratenmethode'. De conclusie is dat Kriging betere voorspellingen geeft dan die

regressiemodellen. Dit hoofdstuk toont ook aan dat het zogenaamde 'nugget effect' in Kriging
inderdaad gelijk is aan de variantie van de additieve ruis.

Hoofdstuk 3 laat een klassieke veronderstelling in Kriging vervallen, namelijk de

veronderstelling dat de uitvoerwaarden een constante variatie hebben. De gevolgen voor de

Kriging voorspellingen worden bestudeerd in het geval de werkelijke invoer/uitvoer functie een

hyperbool is met additieve ruis waarvan de variantie niet constant is, maar afhangt van de

invoerwaarde. De conclusie is dat Kriging niet gevoelig is voor heterogene varianties; dat wil

zeggen, Kriging is een robuuste interpolatiemethode die beter voorspelt dan polynomiale

regressie.

Hoofdstuk 4 introduceert een nieuwe methode voor proefopzetten voor Kriging in
deterministische simulatie. De methode is bedoeld voor tijdrovende simulaties en is daarom

sequentieel, d.w.z. een initiele proefopzet wordt stap voor stap uitgebreid met steeds Edn

invoercombinatie. De proefopzetten worden geconstrueerd met behulp van 'kruisvalidatie' en

'jackknifing: In vergelijking met traditionele proefopzetten - zoals Latin Hypercube Sampling

(LHS) - houdt de nieuwe methode rekening met de karakteristiek van de invoer/uitvoer functie
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van het betreffende simulatiemodel. De nieuwe methode wordt getest aan de hand van dezelfde

twee academische toepassingen die ook in Hoofdstuk 2 gebruikt werden. De nieuwe methode

simuleert relatief meer invoercombinaties in de 'interessante' gedeelten van de invoer/uitvoer-

functie. Bovendien geeft de nieuwe methode betere voorspellingen dan traditionele LHS.

Hoofdstuk 5 breidt de methode van hoofdstuk 4 uit voor stochastische simulatie. De

aanpassing aan de invoer/uitvoer-functie wordt nu verkregen door 'bootstrapping'. De methode

wordt getest door een M/M/1-wachttijdmodel en een (s, S)-voorraadmodel. De nieuwe methode

geeft weer betere voorspellingen dan LHS.
Hoofdstuk 6 vat de conclusies samen van de voorgaande hoofdstukken. De voor- en

nadelen van Kriging worden besproken. Daarnaast worden onderwerpen voor toekomstig

onderzoek voorgesteld.
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