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Introduction

1.1 Summary

The corner stones of the modern theory of finance are Portfolio Choice and Arbi-

trage Pricing. The modern portfolio choice theory introduced by Markowitz (1952)

tries to explain the way individual or institutional investors (should) allocate their

wealth among risky financial assets. The arbitrage pricing theory, initially used for

option pricing by Black and Scholes (1973) and Merton (1973), further developed by

Harrison and Kreps (1979), Harrison and Pliska (1981), and generalized by Delbaen

and Schachermayer (1994) and Delbaen and Schachermayer (2005), addresses pric-

ing financial securities by no-arbitrage arguments.1 This thesis contains four essays

in the fields of portfolio choice and arbitrage asset pricing. The relevant literature

review is contained in the introduction of every chapter separately.

A portfolio choice process is usually thought of as a tradeoff between return and

1Historically, the arbitrage pricing argument is related to the Neo-Walrasian theories of general

equilibrium with asset markets (complete and incomplete) developed by Radner (1968) and Hart

(1975). Ross (1976) uses no-arbitrage arguments to justify the multi-factor capital asset pricing

model. The proof of the well known Modigliani-Miller theorem on irrelevance of corporate financial

structure for the value of the firm, see Modigliani and Miller (1958), also employs arbitrage logic.

3



4 HOOFDSTUK 1. INTRODUCTION

risk of the portfolio. Investors preferring higher portfolio returns, generally try to

avoid too volatile assets. From the perspective of regulatory capital requirements,

institutional invertors are often interested to limit their risk exposure as well. Thus,

risk management can be seen as a special case of portfolio choice. A traditional

approach in the modern portfolio selection was developed by Markowitz (1952) who

proposed to use the variance of the portfolio as a measure of risk and expected

return as a reward measure. For many years, this approach was the industry stan-

dard, mostly due to its computational simplicity. However, from the point of view

of risk measurement, the variance is not a satisfactory risk measure. First, being

a symmetric measure of risk, the variance regards both losses and gains as equally

undesirable. This disadvantage became especially apparent with the development of

equity derivatives, such as options, and credit structured products, such as portfolio

default swaps and collateralized debt obligations. Second, the variance is inappro-

priate to describe the risk of low probability extreme events, such as, for example,

the default risk. Finally, from a theoretical perspective, the mean-variance approach

is not consistent with second-order stochastic dominance and, thus, with the bench-

mark expected utility approach for portfolio selection.

Alternative models in portfolio selection were suggested, where the reward-risk

approach is maintained, but the choice of an alternative risk measure instead of the

variance makes the models more appropriate for practical applications. In paral-

lel, an axiomatic approach for the risk measure theory was developed by Artzner

et al. (1999), who introduced the concept of a coherent measure of risk that satis-

fies properties desirable from a regulatory perspective. Special attention both from

a theoretical and a practical point of view has been paid to expected shortfall,

a coherent risk measure consistent with second-order stochastic dominance. Bas-

sett et al. (2004) and Portnoy and Koenker (1997) have shown that an in-sample

mean-expected shortfall portfolio selection problem can be reformulated as a lin-

ear program that can be efficiently solved by well developed simplex and interior
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point algorithms. As shown by Kusuoka (2001) expected shortfall can be generalized

to the class of coherent regular risk (CRR) measures, which maintain the desirable

properties of expected shortfall. Chapters 2 and 3 study the statistical and economic

properties of mean-CRR portfolios.

Chapter 2 develops a statistical spanning test for mean-coherent regular risk

(CRR) efficient frontiers applied in chapter 3. Tests for mean-variance spanning,

introduced by Huberman and Kandel (1987), use regression analysis to test whether

a mean-variance efficient frontier generated by a particular set of assets statistically

coincides with a mean-variance efficient frontier generated by a subset of the as-

sets. Subsequently, different modifications of the test for mean-variance spanning

have been proposed. A nice overview is contained in DeRoon and Nijman (2001).

As soon as an investor decides to switch from the conventional mean-variance to a

mean-CRR portfolio selection, the necessity for similar statistical inferences arises.

Indeed, analogously to the mean-variance efficient frontier in the mean-variance ap-

proach one can construct mean-CRR efficient frontiers. The test for mean-CRR

spanning becomes an important statistical tool to gauge the redundancy of certain

subsets of assets from the point of view of mean-CRR efficiency. As chapter 2 shows,

similarly in spirit to Huberman and Kandel (1987), this test can be implemented

by means of a simple semi-parametric instrumental variable regression, where in-

struments have a direct link with a stochastic discount factor. The test is based

on the relation developed by Tasche (1999), which holds for all assets entering the

mean-CRR market portfolio. Applications of the mean-CRR spanning tests for sev-

eral coherent regular risk measures, including the well known expected shortfall, are

illustrated.

Chapter 3 compares the mean-variance and mean-coherent regular risk (CRR)

portfolios, both statistically and economically. CRR measures are becoming more

popular in empirical applications. However, Bertsimas et al. (2004) point out that

the variance and a CRR measure should yield the same optimal portfolios for as-
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set returns with elliptically symmetric distributions. As theoretical advantages of a

CRR measure over the variance have been shown in numerous studies, the question of

the practical significance of the difference between them remains. This is especially

the case for typical financial assets, such as stocks, currencies, and market indexes,

whose return distributions are often assumed to be close to elliptically symmetric.

The comparison in chapter 3 requires the derivation of the asymptotic distribu-

tions of optimal portfolio weights obtained from in-sample mean-risk optimization.

The results suggest that even for typical assets the outcomes of mean-variance and

mean-CRR optimizations can be statistically and economically different. The tests

developed in the chapter also demonstrate how to ”switch offänd ”switch on”the

estimation uncertainty caused by the sampling error in mean returns, which is re-

ported to be problematic in portfolio selection context, as reported by Chopra and

Ziemba (1993). Finally, spanning tests for mean-CRR efficient frontiers, developed

in chapter 2, are applied to several market indexes. The results are compared to

their equivalents in the mean-variance framework. It is shown that for conventional

classes of assets mean-variance and mean-CRR spanning tests typically yield similar

conclusions. However, for assets with asymmetric returns the mean-CRR efficiency

of the mean-variance efficient portfolio is rejected. This suggests superiority of the

CRR measure for portfolios of non-standard instruments, such as pools of credit in-

struments and derivatives. For conventional assets, such as equities and currencies

the mean-variance and mean-CRR approaches can be used interchangeably.

Chapters 4 and 5 of the thesis study applications of the asset pricing theory to

option pricing and credit risk modelling. The asset pricing theory usually deals with

no-arbitrage pricing of derivatives written on some basic underlying assets, whose

dynamics is statistically modelled. A noble example of this approach is the model

developed by Black and Scholes (1973) and Merton (1973), which derives prices

of European options written on an underlying asset following a Geometric Wiener

Process. With growing organized and over-the-counter markets for derivative instru-
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ments, the asset pricing theory became a very important tool for pricing contingent

contracts. Option pricing models are widely used in the industry, sometimes with

sophisticated assumptions on the dynamics of the underlying assets. Motivated

by the empirical evidence on the implied volatility skew, Heston (1993) provides a

closed-form solution for a stochastic volatility option pricing model. In this model

option prices account for the additional volatility risk factor, which makes the model

more realistic by adjusting the distribution of returns for frequently observed excess

kurtosis and negative skewness. Duffie et al. (2000) generalize Heston’s stochastic

volatility model to the class of affine-jump diffusions. In parallel with the equity

derivative pricing, the asset pricing theory found its way to credit instruments.

Merton (1974) applies the no-arbitrage pricing principles for pricing corporate debt,

using the leverage ratio as the underlying process and statistically modelling its dy-

namics. Numerous modifications of Merton’s ideas were implemented in the credit

risk models used by financial institutions. Merton’s model also served as a foun-

dation for the structural-form approach to credit risk modelling in the academic

literature.

The main focus of Chapter 4 is the empirical side of the option pricing under

Heston’s stochastic volatility assumption. Clustering and stochastic dynamics of

the return volatility is an empirical fact, which, probably, should be incorporated in

realistic statistical models of asset price behavior. Numerous ARCH and GARCH

models originated by Engle (1982) and Bollerslev (1986) were suggested to take into

account observed heteroskedasticity in asset returns in discrete time models. Nelson

(1991) introduces E-GARCH models that, in addition, can model the leverage effect

in return distributions.

Apart from modelling the realistic dynamics of asset returns, the empirical lit-

erature on option pricing has shown that the Black-Scholes model applied to option

prices observed in the market leads to a phenomenon known as the implied volatil-

ity smile or skew, which is model inconsistent. This phenomenon was primarily
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attributed to the leverage effect in asset returns as well as to the fat tails of the

empirical return distribution, which are ignored by the Black-Scholes model. Sto-

chastic volatility option pricing models partially correct for both option pricing and

equity dynamic inconsistencies. However, it is well known that, in case of stochastic

volatility models, financial markets are generally incomplete in terms of the under-

lying asset, since the stochastic volatility cannot be hedged. This means that the

volatility risk premium is not identifiable on the basis of the underlying asset dy-

namics only. Traded option contracts, on the other hand, can be used to extract the

lacking information about the pricing mechanism. In particular, analogously to im-

plied volatilities in the Black-Scholes model, implied prices of volatility risk can be

estimated on a daily basis using option data. The price of volatility risk can be in-

terpreted as the market’s attitude towards risk. Chapter 4 analyzes the dynamics of

the implied prices of volatility risk from this perspective. It investigates the dynam-

ics of the implied prices of volatility risk and shows that modelling their dynamics

significantly helps to improve the out-of-sample option pricing performance.

Chapter 5 proposes an alternative way to model the credit risk of companies in

distress. Existing structural form credit risk models require the use of infrequent

and often noisy information on the firm’s capital structure. The resulting pricing

performance of these models, especially for companies in distress, is not satisfac-

tory, see Eom et al. (2004). At the same time, the equity value of a company in

distress can be an informative indicator of the credit risk perceived by the market.

Being an imperfect hedge against default, the equity price becomes more informa-

tive as the company approaches bankruptcy. Also, from an econometric perspective,

modelling the default through the equity price is attractive since better quality and

more frequent data is available. Unlike in structural and reduced-form models of

credit risk, the model proposed in chapter 5 uses equity as a liquid and observable

primitive to analytically value corporate bonds and credit default swaps. In this

way, restrictive assumptions on the firm’s capital structure are avoided. Default is
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parsimoniously represented by the equity value hitting the zero barrier either dif-

fusively or with a jump, which implies non-zero credit spreads for short maturities.

Easy cross-asset hedging is enabled. By means of a tersely specified Radon-Nikodým

derivative, we also make analytic credit-risk management possible under systematic

jump-to-default risk.

1.2 Further research

The topics discussed in this thesis contain interesting possibilities for further re-

search. The mean-coherent risk spanning test outlined in Chapter 2 has an alterna-

tive interpretation through a stochastic discount factor. Therefore, one could look

at returns observed in the market from the point of view of a mean-coherent risk

investor. The empirical properties of the mean-coherent risk stochastic discount fac-

tor projected on the space of returns can be studied empirically. It can be compared

to the conventional discount factor of Fama and French (1995) obtained as an affine

function of the market, size, and book-to-market factors. As a result an alternative

view on the mean-CRR optimization can be developed.

Additionally, minimization of a coherent risk measure, such as expected shortfall,

can find numerous applications in finance. Often investors are not indifferent to

the direction of errors they make, since negative returns are avoided while positive

returns are welcome. Conventional variance minimizing regression methods treat

positive and negative errors symmetrically. As an example, one could consider the

problem of tracking a bond or equity index with a portfolio of given instruments. In

this situation over-performing means a negative tracking error, which is minimized

by the variance. An empirical analysis that quantifies the economic and statistical

benefits from a coherent risk measure could be of interest.

Empirical analyses of option prices have recently become a hot topic in finance.

Indeed, option contracts can be used to gauge the market future expectations in
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terms of risk-neutral probabilities. By analyzing risk-neutral probability distribu-

tions implicit in option prices, one could find a way to look for market aggregate

behavioral phenomena recently found in many field and laboratory experimental

studies. Alternatively, it is possible to develop better option pricing models.

The equity-based credit risk model developed in Chapter 5 uses equity as an

informative signal about the issuer’s credit quality. This model should be especially

useful for credit instruments issued by distressed companies due to a high sensitivity

of their values to shocks in the equity price of the issuer. An empirical confirmation

of this fact as well as an empirical comparison of different credit risk models in an

application to the debts of distressed companies could be an interesting topic for

further research.
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Testing for Mean-Coherent

Regular Risk Spanning

2.1 Introduction

Introduced by Artzner et al. (1999), coherent risk measures received considerable

attention in the recent literature. Indeed, coherent risk measures satisfy a set of

properties desirable from the perspective of risk management, motivated by regula-

tory concerns. With additional requirements, making a risk measure among other

things empirically identifiable, Kusuoka (2001) introduces the class of coherent reg-

ular risk (CRR) measures. A particular CRR measure is expected shortfall, which

has become especially popular in theoretical and empirical applications due to its

computational tractability.1 In parallel with these developments in the risk measure

theory, there is also an increasing understanding that risk measures alternative to

the industry- standard variance can (and maybe should be) used in asset alloca-

tion decisions. Indeed, the variance as risk measure treats overperformance equally

1See, for example, Acerbi and Tasche (2002), Tasche (2002), and Bertsimas et al. (2004) for

theoretical properties of expected shortfall; and Bassett et al. (2004), Kerkhof and Melenberg

(2004), and chapter 3 of this thesis for practical applications.

11
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as underperformance. Starting with Markowitz (1952), who suggested the use of

the semi-variance instead of the variance, many alternative risk measures, treating

underperformance differently from overperformance, have been proposed, see, for ex-

ample, Pedersen and Satchell (1998). In particular, also CRR measures found their

way to the optimal portfolio choice theory by means of expected shortfall. Rockafel-

lar and Uryasev (2000) suggest an efficient numerical method to solve an in-sample

analog of the mean-expected shortfall portfolio optimization problem. Bertsimas

et al. (2004) elaborate on the method further. Bassett et al. (2004) show that the

mean-expected shortfall optimization problem can be seen as a constrained quantile

regression, for which very efficient numerical methods have been developed.2 They

also suggest a point mass approximation for a general CRR measure and show that

the mean-CRR optimal portfolio problem with such an approximation can be solved

by quantile regression algorithms.

Portfolio choice based on expected utility might be considered as a benchmark

to evaluate the choice of risk measure. For instance, the variance as risk measure

in a mean-variance portfolio choice corresponds to expected utility with a quadratic

utility index or when asset returns jointly follow an elliptically symmetric distribu-

tion. But otherwise a mean-variance optimal portfolio is not consistent with second

order stochastic dominance. On the other hand, CRR measures, when combined

with expected return, turn out to be consistent with second order stochastic domi-

nance. Indeed, De Giorgi (2005) introduces portfolio choice based upon a reward-risk

tradeoff, isotonic with respect to second order stochastic dominance. This latter iso-

tonicity requirement means that for the reward one should take the mean return,

while risk measures based upon particular Choquet integrals qualify as appropri-

ate risk measures. Expected shortfall and, more generally, CRR measures are such

Choquet integral based risk measures. As a consequence, mean-CRR optimal port-

2See Barrodale and Roberts (1974), Koenker and D’Orey (1987), and Portnoy and Koenker

(1997).
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folios are consistent with second order stochastic dominance. For the special case

of the mean expected shortfall trade-off this has already been demonstrated by, for

example, Ogryczak and Ruszczyński (2002).

As noticed by Bassett et al. (2004), an alternative justification for mean-CRR

efficient portfolios can be given from the point of view of an investor who maximizes

a Choquet expected utility with a linear utility index and a convex distortion of

the original probability. This framework is an alternative to the expected utility

paradigm developed by Ramsey (1931), von Neumann and Morgenstern (1944), and

Savage (1954), see Schmeidler (1989), Yaari (1987), and Quiggin (1982). While

in the classical expected utility theory the utility index bears the entire burden of

representing the decision maker’s attitude towards risk, Choquet expected utility

theory introduces the possibility that preferences may require a distortion of the

original probability assessments. The cumulative prospect theory, as developed by

Tversky and Kahneman (1992) and Wakker and Tversky (1993), is also closely

aligned with the Choquet approach.

Mean-CRR efficient portfolios lead to mean-CRR efficient frontiers. For example,

Tasche (1999) calculates expected shortfall based risk contributions and discusses a

mean-expected shortfall based capital asset pricing theory (CAPM).

Then a natural question to ask is whether analogs of statistical methods, well

known in the mean-variance portfolio analysis,3 can be developed in the mean-CRR

case. In this chapter we develop a simple mean-CRR spanning test, which is used

to check whether the mean-CRR frontier of a set of assets spans the frontier of a

larger set of assets. We show that, analogous to the mean variance spanning test

developed by Huberman and Kandel (1987), the mean-CRR spanning test can be

performed as a significance test for the intercept coefficient in a simple linear regres-

sion model. The difference, however, is that in case of the mean-CRR spanning a

semi-parametric instrumental variable (IV) estimation technique should be applied.

3See the survey by DeRoon and Nijman (2001).
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The instrumental variable has a direct link to the stochastic discount factor. We

illustrate applications of this spanning test for several CRR measures, including

expected shortfall and the point mass CRR approximation, suggested by Bassett

et al. (2004), and compare the results to the mean-variance analogs. Though quite

different in approach, our analysis is similar in spirit to the analysis of Gourieroux

and Monfort (2005), who analyze statistical properties of efficient portfolios in a

constrained parametric expected utility optimization setup.

The remainder of this chapter is structured as follows. Section 2.2 briefly de-

scribes coherent regular risk (CRR) measures. In section 2.3 we introduce the mean-

CRR problem and derive the risk contributions of a CRR measure. Spanning tests

and their limit distributions are presented in section 2.4. Section 2.5 discusses the

relation between the instrumental variable and the stochastic discount factor. Em-

pirical applications of the mean-CRR spanning test are given in section 2.6. Section

2.7 concludes.

2.2 Coherent regular risk (CRR) measures

Artzner et al. (1999) follow the axiomatic approach to define a risk measure coher-

ent from a regulator’s point of view. They relate a risk measure to the regulatory

capital requirement and deduce four axioms which should be satisfied by a ”ratio-

nal”risk measure. We discuss these axioms below. Let X = L∞(Ω,F , P ) be a set of

(essentially) bounded real valued random variables.4

Definition 2.1 A mapping ρ : X → R ∪ {+∞} is called a coherent risk measure if

it satisfies the following conditions for all real valued random variables X,Y ∈ X :

• Monotonicity: if X ≤ Y , then ρ (X) ≥ ρ (Y ) .

4Ω is the set of states, F denotes the σ-algebra, and P is the probability measure. Delbaen

(2000) extends the definition of coherent risk measure to the general probability space L0(Ω,F , P )

of all equivalence classes of real valued random variables.
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• Translation Invariance: if m ∈ R, then ρ (X + m) = ρ (X)−m.

• Positive Homogeneity: if λ ≥ 0, then ρ (λX) = λρ (X) .

• Subadditivity: ρ (X + Y ) ≤ ρ (X) + ρ (Y ) .

These axioms are natural requirements for any risk measure that reflects a capital

requirement for a given risk. The monotonicity property, which, for example, is not

satisfied by the variance and other risk measures based on second moments, means

that the downside risk of a position is reduced if the payoff profile is increased.

Translation invariance is motivated by the interpretation of the risk measure ρ (X)

as a capital requirement, i.e., ρ (X) is the amount of the capital which should be

added to the position to make X acceptable from the point of view of the regulator.

Thus, if the amount m is added to the position, the capital requirement is reduced by

the same amount. Positive homogeneity says that riskiness of a financial position

grows in a linear way as the size of the position increases. This assumption is

not always realistic as the position size can directly influence risk, for example, a

position can be large enough that the time required to liquidate it depends on its

size. Withdrawing the positive homogeneity axiom leads to a family of convex risk

measures, see Föllmer and Schied (2002).5 The subadditivity property, which is not

satisfied by the widely implemented value-at-risk, allows one to decentralize the task

of managing the risk arising from a collection of different positions: If separate risk

limits are given to different desks, then the risk of the aggregate position is bounded

by the sum of the individual risk limits. The subadditivity is also closely related to

the concept of risk diversification in a portfolio of risky positions.

Kusuoka (2001) adds another two conditions for coherent risk measures

• Law Invariance: if P [X ≤ t] = P [Y ≤ t] ∀t, then ρ (X) = ρ (Y ) .

• Comonotonic Additivity: if f, g : R → R are measurable and non-decreasing,

then ρ (f ◦X + g ◦X) = ρ (f ◦X) + ρ (g ◦X) .

5However, see De Giorgi (2005) on homogenization of risk measures.
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The intuition of the two axioms is simple: the Law of Invariance means that finan-

cial positions with the same probability distribution should have the same risk. This

property allows identification from an empirical point of view. The second condition

of Comonotonic Additivity refines slightly the subadditivity property: subadditiv-

ity becomes additivity when two positions are comonotone. In fact, Comonotonic

Additivity strengthens the concept of ”perfect dependence”between two random

variables. Indeed, if two random variables are monotonic transformations of the

same third random variable, the risk of their combination should be equal to the

sum of their separate risks.

A risk measure that is coherent and regular and that has received considerable

attention is expected shortfall,6 defined as

sα(X) = −α−1

∫ α

0

F−1(t)dt, (2.1)

where F stands for the cumulative distribution function of the random variable

X. An important characterization result, modifications of which are obtained by

Kusuoka (2001) and Tasche (2002), is

Theorem 2.1 A risk measure ρ : X → R ∪ {+∞} defined on X = L∞(Ω,F , P ),

with P non-atomic, is coherent and regular if and only if it has a representation

ρ(X) =

∫ 1

0

sα(X)dφ(α), (2.2)

where φ is a probability measure defined on the interval [0, 1].

Notice, that a coherent regular risk measure corresponds to a Choquet expectation

over F−1(t) with a concave distortion probability function.7 Indeed, a Choquet

6Here we use the terminology of Acerbi and Tasche (2002). In fact, variants of this risk measure

have been suggested under a variety of names, including conditional value-at-risk (CVaR) by

Rockafellar and Uryasev (2000) and tail conditional expectation by Artzner et al. (1999).
7This corresponds to a convex distortion in case the risk measure is defined as Choquet expec-

tation over X, instead of F−1(t), see Bassett et al. (2004).
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expectation over F−1(t) with a distortion probability ν is

ρ(X) = −
∫ 1

0

F−1(t)dν(t).

If we substitute expression (2.1) for expected shortfall into equation (2.2) the relation

between the distortion probability ν and the probability measure φ in (2.2) can be

found

ν ′(t) =

∫ 1

t

α−1dφ(α). (2.3)

We call the function ν ′(t) a Choquet distortion probability density function (pdf).

Since φ is a probability measure it follows that ν(t) has to be a concave function.

Hence the probability distortion ν acts to increase the likelihood of the least favorable

outcomes, and to depress the likelihood of the most favorable ones. This is the

reason why, for example, Bassett et al. (2004) call a CRR measure a pessimistic

risk measure. Through the Choquet representation, CRR measures can be related

to the family of non-additive, or dual, or rank-dependent uncertainty choice theory

formulations of Schmeidler (1989), Yaari (1987), and Quiggin (1982).

A nice way to approximate a CRR measure by a weighted sum of Dirac’s point

mass functions8 was suggested by Bassett et al. (2004). The point mass func-

tion δτ (α) is defined trough the integral
∫ x

−∞ δτ (α)dα = I(x ≥ τ). Let φ(α) =
∑m

k=1 φkδτk
(α), with φk ≥ 0,

∑
φk = 1, then the CRR measure in (2.2) can be

rewritten as

ρ(X) =
m∑

k=1

φksτk
(X). (2.4)

Clearly, expected shortfall is a particular case of this approximation. We use this ap-

proximation in our empirical applications of the mean-CRR spanning test in section

2.6.

8Notice, that such an approximation also corresponds to a piecewise linear approximation of

the concave probability distortion function ν in the Choquet expectation.
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2.3 Mean-CRR portfolios and risk contributions

In this section we first use the CRR-measures to formulate optimal portfolio choice

problems, and then we generalize the risk contribution results for the case of expected

shortfall obtained by Bertsimas et al. (2004) and Tasche (1999) to general CRR

measures.

Consider a portfolio of p assets whose random returns are described by the

random vector R = (R1, . . . , Rp)
′ having a joint density with the finite mean µ =

E[R]. For simplicity, assume that the joint distribution of R is continuous. Let

θ = (θ1, . . . , θp)
′ be portfolio weights, so that the total random return on the portfolio

is Z = R′θ with distribution function Fz. This allows us to view a CRR measure of a

portfolio as a function of portfolio weights ρ(θ) = ρ(R′θ). An optimization problem

for a mean-CRR efficient portfolio can now be formulated in full analogy with the

mean-variance case

min
θ∈Rp

ρ(R′θ) s.t. µ′θ = m, ι′θ = 1 (2.5)

where m is the required expected portfolio return and ι is a p× 1 vector of ones.

The fact that a CRR measure can be written as a Choquet expectation over

F−1(t) with a concave distortion function ν (or, equivalently, as a Choquet ex-

pectation over Z with a concave distrotion function), means that the optimization

problem (2.5) is isotonic with second order degree stochastic dominance, see, for

instance, De Giorgi (2005). In combination with the empirical identifiability (due to

the law invariance condition), makes optimal mean-CRR portfolio choice attractive,

both from a theoretical and an empirical point of view. Moreover, as explained

in Bassett et al. (2004), a CRR measure can be approximated by a finite sum of

expected shortfalls. A sample analog of a mean-CRR problem with this finite sum

approximation can be reformulated as a linear program and efficiently solved, see

Portnoy and Koenker (1997), Rockafellar and Uryasev (2000), and chapter 3 of this

thesis, making mean-CRR optimal portfolio choice also practically feasible. In sum-
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mary, a CRR measure is a natural choice for a risk measure in case of a portfolio

choice based on a mean-risk trade-off. In chapter 3, we also derive the asymptotic

distribution of the mean-CRR portfolio weights θ and consider special cases of a

point mass approximation of a CRR measure and expected shortfall.

In the remainder of this section, we consider the risk contribution results obtained

by Bertsimas et al. (2004) and Tasche (1999) for the case of expected shortfall and

generalize them to a general CRR measure. This result, being interesting by itself,9

is needed for the mean-CRR spanning test, which is to follow.

Proposition 2.1 If the distribution of the returns R has a continuous density, then

the CRR contributions of assets in R are given by the gradient vector

∇θρ(θ) = −E

[
R

∫ 1

Fz(Z)

α−1dφ(α)

]
. (2.6)

Proof. First, notice that expected shortfall of the portfolio return Z can be ex-

pressed as

sα(Z) = −αE [ZI(Fz(Z) ≤ α)] ,

where I(A) is the usual indicator function. This means that a CRR measure of the

portfolio Z is

ρ(θ) = −
∫ 1

0

α−1E [ZI(Fz(Z) ≤ α)] dφ(α)

= −E

[
Z

∫ 1

0

α−1I(Fz(Z) ≤ α)dφ(α)

]

= −E

[
Z

∫ 1

Fz(Z)

α−1dφ(α)

]
.

The distribution function Fz(·) is continuously differentiable with respect to portfolio

weights θ since the distribution of the returns R has a continuous density. Therefore,

we can calculate the risk contributions of a CRR measure in a straightforward way.

Notice, that portfolio Z = R′θ and its distribution function Fz depend on the

9One can interpret risk contributions as an amount of required capital for a particular asset in

the portfolio.
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portfolio weights θ. Then, applying the chain rule to the expression for a CRR

measure ρ(θ), we obtain

∇θρ(θ) = −∇θE

[
Z

∫ 1

Fz(Z)

α−1dφ(α)

]
(2.7)

= −E

[
R

∫ 1

Fz(Z)

α−1dφ(α)− Z
φ′(Fz(Z))

Fz(Z)
(fz(Z)R +∇θ Fz(s)|s=Z)

]
.

To finish the derivation we need to calculate the gradient ∇θFz(s). It suffices to

derive only component j of this vector, the rest being analogous. Denote by θj the

portfolio weight of asset Rj and by θ−j the vector of portfolio weights of the rest of

the assets, which we denote by R−j. Further, let Z−j = R′
−jθ−j be the portfolio of

assets R excluding asset j. Denote by Fz−j |Rj
and fz−j |Rj

the conditional probability

and density functions of return Z−j conditional on return Rj. Then we can express

the cumulative probability function Fz of portfolio Z through the expectation of the

conditional probability Fz−j |Rj

Fz(s) = E [I(R′θ ≤ s)] = E
[
E

[
I(R′

−jθ−j ≤ s−Rjθj)
∣∣ Rj

]]

= E
[
Fz−j |Rj

(s−Rjθj)
]
.

Now the calculation of the derivative of Fz(s) with respect to weight θj is straight-

forward

∂Fz(s)

∂θj

= −E
[
fz−j |Rj

(s−Rjθj)Rj

]
= −E

[
fz|Rj

(s)Rj

]

= −
∫ +∞

−∞

fz,Rj
(s,Rj)

fRj
(Rj)

RjdFRj
(Rj) = −fz(s)E [Rj|Z = s] ,

where fz|Rj
is the conditional density function of the portfolio return Z conditional

on return Rj of the asset j, and fz,Rj
is their joint probability density function.

Stacking the components into one vector yields

∇θFz(s) = −fz(s)E [R|Z = s] ,

Then, substituting this expression into equation (2.7), we obtain the result for the
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CRR risk contributions

∇θρ(θ) = −E

[
R

∫ 1

Fz(Z)

α−1dφ(α)− Z
φ′(Fz(Z))

Fz(Z)
(fz(Z)R− fz(Z)E [R|Z])

]

= −E

[
R

∫ 1

Fz(Z)

α−1dφ(α)

]
,

which concludes the proof.

The second proposition gives the expression for the Hessian of a CRR measure.

This result is a generalization of the expression given in Bertsimas et al. (2004) for

expected shortfall.

Proposition 2.2 If the distribution of the returns R has a continuous density, then

the Hessian of a CRR measure is given by the matrix

∇2
θρ(θ) = E

[
φ′(Fz(Z))fz(Z)

F (Z)
Cov(R|Z)

]
, (2.8)

where fz is the probability density function of the portfolio return Z.

Proof. The proof is straightforward

∇2
θρ(θ) = −∇θE

[
R

∫ 1

Fz(Z)

α−1dφ(α)

]

= E

[
R

φ′(Fz(Z))

Fz(Z)
(fz(Z)R′ +∇θ Fz(s)|s=Z)

]

= E

[
φ′(Fz(Z))fz(Z)

Fz(Z)
(RR′ −RE[R′|Z])

]

= E

[
φ′(Fz(Z))fz(Z)

Fz(Z)
Cov(R|Z)

]
.

Note that (2.8) implies the convexity of a CRR measure ρ(θ) because the con-

ditional covariance matrix Cov(R|Z) is positive semi-definite and the other terms

are positive. This means that the mean-CRR portfolio optimization problem (2.5)

is well defined.
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2.4 Mean-CRR spanning test

In this section we present the mean-CRR-spanning test. First, Tasche (1999) shows

that an analog of the two fund separation theorem holds for a τ -homogeneous risk

measure satisfying certain regularity conditions, see the discussion in Tasche (1999).

A risk measure ρ(X) is called τ -homogeneous if for any t > 0 it satisfies ρ(tX) =

tτρ(X). The CRR measure is a homogeneous risk measure of degree one. Any τ -

homogeneous risk-efficient portfolio can be represented as a linear combination of

the risk-free asset (assumed to be present) and a risk-market portfolio. The risk-

market portfolio Z = R′θ∗ can be characterized by the maximal Sharpe-risk ratio,

so that the following relation holds:

µ− ιrf =
µz − rf

τρ((R− µ)′θ∗)
∇θρ ((R− µ)′θ∗) ,

where rf is the risk-free rate, µ is the vector of the expected returns, µz is the

expected return of the risk-market portfolio Z, and ι is a vector of ones. Notice,

that this relation for the risk-efficient portfolio includes the risk contribution vector

∇θρ((R − µ)′θ∗). Using equation (2.6) we obtain the following expression for risk

contributions entering the characterization of the risk-market portfolio.

∇θρ ((R− µ)′θ∗) = −E

[
(R− µ)

∫ 1

Fz(Z)

α−1dφ(α)

]
= −Cov (R, ν ′(F (Z))) ,

where ν ′(Fz(s)) =
∫ 1

Fz(s)
α−1dφ(α) is the Choquet distortion probability density func-

tion. Thus, the characterization of an efficient portfolio for a CRR measure (2.2)

becomes

µ− ιrf =
Cov(R, ν ′(Fz(Z)))

Cov(Z, ν ′(Fz(Z)))
(µz − rf ) . (2.9)

This expression says that the expected excess return on any asset in a CRR market

portfolio is proportional to the expected excess return of the CRR market portfolio

with the coefficient proportional to the covariance between the asset return and

the distorted cumulative distribution function of the risk-market portfolio Z. This
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characterization can be used for a spanning test. For expositional simplicity we

derive the spanning test for a single asset, potentially to be included in the portfolio

under consideration. The extension to the multiple asset case is straightforward.

Let Y be a random return of an asset for which we want to perform a spanning

test. Denote by µy its expected return. Under the spanning hypothesis this asset

is redundant for the portfolio, i.e., its weight in the portfolio is zero. This means

that under the spanning hypothesis the CRR-market portfolio Z does not change.

Clearly, the characterization (2.9) should hold. It is straightforward to see that

the relation (2.9) can be reformulated in terms of the semi-parametric instrumental

variable (IV) regression

Y e
i = α + βZe

i + εi, (2.10)

E[εi] = 0, (2.11)

E[Viεi] = 0, (2.12)

where Y e
i = Yi − rf , Ze

i = Zi − rf , and Vi = ν ′(Fz(Zi)) is the semi-parametric

instrument, which depends on the distribution Fz of the optimal portfolio return Z.

The restriction imposed by the spanning hypothesis on the regression (2.10) is

α = 0,

βCov(Z, V )− Cov(Y, V ) = 0.

Thus, the mean-CRR spanning test is a test on significance of the intercept parame-

ter α in the semi-parametric IV regression (2.10). Denote by Wi = (1, Vi)
′ the two

instruments of (2.10), and by Xi = (1, Ze
i )
′ the regressors. Then, the IV estimator

is given by

γ̂ =


α̂

β̂


 =

(
1

n

n∑
i=1

ŴiX
′
i

)−1
1

n

n∑
i=1

ŴiY
e
i . (2.13)

where Ŵ stands for a non-parametric estimation of the instrumental variable W ,

which depends on the Choquet distortion pdf ν ′(Fz(Z)). The estimation of this
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functional is straightforward

ν ′(Fn(s)) =

∫ 1

Fn(s)

α−1dφ(α),

where Fn(s) is a consistent estimator of Fz.
10 Notice, that the methods developed

by Newey (1994) to derive the asymptotic variance of a semi-parametric estimator

are fully applicable to our semi-parametric IV case. The asymptotic distribution of

the parameters can be determined (under appropriate regularity conditions) by

√
n (γ̂ − γ) =

(
1

n

n∑
i=1

ŴiX
′
i

)−1
1√
n

n∑
i=1

Ŵiεi + op(1), (2.14)

We consider two cases. First, we ignore the estimation inaccuracy in the CRR

market portfolio weights. This corresponds to the case where we assume a certain

traded portfolio to be the CRR market portfolio, for example, the S&P 500 index.

Then we consider the case when the estimation inaccuracy in the CRR market

portfolio weights is taken into account. This corresponds, for instance, to the case

where we want to test whether some chosen portfolio, likely based on estimated

mean returns and probably some optimal criterion, is indeed optimal from the point

of view of mean-CRR efficiency.

2.4.1 Spanning for a given CRR efficient portfolio

Suppose that the returns of the CRR market portfolio are observable, i.e, we do

not need to take into account estimation inaccuracy in the CRR portfolio weights.

Applying the Law of Large Numbers and the Central Limit Theorem to (2.14), we

obtain

1

n

n∑
i=1

ŴiX
′
i →p E [WiX

′
i] = G, (2.15)

1√
n

n∑
i=1

Ŵiεi =
1√
n

n∑
i=1

ψ(Zi, εi) + op(1) →d N(0, E[ψψ′]), (2.16)

10In principle, usual empirical distribution function Fn(s) = n−1
∑n

i=1 I(Zi ≤ s) can be used.
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where ψ = (ψ1(Z, ε), ψ2(Z, ε))′ is a 2 × 1 vector with the components ψ1 and ψ2

being the influence functions of the functionals11

φ1(F ) =

∫
εdF (Z, ε),

φ2(F ) =

∫
εν ′(Fz(Z))dF (Z, ε).

The influence function of the first functional φ1(F ) is obvious. The influence function

of the functional φ2(F ) is derived in the Appendix. The results are

ψ1(Z, ε) = ε, (2.17)

ψ2(Z, ε) = χ(Z, ε)− E [χ(Z, ε)] , (2.18)

where

χ(Z, ε) =

∫ 1

Fz(Z)

(
ε− E[ε|Z = F−1

z (α)]
)
α−1dφ(α). (2.19)

Finally, the asymptotic result for the semi-parametric IV estimator in (2.14) is

√
n (γ̂ − γ) →d N

(
0, G−1E [ψψ′] G′−1

)
,

with the components of the influence function ψ given in equations (2.17), (2.18),

and (2.19). The asymptotic distribution of the intercept α is

√
n (α̂− α) →d N

(
0,

[
G−1E [ψψ′] G′−1

]
11

)
, (2.20)

where the sub-index 11 stands for the (1,1)-component of the asymptotic covariance

matrix of the semi-parametric IV estimator.

The mean-CRR spanning test is equivalent to the significance test of the intercept

coefficient. Notice, that this result is close in spirit to the mean-variance spanning

test developed by Huberman and Kandel (1987). They propose to test the mean-

variance spanning by means of a significance test on the intercept coefficient in an

OLS regression similar to (2.10), but with a mean-variance market portfolio excess

return Ze instead of the CRR one.
11Wε = (ε, V ε)′.
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Example: Expected Shortfall

A particular CRR measure which has recently received a lot of attention is expected

shortfall sτ (X), defined in (2.1). It is well known that a sample analog of a mean-

expected shortfall portfolio problem can be reformulated as a linear program and

solved efficiently, see Bertsimas et al. (2004) and Bassett et al. (2004). Our results

immediately yield the mean-expected shortfall spanning test. We start with the

instrumental variable V , which is used to estimate regression (2.10):

V = ΓF (Z) = τ−1I(Fz(Z) ≤ τ).

The function χ(Z, ε) in (2.19) becomes

χ(Z, ε) = τ−1
(
ε− E[ε|Z = F−1

z (τ)]
)
I(Fz(Z) ≤ τ).

The result for the mean-expected shortfall spanning test is immediately obtained by

means of equation (2.20) with

G = E


 1 Ze

V ZeV


 , (2.21)

and

E[ψψ′] =


 var(ε) cov(ε, χ)

cov(ε, χ) var(χ)


 . (2.22)

An interesting observation is that in case of expected shortfall the components var(χ)

and cov(ε, χ) are mainly determined by the usual IV part τ−1εI(Fz(Z) ≤ τ) of the

function χ. This is because the non-parametric adjustment is effectively constant.

The shift which appears at the τ quantile brings a negligible correction to the co-

variance matrix E[ψψ′]. This means that, when performing a usual IV inference

without taking into account the non-parametric adjustment, one only makes a very

small error.
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Example: CRR point mass approximation

As suggested by Bassett et al. (2004), one can approximate a CRR measure (2.2)

by taking a point mass probability distribution on the interval [0, 1]. In this case

the exogenous probability φ(α) in the definition (2.2) becomes

φ(α) =
m∑

k=1

φkI(α ≥ τk),

where the weights φk sum up to one. A point mass approximation (PMA) of a CRR

measure becomes a weighted sum of expected shortfalls

ρ(Z) =
m∑

k=1

φksτk
(Z).

As shown in chapter 3 of this thesis, a sample analog of a the mean-PMA CRR

portfolio problem can be reformulated as a linear program and efficiently solved

with existing numerical algorithms. The spanning test results of this section are

applicable for the mean-PMA CRR spanning as well. The instrumental variable V

of regression (2.10) becomes

V = ΓF (Z) =
m∑

k=1

φkτ
−1
k I(Fz(Z) ≤ τk).

The function χ(Z, ε) in expression (2.18) for the influence function of the functional

φ2(F ) = E[εV ] becomes

χ(Z, ε) =
m∑

k=1

φkτ
−1
k I(Fz(Z) ≤ τk)

(
ε− E[ε|Z = F−1

z (τk)]
)
.

The spanning test, equivalent to the significance test of the intercept in the IV

regression (2.10), is performed by means of equation (2.20) with expressions for G

and E[ψψ′] given in (2.21) and (2.22), respectively.

2.4.2 Estimation inaccuracy in market portfolio weights

The Mean-CRR spanning test (2.20) obtained in subsection (2.4.1) ignores the po-

tential estimation inaccuracy in the weights of the CRR market portfolio Z. This
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is reasonable if one wants to test a CRR version of the Capital Asset Pricing Model

(CAPM) with a given market index as a CRR market portfolio. Alternatively, one

could form a priori believes about the portfolio weights, so that they are not con-

sidered as having estimation inaccuracy. In this section we discuss an adjustment

required to the limit distribution (2.20) of the intercept coefficient α of the IV re-

gression (2.10) in the case one also wants to take into account the error resulting

from the estimation of the market portfolio weights. Our setup is quite general, as

we consider an investor who wants to test his/her portfolio for CRR optimality, but

whose portfolio is determined by solving some (arbitrary) optimization problem.

In principle, an alternative approach to test for mean-CRR spanning would be

a straightforward significance test for the weight of the new asset in the market

efficient portfolio. However, to implement this test one needs to re-derive the whole

CRR market portfolio with the new asset included. This approach is similar in

spirit to the mean-variance spanning test of Britten-Jones (1999). In this chapter,

however, we would like to separate the estimation of the market portfolio and the test

for mean-CRR spanning for new candidate assets. The advantage is that one does

not need to re-derive the market portfolio weights every time a new spanning test

needs to be performed. All we need are asset returns and weights of the öld”market

portfolio, which need to be derived only once.

Suppose, that the limit distribution of the market efficient portfolio weights

θ̂ resulting from the solution of an optimization problem12 is characterized by an

influence function ξ(Re, Z), i.e.,

√
n

(
θ̂ − θ

)
=

1√
n

n∑
i=1

ξ(Re
i , Zi) + op(1),

Eξ = 0, Eξξ′ < ∞,

where Re is a vector of asset returns in excess of the risk free rate rf . The result

(2.16) has to be adjusted in a straightforward way to take into account the estimation

12In the Appendix 2.B we consider the case of the mean-CRR portfolio weights.
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inaccuracy in the portfolio weights

1√
n

n∑
i=1

Wiεi =
1√
n

n∑
i=1

ψ(Zi, εi) +∇θE


 ε

εν ′(Fz(Z))


 1√

n

n∑
i=1

ξ(Re
i , Zi) + op(1).

It is straightforward to show that

M ≡ ∇θE


 ε

εν ′(Fz(Z))


 = −βE


 Re′

Re′ν ′(Fz(Z))


 .

Given the expressions for the components of the vector ψ(Z, ε) provided in (2.17),

(2.18), and (2.19) we obtain

1√
n

n∑
i=1

Wiεi =
1√
n

n∑
i=1

ζ(Re
i , Zi, εi) + op(1) ≡

[
I2 M

] 1√
n

n∑
i=1


ψ(Zi, εi)

ξ(Re
i , Zi)


 + op(1),

with limit distribution

1√
n

n∑
i=1

Wiεi →d N (0, E [ζζ ′)]) .

Finally, the spanning test result (2.20) becomes

√
n (α̂− α) →d N

(
0,

[
G−1E [ζζ ′] G′−1

]
11

)
. (2.23)

The last step that remains is to find the influence function ξ(Re, Z) of the esti-

mated market portfolio weights θ̂. We report the relevant formulas for a mean-CRR

market portfolio in the Appendix 2.B, referring for the derivation details to chap-

ter 3. The considered cases are mean-CRR, with as special cases mean-expected

shortfall, and mean-PMA CRR.

2.5 Stochastic discount factor, instrumental vari-

ables, and performance measurement

In this section we demonstrate that, if considered as a pricing model, system (2.10)

implies a linear relation between a stochastic discount factor (that can be used to
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price the assets) and the instrumental variable V . From the perspective of the mean-

CRR portfolio this can be interpreted as a model of general equilibrium where the

portfolio choices are based on the mean-CRR optimization. In this case the instru-

mental variable V is given by the Choquet distortion probability density function

ν ′(Fz(Z)). Alternatively, there could be an investor who makes his/her portfolio

choice according to mean-CRR optimization. In this case, the assets in his/her

portfolio should satisfy

Re = βZe + ε,

E[ε] = 0, E[V ε] = 0,

and the stochastic discount factor should be an affine function of the instrumental

variable V , which can then be interpreted as the single risk factor. Notice, however,

that this single risk factor is not a return on a portfolio. This means that we cannot

construct a simple test of a zero intercept in a linear regression equation of the

excess return Re on the (non-existing) excess return ”V e”. Instead, our spanning

test, based on a linear regression but with an instrumental variable, allows one to

perform a zero intercept test.

The general statement regarding the stochastic discount factor and the instru-

mental variable V is as follows.

Proposition 2.3 Suppose that the asset excess returns satisfy

Re = βZe + ε,

E[ε] = 0,

E[V ε] = 0,

where Ze is a global market factor, and V is the global market instrumental variable.

Then

m =
1

rfCov(Ze, V )
(E[ZeV ]− E[Ze]V ) (2.24)

is a valid stochastic discount factor.
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Proof. We need to show that for any (relevant) asset return R, the pricing equation

E[mR] = 1 is satisfied. Notice that from the stated version of the modified CAPM

model it follows that R = rf +βZe + ε. Then, substituting the expression (2.24) for

the stochastic discount factor m, we obtain

E [mR] =
rf

rfCov(Ze, V )
(E[ZeV ]− E[Ze]E[V ]) +

β

rfCov(Ze, V )
(E[ZeV ]E[Ze]− E[Ze]E[V Ze]) = 1

The mean-CRR portfolio model (2.5) implies a specific choice of the instrumental

variable V in (2.24), namely

V =

∫ 1

Fz(Z)

α−1dφ(α).

As we have shown, the stochastic discount factor m should be an affine function

of this instrument. This means that the proposed spanning test (2.20) can also be

viewed as a test for the validity of a model for the stochastic discount factor in

(2.24).

Given the SDF in (2.24) valid for returns satisfying (2.24)-(2.24), we can intro-

duce a performance measure, following Chen and Knez (1996), for returns not yet

marketed according to this SDF. This performance measure is defined as kE[m(R−
Rref)] with R a non-marketed return, Rref an already marketed return, satisfying

conditions (2.24)-(2.24), and k some constant. Straightforward calculations show

that in case one chooses k = rf the performance measure equals the intercept α

of the IV regression (2.10)-(2.12). This yields an alternative interpretation for the

spanning test, comparable to Jensen’s α and its relationship with MV-spanning

tests.
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2.6 Empirical examples

2.6.1 Testing the world capital index for market efficiency

In this subsection we consider an application of the mean-CRR spanning test to

capital market indexes of different countries. In particular, we test the Morgan

Stanley World Capital Index for mean-expected shortfall and mean-point mass ap-

proximated (PMA) CRR market efficiency with respect to inclusion of individual

country indexes. This exercise is similar in spirit to Cumby and Glen (1990), who

test the world index for mean-variance efficiency using the mean-variance spanning

test. The data is available from Thomson Datastream. In our analysis we use the

Morgan Stanley World Capital Market Index, individual country indexes denomi-

nated in local currencies, and currency exchange rates. The countries in the data set

are divided into four groups based on geography and development level: American

developing economies, Asian developing economies, European developing economies,

and OECD countries. In the category of American developing countries we consider

Argentina (ARG), Brazil (BRA), Chile (CHIL), Peru (PER), Mexico (MEX), and

Venezuela (VEN). The group of Asian developing economies includes China (CHI),

India (INDIA), Indonesia (INDO), Malaysia (MAL), Pakistan (PAK), Philippines

(PHIL), Sri-Lanka (SRIL) and Thailand (THAIL). The Czech Republic (CZE), Hun-

gary (HUN), Poland (POL), Romania (ROM), Russia (RUS), and Turkey (TURK)

are the European developing economies. Finally, Australia (AU), Canada (CAN),

The Euro zone (EU), Japan (JAP), South Korea (KOR), the United Kingdom (UK)

and the United States (US) constitute the OECD group. As we want to exclude the

effects of the Asian and Russian crisis (August 1998) on the world capital markets,

we consider the time period from January 3, 1999 to May 12, 2005. We use daily

US dollar index returns for our analysis. The US one-month interbank rate is taken

as a risk-free interest rate.

Table 2.1 shows descriptive sample statistics of the country index returns. The
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empirical return distributions are typically skewed and fat tailed.

Table 2.2 shows the result of the world index (WRLD) efficiency tests. The

table reports significance levels of the mean-variance (MV), mean-expected shortfall

(ShF), and the mean-PMA CRR (PMA) market efficiency tests with respect to

inclusion of individual country indexes. The expected shortfall probability threshold

is chosen to be 5%, while probability thresholds for PMA CRR are taken at the levels

of 5%, 10%, 15%, 20%, and 25% with equal weights of 20%. Significance levels of

joint spanning tests for inclusion of country groups as a whole are reported in the

table as well.

We see that the market efficiency tests with different risk measures (variance,

expected shortfall, and PMA CRR) lead to similar conclusions. In most cases the

market efficiency of the WRLD index cannot be rejected at the usual significance lev-

els. A strong rejection of the efficiency hypothesis is observed for Mexico, Romania,

Russia, and Canada (5% significance level). Indeed, Russian and Romanian markets

have shown a significant growth over the past decade. The spanning hypothesis is

also rejected for Pakistan at the 10% significance level.

The fact that the mean-CRR spanning tests perform at similar significance levels

with the mean-variance spanning tests is encouraging. It shows that the mean-CRR

spanning tests for country indexes work reasonably well. Moreover, for a moderate

levels of skewness and kurtosis in the index return distributions the different risk

measures are statistically equivalent and can be used interchangeably. This is in

line with findings in chapter 3 that perform a systematic comparison of the mean-

variance and the mean-CRR approaches in portfolio management.

2.6.2 Testing for mean-CRR spanning in portfolios of credit

instruments

Our second example concerns portfolios of credit instruments. In particular, we

consider collateralized debt obligations (CDO) as elementary entries of the portfolio.
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This example is chosen for two reasons. First, since CDO return distributions are not

symmetric the mean-variance and mean-CRR market efficient portfolios are likely

to be different. As a result, the outcomes of the spanning tests might be different

as well. Second, CDO tranches are becoming very popular financial instruments

among investors, for example, hedge funds, insurance companies, etc. The past

several years have seen an increasingly growing market for CDO tranches. This

means that the problem of finding an optimal portfolio of CDOs is relevant for

practical applications. The mean-variance approach might not be good idea in this

case due to significantly asymmetric returns.

A collateralized debt obligation (CDO) is a structure of fixed income securities

whose cash flows are linked to the incidence of default in a pool of debt instruments.

These debts may include loans, emerging market corporate or sovereign debt, and

subordinate debt from structured transactions. The fundamental idea behind a

CDO is that one can take a pool of defaultable bonds or loans and issue securities

whose cash flows are backed by the payments due on the loans or bonds. Using a

rule for prioritizing the cash flow payments to the issued securities, it is possible to

redistribute the credit risk of the pool of assets to create securities with a variety of

risk profiles. In our example we consider the simplest case of investing in securities

linked to the total pool of the underlying debt, while receiving a fixed interest

payment in exchange.

In the industry the analysis of CDOs is usually exclusively based on theoretical

models. This is due to the fact that historical data on defaults, and especially joint

defaults, is very sparse. Another reason is that the specification of the full joint

default probabilities is too complex: for example, for a CDO with 50 obligors there

are 250 joint default events. CDO models differ in their complexity: while some of

them admit analytical solutions for loss distribution functions, others require Monte-

Carlo simulation techniques. However, as soon as one wants to construct an optimal

mean-risk portfolio from several CDOs, no closed form solution is usually available.
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Therefore, a Monte-Carlo simulation is the only alternative. In our example, we

use a simple one factor large homogeneous portfolio model to construct the return

distributions of the CDOs.13 Here we briefly outline the model.

The model assumes that a portfolio of loans consists of a large number of credits

with the same default probability p. In addition, it is assumed that the default of

a firm (obligor) is triggered when the normally distributed value of its assets Vn(T )

falls below a certain level K. Without loss of generality we can standardize the

developments of the firm values such that Vn(T ) ∼ N(0, 1). In this case the default

barrier level is the same for all obligors and equals K = Φ−1(p). To introduce a

default correlation structure it is assumed that the firm values are driven by a factor

model

Vn(T ) =
√

%Y +
√

1− %εn,

where Y is the systematic factor for all obligors in the pool of credits, and εn is

the idiosyncratic risk of a firm. The higher the correlation coefficient %, the higher

the probability of a joint default in the pool. Notice that, conditional on the factor

Y , defaults are independent. The individual default probability conditional on the

realization y of the systematic factor Y is

p(y) = Φ

(
Φ−1(p)−√%y√

1− %

)
.

Conditional on the realization y of Y , the individual defaults happen independently

from each other. Therefore, in a very large portfolio, as we assume to be the case,

the law of large numbers ensures that the fraction of obligors that actually defaults

is almost surely equal to the individual default probability.

For purposes of our analysis we simulate returns of three CDOs using the de-

scribed one factor model. The steps that we take are as follows:

13We use a simplified form of the firm’s value model due to ?. Similar approach is used in Belkin

et al. (1998) and Finger (1999).
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• We simulate 10,000 realizations of three factors (y1i, y2i, y3i) from the three-

variate standard normal distribution with the identity correlation matrix.14

• From the simulated factors we generate fractions of obligors that actually

default in the pool j = {1, 2, 3} using the formula

xji = Φ

(
Φ−1(pj)−√%jyji√

1− %j

)

with individual default probabilities pj, j = {1, 2, 3} of 2.5%, 5%, and 7.5%;

and default correlations %j, j = {1, 2, 3} of 0.15, 0.1, and 0.05.

• Finally, for each CDO j we obtain the returns Rji

Rji = (1 + rj)(1− xji)− 1,

where rj is the risk premium for holding pool j of defaultable obligors. We

choose these risk premiums to be 4%, 10%, and 12%, correspondingly.

Even though the parameter choice in our simulation may seem ad-hoc, there are

two reasons which make it plausible for a realistic situation. First, depending on the

credit rating and the investment horizon, individual default probabilities can vary in

a wide range from 0.00% (for one year default probability of an Aaa rated company)

to 44.57% (for ten years default probability of a B rated company), according to

Moody’s, see Table 2.3. The default probabilities that we choose fall in this range.

Second, it is possible to redistribute the credit risk of the pool of assets to create

securities with a variety of risk profiles, which makes many possible combinations

of parameters justified.

Table 2.4 shows descriptive statistics of the simulated returns of the three CDOs.

The distributions of the returns are substantially skewed and fat tailed. The CDO

14In principle, it is possible to make returns on the 3 CDOs dependent by introducing positive

or negative correlations among the factors.
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with the smallest default correlation among obligors is the closest to the normal

distribution.

From the simulated credit pool returns we construct three market portfolios:15

mean-variance (MV), mean-expected shortfall (ShF) and mean-PMA CRR (PMA).

In addition, we consider returns of CDO1 hypothesizing its market efficiency. The

probability threshold for expected shortfall is chosen to be 5%. The probability

thresholds for PMA CRR measure are chosen to be 5%, 10%, 15%, 20%, and 25%

with equal weights of 20%. For these four portfolios (CDO1, MV, ShF, and PMA)

we perform mean-variance, mean-expected shortfall, and mean-CRR PMA spanning

tests with respect to inclusion of CDO2 and CDO3. Table 2.5 reports significance

levels of these tests.

The results indicate a statistical difference between mean-variance and mean-

CRR market portfolios. For the mean-CRR market portfolios (Mkt. ShF and Mkt.

PMA), the mean-variance spanning tests result in strong rejection. At the same

time, for the mean-variance market portfolio (Mkt. MV) mean-CRR spanning tests

result in rejection as well. The difference between the mean-expected shortfall mar-

ket portfolio (Mkt. ShF) and the mean-PMA CRR market portfolio (Mkt. PMA)

with respect to the inclusion of CDO2 and CDO3 turns out to be significant as well.

In this exercise the mean-variance and the mean-CRR spanning tests do not

produce similar results any more. The reason is the asymmetrically distributed

returns. Skewness of the returns make variance a bad risk measure from the point

of view of a CRR investor. Therefore, the mean-variance optimal portfolio is not

recognized as a mean-CRR efficient one by the mean-CRR spanning test. This

exercise demonstrates applicability of the mean-CRR spanning test to portfolios of

credit instruments or other portfolios with comparable characteristics. It shows that

the correct choice of the risk measure becomes increasingly important for assets with

asymmetric returns.

15We assume a zero risk-free rate.
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2.7 Conclusion

In this chapter we consider coherent regular risk (CRR) measures as an alternative

to the conventional variance in a mean-risk optimal portfolio problem. Following

trends in the recent literature on expected shortfall we derive useful properties of

CRR measures. In particular, expressions for risk contributions and the Hessian of

a CRR measure are obtained.

Our main contribution is the regression-based test for mean-CRR spanning. We

show that this test can be performed in the spirit of Huberman and Kandel (1987)

as a significance test of the intercept coefficient in a semi-parametric instrumental

variable regression. The instrument in this regression is a functional, depending on

a certain choice of the CRR measure.

We derive the limit distribution of the regression intercept coefficient to test for

mean-CRR spanning. The resulting asymptotic covariance matrix is the variance of

the usual IV estimator with an adjustment for the non-parametric part. In case of

mean-expected shortfall or mean-PMA CRR portfolios this adjustment is likely to

be negligible so that the non-parametric part can be ignored. Further, we illustrate

how the estimation error in the mean-CRR portfolio weights can be incorporated in

the spanning test.

The instrumental variable in the semi-parametric IV regression is shown to be

related to the stochastic discount factor of a CRR version of the CAPM. In par-

ticular, we show that the stochastic discount factor is an affine function of this

instrumental variable. This allows for an alternative interpretation of our spanning

test in terms of a performance measure similar in spirit to the way the performance

measure Jensen’s α is related to the mean-variance spanning test.

Finally, as an empirical application, we use the mean-CRR spanning test to

test for CRR efficiency of the world capital market index. In particular, we test for

mean-expected shortfall and mean-PMA CRR efficiency with respect to the inclusion

of individual country indexes. We find that the mean-CRR and mean-variance
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spanning tests produce similar significance levels. In addition we consider spanning

tests for simulated returns of simplistic CDOs. We show that due to asymmetry

of the return distributions mean-variance and mean-CRR spanning tests produce

statistically different results.

2.A Influence function of semi-parametric IV re-

gressors

As discussed in subsection 2.4.1, the derivation of the limit distribution of parame-

ters in semi-parametric IV regression (2.14) requires the derivation of the influence

function of the functional

φ2(F ) =

∫
εν ′(F (Z))dF (z, ε). (2.25)

We refer to Van der Vaart (1998) and Newey (1994) for the methodology and the

appropriate regularity conditions. The idea is that the functional delta method

applies to a functional φ2(·) : DF → R satisfying Hadamard differentiability, so that

for any square root consistent estimator Fn of the function F

√
n (φ2 (Fn)− φ2 (F )) =

1√
n

n∑
i=1

ψ2 (zi, εi) + op (1) ,

ψ2 (z, ε) =
d

dt
[φ2 ((1− t) F + tδx)]t=0 .

The function ψ2 (F ) is known as the influence function of the functional φ2. We

rewrite the functional (2.25) as an expectation:

φ2(F ) = E [εν ′(F (Z))] ,

where the random variable ε stands for the error term of the linear model (2.10), Z

is the random variable corresponding to the return on the CRR market portfolio,

and F is the cumulative distribution function of Z.
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Denote by g (Z) the projection of ε on Z, i. e., g (Z) = E [ε|Z]. Introduce a

”misspecified”joint distribution function Fθ (z, ε) along the path θ, such that F0 is

the true distribution function. Then we can calculate the influence function from

the pathwise derivative of the functional, using the pathwise derivative (see Newey

(1994)):

dEθ [gθ (Z) ν ′ (Fθ)]

dθ
=

∂Eθ [g (Z) ν ′ (F )]

∂θ
+

∂E [gθ (Z) ν ′ (F )]

∂θ
+

∂E [g (Z) ν ′ (Fθ)]

∂θ
,

where we denote Fθ as the ”misspecified”marginal distribution function of Z corre-

sponding to the ”misspecificationöf the joint distribution function Fθ (z, ε), gθ (Z)

as the ”misspecified”conditional expectation of ε given Z, Eθ [·] as the expectation

under the ”misspecified”distribution Fθ (z, ε). Formally:

Fθ (z) =

z∫

−∞

∞∫

−∞

dFθ (s, t) ,

gθ (z) =

∞∫

−∞

tdFθ (t|Z = z) ,

Eθ [·] =

∞∫

−∞

∞∫

−∞

·dFθ (s, t) .

From the expression for the pathwise derivative we can see that the influence function

of the functional (2.25) can be represented as a superposition of three influence

functions of the misspecified functionals:

ψ2(z, ε) = ψA (z, ε) + ψB (z, ε) + ψC (z, ε) ,

with [
dEθ [gθ (Z) ν ′ (Fθ)]

dθ

]

θ=0

= E

[
ψ2(Z, ε)

(
∂ ln dFθ

∂θ

)

θ=0

]
.

Further, we calculate the separate pathwise derivative and find the influence

function of the functional (2.25). The first part of the influence function is easy to

find:
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∂Eθ [g (Z) ν ′ (F )]

∂θ
= E

[
g (Z) ν ′ (F )

∂ ln dFθ

∂θ

]
,

so that the first part of the influence function is

ψA (z, ε) = g (z) ν ′ (F (z)) (2.26)

For the second part, we find, using the chain rule and the definition of the projection

gθ:

∂E [gθ (Z) ν ′ (F )]

∂θ
=

∂Eθ [gθ (Z) ν ′ (F )]

∂θ
− ∂Eθ [g (Z) ν ′ (F )]

∂θ

=
∂Eθ [(ε− g (Z)) ν ′ (F )]

∂θ

= E

[
(ε− g (Z)) ν ′ (F )

∂ ln dFθ

∂θ

]
,

so that the second part of the influence function is

ψB (z, ε) = (ε− g (z)) ν ′ (F (z)) . (2.27)

To calculate the last part of the influence function we directly apply the definition

of the influence function to the functional E [g (Z) ν ′ (Fθ)]:

ψC (z, ε) =
d

dt

[∫
g (s) ν ′ ((1− t) F + tδz) dF

]

t=0

= (2.28)

=

∫
g (s) (δz − F ) dν ′ (F ) .

The influence function of the functional (2.25) is the superposition of the three

calculated influence functions (2.26) , (2.27) and (2.28):

ψ (z, ε) = ψA (z, ε) + ψB (z, ε) + ψC (z, ε)

= χ (z, ε)− E [χ (Z, ε)] , (2.29)

χ (z, ε) = εν ′ (F (z)) +

∞∫

z

g (s) dν ′ (F (s)) . (2.30)
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Substituting the expression for Choquet distortion pdf ν ′(t) from (2.3) into (2.30)

we obtain the final result

χ (z, ε) =

∫ 1

F (z)

(
ε− E[ε|Z = F−1(α)]

)
α−1dφ(α).

2.B Influence function of CRR efficient portfolio

weights

Results on the asymptotic distribution of mean-CRR efficient portfolio weights are

obtained in chapter 3. Here we briefly restate the results without the derivation

details.

Let Re be a vector of the asset excess returns (R1 − rf , . . . , Rp − rf ), and Z =

rf + Re′θ be a portfolio of these assets. The mean-CRR portfolio problem can be

formulated as

min
θ∈Rp

E

[
−Z

∫ 1

Fz(Z)

α−1dφ(α)

]
s.t. E [Z] = m,

where m is the expected return on the efficient portfolio. From the econometric

perspective this problem is a standard constrained extremum estimation problem,

so that the limit distribution of resulting portfolio weights can be found in the

usual way, see Gourieroux and Monfort (2005) and chapter 3 of this thesis. The

asymptotic distribution results can be equivalently expressed through the estimator

influence function. Here we report the final results. The influence function of the

mean-CRR optimal portfolio weighs is

ξ(Re, Z) = H−1


bCC ′H−1 − Ip

−bC



′ 
ψ∇f − λψ∇g

ψg


 ,

where we use notations similar with chapter 3. The vector C stands for the gradient

of the constraint function with respect to portfolio weighs C = E[Re]. The scalar λ
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is the Lagrange multiplier

λ = −E

[
ι′Re

∫ 1

Fz(Z)

α−1dφ(α)

]
(ι′E[Re])

−1
,

where ι stands for a (p × 1) vector of ones. The matrix H is the Hessian of the

objective function with respect to portfolio weights evaluated at the optimum

H = E

[
φ′(Fz(Z))fz(Z)

Fz(Z)
Cov(Re|Z)

]
.

The functions ψ∇f and ψ∇g are the influence functions of the objective and constraint

function gradient functionals, respectively. The expressions for them are given by

ψ∇f = χ∇f − E[χ∇f ],

χ∇f = −
∫ 1

Fz(Z)

(
Re − E

[
Re|Z = F−1(α)

])
α−1dφ(α),

ψ∇g = Re − E[Re].

The function ψg is the influence function of the constraint functional, ψg = Z −m.

Finally, the scalar b is a notation

b =
(
C ′H−1C

)−1
.

The asymptotic distribution of the mean-CRR optimal portfolio weights is

√
n

(
θ̂ − θ

)
→d N (0, E[ξξ′]) .

Expected shortfall

The asymptotic result for the mean-expected shortfall optimal weights is a special

case of the mean-CRR weighs considered above with φ(α) = I(α ≥ τ). Substituting

this expression into the corresponding formulas yields

λ = −τ−1E [ι′ReI(Fz(Z) ≤ τ)] (ι′E[Re])
−1

,

H = =
f(F−1

z (τ))

τ
Cov(Re|Z = F−1

z (τ)),

χf = −τ−1I(Fz(Z) ≤ τ)
(
Re − E[Re|Z = F−1

z (τ)]
)
.

The expression for the influence function of the mean-expected shortfall portfolio

weights follows immediately.
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Point mass approximation (PMA) of a CRR

The point mass approximation of a CRR measure suggested by Bassett et al. (2004)

takes

φ(α) =
m∑

k=1

φkI(α ≥ τk).

This is also a special case of a CRR measure. Therefore, the derived asymptotic

results for a mean-CRR portfolio weights still apply. We have

λ = −
m∑

k=1

φkτ
−1
k E [ι′ReI(Fz(Z) ≤ τk)] (ι

′E[Re])
−1

,

H = E
[∇2

θf
]

=
m∑

k=1

φkτ
−1
k f(F−1

z (τk))Cov(Re|Z = F−1
z (τk)),

χf = −
m∑

k=1

φkτ
−1
k I(Fz(Z) ≤ τk)

(
Re − E[Re|Z = F−1

z (τk)]
)
.

The expression for the influence function of the mean-PMA CRR portfolio weights

follows immediately.
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2.C Tables
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Descriptive Statistics of Country Index Returns
Indexes Mean Median Kurtosis Skewness Volatility

America
WRLD 0.6% 9.1% 5.1 0.10 15.2%
ARG 1.2% 0.0% 32.9 -1.43 33.2%
BRA 15.9% 7.2% 7.4 0.13 30.8%
CHIL 11.3% 4.9% 4.5 -0.18 15.2%
PER 9.8% 6.6% 16.4 -0.23 14.3%
MEX 15.5% 19.8% 6.2 0.13 22.7%
VEN -3.1% -7.3% 75.0 -2.98 32.4%

Asia
CHI 1.7% 0.0% 9.6 1.05 22.0%

INDIA 18.5% 24.7% 7.0 -0.47 27.1%
INDO 10.5% 1.2% 8.8 0.09 35.9%
MAL 13.5% 0.0% 26.5 1.97 19.7%
PAK 22.5% 18.6% 7.2 0.10 28.4%
PHIL -2.4% -8.1% 51.5 3.43 22.2%
SHRIL 10.6% 0.0% 51.1 0.99 23.2%
THAIL 11.3% 1.4% 6.6 0.46 29.5%

Europe
CZE 14.5% 29.7% 7.2 -0.02 24.0%
HUN 12.9% 11.5% 5.0 0.16 26.0%
POL 23.5% 4.1% 8.8 -0.20 32.5%
ROM 37.7% 30.5% 6.3 -0.09 34.7%
RUS 70.2% 0.0% 22.9 1.78 53.5%

TURK -2.5% 5.9% 4.2 0.02 19.9%
OECD

AU 10.6% 13.5% 5.9 -0.34 16.6%
CAN 12.3% 18.3% 6.2 -0.41 17.3%
EU 5.4% 2.6% 4.4 -0.06 21.4%
JAP 4.8% 0.0% 4.4 -0.10 22.6%
KOR 19.4% 11.5% 5.0 -0.11 36.5%
UK 2.5% 5.1% 4.7 -0.11 18.0%
US 1.5% 0.0% 5.1 0.18 19.5%

Tabel 2.1: Annualized descriptive statistics of country capital index returns.
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Efficiency of WRLD index
Indexes MV ShF PMA

America
ARG 0.948 0.937 0.953
BRA 0.182 0.170 0.172
CHIL 0.095 0.088 0.089
PER 0.231 0.231 0.231

MEX 0.042 0.040 0.040
VEN 0.633 0.634 0.639
Joint 0.291 0.275 0.279

Asia
CHI 0.851 0.847 0.842

INDIA 0.133 0.125 0.126
INDO 0.581 0.556 0.561
MAL 0.175 0.175 0.172
PAK 0.085 0.091 0.083
PHIL 0.529 0.533 0.551
SRIL 0.422 0.406 0.422

THAIL 0.438 0.427 0.425
Joint 0.396 0.389 0.387

Europe
CZE 0.177 0.162 0.166
HUN 0.277 0.273 0.272
POL 0.112 0.110 0.111

ROM 0.006 0.006 0.006
RUS 0.001 0.001 0.001

TURK 0.497 0.490 0.493
Joint 0.004 0.004 0.003

OECD
AU 0.217 0.210 0.211

CAN 0.033 0.031 0.031
EU 0.613 0.588 0.600

JAP 0.776 0.766 0.764
KOR 0.206 0.200 0.198

UK 0.832 0.788 0.818
US 0.697 0.747 0.719

Joint 0.452 0.443 0.437

Tabel 2.2: Efficiency tests of the Morgan Stanley world capital index (WRLD). The
table reports p-values of the mean-variance (MV), mean-expected shortfall (ShF)
and mean-PMA CRR (PMA) spanning tests. Probability threshold for expected
shortfall is 5%. Probability thresholds for PMA CRR are 5%, 10%, 15%, 20%, and
25% with equal weights of 20%.
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Cumulative Default Probability to Year (%)
Rating 1 2 3 4 5 6 7 8 9 10
Aaa 0 0 0 0.04 0.12 0.21 0.31 0.42 0.54 0.67
Aa 0.02 0.04 0.08 0.2 0.31 0.43 0.55 0.67 0.76 0.83
A 0.01 0.05 0.18 0.31 0.45 0.61 0.78 0.96 1.18 1.43
Baa 0.14 0.44 0.83 1.34 1.82 2.33 2.86 3.39 3.97 4.56
Ba 1.27 3.57 6.11 8.65 11.23 13.5 15.32 17.21 19 20.76
B 6.16 12.9 18.76 23.5 27.92 31.89 35.55 38.69 41.51 44.57

Tabel 2.3: Moody’s cumulative default probabilities by letter rating from 1-10 years,
1970-2000. Source: Dominic O’Kane, LB Structured Credit Research, Credit Deriv-
atives Explained.

Simulation Parameters

Def. Prob.: 2.5% 5% 7.5%
Def. Corr.: 0.15 0.1 0.05

Risk Prem.: 4% 10% 12%

Sample Return Statistics
Min.: -27.00% -30.80% -16.80%

1st Qu.: 0.64% 2.78% 1.58%
Median: 2.25% 5.47% 4.20%

Mean: 1.40% 4.52% 3.60%
3rd Qu.: 3.16% 7.27% 6.29%

Max.: 3.99% 9.83% 10.80%
Std. Dev. 2.72% 3.86% 3.68%

Skew. -2.63 -1.75 -1.03
Kurtos. 13.85 8.35 4.62
CDO1 1.00 0.01 0.00
CDO2 0.01 1.00 0.01
CDO3 0.00 0.01 1.00

Tabel 2.4: Descriptive statistics of the simulated CDO returns. Sample correlation
matrix is given at the bottom of the table. Returns are simulated from the one-factor
large homogeneous portfolio model.
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Efficient Portfolios
Returns CDO1 Mkt. MV Mkt. ShF Mkt. PMA

MV Span CDO2 0.000 1.000 0.000 0.003
CDO3 0.000 1.000 0.000 0.000

All 0.000 1.000 0.000 0.000
ShF Span CDO2 0.000 0.000 0.995 0.000

CDO3 0.000 0.000 0.887 0.053
All 0.000 0.000 0.989 0.000

PMA Span CDO2 0.000 0.001 0.001 0.871
CDO3 0.000 0.002 0.004 0.943

All 0.000 0.001 0.000 0.916

Tabel 2.5: Spanning tests for simulated credit portfolio returns. The table reports
p-values of mean-variance (MV Span), mean-expected shortfall (ShF Span), and
mean-PMA CRR (PMA Span), spanning tests for assets CDO2 and CDO3. Four
market efficient portfolios are considered: CDO1; mean-variance market portfolio
(Mkt. MV); mean-expected shortfall market portfolio (Mkt. ShF); and mean-PMA
CRR market portfolio (Mkt. PMA). The probability threshold for expected shortfall
is 5%. The probability thresholds for PMA CRR are 5%, 10%, 15%, 20%, and 25%
with equal weights of 20%.
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Hoofdstuk 3

Mean-coherent risk and

mean-variance approaches in

portfolio selection: an empirical

comparison.

3.1 Introduction

There is an ongoing debate in the financial literature on which risk measure to use in

risk management and portfolio choice. As some risk measures are more theoretically

appealing, others are easier to implement practically. For a long time, the standard

deviation has been the predominant measure of risk in asset management. Mean-

variance portfolio selection via quadratic optimization, introduced by Markowitz

(1952), used to be the industry standard (see, for instance, Tucker et al. (1994)).

Two justifications for using the standard deviation in portfolio choice can be given.

First, an institution can view the standard deviation as a measure of risk, which

needs to be minimized to limit the risk exposure. Second, a mean-variance portfolio

maximizes expected utility of an investor if the utility index is quadratic or asset

51
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returns jointly follow an elliptically symmetric distribution.1

Despite the computational advantages, the variance is not a satisfactory risk

measure from the risk measurement perspective. First, mean-variance portfolios

are not consistent with second-order stochastic dominance (SDD) and, thus, with

the benchmark expected utility approach for portfolio selection. Second, but not

independently, as a symmetric risk measure, the variance penalizes gains and losses

in the same way.

Artzner et al. (1999) give an axiomatic foundation for so-called coherent risk

measures. They propose that a ”rational” risk measure related to capital require-

ments2 should be monotonic, subadditive, linearly homogeneous, and translation

invariant. Tasche (2002) and Kusuoka (2001) demonstrate that a Choquet expec-

tation with a concave distortion function represents a general class of coherent risk

measures. Moreover, with some additional regularity restrictions, as imposed by

Kusuoka (2001), the class of coherent risk measures becomes consistent with the sec-

ond order stochastic dominance principle and thus generates portfolios consistent

with the expected utility paradigm, see, for example, Ogryczak and Ruszczyński

(2002), De Giorgi (2005), and Leitner (2004).

The class of coherent risk measures generalizes expected shortfall, a coherent

risk measure which received a lot of attention in the recent literature due to its

easy practical implementability and tractability. Tasche (2002) discusses theoreti-

cal properties of expected shortfall and its generalizations. He suggests a general

method how to calculate expected shortfall risk contributions of individual assets

in a portfolio. At the same time, a literature on how to apply expected shortfall in

portfolio optimization appeared. Rockafellar and Uryasev (2000) provide an algo-

rithmic solution to the expected shortfall-based portfolio optimization and hedging.

Bertsimas et al. (2004) report theoretical properties of expected shortfall and show

1See, for instance, Ingersoll (1987).
2The capital requirements are relevant for asset management since they are directly applied to

financial institutions, see the Basel Accord (1999).
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that the mean-expected shortfall optimization problem can be solved efficiently as

a convex optimization problem. They also provide some empirical evidence on asset

allocation and index tracking applications.

There is also a broad empirical literature on expected shortfall. Bassett et al.

(2004) show that a sample portfolio choice problem based on expected shortfall is

equivalent to a quantile regression. Focusing mainly on the quantitative economic

effect, they demonstrate that for certain asymmetric distributions of asset returns

the difference between mean-variance and mean-expected shortfall efficient portfolio

weights can be substantial. Kerkhof and Melenberg (2004) develop a framework

for backtesting expected shortfall using the functional delta method. They show in

a simulation study that tests for expected shortfall have better performance than

tests for value-at-risk with acceptably low probability thresholds. Bertsimas et al.

(2004) discuss various properties of expected shortfall. They provide empirical evi-

dence based on asset allocation and tracking index examples that the mean-expected

shortfall approach might have advantages over the mean-variance approach. Simi-

larly to Bassett et al. (2004), the authors focus mainly on examples with simulated

returns.

Even though the literature on coherent risk measures emphasizes the importance

of the difference between these and conventional risk measures in asset allocation

and risk management, there still seems to be lack of evidence on the statistical

and economic significance of this difference in practical applications. The aim of

this chapter is to analyze the degree of statistical and economic relevance of the

switch from the traditional standard deviation to a coherent risk measure in a typ-

ical asset allocation problem, which consists of determining the optimal portfolio

weights or of deciding whether particular assets have to be additionally included

into the portfolio. Our contribution is twofold. First, we compare portfolios ob-

tained by mean-coherent risk and mean-variance optimizations both statistically

and economically. We do this for simulated asset returns as well as for actually
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traded securities. If the distribution of asset returns and liabilities were elliptically

symmetric then any coherent regular risk measure of a portfolio would be propor-

tional to its standard deviation, and, as a result, would lead to the same implications

in risk management. In reality, asset returns are likely to be skewed and fat tailed.

It is, however, an empirical question whether skewness and excess kurtosis alone

are sufficient to generate statistically and economically different efficient portfolios

if the variance is replaced by a coherent risk measure in a portfolio optimization

problem. Here, we address this question by first deriving the asymptotic distribu-

tion of the mean-coherent risk portfolio weights and using these to statistically and

economically compare the mean-coherent risk and mean-variance efficient portfolio

weights. Additionally, we explain how to reformulate the point mass approximated

mean-coherent risk problem as a linear program, which can be efficiently solved

by numerical algorithms. The results obtained for simulated and actual portfolios

suggest that portfolios based on coherent risk measures are often statistically and

economically different from the portfolios based on the standard deviation for a

typical portfolio of equities. Our simulation study confirms that for portfolios with

asymmetric distributions of returns, such as portfolios of derivatives or credit in-

struments, an optimization based on a coherent risk measure behaves differently

as it accounts mostly for negative returns3. As second contribution, we implement

spanning tests for the mean-coherent risk efficient frontiers as developed in chapter

2. These tests can be regarded as an analog for the usual mean-variance spanning

tests, see DeRoon and Nijman (2001) for a survey of the mean-variance tests. The

test statistics are compared to their counterparts in the mean-variance framework.

Our mean-variance and mean-coherent risk spanning tests for portfolios of common

equities give statistically and economically similar results.

The remainder of the chapter is structured as follows. Section 3.2 describes

the methodology, including the statistical comparison of mean-variance and mean-

3We do not study actual portfolios with derivatives due to related problems with stationarity.
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coherent risk efficient portfolio weights and spanning tests for coherent risk measures.

Empirical results on the comparison of the efficient portfolio weights are described

in section 3.3. Applications of the coherent risk-spanning test are investigated in

section 3.4. Section 3.5 discusses effects of estimation error in expected asset returns.

Finally, section 3.6 concludes.

3.2 Methodology

3.2.1 Coherent risk measures and portfolio choice

Consider a probability space (Ω,F , P ),4 and let L0 (Ω,F , P ) be the space of all

equivalence classes of real valued random variables X : Ω → R. A random variable

X ∈ L0 (Ω,F , P ) can be seen as a risky financial position (profit or loss) and we

call it a risk. If we consider the set X := L0 (Ω,F , P,R) of all risks then a risk

measure ρ defined on X is a map from X to R ∪ {+∞}, see Delbaen (2000).5

Intuitively, one can consider a risk measure as measuring the riskiness of the position

or cost of risk. The concept of the cost of risk can be formalized by defining the

capital requirement or amount of reserved capital (”sweetener”) as a function of the

risk measure ρ. We consider risk measures defined on general probability spaces

L0 (Ω,F , P ), and probability spaces of bounded random variables L∞ (Ω,F , P ) =

{X ∈ L0 (Ω,F , P ) : P [|X| < ∞] = 1}. Denote

ρ∞ : L∞ (Ω,F , P,R) → R, (3.1)

ρ0 : L0 (Ω,F , P,R) → R ∪ {∞} . (3.2)

For a long time, the standard deviation has served as the common risk measure.6

Since it measures the ”degree of the deviationöf a random variable from its mean

4Ω is the set of states, F is the σ-algebra, and P is the probability measure.
5The range includes ∞ to make coherent risk measures on L0 (Ω,F , P ) possible.
6Well defined on the space L2(Ω,F , P ) and set equal to +∞ on L0(Ω,F , P )\L2(Ω,F , P ), where

Lk(Ω,F , P ) =
{

X ∈ L0 :
∫ |X|k dP < ∞

}
for k > 0.
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it was perceived as a good measure of risk. Moreover, it has some very attractive

properties. In particular, the standard deviation is closely related to the measure

concept of square integrable random variables. This property leads to some nice the-

oretical results in mean-variance analysis. The standard deviation is also attractive

for its analytical and numerical tractability. Indeed, it is easy to model, estimate,

and implement in empirical problems of asset management. The main criticism re-

garding the standard deviation is related to the fact that it symmetrically measures

losses and profits as contributions to riskiness of a financial position. Many differ-

ent alternatives that concentrate on the downside part of the risk distribution have

been proposed. The paper by Pedersen and Satchell (1998) illustrates this effort by

providing an overview and classifying common measures of risk.

Artzner et al. (1999) follow an axiomatic approach to define a risk measure

coherent from a regulator’s point of view. They relate a risk measure to the regu-

latory capital requirement and deduce four axioms which should be satisfied by a

”rational”risk measure. Delbaen (2000) extends the definition to general probability

spaces L0 (Ω,F , P ).

Definition 3.1 A mapping ρ = ρ0 : X → R ∪ {+∞} is called a coherent measure

of risk if it satisfies the following conditions for all X,Y ∈ X .

• Monotonicity: if X ≤ Y , then ρ (X) ≥ ρ (Y ) .

• Translation Invariance: if m ∈ R, then ρ (X + m) = ρ (X)−m.

• Positive Homogeneity: if λ ≥ 0, then ρ (λX) = λρ (X) .

• Subadditivity: ρ (X + Y ) ≤ ρ (X) + ρ (Y ) .

The financial meaning of monotonicity is clear: The downside risk of a position

is reduced if the payoff profile is increased. Translation invariance is motivated by

the interpretation of the risk measure ρ (X) as a capital requirement, i.e., ρ (X) is
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the amount of capital which should be added to the position to make X acceptable

from the point of view of the regulator. Thus, if the amount m is added to the

position, the capital requirement is reduced by the same amount. Positive homo-

geneity says that riskiness of a financial position grows in a linear way as the size

of the position increases. This assumption is not always realistic. Withdrawing the

positive homogeneity axiom leads to a family of convex risk measures, see Föllmer

and Schied (2002).7 The subadditivity property allows one to decentralize the task

of managing the risk arising from a collection of different positions: If separate risk

limits are given to different desks, then the risk of the aggregate position is bounded

by the sum of the individual risk limits. The subadditivity is also closely related to

the concept of risk diversification in a portfolio of risky positions.

These axioms rule out many of the conventional measures of risk traditionally

used in finance. For instance, the standard deviation and other measures based on

second moments are ruled out by the monotonicity requirement. Quantile based

measures, such as the value-at-risk (VaR), are ruled out by subadditivity.

Kusuoka (2001) adds another two axioms that further constraint the set of co-

herent risk measures

• Law Invariance: if P [X ≤ t] = P [Y ≤ t] ∀t, then ρ (X) = ρ (Y ) .

• Comonotonic Additivity: if f, g : R → R are measurable and non-decreasing,

then ρ (f ◦X + g ◦X) = ρ (f ◦X) + ρ (g ◦X) .

The intuition of the two axioms is simple: the Law of Invariance means that

financial positions with the same distribution should have the same risk. It allows

empirical identification of the risk measure. The second condition on Comonotonic

Additivity refines slightly the subadditivity property: subadditivity becomes addi-

tivity when two positions are comonotonic. By comonotonicity we understand that

the random variables are monotonic transformations of the same random variable.

7See, however, De Giorgi (2005) on homogenizing risk measures.
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Suppose that we are given two non-decreasing functions f, g : R→ R and a random

variable X ∈ L0 (Ω,F , P ). Then the random variables Z = f (X) and Y = g (X)

are called comonotonic. The following result was shown by Kusuoka (2001), Tasche

(2002), and Denneberg (1990):

A risk measure ρ = ρ∞ defined on L∞(Ω,F , P ), with P non-atomic, is coherent,

law invariant, and comonotonic additive if and only if for any random variable X

with cumulative distribution function FX (·) it can be represented as

ρ(X) =

∫ 1

0

sα(X)dφ(α), (3.3)

where φ is a probability measure defined on the interval [0, 1], and sα is the expected

shortfall of X

sα(X) = −α−1

∫ α

0

F−1
X (t)dt.

This risk measure defined on the general probability space L0 (Ω,F , P ) for non-

positive random variables X stays coherent, law invariant, and comonotonic addi-

tive, see Delbaen (2000). We call a coherent, law invariant, and comonotonic ad-

ditive measure of risk represented by equation (3.3) a coherent regular risk (CRR)

measure.

Example 3.1 (Expected Shortfall) A CRR risk measure that gained a lot of

attention in the recent literature is the expected shortfall, given by

sτ (X) = −τ−1

τ∫

0

F−1
X (t) dt,

which corresponds to φ (α) = I(α ≥ τ). Being a coherent regular risk measure, it

satisfies comonotonic additivity, law invariance and all axioms of a coherent risk

measure. Many useful properties of expected shortfall are established, for example,

in Tasche (2002) and Bertsimas et al. (2004).

Example 3.2 (Point Mass Approximation (PMA) of CRR measure) Bassett

et al. (2004) suggested to approximate a CRR measure by a weighted sum of Dirac’s
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point mass functions.8 This approximation corresponds to the probability measure

φ′(α) =
∑m

k=1 φkδτk
(α) in expression (3.3), with φk ≥ 0 and

∑
φk = 1. The PMA

CRR measure can be written as

ρ(X) =
m∑

k=1

φksτk
(X). (3.4)

Notice, that the PMA CRR measure is itself a CRR measure, and the term PMA

refers to the fact that the integral in expression (3.3) is replaced by a finite weighted

sum in (3.4). From the form of the PMA CRR measure it is clear that the expected

shortfall is a particular case of this approximation.

A nice property of these two examples is that in both cases the in-sample mean-

CRR optimization problem can be reformulated as a linear program, which can be

solved efficiently. The mean-expected shortfall optimization is considered, among

others, by Rockafellar and Uryasev (2000), Bertsimas et al. (2004), and Bassett

et al. (2004). The mean-PMA CRR optimization is discussed in subsection 3.2.4.

Additionally, as special cases of the mean-CRR portfolio selection problem, mean-

expected shortfall and mean-PMA CRR optimizations are consistent with second-

order stochastic dominance and, thus, fall in the reward-risk theoretical framework

developed by De Giorgi (2005).

For a fixed set of random returns {R0, . . . , Rp}, a risk measure ρ = ρ (
∑p

i=0 wiRi)

can be considered as a function of portfolio weights,

ρ (w0, . . . , wp) :
{

(w0, . . . , wp) ∈ Rp :
∑

i
wi = 1

}
→ R.

Denote by µi = E [Ri] the expected return of asset i (which we assume to exist).

Given the required portfolio expected return ν we try to find portfolio weights {wi}
that minimize the chosen risk measure. The corresponding optimization problem

can be formulated as follows:

8The point mass function δτ (α) is defined through the integral
∫ x

−∞ δτ (α)dα = I(x ≥ τ).
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min
{w0,...,wp}

ρ (w0, . . . , wp) s.t.

p∑
i=0

wi = 1,

p∑
i=0

wiµi = ν. (3.5)

When solving this problem, we assume that ρ (w1, . . . , wp) < ∞. It is straightforward

that the first equality constraint can be eliminated by passing it to the objective

function. Denote by y = R0 the return on the benchmark asset R0. Define by

x = (R1 − R0, . . . , Rp − R0)
′ the vector of excess returns of the other assets. The

mean-risk optimization problem (3.5) can be rewritten as

min
θ∈Rp

ρ(y + x′θ) s.t. E[y + x′θ] = ν, (3.6)

where θ is the p× 1 vector of portfolio weights of assets 1, . . . , p. When one chooses

the standard deviation as the risk measure ρ in optimization (3.6) the standard

mean-variance portfolio problem is obtained. Alternatively, when a CRR measure is

chosen, the solution to (3.6) is the vector of mean-CRR portfolio weights. The stan-

dard deviation has an advantage over other risk measures in empirical applications

since the estimation and optimization parts can be separated from each other. In

this case the random returns (R0, . . . , Rp) should be square integrable. The expected

shortfall portfolio optimization problem is an example of the mean-CRR portfolio

that can be solved by convex programming methods as, for example, suggested by

Bertsimas et al. (2004) and Rockafellar and Uryasev (2000). Bassett et al. (2004)

show that the mean-expected shortfall efficient portfolio problem is equivalent to a

quantile regression with linear constraints. As a result the problem can be solved

by well developed standard methods.9

3.2.2 Comparison of portfolio weights

The question of the comparison of the efficient portfolio weights for the standard

deviation and a CRR risk measure arises naturally. For elliptically symmetric distri-

butions the standard deviation and a CRR measure give the same portfolio weights in

9See Portnoy and Koenker (1997).
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the mean-risk optimization.10 For other distributions the efficient portfolio weights

will, in general, alter. But the question then is whether this difference is significant,

either economically or statistically, or both.

To statistically compare the mean-variance and mean-CRR portfolio weights

we need to derive their joint asymptotic distribution. Then, standard statistical

procedures can be applied. The asymptotic results on portfolio weights as well as

the equality test for mean-CRR and mean-variance portfolio weights are given in

Appendixes 3.A, 3.B, and 3.C.

It is well known that portfolio weights are very sensitive to estimation inaccuracy

in asset expected returns, see, for example, Chopra and Ziemba (1993). This often

leads to insignificance of estimated portfolio weights due to high standard errors

and potentially can yield insignificant comparison results for portfolio weights in

practical sample sizes. Therefore, we consider two situations. First, we ignore the

estimation inaccuracy in asset expected returns, taking the viewpoint of Markowitz

(1952) who suggests existence of a priori believes about the future expected returns.

Then we include the asset expected return estimation inaccuracy into the portfolio

weight comparison test.

3.2.3 Mean-variance and mean-CRR spanning tests

By analogy with the mean-variance spanning test, which tests whether two mean-

variance frontiers generated by different sets of assets coincide, it is possible to

develop a similar test for a CRR measure, see chapter 2 of this thesis. The standard

question to be answered is whether the introduction of a new asset to a set of assets

forming the optimal portfolio shifts the mean-CRR efficient frontier in a statistical

sense.

In the literature spanning tests are usually considered in the mean-variance con-

10This fact is a straightforward generalization of proposition 1 in Bertsimas et al. (2004) for

expected shortfall.
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text. A conventional procedure for such a spanning test is suggested by Huberman

and Kandel (1987). It is based on the notion that the restrictions on the tangent

portfolio weights can be expressed as moment restrictions on excess returns of assets

in the portfolio. These moment restrictions can be reformulated in terms of restric-

tions in an OLS regression, see, for example also, DeRoon and Nijman (2001). In

chapter 2 we develop a test similar to Huberman and Kandel (1987) for mean-CRR

spanning, expressed in terms of restrictions on IV regression coefficients.

An alternative approach to the spanning test is followed by Britten-Jones (1999),

who formulates the spanning hypothesis in the mean-variance framework in terms of

restrictions on the tangent portfolio weights. These weights can be found as OLS re-

gression coefficients. Results from the previous subsection can be used to implement

this approach in the mean-CRR setup with the restrictions on the OLS regression

coefficients in Britten-Jones (1999) replaced by restrictions on the corresponding

mean-CRR portfolio weights.

In this chapter we follow the approach developed in chapter 2 for the mean-CRR

spanning and in Huberman and Kandel (1987) for the mean-variance spanning.

The mean-variance spanning test is based on the notion that the restrictions on the

tangent portfolio weights can be expressed as moment restrictions on excess returns

of assets in the portfolio. These moment restrictions can be reformulated in terms

of restrictions on regression coefficients. In particular, let Y e be a random return

excess of the risk-free rate of an asset for which we want to perform a spanning

test. Let Ze be the excess return of the mean-variance optimal market portfolio.

Consider the regression

Y e
i = α + βZe

i + εi,

E [εi] = 0,

E [Ze
i εi] = 0.

The spanning hypothesis can be reformulated in terms of the restrictions on para-
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meters α and β:

α = 0, (3.7)

βVar(Ze)− Cov(Y e, Ze) = 0. (3.8)

Restriction (3.8) shows that the coefficient β can be consistently estimated by an

OLS regression, while restriction (3.7) states that the constant term in the regression

(Jensen’s α) should be equal to 0.

Chapter 2 of this thesis shows that the test for mean-CRR spanning can be

reformulated in terms of restrictions on the instrumental variable (IV) regression

Y e
i = α + βZe

i + εi,

E [εi] = 0,

E [Viεi] = 0,

where V is the instrumental variable11

V =

∫ 1

Fz(Z)

α−1dφ(α).

This instrumental variable defines a monotonic transformation of the original cu-

mulative probability function Fz of portfolio returns. As a result more probability

is assigned to the least favorable outcomes. We call this instrumental variable the

risk instrument as it also defines the CRR measure. The restrictions imposed by

the spanning hypothesis are

α = 0, (3.9)

βCov(Ze, V )− Cov(Y e, V ) = 0. (3.10)

It follows from relation (3.10) that under the spanning hypothesis coefficient β can be

consistently estimated by the IV regression with the risk instrument V . Restriction

11Notice, that in an empirical application the instrumental variable V has to be non-

parametrically estimated.
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(3.9) can then be checked as a zero-intercept test. Thus, the spanning test in case of

the mean-variance portfolio is equivalent to the significance test of the intercept α in

OLS regression,12 and the mean-CRR spanning test is equivalent to the significance

test of the intercept α in the IV regression. The asymptotic properties of the IV

intercept coefficient are discussed in chapter 2.

3.2.4 Sample mean-CRR optimization

In this section we discuss algorithmic solutions to the sample mean-CRR optimiza-

tion. A CRR measure can be viewed as a weighted combination of expected shortfalls

for the whole range of probability thresholds, see (3.3). In practical applications,

however, one would deal with the PMA version of a CRR measure, given in (3.4).

Numerical solutions to an in-sample mean-expected shortfall optimization were pro-

posed, among others, by Rockafellar and Uryasev (2000), Bertsimas et al. (2004),

and Bassett et al. (2004). Generally, a sample analog of the mean-expected shortfall

optimization can be reformulated as a linear program and solved efficiently with ex-

isting numerical algorithms, see Barrodale and Roberts (1974), Koenker and D’Orey

(1987), and Portnoy and Koenker (1997). The method can be generalized to a PMA

CRR measure, which uses Dirac’s point mass functions to approximate an arbitrary

CRR measure. This also corresponds to a piecewise linear approximation of the

cumulative probability function φ(α) in (3.3).

Suppose that a PMA approximation of a CRR measure is given by the piecewise

linear cumulative distribution function φ:

φ(α) =
m∑

k=1

φkI(α ≥ τk).

12The spanning tests discussed in this subsection takes into account the estimation inaccuracy in

the asset expected returns. Alternatively, one can ignore the estimation error in the asset expected

returns by following the approach of Britten-Jones (1999). The mean-variance and the mean-CRR

spanning tests can be straightforwardly performed by testing the significance of the new asset

tangent portfolio weight, using the results derived in the Appendix.
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Then the population mean-CRR portfolio problem is

min
θ

m∑

k=1

φksτk
(v) s.t. E[v] = ν, (3.11)

where sτk
(·) is the expected shortfall with the probability threshold τk, v = y + x′θ

is the return of the portfolio, and ν is the required expected return of the portfolio.

As noticed by Bassett et al. (2004) expected shortfall can be equivalently expressed

as

sτk
(v) = τ−1

k min
ϑ∈R

E%τk
(v − ϑ)− ν,

where %α(u) = u(α−I(u < 0)) and ν is the expected return of portfolio v. Using this

expression for expected shortfall, the mean-CRR problem (3.11) can be reformulated

as

min
θ∈Rp,ϑ∈Rm

m∑

k=1

φkτ
−1
k E [%τk

(v − ϑk)] s.t. E[v] = ν. (3.12)

Introduce auxiliary variables u+
k ∈ Rp

+ and u−k ∈ Rp
+ for k = 1, 2, . . . , m. Denote by

µ a vector of asset expected excess returns E[x] and by µy the expected excess return

of the asset y. Then the sample analog of the problem (3.12) can be formulated as

the linear program

min
m∑

k=1

φkτ
−1
k

(
τke

′u+
k + (1− τk)e

′u−k
)

s.t.

Y + Xθ − u+
k + u−k − eϑk = 0,

µ′θ = ν − µy,

(u+
k , u−k , θ, ϑk) ∈ Rn

+ × Rn
+ × Rp × R for k = 1, 2, . . . , m,

where Y is the (n × 1)-vector of sample returns of the asset y, X is the (n × p)-

matrix of sample excess returns of assets x, and e is the (n× 1)-vector of ones. This

linear program can be solved very efficiently by classical simplex and interior point

methods, see Barrodale and Roberts (1974) and Portnoy and Koenker (1997).
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3.3 Statistical comparison of portfolio weights

3.3.1 Simulated returns

First, we compare the mean-variance and the mean-CRR efficient portfolio weights

for simulated returns. We focus our attention on the expected shortfall and PMA

CRR measure. This exercise emphasizes the fact that the variance and a CRR

measure in the portfolio optimization context give different outcomes only in the

case when the distribution of returns substantially deviates from the elliptically

symmetric case. For expected shortfall similar examples with simulated returns

were considered in Bertsimas et al. (2004) and Bassett et al. (2004). However,

Bassett et al. (2004) do not perform a statistical comparison of the mean-variance

and mean-expected shortfall efficient portfolio weights, while Bertsimas et al. (2004)

use Monte-Carlo simulations instead of asymptotic theory.

As a benchmark we consider a sample of returns drawn from a three-variate nor-

mal distribution with population vector of means [0.06, 0.08, 0.08]T and covariance

matrix:




0.04 0 0

0 0.04 0

0 0 0.04


 .

This simple example corresponds to a portfolio of assets with normally and in-

dependently distributed returns with an annual standard deviation of 20%. The

independence of the returns makes the diversification motive very simple, so that it

is easy to see which outcome in a portfolio optimization to anticipate. We expect

the efficient mean-variance and mean-CRR portfolio weights to be equal in this case,

because the considered risk measures are proportional under normality. We shall

refer to this case with the abbreviation ”NORM”.

Next, we simulate returns from a three-variate Student distribution with the
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same vector of expected returns and covariance matrix as in the normal case. This

example might be more realistic than the multivariate normal one since observable

market returns usually have fat distributional tails. Nevertheless, from a theoretical

point of view the standard deviation and the expected shortfall are equivalent in the

case of a Student t-distribution from a portfolio optimization perspective. This is

so because the Student t-distribution belongs to the class of elliptically symmetric

distributions. We shall refer the simulation from the Student distribution with an

abbreviation ”t”.

To illustrate the difference between a CRR measure and the standard devia-

tion in a portfolio choice framework, we consider a sample of returns drawn from

a three-variate asymmetric distribution, ”ASYM”, using returns on the following

independent assets. Asset A has a lognormal distribution such that its log return

is normally distributed with mean 0.06 and variance 0.04. Asset B consists of a

long position in an equity and an at-the-money European call option written on

this equity. We assume normally distributed equity log-returns and use the Black-

Scholes formula to calculate the price of the option. We normalize the distribution

of log-returns on asset B to have mean 0.08 and variance 0.04. Its distribution is

significantly skewed to the left. Asset C consists of a long position in an equity and

the money market account and a short position in the European call option on the

equity. We normalize the distribution of the log-returns on asset C to have mean

0.08 and variance 0.04. This distribution is skewed to the right. Figure 3.1 shows

kernel density estimates of the simulated log-return distributions for the assets A,

B, and C.13

Summary statistical information on all considered assets is provided in Table

3.1. It can be seen that for the returns simulated from the three-variate normal

distribution, NORM, the values of skewness and kurtosis are close to the theoretical

13We use the Gaussian kernel density with the bandwidth chosen according to the Silverman’s

rule of thumb, see Silverman (1986).
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ones, i.e., 0 and 3, respectively. For the returns simulated from the three-variate

Student t-distribution we observe significantly higher sample kurtosis than for the

normal case. As the returns are generated from a t-distribution with 6 degrees of

freedom, the sample kurtosis is close to 6, the theoretical result for a t-distribution

with six degrees of freedom. Finally, for the case of asymmetric returns, we observe

a substantial positive sample skewness for asset B and a negative sample skewness

for asset C, while the kurtosis of all assets in the portfolio is close to 3, i.e., not very

different from the normal case.

For the three simulated classes of returns we first perform a statistical compar-

ison of the efficient portfolio weights resulting from the mean-variance and mean-

expected shortfall portfolio optimization problems. We apply the asymptotic test

for equality of the portfolio weights developed in Section 3.2 to all three cases of

the simulated returns, NORM, t and ASYM. Since we want to make sure that a

particular test result is not due to a specific portfolio expected return or shortfall

probability threshold, we apply this test for different expected returns on the risk-

efficient portfolio and different probability thresholds for the expected shortfall. The

expected returns of the efficient portfolios are chosen to guarantee that the resulting

portfolio belongs to the upper part of the efficient frontier. In particular, annual

returns of 10%, 12%, 14% and 16% were chosen as portfolio target returns. Table

3.2 contains the corresponding p-values of the test.

The results indicate that there is no statistical difference in the mean-variance

and expected shortfall efficient portfolio weights for the multivariate normal and t-

distribution of the asset returns. In fact, this result aligns well with the theoretical

predictions for elliptically symmetric distributions, see Bertsimas et al. (2004), and

Embrechts et al. (1999). For the ASYM case, when the asset returns are simulated

from a three-variate asymmetric distribution, we generally see a statistically signifi-

cant difference between the variance and expected shortfall based portfolio weights.

For the probability threshold of 2.5% the result holds in the whole range of the re-
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quired portfolio expected returns at the 5% significance level. For required portfolio

expected returns 14% and 16% and probability thresholds in the range of 2.5%-10%

there is a difference between mean-variance and mean-expected shortfall portfolio

weights significant at the 10% significance level. The test statistics become insignif-

icant for the probability threshold of 12.5% and required portfolio expected returns

of 14% and 16%. Usually, as can be noticed, the p-values of the test increase with the

threshold probability and the required portfolio expected return. This means that

the sensitivity of the expected shortfall to changes in the portfolio weights differs

from the sensitivity of the standard deviation mostly in the tail area. The two risk

measures become closer to each other as we increase the tail probability or portfolio

expected return.

The expected shortfall gives the value of expected loss in the portfolio provided

that the loss exceeds a certain quantile. For an investor such a measure of risk

might not be the best reflection of riskiness of the position because for different

quantiles the expected loss can behave differently with respect to portfolio weights.

Therefore, a more general coherent risk measure can be a better choice. Here we

consider the case of the point mass approximation (PMA) of a CRR measure de-

scribed in section 3.2. In particular, we choose an equally weighted PMA CRR

with probability thresholds of 2.5%, 5%, 7.5%, 10%, and 12.5%, which aggregates

the expected shortfalls used for portfolio weight comparison before. Table 3.3 shows

p-values for the comparison test between the mean-PMA CRR portfolio weights and

the mean-variance portfolio weights. Similar to the results for expected shortfall re-

ported in Table 3.2, the equality hypothesis is strongly rejected only for portfolios of

asymmetric returns. The rejection holds for all required expected portfolio returns.

In addition, we investigate the economic effect of the differences between the

mean-variance and the mean-shortfall portfolio weights. In Table 3.4 we report the

decrease in the expected shortfall, which results from shifting from the standard

deviation to the expected shortfall in a portfolio allocation decision. These num-
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bers can be interpreted as a decrease in the expected loss in the portfolio for a

given loss probability threshold. As can be seen from Table 3.4, the results support

our statistical conclusions. The economic significance of the difference between the

mean-variance and the mean-shortfall efficient portfolios is economically negligible

for the returns simulated from the multivariate normal and the multivariate Student

t-distributions. The effect from using the expected shortfall instead of the standard

deviation is substantially less than a one-percent decrease in the expected condi-

tional loss. In the case of the asymmetric returns the situation is different. We

can observe a significant reduction in the expected loss for small probability thresh-

olds and medium expected portfolio returns. In this example the effect decays as

the probability threshold and the expected portfolio return increase. Overall, we

observe more pronounced results in the tail of the portfolio return distribution.

In summary, the example in this section indicates that the portfolio allocations

based on the mean-shortfall optimization can significantly differ from those based

on the mean-variance approach. Furthermore, this difference depends on the choice

of the risk level for the expected shortfall risk measure. This suggests that for

portfolios of assets with asymmetric distributions of returns, such as equity and

credit derivatives, an investor can benefit from using the expected shortfall risk

measure when making an allocation decision. By doing so, he can better avoid the

risk exposure from the extreme tail events while taking advantage on a positive

skewness of the returns, i.e., extreme events from the positive side. Clearly, the

standard deviation, which treats positive and negative returns symmetrically, cannot

do the job of distinguishing the positively skewed returns form the negatively skewed

ones.
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3.3.2 Market returns

It is well known that returns observed in the market usually substantially deviate

from the normal distribution. Generally, asset returns have fat tails and negative

or positive skewness. These empirical facts potentially make the CRR measure an

attractive alternative to the standard deviation. However, in reality, asset allocation

decisions involve work with empirical data, including estimation procedures, so that

there is always a level of uncertainty in the obtained result. As a consequence, the

question of statistical and economic significance of the difference between CRR and

variance based allocation decisions arises. In this section we compare the mean-

variance and mean-CRR efficient portfolio weights for portfolios of market returns.

We consider three cases: the daily exchange rates for the British pound, the Cana-

dian dollar, the German mark, and the Japanese yen (”ER”) with respect to the US

dollar; the daily returns on the Fama-French size/book-to-market portfolios (”Fama-

French”); the daily returns on S&P 500 index, US government bond JPM index, and

Small Caps S&P 500 index (”Index”). The sample statistics for these portfolios are

shown in Table 3.5.

It follows from the table that for most of these portfolios the deviation from the

normal distribution is very substantial. In particular, all exchange rates in the ER

portfolio have excess kurtosis, with the Japanese yen being the most fat tailed. It

is also the case for the Japanese yen exchange rate that its empirical distribution

is substantially positively skewed. The deviation from the normal distribution for

the Fama-French and Index portfolios is even more pronounced. In particular, we

observe large negative skewness for all returns in the Fama-French portfolio. For the

indexes, we see that the S&P 500 and the Small Cap returns are negatively skewed.

All reported returns have a large excess kurtosis with the S&P 500 being the most

fat tailed. As the deviation of the reported returns from the normal distribution

is so striking, we could expect substantially different weights for the variance and

CRR based efficient portfolios as well.
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Table 3.6 shows the outcomes of the equality test between the mean-variance and

mean-expected shortfall efficient portfolios for different required portfolio expected

returns and probability thresholds. These results ignore the estimation inaccuracy

of the expected returns, see section 3.5.

Surprisingly, the results from Table 3.6 indicate that the variance and the shortfall-

based efficient portfolio weights are not always significantly different. The weight-

equality hypothesis cannot be rejected at standard significance levels for the port-

folios of exchange rates. For the Fama-French efficient portfolios the equality hy-

pothesis is strongly rejected for the low probability threshold of 2.5%, but cannot

be rejected at the 5% significance level for higher thresholds. Significance levels of

the test are especially high for the probability thresholds higher than 5%, where the

equality hypothesis is generally accepted. For the Index portfolios the situation is re-

versed. The equality hypothesis is accepted at conventional significance levels for the

low probability threshold of 2.5%, while for higher thresholds the equality hypothe-

sis is usually rejected. These results indicate that mean-expected shortfall portfolio

weights depend on the tail behavior of the return distribution function. If the sen-

sitivities of the expected shortfall with respect to portfolio weights are proportional

to those of the standard deviation, then the resulting portfolio weights are similar.

Otherwise, they are different. One interesting point is that even though the market

returns are usually fat tailed and negatively skewed, the portfolio weights produced

by the expected shortfall and the standard deviation are not necessarily statistically

different. As we have already seen in the example of the multivariate t-distribution,

fat tails do not always mean a difference in allocation between the mean-variance and

the mean-shortfall portfolios, because distributions of the returns can still be close

to elliptically symmetric. Now, we discover that skewness per se might not matter

as well. There are two overlapping factors which determine the test outcomes. First,

the test results are driven by the covariance matrix of the portfolio weights, which

depends on the sample variance of the returns. Thus, the test outcome is dependent
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on the relation between skewness and variance in the return distributions. Second,

the difference between the mean-expected shortfall and mean-variance portfolios

is due to the asymptotic tail behavior of the return distributions. Skewness and

kurtosis are only partial measures of this behavior and cannot completely reflect

the sensitivity of the risk measures with respect to the portfolio weights. Table

3.7 illustrates the change of the difference between the mean-expected shortfall and

mean-variance portfolio weights with the probability threshold for the Fama-French

and Index portfolios with a required annualized expected portfolio return of 10%.

The results confirm the conclusions of the tests in Table 3.6. In particular, the dif-

ference between the three first mean-expected shortfall and mean-variance portfolio

weights is relatively large and statistically significant for the probability threshold

2.5% in the Fama-French portfolio. These outcomes suggest that the rejection of

the equality hypothesis in the Fama-French portfolio for the probability threshold of

2.5% in Table 3.6 was caused by differences between the mean-expected shortfall and

mean-variance portfolio weights of Big/Med, Big/High, and Small/Low size/book-

to-market factors. As we increase the probability threshold to 7.5%, the behavior

of the expected shortfall risk measure becomes similar to the behavior of the stan-

dard deviation. As a result, the differences between the mean-expected shortfall

and mean-variance portfolio weights become small and insignificant. The same ef-

fect is observed in Table 3.6. For the Index portfolio we observe a reverse situation:

the increase of the probability threshold leads to significant difference between the

mean-expected shortfall and mean-variance portfolio weights. As Table 3.7 suggests,

the rejection of the null-hypothesis in Table 3.6 for higher probability thresholds is

caused by the difference between the mean-expected shortfall and mean-variance

portfolio weights of the Small Cap index. For the low probability threshold of 2.5%

this difference is insignificant, and so is the test statistic in Table 3.6.

Additionally, as in the case of simulated returns, we perform a statistical com-

parison of the mean-PMA CRR and mean-variance portfolio weights. The equally



74 HOOFDSTUK 3. MEAN-VARIANCE VS. MEAN-CRR PORTFOLIOS

weighted probability thresholds for the point mass approximation are chosen to be

2.5%, 5%, 7.5%, 10%, and 12.5%. Table 3.8 reports p-values of the test for different

required expected portfolio returns. Even thought the results of this table align well

with the results for the expected shortfall reported in Table 3.6, they indicate the

statistical difference between the mean-variance and mean-CRR portfolios better.

In particular, p-values of the Fama-French and Index portfolios are relatively small,

which can be attributed to the contribution of the corresponding expected shortfalls

with small significant test statistics.

Finally, Table 3.9 shows the economic size of the difference between the variance

and the shortfall-based portfolio allocations.

For the Fama-French and Index portfolios the results support our statistical

conclusions as we observe higher economic effect for those required portfolio expected

returns and probability thresholds for which we also had smaller p-values of the

equality test. The smaller economic effect is observed for the required portfolio

expected returns and probability thresholds for which the equality hypothesis was

not rejected.

Surprisingly, we observe high economic effect for portfolios of exchange rates

(ER), where the decrease in expected loss with a given probability is up to 9%. At

the same time the equality hypothesis is not rejected for these portfolios, see Table

3.6. The explanation for this phenomenon is high volatility of the exchange rates.

The standard errors for the economic effects of the ER portfolios are relatively high,

so that we can attribute the high p-values of the test statistics in Table 3.7 to the

high volatility of the ER portfolio weights.

We conclude that for a typical portfolio of equities the expected shortfall and

the standard deviation might produce statistically and economically different results.

However, in certain cases the difference in portfolio weights is offset by the estimation

error. When portfolios with asymmetric returns are considered, the portfolio weights

for shortfall and standard deviation are significantly different, as in the ASYM case.
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In this situation it might be beneficial to use Choquet risk measures which account

for downside returns.14

3.4 Spanning tests

Comparison of the mean-variance and mean-CRR approach is not confined to the

comparison of the portfolio weights. Additionally, one might ask the question

whether the introduction of a new asset that shifts the mean-variance frontier has the

same effect on the mean-CRR efficient frontier or conversely. Statistically, shifts in

efficient frontiers can be characterized by spanning tests. In this section we are going

to apply tests for mean-variance and mean-CRR spanning to several sets of assets,

including the simulated returns from the previous section, the Fama-French value-

book-to-market portfolios, and the S&P500 industry index returns. The results for

the mean-variance and mean-CRR spanning tests are compared. In principle, as

described in chapter 2, we can perform the spanning test for an arbitrary CRR

measure. However, to make our analysis concise we focus on the mean-expected

shortfall and mean-PMA CRR cases.

3.4.1 Simulated returns

In this subsection we apply the mean-variance and the mean-CRR spanning tests

to the sets of returns simulated in the previous section. First, for the three sets of

assets, NORM, t, and ASYM, we perform market efficiency tests with respect to the

first asset, which we denote by R1. The null hypothesis is that the asset R1 is market

efficient, so that the remaining assets, which we respectively denote by R2 and R3

14A natural extension of this study would be to investigate asymetric portfolios that include

options or credit derivatives. However, due to non-stationarity problems, caused by the maturity

of derivative contracts, the methodology would have to be significantly adjusted. We postpone

this for a separate study.
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are redundant. We perform three spanning tests. First, as a benchmark, the test for

mean-variance spanning is performed. Then, the mean-expected shortfall efficiency

for probability thresholds 2.5%, 7.5%, and 12.5% is tested. Finally, we implement

the mean-PMA CRR spanning test, with equally weighted probability thresholds of

2.5%, 5%, 7.5%, 10%, and 12.5%. The risk-free interest rate is assumed to be 2.5%.

The test p-values are reported in Table 3.10. It can be clearly seen that the

spanning hypothesis is strongly rejected for all risk measures, which means that the

remaining assets R2 and R3 are not redundant. We do not report significance levels

for asset R1 as it should be, of course, redundant. The inclusion of the assets R2

and R3 in a mean-risk portfolio improves diversification from both the mean-variance

and mean-CRR perspectives.

The difference between the mean-variance and mean-CRR spanning tests can

be shown by testing the spanning hypothesis for a mean-variance market efficient

portfolio. We form this portfolio from the three available assets R1, R2, and R3.

Table 3.11 reports p-values of the spanning tests with respect to the mean-variance

portfolio of the available assets. The null hypothesis is that assets R2 and R3 are

redundant.

As could be anticipated, the mean-variance hypothesis cannot be rejected at the

conventional significance levels for all sets of assets. The mean-CRR spanning hy-

pothesis cannot be rejected15 for the returns simulated from the normal (NORM) and

multivariate t-distributions. At the same time the spanning hypothesis is strongly

rejected for the portfolio of asymmetric returns ASYM. This demonstrates that the

difference between the outcomes of mean-variance and mean-CRR spanning tests

should be expected for portfolios of non-standard instruments with asymmetric re-

turn distributions. Such instruments could include equity derivatives or pooled

credit securities.

The spanning tests in Tables 3.10 and 3.11 can be interpreted from the point of

15The same results are obtained if the estimation error in mean returns is ignored.
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view of an investor who considers the given 3 equities as an investment possibility set.

The fact that the spanning hypothesis is accepted for an individual equity indicates

the redundancy of this equity with respect to the market portfolio (or the set of

other equities from which the ”market portfoliöıs formed). Rejection of the spanning

test for the asset R1 in Table 3.10 means that from the investor’s perspective this

asset cannot be viewed as a market portfolio, neither from the mean-variance nor

from the mean-CRR perspective. The mentioned redundancy is related to a risk

measure that is used by the investor for allocation purposes. Suppose that the

mean-CRR investor forms a portfolio based on the mean-variance principle. In this

case she invests her wealth in the combination of the risk-free asset and the mean-

variance market portfolio. The results in Table 3.11 for asymmetrically distributed

returns show that assets R2 and R3 are not redundant to such an allocation, i.e.,

the portfolio can still be improved from the mean-CRR perspective. On the other

hand, an investor, who uses the mean-variance instead of the mean-CRR analysis

gets almost the same diversification in the case of elliptically symmetric returns,

NORM or t.

3.4.2 Market returns

Skewness and excess kurtosis of empirical distributions of asset returns is a frequent

phenomenon observed in the market. In this subsection we apply spanning tests to

the set of Fama-French portfolios based on the size and book-to-market factors as

well as to the set of the S&P 500 sector indexes to check whether the mean-CRR

spanning test produces significantly different conclusions from the mean-variance

one. Sample statistics of the observed returns are reported in Table 3.12. The

sample returns demonstrate substantial excess kurtosis and, in most of the cases,

negative skewness.

Table 3.13 reports the results of the spanning tests. For the Fama-French set

we perform the spanning tests with respect to the Fama-French market portfolio.



78 HOOFDSTUK 3. MEAN-VARIANCE VS. MEAN-CRR PORTFOLIOS

For the set of sector indexes the tests are performed with respect to the S&P 500

composite index.

The results indicate that for the portfolio of small companies with high and

medium book-to-market ratio as well as for the portfolio of big companies with high

book-to-market ratio the spanning hypothesis is strongly rejected in all tests. At the

same time it can be seen that for the portfolio of small companies with low book-to-

market ratio the p-value of the mean-variance spanning test is almost twice as high

as the p-values of the mean-CRR tests, which could possibly indicate a difference

between the two tests. Generally, the market portfolio is not optimal both from the

mean-variance and mean-CRR perspectives. Its risk can be further diversified by

inclusion of Small/High, Small/Medium, and Big/High Fama-French portfolios.

Testing the S&P 500 composite index for market efficiency with respect to the

S&P 500 sector indexes shows that no test can reject the spanning hypothesis at the

conventional significance levels. The mean-variance and mean-CRR spanning tests

produce the same conclusions and similar p-values.

Since both mean-variance and mean-CRR spanning tests lead to the same con-

clusion in both the Fama-French and the S&P 500 examples, one could wonder

whether these spanning tests can be distinguished at all for sets of common assets,

such as stocks, stock indexes, etc. To check this we form the optimal mean-variance

portfolios in both the Fama-French and S&P 500 sector index sets. For these port-

folios we perform the mean-expected shortfall and mean-CRR PMA spanning tests.

The results are reported in Table 3.14. The spanning hypothesis cannot be rejected

by any of the tests at the conventional significance levels,16 which means that the

mean-CRR and mean-variance optimal portfolios are statistically similar. Thus, for

portfolios of common equities mean-variance and mean-CRR spanning tests can be

used interchangeably.

16Ignoring estimation errors in mean returns lead to the same conclusions.
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3.5 Estimation inaccuracy in expected returns

The results on the portfolio weight equality tests discussed in section 3.3 are consid-

ered from the viewpoint of Markowitz (1952) who suggests that there are a priori

believes about the future expected returns. Given these believes an investor com-

pares two alternative approaches in portfolio allocation decision: mean-variance or

mean-CRR. In this section we investigate the effect of estimation inaccuracy in ex-

pected returns when these are also estimated using sample averages. It is known

that the portfolio weights in the mean-variance analysis are very sensitive to errors in

expected returns, see, for example, Chopra and Ziemba (1993). The same is the case

for the mean-CRR portfolios. The asymptotic variance of the equality tests would

typically increase due to the estimation inaccuracy, so that the test statistics yield

insignificant results in practical sample sizes. In this section we use the portfolio

weight equality tests to illustrate this. Table 3.15 shows the p-values of the portfolio

comparison tests for the ASYM, the Fama-French, and the Index portfolios when the

estimation inaccuracy in expected returns is taken into account. Comparing these

results to the results in Tables 3.2 and 3.6, we see the increase in significance levels

of the tests due to the estimation inaccuracy in expected returns. As a result, the

majority of test statistics becomes insignificant at the standard significance levels,

confirming the findings of the sensitivity analysis by Chopra and Ziemba (1993).

3.6 Conclusion

In this chapter we empirically investigated the statistical implications of coherent

risk measures, advocated in the literature, to the portfolio selection problem. We

showed that efficient portfolio weights generated by mean-variance and mean-CRR

optimizations can be statistically different for various portfolios of stocks if the es-

timation error in the mean returns can be ignored. Our results suggest that a

CRR measure can better account for the downside risk in the case when one can
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include derivatives or other assets with asymmetric returns in the portfolio. In

this case mean-variance and mean-CRR portfolio weights are likely to be statisti-

cally different. Economic differences between the mean-variance and the mean-CRR

approaches align well with the statistical ones. The differences in expected loss be-

tween mean-variance and mean-expected shortfall portfolios are high for portfolios

of asymmetric returns and relatively low for portfolios of common equities.

Secondly, we applied the mean-CRR spanning test to simulated returns, the

Fama-French portfolios, and a number of sector indexes included in the S&P500.

We showed that the difference between the mean-variance and the mean-CRR tests

is especially pronounced for portfolios of asymmetric returns. For elliptically sym-

metric distributions of returns, as well as for portfolios of common equities, the

mean-variance and mean-CRR tests lead to the same statistical conclusions. Both

tests strongly reject the hypothesis that the market portfolio spans the set of Fama-

French size-book-to-market portfolios. At the same time, both mean-variance and

mean-CRR tests cannot reject market efficiency of the S&P 500 composite index.

This means that the S&P500 composite index fulfills the role of market portfolio

both for mean-variance and mean-CRR investors. Our results demonstrate that the

mean-variance and the mean-CRR approaches are often statistically and economi-

cally similar for the equity asset classes considered.

Finally, we considered the sample mean estimation inaccuracy effect on the mean-

variance and mean-CRR portfolio weight equality tests. In line with the existing

literature on the sensitivity of the mean-variance analysis to the sampling error, the

test statistics become insignificant.
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3.A Limit distribution of a constrained extremum

estimator

Our optimal portfolio problem can be expressed as a constrained extremum estima-

tor problem

min
θ∈Rp

Ef(θ) s.t. Eg(θ) = 0, (3.13)

The first order conditions of this problem are

E [∇θf ]− λE [∇θg] = 0,

Eg(θ) = 0,

where λ is the Lagrange multiplier of the equality constraint. Denote by ψ∇f (θ)

and ψ∇g(θ) the influence functions of the gradient functionals E[∇θf ] and E[∇θg]

respectively. Let the influence function of the constraint functional E[g(θ)] be ψg(θ).

Then, using the first order Taylor expansion of the FOC, we obtain:

 H −G

−G′ 0


√n


 θ̂ − θ

λ̂− λ


 =

1√
n




∑n
i=1 (λψ∇gi − ψ∇fi)

∑n
i=1 ψgi


 +


r1n

r2n


 ,

where

H = E
[∇2

θf
]− λE

[∇2
θg

]
, (3.14)

G = E [∇θg] , (3.15)

and r1n and r2n are the residual terms converging in probability to zero (under

appropriate conditions, see, for example, Van der Vaart (1998)). Solving this system

of linear equations for
√

n(θ̂−θ), we obtain the result for the asymptotic distribution

of the constrained extremum estimator θ̂ expressed in terms of the influence functions

ψf (θ) and ψg(θ)

√
n

(
θ̂ − θ

)
= H−1


bGG′H−1 − Ip

−bG



′

1√
n

n∑
i=1


ψ∇fi − λψ∇gi

ψgi


 + op(1), (3.16)
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where b = (G′H−1G)−1. Notice, that the Lagrange multiplier λ for a given optimal

θ can be found from the first order condition, for example,

λ = (i′G)−1i′E [∇θf ] , (3.17)

where i stands for a p× 1 vector of ones.

Finally, for the case when the constraint and gradient functionals E[g(θ)], E[∇θf ]

and E[∇θg] do not involve a non-parametric estimation of population distribution

functions, their influence functions can be found in a usual way, i.e., ψg = g, ψ∇f =

∇θf and ψ∇g = ∇θg.

Suppose now that one wants to eliminate the estimation uncertainty from the

constraint in (3.13). In this case the problem can be reformulated as

min
θ∈Rp

Ef(θ) s.t. g(θ) = 0.

It is straightforward to see that as a result all the constraint related terms in (3.16)

disappear so that the limit distribution of the constrained extremum estimator is

given by

√
n

(
θ̂ − θ

)
= H−1

(
bGG′H−1 − Ip

) 1√
n

n∑
i=1

ψ∇fi + op(1).

3.B Limit distribution of portfolio weights

The Mean-CRR portfolio problem is obtained from the mean-risk problem (3.6)

when a CRR measure (3.3) is used as an objective function

min
θ∈Rp

∫ 1

0

sα(y + x′θ))dφ(α) s.t. E[y + x′θ] = ν.

This mean-CRR portfolio problem can be reformulated as an extremum estimation

problem as discussed in Appendix 3.A, since a CRR measure can be expressed as

an expectation. To simplify the exposition we use the notation v = y + x′θ for
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the portfolio return and Fv for its cumulative distribution function. Both v and Fv

depend on the portfolio weights θ. First, we express the expected shortfall sα(v) as

an expectation

sα(v) = −α−1E [vI(Fv(v) ≤ α)] .

Substituting this expression into equation (3.3) we obtain a CRR measure as an

expectation

ρ(v) = −
∫ 1

0

α−1E [vI(Fv(v) ≤ α)] dφ(α)

= −E

[
v

∫ 1

0

α−1I(Fv(v) ≤ α)dφ(α)

]

= −E

[
v

∫ 1

Fv(v)

α−1dφ(α)

]
.

The mean-CRR optimal portfolio problem becomes

min
θ

E

[
−v

∫ 1

Fv(v)

α−1dφ(α)

]
s.t. E [v] = ν. (3.18)

Problem (3.18) is a constrained extremum estimator problem, so the asymptotic

results derived in Appendix 3.A apply. The asymptotic distribution of the mean-

CRR portfolio weights can be expressed through the influence function ξ(x, v) of

the estimated portfolio weights17

√
n

(
θ̂ − θ

)
=

1√
n

n∑
i=1

ξ(xi, vi) + op(1) →d N (0, E[ξξ′]) ,

where the index i identifies a particular observation in the sample. The influence

function of the portfolio weights that ignores constraint estimation inaccuracy is

ξ(xi, vi) = H−1
(
bGG′H−1 − Ip

)
ψ∇fi. (3.19)

17Notice, that we assumed the asset sample returns to be identically and independently distrib-

uted. Our results, however, can be straightforwardly extended to the case of stationary sample

returns, see Newey and West (1987).
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The influence function of the mean-CRR portfolio weights that takes into account

the estimation inaccuracy in asset expected returns is

ξ(xi, vi) = H−1


bGG′H−1 − Ip

−bG



′ 
ψ∇fi − λψ∇gi

ψgi


 . (3.20)

The vector G is the gradient of the constraint function with respect to portfolio

weights G = E[x], and λ is the Lagrange multiplier

λ = −e′
∂

∂θ
E

[
v

∫ 1

Fv(v)

α−1dφ(α)

]
E[e′x]−1,

matrix H is the Hessian of the objective function with respect to portfolio weights

H = − ∂2

∂θ∂θ′
E

[
v

∫ 1

Fv(v)

α−1dφ(α)

]
,

functions ψ∇f and ψ∇g are the influence functions of the the objective and constraint

function gradient functionals correspondingly, function ψg is the influence function

of the constraint functional, and scalar b is the notation

b =
(
G′H−1G

)−1
.

The exact expressions for the Lagrange multiplier λ, the Hessian H, and the influence

function ψ∇f in case of a mean-CRR portfolio are as follows

λ = −E

[
e′x

∫ 1

Fv(v)

α−1dφ(α)

]
E[e′x]−1,

H = E

[
φ′(Fv(v))f(v)

F (v)
Cov(x|v)

]
,

ψ∇f = χ∇f − E [χ∇f ] ,

χ∇f = −
∫ 1

Fv(v)

(
x− E

[
x|v = F−1

v (α)
])

α−1dφ(α).

The derivation details can be found in chapter 2. Finally, the influence functions

ψ∇g and ψg are

ψ∇g = x− E[x],

ψg = v − ν.
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3.B.1 Expected shortfall

In the case of expected shortfall the probability function φ(α) is

φ(α) = I(α ≥ τ),

so that the influence function of the mean-expected shortfall portfolio weights is

given by (3.19) or (3.20) with

λ = −τ−1E [e′xI(Fv(v) ≤ τ)] E[e′x]−1,

H = τ−1f(F−1
v (τ))Cov(x|v = F−1

v (τ)),

χ∇f = τ−1I(Fv(v) ≤ τ)
(
x− E[x|v = F−1

v (τ)]
)
.

3.B.2 Point mass approximation (PMA) of a CRR measure

In the case of PMA CRR measure the probability function φ(α) is a stepwise function

φ(α) =
m∑

k=1

φkI(α ≥ τk),

so that the influence function of the mean-expected shortfall portfolio weights is

given by (3.19), if one wants to ignore the estimation error in the asset expected

returns, or (3.20), if one wants to take into account the estimation constraint un-

certainty, with

λ = −
m∑

k=1

φkτ
−1
k E [e′xI(Fv(v) ≤ τk)] E[e′x]−1,

H =
m∑

k=1

φkτ
−1
k f(F−1

v (τk))Cov(x|v = F−1
v (τk)),

χ∇f = −
m∑

k=1

φkτ
−1
k I(Fv(v) ≤ τk)

(
x− E[x|v = F−1

v (τk)]
)
.
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3.B.3 Mean-variance portfolio weights

Using the same notations as in (3.6) we write the mean-variance portfolio problem

min
θ

E
[
(y + x′θ)2

]
s.t. E [y + x′θ] = ν.

This problem can also be viewed as a constrained extremum estimator problem,

so, again, the limit distribution results of the Appendix 3.A apply. The influence

function of the mean-variance portfolio weights is given by expression (3.19) or (3.20)

with the Lagrange multiplier λ given by

λ = e′
∂

∂θ
E [(y + x′θ)] E[e′x]−1 = E [(y + x′θ)e′x] E[e′x]−1,

and the Hessian H of the objective function given by

H =
∂2

∂θ∂θ′
E [(y + x′θ)] = E [xx′] .

Finally, the influence functions of the gradient and constraint functionals are

ψ∇f = (y + x′θ)x− E [(y + x′θ)x] ,

ψ∇g = x− E[x],

ψg = y + x′θ − ν.

3.C Statistical comparison of portfolio weights

Let β be the vector of mean-variance portfolio weights, and θ be the vector of

mean-CRR portfolio weights. Denote by η(x, v) the influence function of the mean-

variance portfolio weights, and by ξ(x, v) the influence function of the mean-CRR

portfolio weighs. The exact expressions for these influence functions are provided
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in Appendix 3.B. The joint asymptotic distribution of the mean-variance and the

mean-CRR weights is

√
n (γ̂ − γ) ≡ √

n


β̂ − β

θ̂ − θ


 =

1√
n

n∑
i=1


η(xi, vi)

ξ(xi, vi)


 + op(1) →d N (0, Ω) ,

where

Ω = E


ηη′ ηξ′

ξη′ ξξ′


 .

The hypothesis H0 : β = θ vs. H1 : β 6= θ can be tested in a standard way. Introduce

the restriction matrix R = [Ip,−Ip], then

γ̂′R′
(
RΩ̂R′

)−1

Rγ̂ →d χ2
p
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3.D Tables and figures

Portfolios Assets N Obs Avg. Return Skewness Kurtosis Covariance
NORM Asset 1 3000 0.06 -0.04 3.09 0.04 0.00 0.00

Asset 2 0.08 0.00 3.00 * 0.04 0.00
Asset 3 0.08 -0.01 2.99 * * 0.04

t Asset 1 3000 0.06 0.22 5.40 0.04 0.00 0.00
Asset 2 0.08 -0.12 6.45 * 0.04 0.00
Asset 3 0.08 -0.13 5.10 * * 0.04

ASYM Asset A 3000 0.06 -0.04 3.01 0.04 0.00 0.00
Asset B 0.08 0.66 3.16 * 0.04 0.00
Asset C 0.08 -0.79 4.03 * * 0.04

Tabel 3.1: Sample statistics of simulated asset returns. NORM - returns from the
three-variate normal distribution, t - returns from the three-variate t-distribution,
ASYM - returns from the three-variate asymmetric distribution.

Expected Portfolio Return
Portfolios Probability Threshold 10% 12% 14% 16%
NORM 2.5% 76.0% 86.8% 81.7% 87.1%

5% 63.6% 63.5% 56.1% 74.7%
7.5% 39.7% 50.2% 63.0% 64.3%
10% 54.4% 42.4% 47.0% 41.1%

12.5% 60.6% 68.1% 68.1% 56.0%
t 2.5% 94.4% 87.6% 89.0% 90.4%

5% 80.2% 95.1% 96.1% 96.8%
7.5% 67.7% 82.5% 95.7% 95.2%
10% 99.3% 92.4% 96.4% 94.2%

12.5% 98.5% 92.6% 88.0% 99.4%
ASYM 2.5% 0.0% 0.0% 0.0% 0.1%

5% 0.0% 1.3% 3.5% 7.8%
7.5% 0.0% 0.9% 5.3% 7.1%
10% 0.0% 0.9% 6.3% 9.9%

12.5% 0.0% 3.9% 13.3% 22.5%

Tabel 3.2: p-values of the test for equality of the mean-variance and the mean-
shortfall portfolio weights in portfolios of simulated returns.
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Expected Portfolio Return
Portfolios 10% 12% 14% 16%
NORM 86.1% 68.3% 60.8% 63.6%

t 85.5% 85.0% 92.9% 93.8%
ASYM 0.0% 0.1% 0.9% 2.3%

Tabel 3.3: p-values of the test for equality of the mean-variance and the mean-PMA
CRR portfolio weights in portfolios of simulated returns. The probability thresholds
for the PMA CRR measure are 2.5%, 5%, 7.5%, 10%, and 12.5%.

Expected Portfolio Return
Portfolios Probability Threshold 10% 12% 14% 16%
NORM 2.5% 0.03% 0.01% 0.01% 0.03%

0.08 0.10 0.19 0.16
5% 0.05% 0.10% 0.09% 0.08%

0.09 0.19 0.35 0.28
7.5% 0.04% 0.10% 0.21% 0.32%

0.12 0.21 0.24 0.31
10% 0.03% 0.11% 0.13% 0.14%

0.06 0.16 0.24 0.35
12.5% 0.01% 0.02% 0.05% 0.11%

0.04 0.07 0.10 0.18
t 2.5% 0.01% 0.29% 0.32% 0.30%

0.14 0.53 0.83 0.99
5% 0.04% 0.02% 0.02% 0.01%

0.11 0.06 0.07 0.06
7.5% 0.01% 0.01% 0.00% 0.01%

0.12 0.13 0.05 0.09
10% 0.00% 0.00% 0.00% 0.00%

0.00 0.04 0.03 0.05
12.5% 0.00% 0.00% 0.01% 0.00%

0.00 0.02 0.06 0.00
ASYM 2.5% 3.88% 4.62% 5.48% 6.46%

1.10 1.50 2.04 2.45
5% 2.14% 2.15% 2.34% 2.59%

0.63 0.84 0.99 1.10
7.5% 1.52% 1.13% 1.16% 1.32%

0.42 0.58 0.74 0.93
10% 1.16% 0.90% 0.77% 0.72%

0.35 0.45 0.49 0.60
12.5% 0.88% 0.67% 0.53% 0.48%

0.33 0.33 0.37 0.39

Tabel 3.4: Economic size of the difference between the mean-shortfall and mean-
variance simulated efficient portfolios. The effect is measured as a decrease in the
expected shortfall when switching from the standard deviation to the expected short-
fall risk measure in portfolio optimization. The standard errors are given in italics.
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Expected Portfolio Return
Portfolios Probability Threshold 10% 12% 14% 16%

ER 2.5% 39.8% 29.7% 28.6% 25.2%
5% 50.1% 55.9% 56.3% 50.9%

7.5% 39.2% 41.4% 45.8% 48.3%
10% 16.2% 14.8% 15.3% 13.9%

12.5% 28.7% 22.7% 28.0% 24.4%
Fama-French 2.5% 0.0% 0.0% 0.0% 0.0%

5% 7.1% 6.3% 10.3% 5.1%
7.5% 60.1% 87.3% 64.2% 26.2%
10% 53.0% 51.3% 69.6% 61.1%

12.5% 46.1% 88.2% 80.1% 52.6%
Index 2.5% 67.5% 71.2% 80.4% 63.2%

5% 0.6% 2.0% 2.0% 1.4%
7.5% 6.7% 5.3% 4.0% 3.5%
10% 4.7% 5.2% 5.9% 5.5%

12.5% 5.0% 5.2% 4.1% 4.5%

Tabel 3.6: p-values of the test for equality of the mean-variance and mean-shortfall
portfolio weights in portfolios of market returns.

Comparison of Portfolio Weights
M-ShF M-V Diff Std. Err.

FF, 2.5% Big/Med 1.55 1.36 0.20 0.055
Big/High 1.13 1.28 -0.16 0.050

Small/Low 0.45 0.27 0.19 0.074
Small/Med -0.19 -0.17 -0.02 0.064
Small/High -0.22 -0.18 -0.03 0.045

FF, 7.5% Big/Med 1.38 1.36 0.02 0.052
Big/High 1.24 1.28 -0.04 0.040

Small/Low 0.32 0.27 0.05 0.035
Small/Med -0.14 -0.17 0.03 0.037
Small/High -0.17 -0.18 0.02 0.028

Index, 2.5% Small Caps 0.47 0.52 -0.05 0.114
Gov. Bonds -0.23 -0.24 0.01 0.015

Index, 5% Small Caps 0.29 0.52 -0.24 0.086
Gov. Bonds -0.21 -0.24 0.03 0.011

Tabel 3.7: Effect of the probability threshold on the difference between mean-
expected shortfall and mean-variance portfolio weights. Portfolio weights are re-
ported for the required expected portfolio return of 10%. Portfolio names and prob-
ability thresholds are given in the left column.
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Expected Portfolio Return
Portfolios 10% 12% 14% 16%

ER 25.6% 21.8% 22.3% 28.6%
Fama-French 2.1% 5.1% 13.2% 4.3%

Index 4.2% 4.9% 4.5% 4.5%

Tabel 3.8: p-values of the test for equality of the mean-variance and mean-shortfall
portfolio weights in portfolios of market returns. The probability thresholds for the
PMA CRR measure are 2.5%, 5%, 7.5%, 10%, and 12.5%.

Expected Portfolio Return
Portfolios Probability Threshold 10% 12% 14% 16%

ER 2.5% 5.83% 7.16% 8.23% 9.36%
11.54 14.33 16.69 19.76

5% 2.60% 3.53% 4.51% 5.44%
4.39 5.10 6.02 7.08

7.5% 2.63% 3.12% 3.83% 4.58%
4.46 5.21 5.89 6.60

10% 4.19% 5.07% 5.89% 6.54%
3.88 4.83 5.80 6.71

12.5% 2.40% 2.79% 3.21% 3.71%
2.48 3.42 3.81 4.39

Fama-French 2.5% 2.74% 0.96% 0.97% 0.88%
1.41 0.87 0.80 1.05

5% 0.67% 0.26% 0.28% 0.62%
0.55 0.35 0.35 0.54

7.5% 0.30% 0.22% 0.31% 0.25%
0.32 0.28 0.31 0.26

10% 0.16% 0.17% 0.14% 0.23%
0.20 0.20 0.17 0.28

12.5% 0.16% 0.07% 0.11% 0.21%
0.15 0.11 0.17 0.25

Index 2.5% 0.40% 0.17% 0.06% 0.22%
1.13 1.15 0.90 2.01

5% 3.78% 4.74% 5.47% 5.99%
3.23 3.19 3.81 4.85

7.5% 2.35% 2.95% 3.91% 4.48%
1.94 2.62 3.04 3.48

10% 1.91% 2.30% 2.75% 3.12%
1.44 1.71 1.97 2.33

12.5% 1.46% 1.90% 2.35% 2.79%
1.17 1.43 1.78 2.03

Tabel 3.9: Economic size of the difference between the mean-shortfall and mean-
variance market efficient portfolios. The effect is measured as a decrease in the ex-
pected shortfall when switching from the standard deviation to the expected shortfall
risk measure in portfolio optimization. The standard errors are given in italics.
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M-V Mean-Expected Shortfall M-PMA
2.5% 7.5% 12.5%

Simulated NORM Returns vs. R1
R2 0.00% 0.00% 0.00% 0.00% 0.00%
R3 0.00% 0.00% 0.00% 0.00% 0.00%

Simulated t Returns vs. R1
R2 0.00% 0.00% 0.00% 0.00% 0.00%
R3 0.00% 0.00% 0.00% 0.00% 0.00%

Simulated ASYM Returns vs. R1
R2 0.00% 0.00% 0.00% 0.00% 0.00%
R3 0.00% 0.00% 0.00% 0.00% 0.00%

Tabel 3.10: p-values of the spanning tests for simulated returns with respect to the
asset R1. The reported results are for the mean-variance (M-V), mean-expected
shortfall, and mean-PMA CRR (M-PMA) spanning. The PMA probability thresh-
olds are 2.5%, 5%, 7.5%, 10%, and 12.5% with equal weights of 20%.

M-V Mean-Expected Shortfall M-PMA
2.5% 7.5% 12.5%

Simulated NORM Returns vs. MV
R2 100.00% 63.02% 65.61% 56.34% 68.99%
R3 100.00% 47.48% 99.94% 59.33% 76.13%

Simulated t Returns vs. MV
R2 100.00% 76.39% 94.53% 97.04% 86.91%
R3 100.00% 74.38% 75.91% 58.06% 64.14%

Simulated ASYM Returns vs. MV
R2 100.00% 0.00% 0.00% 0.00% 0.00%
R3 100.00% 0.00% 0.00% 0.00% 0.00%

Tabel 3.11: p-values of the spanning tests for simulated returns with respect to the
optimal mean-variance portfolio. The reported results are for the mean-variance (M-
V), mean-expected shortfall, and mean-PMA CRR (M-PMA) spanning. The PMA
probability thresholds are 2.5%, 5%, 7.5%, 10%, and 12.5% with equal weights of
20%.
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Portfolios Assets N Obs Avg. Return Skewness Kurtosis Volatility
Fama- French Mkt 10448 11.13% -0.75 21.17 14.2%

Small/Low 9.59% -0.67 11.66 16.8%
Small/Med 14.91% -0.86 13.78 12.1%
Small/High 16.89% -0.88 14.75 11.7%
Big/Low 10.74% -0.47 17.25 16.1%
Big/Med 11.77% -1.10 31.06 13.5%
Big/High 13.63% -0.89 24.21 13.6%

S&P 500 Ind. SP 2609 9.5% -0.01 6.13 18.0%
COD 10.6% 0.00 7.84 20.8%
CST 8.8% -0.09 9.09 16.4%
ENE 12.0% 0.09 5.27 21.8%
FIN 14.0% 0.20 5.82 23.4%
HCR 13.5% -0.06 6.42 20.7%
IND 10.6% -0.10 7.02 19.7%
INT 14.1% 0.37 6.55 34.4%
MAT 6.4% 0.22 6.16 21.3%
TEL 4.1% 0.05 6.27 24.4%
UTL 4.8% -0.22 10.03 18.3%

Tabel 3.12: Annualized sample statistics of the market returns used for spanning
tests. Fama-French are the returns on the Fama-French size/book-to-market portfo-
lios with MKT being the market portfolio. S&P500 Ind. are returns on the S&P 500
industrial indexes. GICS sectors: consumer discretionary (COD), consumer staples
(CST), energy (ENE), financials (FIN), health care (HCR), industrials (IND), in-
formation technology (INT), materials (MAT), telecommunications services (TEL),
and utilities (UTL). SP is the S&P 500 composite index.
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M-V Mean-Expected Shortfall M-PMA
2.5% 7.5% 12.5%

Fama-French Size/Book-to-Mkt. Portfolios vs. MKT
Small/Low 20.42% 10.61% 10.36% 10.69% 10.03%

Small/Medium 0.00% 0.00% 0.00% 0.00% 0.00%
Small/High 0.00% 0.00% 0.00% 0.00% 0.00%
Big/Low 4.91% 13.32% 8.79% 7.50% 10.16%

Big/Medium 8.45% 6.94% 6.44% 6.59% 6.59%
Big/High 0.07% 0.06% 0.06% 0.07% 0.06%

S&P 500 Sector Indexes vs. S&P 500 Composite
COD 74.67% 78.19% 74.84% 75.24% 76.02%
CST 68.49% 72.71% 66.66% 64.80% 67.54%
ENE 43.00% 45.04% 45.79% 44.56% 44.73%
FIN 30.68% 31.10% 27.89% 27.37% 28.70%
HCR 27.04% 26.87% 28.53% 28.93% 28.18%
IND 66.05% 80.24% 68.21% 65.47% 71.24%
INT 78.81% 69.60% 75.60% 79.44% 74.74%
MAT 70.15% 62.75% 68.82% 71.04% 67.87%
TEL 36.49% 33.41% 36.05% 35.66% 35.28%
UTL 70.17% 59.93% 64.10% 67.58% 63.91%

Tabel 3.13: p-values of the spanning tests for the Fama-French size/book-to-market
portfolios with respect to the market portfolio and S&P 500 sector indexes with
respect to the S&P 500 composite index. The reported results are for the mean-
variance (M-V), mean-expected shortfall, and mean-PMA CRR (M-PMA) spanning.
The PMA probability thresholds are 2.5%, 5%, 7.5%, 10%, and 12.5% with equal
weights of 20%. GICS sectors: consumer discretionary (COD), consumer staples
(CST), energy (ENE), financials (FIN), health care (HCR), industrials (IND), in-
formation technology (INT), materials (MAT), telecommunications services (TEL),
and utilities (UTL).
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M-V Mean-Expected Shortfall M-PMA
2.5% 7.5% 12.5%

Fama-French Size/Book-to-Mkt. Portfolios vs. MV
Small/Low 99.35% 41.53% 66.74% 73.00% 57.98%

Small/Medium 99.40% 42.92% 68.67% 74.80% 59.54%
Small/High 99.35% 34.99% 66.35% 74.39% 55.39%
Big/Low 99.62% 89.45% 95.54% 93.35% 94.40%

Big/Medium 99.68% 61.39% 94.41% 96.74% 83.82%
Big/High 99.82% 67.45% 93.98% 99.66% 86.65%

S&P 500 Sector Indexes vs. MV
COD 99.99% 93.59% 95.06% 91.27% 93.97%
CST 100.00% 92.04% 88.98% 94.99% 92.67%
ENE 99.98% 90.40% 96.18% 96.86% 95.36%
FIN 100.00% 79.76% 85.73% 89.68% 85.87%
HCR 99.98% 97.23% 96.33% 95.22% 98.60%
IND 100.00% 87.71% 93.34% 93.05% 92.48%
INT 100.00% 97.49% 99.65% 97.21% 98.00%
MAT 99.98% 86.69% 81.94% 91.49% 86.92%
TEL 99.99% 81.44% 90.92% 90.35% 88.20%
UTL 99.98% 94.35% 91.95% 99.66% 94.02%

Tabel 3.14: p-values of the spanning tests for the Fama-French size-book-to-market
portfolios and S&P 500 sector indexes with respect to the optimal mean-variance
portfolio. The reported results are for the mean-variance (M-V), mean-expected
shortfall, and mean-PMA CRR (M-PMA) spanning. The PMA probability thresh-
olds are 2.5%, 5%, 7.5%, 10%, and 12.5% with equal weights of 20%. GICS sectors:
consumer discretionary (COD), consumer staples (CST), energy (ENE), financials
(FIN), health care (HCR), industrials (IND), information technology (INT), mate-
rials (MAT), telecommunications services (TEL), and utilities (UTL).
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Expected Portfolio Return
Portfolios Probability Threshold 10% 12% 14% 16%
ASYM 2.5% 2.4% 8.6% 8.9% 13.2%

5% 10.5% 41.1% 50.9% 58.5%
7.5% 7.7% 38.4% 56.4% 60.4%
10% 9.2% 43.6% 60.9% 66.5%

12.5% 16.1% 59.8% 71.2% 77.1%
Fama-French 2.5% 21.3% 93.1% 95.9% 91.4%

5% 84.5% 99.7% 99.7% 98.8%
7.5% 94.4% 99.8% 99.9% 99.9%
10% 94.6% 99.7% 99.9% 99.8%

12.5% 95.8% 99.9% 99.9% 99.9%
Index 2.5% 94.7% 95.1% 96.5% 93.8%

5% 78.5% 79.7% 81.2% 82.5%
7.5% 87.3% 87.3% 85.6% 85.2%
10% 81.5% 80.8% 81.0% 81.3%

12.5% 73.0% 74.1% 73.1% 72.6%

Tabel 3.15: p-values of the test for equality of the mean-variance and mean-shortfall
portfolio weights for ASYM, Fama-French and, Index portfolios with inaccuracy in
the mean returns taken into account.
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Figuur 3.1: Kernel density of the returns simulated from ASYM distribution.
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Option Pricing and Dynamics of

the Implied Prices of Volatility

Risk: An Empirical Analysis

4.1 Introduction

It is generally agreed upon that empirically relevant probabilistic models for asset

prices usually describe markets that are incomplete in terms of the underlying assets.

For example, stochastic volatility, used in many financial models, usually leads to

market incompleteness1. This means that derivatives on the underlying asset cannot

be priced by no-arbitrage arguments alone, or, in other words, that the risk-neutral

probability measure is not unique2. In a stochastic volatility model, the risk-neutral

probability measure can be uniquely specified by the volatility risk premium. This is

a term which determines Girsanov’s transformation with respect to the innovations

1There are some exceptions. For example, models studied by Kallsen and Taqqu (1998) or

Hobson and Rogers (1999). A model which allows stochastic volatility is also complete if we

assume the existence of a tradable portfolio perfectly correlated with stochastic volatility.
2When determined in terms of the underlying asset.
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in stochastic volatility that cannot be hedged by innovations in the asset price. In

an equilibrium, including in the market both the underlying and the derivatives,

the volatility risk premium can be fully endogenised. Alternatively, without a full

equilibrium, but imposing absence of arbitrage opportunities, we can use derivative

prices observed in the market to get additional information about this volatility risk

premium, which then reflects the attitude of the market towards risk and allows one

to characterize the pricing mechanism. In this paper, we define the volatility risk

premium as a product of the price of volatility risk and the instantaneous volatility

itself. This specification is also used, for example, by Heston (1993), Chernov (2003),

and Jiang and Knight (2002). The price of volatility risk can then be estimated

on a daily basis from observed option prices. We estimate it by minimizing an

appropriate distance between observed and theoretical European call option prices.

The resulting process of implied prices of volatility risk shows substantial variability.

This chapter analyzes its statistical properties and propose several specifications to

model its dynamics. We demonstrate that taking into account the dynamics of the

implied prices of volatility risk significantly improves out-of-sample prediction of

option prices with respect to common approaches used in the literature.

The problem of finding the empirically relevant volatility risk premium in a

stochastic volatility model, or, equivalently, of finding the pricing kernel or the

risk-neutral probability measure, is extensively studied in the literature. Hull and

White (1987) assume idiosyncratic volatility risk, or, in other words, a zero volatility

risk premium to overcome incompleteness. Melino and Turnbull (1990) study the

pricing of currency exchange options under stochastic volatility. They discovered

that stochastic volatility models allowing for a non-zero volatility risk premium

describe option prices better than the models with idiosyncratic volatility risk.

In general, an appropriate volatility risk premium is an empirical question. There

are two approaches to the empirical analysis of market incompleteness. One is

semi- or nonparametric in the sense that no or very few restrictions are put on
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the risk-neutral probability measure. This approach is followed, for example, by

Rosenberg and Engle (2002) who estimate empirical pricing kernels from the option

and S&P500 index data nonparametrically. Further, they study the dynamics of the

risk-aversion implied by the estimated pricing kernels. Ait-Sahalia and Lo (1998) use

a nonparametric kernel density estimator to obtain the relation between derivatives’

prices and accompanying characteristics, like the prevailing price of the underlying.

Finally, Poteshman (1998) considers a nonparametric specification of a continuous

time stochastic volatility model for the daily S&P500 index. Option data are used to

get nonparametric estimates of the volatility drift, the volatility diffusion coefficient,

and the volatility risk premium as a function of the current level of the volatility. An

advantage of the semi- or nonparametric approach is that the data are fitted very

well. A disadvantage is that the estimates are less efficient and the resulting model

may have insufficient prediction power. Moreover, such an approach is less suited

when studying dynamic properties of volatility risk premiums due to the curse of

dimensionality.

An alternative can be provided by a parametric approach. In this case, the

risk-neutral probability measure is specified parametrically, so that the resulting

estimates can be interpreted as parameter values in the model that minimize a

certain ”distance”between model and actual prices. An example of this approach

is Chernov (2003). He uses a multi-factor stochastic volatility model to describe

the dynamics of traded assets. He also directly specifies the volatility risk premium

and recovers the pricing kernel implied by the model. Duan (1995) imposes the

so-called Locally Risk Neutral Valuation Relationship (LRNVR) in a discrete time

GARCH model to obtain the relevant risk-neutral probability measure. Kallsen and

Taqqu (1998) show that the LRNVR is essentially equal to assuming a piece-wise

constant likelihood ratio of the risk-neutral probability measure with respect to the

physical one. Bakshi et al. (1997), and Heston (1993) directly specify the relevant

risk-neutral probability measure.
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Our approach is parametric in the sense that, following Cox et al. (1985) and

Heston (1993), we specify the functional form for the volatility risk premium para-

metrically. In addition, we introduce extra flexibility to our parametric specification

by using so called ı̈mplied”prices of volatility risk. The methodology for extract-

ing implied prices of volatility risk is similar to the case of Black-Scholes implied

volatilities. However, while the Black-Scholes implied volatility is option specific,

our implied price of volatility risk is a market wide parameter. Hence, we estimate

the empirically relevant prices of volatility risk on a daily basis and then study the

statistical properties of the resulting time series. We use S&P500 index data from

Jan 1, 1992 to Dec 31, 1998 and corresponding European call option data from Jan

1, 1992 to Aug 8, 1997. We find that the implied prices of volatility risk are non-

constant, exhibit significant autocorrelation, and that appropriate modelling leads

to significantly better prediction of future volatility risk premiums.

With respect to the existing literature, our approach is closest to Melino and

Turnbull (1990). They estimate a continuous time stochastic volatility model for

the Canada-US exchange market. They consider the pricing of foreign currency op-

tions imposing a non-zero but constant volatility risk premium. Their conclusion is

that theoretical option prices are sensitive to the actual value of the risk premium

and that an imposed non-zero risk premium does produce more accurate predic-

tions of option prices. Melino and Turnbull (1990) try only several fixed values of

the volatility risk premium. Instead, we propose to estimate the implied prices of

volatility risk on a daily basis. We show that this produces even more accurate

predictions of option prices. Guo (1998) also finds evidence of time varying risk

premiums for the foreign exchange market. However, Guo (1998) considers the im-

plied risk premiums only over annual and semiannual periods. This does not allow a

thorough investigation of the short-run dynamic properties of the implied risk pre-

miums. Jiang and van der Sluis (1999) consider not only stochastic volatility, but

also stochastic interest rates. That paper analyzes pricing errors for options using
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previous day’s implied price of volatility risk as a predictor of today’s. The main

conclusion of the paper is that allowing for stochastic interest rates hardly improves

the results and that volatility risk is clearly not idiosyncratic.

The remainder of this chapter is organized as follows. Section 4.2 describes

the estimation methodology and the relevant theoretical background. Section 4.3

discusses the data. In Section 4.4 we present the estimation results, analyze the

dynamics of implied prices of volatility risk, and compare the out-of-sample perfor-

mance of the selected dynamic model for the implied prices of volatility risk with

other specifications. Section 5.5 concludes.

4.2 Methodology

In this section we first formulate the stochastic volatility model under the physical

probability measure. To describe the dynamics of the S&P500 we use the Heston

(1993) model, which belongs to the class of affine diffusion processes. The affine

structure of the stochastic differential equations allows one, in principle, to get

analytical solutions for transition probabilities. To price options one subsequently

needs to obtain the model dynamics under the risk-neutral probability measure. In

the stochastic volatility model this transformation depends on a specification of the

volatility risk premium. The volatility risk premium fully describes the risk-neutral

probability measure. Following Heston (1993), we specify it in such a way that,

under the risk-neutral probability measure, the model still belongs to the class of

affine-diffusion processes. This allows us to get closed-form solutions for the risk-

neutral transition probabilities. However, in contrast with Heston (1993) we allow

the parameter describing the volatility risk premium to be time-varying and study

the benefits of such an approach for pricing derivatives.

The parameters of the stochastic volatility model under the risk-neutral prob-

ability measure can be divided into parameters identifiable from the dynamics of
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the underlying index value (these parameters also enter the stochastic volatility

model under the physical probability distribution) and parameters which can only

be identified from derivative prices (risk-preference parameters as far as they con-

cern non-hedgeable innovations in the stochastic volatility). To be more precise, our

model contains four parameters, identifiable from the observed index value process

and one parameter, which reflects the market’s incompleteness. Our methodology

of estimating the parameters is twofold. First, we estimate the parameters of the

stochastic volatility model from the observed time-series of S&P500 prices and filter

instantaneous volatilities, using an E-GARCH specification. Subsequently, we esti-

mate the implied volatility risk premium from observed option prices by minimizing

an appropriate distance between theoretical and market option prices. The implied

volatility risk premium is the only variable estimated from derivative prices.

4.2.1 Estimation of the stochastic volatility Model

In our work we use the specification of Jiang and Knight (2002) for the underlying

index value process: Lin

d ln St = µdt + V
1/2
t dW

(1)
t , (4.1)

dVt = β (α− Vt) dt + σV
1/2
t dW

(2)
t , (4.2)

d
〈
W (1), W (2)

〉
t

= ρdt,

where St is the index value at time t, W
(1)
t and W

(2)
t are two dependent Brownian

motions with instantaneous correlation ρ, and V
1/2
t is the stochastic instantaneous

volatility at time t. The log-price and volatility processes are described by parame-

ters µ, α, β, σ and ρ. The coefficient µ determines the expected drift of the log-value

of the underlying asset. The volatility process is mean-reverting. The parameter

α, called the long-run volatility, represents the mean-reversion volatility level to

which the volatility reverts. The parameter β, called the volatility mean rever-

sion parameter, determines the speed or intensity of the volatility attraction to the
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mean-reverting level α. The parameter σ is a dispersion parameter of the volatility

process, which determines how volatile the volatility process itself is. The parame-

ter ρ is the correlation coefficient between the price and volatility processes. The

magnitude of this parameter is responsible for the degree of skewness of the index

return distribution. It also captures the often observed leverage effect. We assume

that the instantaneous interest rate is constant over time, so that the dynamics of

the money market account is given by

d ln Bt = rdt. (4.3)

Specifications similar to (4.1) − (4.2) are often used in empirical work when

modelling the S&P500 index dynamics. For recent examples see also Chacko and

Viceira (2003), Chernov and Ghysels (2000), and Chernov (2003). In principle, the

specification of a dynamic model for an underlying asset should be able to capture

empirical features of observable daily returns, such as skewness, excess kurtosis, and

autocorrelation of squared returns. The stochastic volatility model (4.1) − (4.2) is

able to do this to a great extent.3 Chernov et al. (2003) recommend to use affine

diffusion models for option pricing purposes, since this allows an analytical treat-

ment of the pricing problem. We follow their advise, considering a single stochastic

volatility factor model proposed by Heston (1993).

To estimate the model we use the General Method of Moments (GMM). We apply

it to a system of unconditional moment restrictions on the index log-returns taken

from Jiang and Knight (2002). Denote the index log-returns Rt = ln St+1 − ln St.

Then the moment conditions that we use are:

3Also extreme events can be taken into account by modelling jumps as in Pan (2002) or using

CEV models as in Jones (2003).We, however, consider a relatively calm post crash period 1992-

1998.
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E [Rt] = µ,

V ar [Rt] = α,

E
[
(Rt − µ)3] =

3

β2

(
e−β + β − 1

)
αρσ,

E
[
(Rt − µ)4] = 3α2 + φ0.

Cov
[
(Rt − µ)2 , (Rt+τ − µ)2] =

1

2β3
e−(τ+1)β

(
eβ − 1

)
φ1, τ ≥ 1,

with

φ0 =
3

β3

(
e−β + β − 1 + 4

(
(2 + β) e−β + β − 2

)
ρ2

)
ασ2 > 0,

φ1 =
(
eβ − 1 + 4ρ2

(
eβ − β − 1

))
ασ2 > 0.

The analytical expressions for these moments are derived using the joint charac-

teristic function of returns, which is available in closed form for this affine diffusion

process, see Jiang and Knight (2002). These particular moments were chosen due

to their empirical relevance. The first two allow one to identify the expected index

log-return µ and long-run volatility α. The third and the fourth one account for the

excess skewness and kurtosis of the empirical log-return distribution. The final mo-

ment matches the empirical autocovariance pattern in squared returns. Note that

these moments can be used to develop general intuition on how well the SV model

can describe the empirical findings. For instance, it immediately follows from the

expression of the third central moment that the sign of the correlation coefficient

ρ determines the direction of the skewness of the log-return distribution, while the

magnitudes of both σ and ρ affect the size of the effect. The fourth moment shows

that the excess kurtosis of log-returns equals ϕ0/α
2 > 0. The autocovariance of

squared log-returns is always positive. Jiang and Knight (2002) use these moments

to estimate the stochastic volatility model from a shorter time-series of the S&P500

index values.
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4.2.2 Filtering of the instantaneous volatilities.

One of the problems with SV models is that they contain the latent volatility, which

needs to be filtered for the purposes of option pricing. There are several approaches

to solve this problem in the literature. Gallant and Tauchen (1998) suggest a re-

projection method for filtering conditional volatilities from the continuous stochastic

volatility specification. This method requires Monte-Carlo simulation of the dynam-

ics of the stochastic volatility process, using an Euler discretization scheme. An-

other, more direct method, is to filter the volatilities from a discrete time GARCH

or E-GARCH specification. Nelson (1992) shows that this filter is consistent, which

means that, as the discretization step goes to zero, the filtered volatility process

converges to the true one under mild assumptions. An advantage of this method is

that it allows one to obtain consistent estimates of the volatility even in the case

when the model for the asset price dynamics is misspecified. In other words, the

GARCH or E-GARCH filter gives general consistency and robustness. This hap-

pens because of the continuity of the volatility process, see Nelson (1992) for the

details. A disadvantage of the method is that the estimated volatilities might be

somewhat less efficient than in case of the reprojection method. However, since the

reprojection method involves the choice and estimation of an auxiliary model as well

as simulations, the efficiency of the reprojection method is not straightforward in

an empirical application.

In this paper we filter instantaneous volatilities from the discrete E-GARCH

specification of the stochastic volatility model. E-GARCH is chosen because, similar

to the continuous-time stochastic volatility model as specified by (4.1) and (4.2), the

E-GARCH allows for skewness, excess kurtosis, and a leverage effect.4

4In principle, GARCH specification also provides a consistent filter for instantaneous volatilities.

When comparing E-GARCH and GARCH, we find that the empirical results are similar.
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4.2.3 Stochastic volatility option pricing

To price derivatives in the model (4.1) − (4.2) one needs to derive the asset price

dynamics under the risk-neutral probability distribution. As is well known, the

derivative price can then be expressed as an expectation of the normalized future

payoff

Ct

Nt

= EQ
t

[
CT

NT

]

where CT is the future payoff of the derivative, Ct is the derivative price, Nt is

the numeraire at time t, and Q indicates taking expectations under the risk-neutral

probability measure. For the stochastic volatility model (4.1)-(4.2), the change of

the probability measure can be characterized by the Radon-Nikodym derivative,

following from Girsanov’s theorem:

(
dQ

dP

)

T

= exp

(
−1

2

∫ T

0

(
η2

t + λ2
t

)
dt−

∫ T

0

ηtdW
(1)
t −

∫ T

0

λtdW
(2)
t

)

where ηt and λt are the drift transformations corresponding to W (1) and W (2) re-

spectively. We assume that these transformations are functions of the state variables

S, V, and time, i.e., ηt = η (St, Vt, t) and λt = λ (St, Vt, t). They enter Girsanov’s

equation and determine the return and volatility risk premiums. In vector differen-

tial form the Girsanov transformation of the Brownian motions W (1) and W (2) is

the following:


 dW

(1)
t

dW
(2)
t


 =


 η (St, Vt, t)

λ (St, Vt, t)


 dt +


 dW̃

(1)
t

dW̃
(2)
t


 , (4.4)

here η (St, Vt, t) is the index value risk premium and λ (St, Vt, t) is the volatility

risk premium. The index value risk premium η (St, Vt, t) = [µ− r + d] /
√

Vt, with

d standing for the continuous dividend pay-out rate, is fixed by the no-arbitrage

argument due to the fact that the index is a tradable asset. On the contrary, the



4.2. METHODOLOGY 109

volatility risk premium λ (St, Vt, t) cannot be fixed by no-arbitrage arguments alone,

which reflects the market incompleteness. Each possible choice of the volatility risk

premium, satisfying appropriate integrability conditions, excludes arbitrage oppor-

tunities.

Following Heston (1993) and Cox et al. (1985) we make the assumption that the

volatility risk-premium is proportional to the instantaneous volatility

λ (t, St, Vt) = λ
1

σ
V

1/2
t .

We call the coefficient of proportionality λ the price of volatility risk. It is the

central object of our study, characterizing the derivative pricing mechanism in the

incomplete market. Using this assumption and applying Girsanov’s transformation

to (4.1)− (4.2), we find

d ln St =

(
r − d− 1

2
Vt

)
dt + V

1/2
t dW̃

(1)
t , (4.5)

dVt = (β + λ)

[
αβ

β + λ
− Vt

]
dt + σV

1/2
t dW̃

(2)
t , (4.6)

d
〈
W̃ (1), W̃ (2)

〉
t
= ρdt, (4.7)

where W̃ (1) and W̃ (2) are risk-neutral Brownian motions.

Heston (1993) shows that the price for a European call option with the exercise

price K and time to maturity τ can, in general, be written in the following form

Ct = e−dτStQS {ST ≥ K}t − e−rτKQB {ST ≥ K}t , (4.8)

where QS {ST ≥ K} is the risk-neutral conditional probability that the option ex-

pires in the money, with the index value St as a numeraire, and QB {ST ≥ K} is the

risk-neutral conditional probability that the option expires in the money, with the

money market account Bt as a numeraire.

Generally, closed-form solutions for these conditional risk-neutral probabilities

are not available. Duffie et al. (2000) demonstrate that, in an affine jump-diffusion
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model, the solution for the conditional characteristic function of St is available in

analytical form. The conditional characteristic function for our stochastic volatility

model are derived in Heston (1993). The probabilities QS and QB are then the

inverse Fourier transforms of the corresponding conditional characteristic functions:

QS (ST ≥ K)t =
1

2
+

1

π

∞∫

0

Re

[
e−iω ln KφS (s, V, ω)

iω

]
dω (4.9a)

QB (ST ≥ K)t =
1

2
+

1

π

∞∫

0

Re

[
e−iω ln KφB (s, V, ω)

iω

]
dω (4.9b)

where φS (s, V, ω) is the conditional characteristic function of the logarithm of the un-

derlying value under the risk-neutral probability measure with St as the numeraire,

and φB (s, V, ω) is the conditional characteristic function of the logarithm of the

underlying value under the risk-neutral probability measure with the money market

account Bt as the numeraire.

4.2.4 Estimation of the implied price of volatility risk.

The price of volatility risk λ enters only the stochastic volatility model under the

risk-neutral probability measure, so information on the underlying value dynamics

cannot be used to estimate λ. On the contrary, option prices depend on the price of

volatility risk through the risk-neutral conditional probabilities. Thus, observed op-

tion prices can be used to estimate the price of volatility risk. We estimate the prices

of volatility risk on a daily basis by minimizing an appropriately chosen distance

between observed option prices and the theoretical option prices for the stochas-

tic volatility model, given in equation (4.8). Note, however, that the model itself

assumes a constant price of volatility risk. In this respect, our prices of volatility

risk estimated on a daily frequency are analogous to the implied volatilities of Black

and Scholes. We call our estimates for this reason implied prices of volatility risk.

Following Bakshi et al. (1997), we choose the sum of the relative squared errors



4.3. DATA 111

as a distance measure between observed and theoretical option prices. There are

two reasons for this choice. First, one could think of practical considerations. An

investor, investing in different option contracts, wants to minimize the percentage

of his wealth at risk. The relative error of the stochastic volatility model indicates

exactly the percentage of wealth that can be lost due to mispricing. Second, we

would like to have a measure which does not overweight expensive options with re-

spect to cheap ones. The relative squared error becomes then a simple and natural

choice. It is also consistent with the measure of out-of-sample pricing performance.

Summarizing, we estimate the implied price of volatility risk as follows:

λ̂t = Arg min
λ

Jt∑
i=1


Ci,t

(
λ, θ̂, V̂t

)
− Ci,t

Ci,t




2

(4.10)

where Ci,t is the observed price of the ith option at day t, Ci,t

(
λt, θ̂, V̂t

)
is the

theoretical price of the ith option from (4.8), and Jt is the number of option con-

tracts observed at day t. Other parameters θ = (α, β, σ, ρ), necessary to obtain the

theoretical option prices, are estimated from the dynamics of the underlying value,

and the instantaneous volatilities Vt of the process are filtered using the discrete

E-GARCH specification, as described in Sections 2.1 and 2.2.

4.3 Data

In our analysis we use daily values of the S&P500 index from January 1, 1992 to

December 31, 1998 and European call options written on the S&P500 index from

January 1992 to August 1997. The annualized summary statistics for the daily

S&P500 returns are reported in Table 4.1. The average return on the index is 15.4%

with annualized volatility of 13%. The distribution of the index return is negatively

skewed. The distribution has substantial excess kurtosis. The autocorrelations of

the index returns are low and statistically insignificant, while the autocorrelations
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of squared returns are positive, significant, and diminishing with the order.

We also use European call option data on the S&P500 index for the period from

January 2, 1992 to August 21, 1997. To eliminate possible data errors and liquidity

problems we apply several screening criteria to our option data set. The criteria we

use are based on Bakshi et al. (1997). We exclude from our sample options with

moneyness5 less than 0.9 and greater than 1.1 as well as contracts with maturity less

than 5 trading days. Options with mid quotes less than $3/8 and implied Black-

Scholes volatilities greater than 90% are also eliminated from our sample as being

illiquid contracts. Finally, we exclude from the sample call options which violate

the no-arbitrage restriction Ct ≥ Max
[
0, Ste

−dτ −Ke−rτ
]
. Table 4.2 contains the

sample characteristics for the selected call options subdivided in different categories

according to moneyness and time to maturity. For each category we report the

average bid-ask midpoint price, the average bid-ask spread,6 the average Black-

Scholes implied volatility and the number of contracts.

The implied volatilities are calculated using the end-of-the-day option mid price,

S&P500 index level, the risk-free interest rate, time to maturity, and dividend yield.

Since the companies in the S&P500 index pay dividends we have to take them into

account. Following Chernov (2003) we assume a continuous annual dividend yield of

2%, which is consistent with historical data. The risk-free interest rates are obtained

from US interbank interest rates for 1, 3, 6 and 12 months. The risk-free rate for a

particular option is calculated by linear interpolation of the US interbank interest

rates that straddle the option’s maturity.

5We define moneyness as the Index-to-Strike ratio: I = S/K.
6Defined as ask price minus bid price.
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4.4 Estimation results

4.4.1 Estimation of the SV model

The GMM estimation of the parameters of the stochastic volatility model is based

on the marginal and joint moment conditions as outlined in Section 2. In princi-

ple, there is an infinite number of moments available for GMM estimation. Our

choice of moments is mainly guided by the Monte Carlo evidence on GMM esti-

mation of a stochastic volatility model as, for instance, in Andersen and Sorensen

(1996). While choosing the number of moments we have to take into account the

usual trade-off between efficiency of the parameter estimates and precision of the

optimal weighting matrix. The absolute moments of the index return, as opposed to

a discrete model, cannot be derived in closed form for the continuous-time model, so

we cannot use them. Andersen and Sorensen (1996) show that inclusion of absolute

moments brings only minor gains to estimation performance. Further, in choosing

the exact moments, we take into account that the SV model allows for skewness and

excess kurtosis. This makes the first four unconditional moments important. Fi-

nally, autocorrelation of squared returns is determined by the volatility process and

the leverage effect, hinting that the joint moments of squared returns are important

for identification of the parameters of the volatility process. To capture the changes

of the autocorrelation in lag order we use the first five lags of these moments. Thus,

the first four central moments of the index returns and the first five orders of the

autocorrelation of the squared returns are used in the GMM estimation. To esti-

mate the optimal weighting matrix we use Newey and West (1987) with a fixed lag

number of 13. The initial parameter values are set equal to the method of moment

estimates, obtained by matching the first four central moments and the first order

autocorrelation of the squared returns to the data. Table 4.3 reports the parameter

estimates and asymptotic standard errors for the SV model.

The estimated expected return µ on S&P500 is 15.4%, which is consistent with
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the sample properties. The estimated mean-reverting volatility level α is equal to

0.0173, which corresponds to 13.1% standard deviation of the index return. Thus,

the difference between the sample standard deviation and our estimate is not sub-

stantial. The mean-reverting coefficient β is estimated to be equal to 16.18. The

estimate is significant at the 10% level. The half-life of a volatility shock, according

to the estimated mean-reverting coefficient, is equal to ln 2/β ≈ 11 trading days.

The estimate of the volatility parameter σ of the volatility process is significantly

different from zero and equals to 1.3. The parameter ρ is insignificantly different

from zero. We use the estimated parameters of the stochastic volatility model for

option pricing.

Our estimation results are comparable to those of Chacko and Viceira (2003) and

Jiang and Knight (2002). While our estimate of the mean-reversion parameter is

very close to the one in Chacko and Viceira (2003), the estimate of volatility of the

volatility process is lower. As was noted in several papers, the mean-reverting coef-

ficient and volatility of the volatility process are interrelated parameters. There is

also evidence that the estimates of those two parameters tend to change significantly

depending on the estimation method and the sample.

4.4.2 Filtering instantaneous volatilities.

We filter instantaneous volatilities using the E-GARCH(1,1) specification. It gives

consistent estimates of the true volatility process, see Nelson (1992). The discrete

time E-GARCH model as well as the continuous time stochastic volatility model

allows for leverage effect and excess kurtosis. We obtain the instantaneous volatility

estimates, which are subsequently used in option pricing. Figure 4.1 shows the

estimated annualized instantaneous volatilities. Volatility spikes in Figure 4.1 reflect

turbulent times on the stock market. It is possible to see that the variability of the

volatility process is substantial. The mean-reverting pattern of the volatility process

is apparent as well. Option prices, in case of the stochastic volatility model, will
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depend positively on the instantaneous volatilities. However, this dependence will

be weaker for contracts with long time to maturity, especially if the mean-reverting

parameter β (or the price of volatility risk λ) is high.

4.4.3 Estimation of implied prices of volatility risk

As outlined before, European call option prices in a stochastic volatility model

depend on the parameters of the model under the physical probability measure

as well as the price of volatility risk λ. We use the estimated parameters of the

stochastic volatility model given in Table 1 to analyze the sensitivity of the European

call option prices, relative to the value of the underlying, with respect to the price

of volatility risk. Figure 4.2 shows call option prices as functions of the price of

volatility risk λ. The maturity of the option contracts is 1 year. The relative

European call option prices are shown for moneyness equal to 0.94, 1, and 1.06.

The Black and Scholes European call option price is also shown for the sake of

comparison. The volatility parameter in the Black and Scholes model is chosen to be

equal to the mean-reverting level α of the volatility process in the stochastic volatility

model. For the stochastic volatility model, the current level of the instantaneous

volatility is chosen as Vt = α.

As can be seen, the price of a European call option in the stochastic volatility

model decreases as the price of volatility risk increases. This is true for all maturities

and all values of moneyness of the option contract and due to the fact that a higher

price of volatility risk makes the long-run volatility less uncertain (the process re-

verses faster). The relative call option price is a nonlinear convex function of the

price of volatility risk. This means that negative changes in the price of volatility

risk lead to higher absolute changes in option price than the positive ones. Overall

the stochastic volatility model is a more flexible model than the Black-ScholesṪhis

explains the well known finding that the stochastic volatility model with a non-zero
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price of volatility risk is capable to explain the systematic biases of the observed

option prices from the Black and Scholes European call option price.

As explained in subsection 4.2.4, we estimate the implied prices of volatility risk

on a daily basis by minimizing the relative distance between observed and model-

predicted option prices. Figure 4.3 shows the dynamics of the estimated prices of

volatility risk. Estimates of the implied prices of volatility risk show non-trivial

dynamics with a high persistence.

The estimated implied prices of volatility risk have the same measurement units

as the mean-reverting coefficient β in the stochastic volatility model (4.6). Thus, we

can roughly interpret the implied price of volatility risk as the extent to which mean-

reversion speed changes under the risk-neutral probability distribution. Negative

values of the implied price of volatility risk imply that the European call option

prices are higher in comparison to the idiosyncratic volatility risk. From the upper

panel of Figure 4.3 we can see that the estimated implied prices of volatility risk

are generally negative, which means that a model with idiosyncratic volatility would

underprice options. The average estimated implied price of volatility risk is -6.08

with a standard deviation of 0.13. The negative price of volatility risk is in line with

the empirical literature. For example, Bakshi and Kapadia (2003) provide a strong

evidence of the negative volatility risk premium by studying statistical properties of

the delta-hedged gains. Also Pan (2002) obtains a negative volatility risk premium

for stochastic volatility specification.

The high persistence of the estimated implied prices of volatility risk suggests

that the dynamics of the implied prices of volatility risk can be modeled as an AR

process. However, we estimate a dynamic model for daily changes in the implied

price of volatility risk (see the lower panel of Figure 4.3) to avoid problems with

unit roots. Table 4.4 shows sample characteristics of daily changes in the implied

prices of volatility risk.

It can be seen that the autocorrelation coefficients are negative and decrease
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with the autocorrelation order.

We search for an appropriate time series model to describe the dynamics of daily

changes in the implied prices of volatility risk in the ARMA class of linear models.

As a choice criterion the Schwarz information criterion (SIC) is used. Applying SIC,

we pick the ARMA(2,1) to model the dynamics of the implied prices of volatility risk.

The corresponding parameter estimates are given in Table 4.5. All the coefficients

are statistically significant at the 5% significance level.

The estimates in Table 4.5 show that daily changes in the implied price of volatil-

ity risk are persistent. One of the roots of the ARMA(2,1) is equal to 0.8. It also

follows from the model, that the implied price of volatility risk is predictable from

its past. The model explains about 6% of variation in daily changes of the implied

price of volatility risk.

We also tried to include lags of other financial variables such as index daily

return, index value spreads, instantaneous volatilities, and the price adjusted trade

volumes for prediction of the implied prices of volatility risk. It turned out that these

variables help little in explaining the dynamics of the implied price of volatility risk.

4.4.4 Out-of-sample pricing performance

We analyze the performance of our model on a 1, 5, and 20 day horizon. We

use the estimated ARMA (2,1) model to form 1, 5 and 20 day ahead predictions

for the implied price of volatility risk. In order to evaluate the importance of the

dynamic properties of the implied prices of volatility risk, we investigate the out-of-

sample performance of the chosen dynamic model with respect to predicting future

option prices conditionally on the index value price and instantaneous volatility.

This strategy gives insight into the errors of a hedging strategy based on predicting

implied prices of volatility risk. We compare our dynamic specification of implied

prices of volatility risk with several other approaches used in the literature.

Prediction of option prices, conditional on the index value and the instantaneous
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volatility, in our model boils down to the prediction of the implied price of volatility

risk. Note that very similar techniques are often applied in practice with respect to

implied Black-Scholes volatilities. There, one tries to predict future values of the

implied volatility using past values and characteristics of the options like maturity

and moneynessȮur approach is more structural, since we model part of the Black-

Scholes pricing errors by allowing for non-idiosyncratic volatility risk.

We compare our dynamic model with several alternative specifications, which

were proposed in the literature. The first specification assumes idiosyncratic volatil-

ity risk, i.e., λ = 0. Such a specification was proposed and investigated from a

theoretical point of view by Hull and White (1987). Empirical results usually do

not support this specification. Here, it is included for the sake of comparison. The

second specification assumes a constant price of volatility risk. In the framework of a

non-affine stochastic volatility process, a comparable specification was considered by

Melino and Turnbull (1990). As third specification we assume that today’s implied

price of volatility risk is simply equal to the one in the previous trading day. This

specification is also used in Jiang and van der Sluis (1999) whose focus is, however,

not on the dynamic properties of the price of volatility risk, but the effect of random

interest rates. Finally, we also include the Black-Scholes model as a benchmark. We

compare these four specifications to our dynamic ARMA(2,1) model. Overall, we

consider the following five specifications:

• BS: Black and Scholes specification (constant volatility)

• λ̂t = 0: idiosyncratic volatility risk

• λ̂t = λ: constant price of volatility risk

• λ̂t+1|t = λ̂t: unpredictable changes in the implied price of volatility risk

• ARMA(2,1): dynamic specification
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We base the evaluation of the different pricing models on the basis of the aver-

age (absolute) relative distance between predicted option prices and observed option

prices. The predicted option prices are calculated according to the stochastic volatil-

ity option pricing equation. We use the parameter vector (α, β, σ, ρ) estimated over

the whole sample, the actual St+s and V̂t+s, and forecasts for the implied price of

volatility risk, λ̂t+s|t, obtained from the dynamic model. The predicted option prices

are confronted with the observed price of the corresponding option contract and the

relative pricing error is calculated. Table 4.6 shows the results of the comparison

among the different specification based on the average absolute relative pricing error.

Standard errors are added to indicate the variability of the average pricing errors

in our sample.7 It follows that the out-of-sample pricing performance substantially

improves if we allow the price of volatility risk to change over time. First, note

that modelling stochastic volatility improves the pricing performance in comparison

to the Black-Scholes model: relative pricing error decreases almost by 6 percentage

points. A further 2 percentage points improvement can be achieved by allowing

a constant price of volatility risk. Finally, as we let the price of volatility risk to

change in time, the pricing error decreases by virtually 5% (for 1 day forecasts).

Notice, however, that the difference between the random walk
(
λ̂t+1|t = λ̂t

)
and the

ARMA(2,1) is marginal.

The results in Table 4.6 clearly show that modelling the dynamics of the im-

plied price of volatility risk improves the out-of-sample pricing performance of the

stochastic volatility model, aggregated over all options traded on a single day. Ta-

ble 4.7 shows the out-of-sample pricing performance for different groups of options

constructed with respect to moneyness and maturity. The average absolute relative

errors are shown for a one day forecasting horizon. It turns out that the stochastic

volatility model with a dynamic implied price of volatility risk prices expensive op-

7These standard errors cannot be used for the statistical inference on the model pricing error

since the model sampling error is not taken into account.
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tions better than cheap ones. In particular, options with long maturities are priced

better than contracts with short time to maturity. For deep in-the-money options

with short time to maturity the performance of the model with constant price of

volatility risk is comparable with the performance of dynamic models. In general,

the dynamic models for the implied price of volatility risk substantially outperform

their alternatives.

4.5 Conclusion

In this paper we present an empirical application of the Heston (1993) stochastic

volatility model. The modelled market is incomplete in terms of the underlying

assets, so that pricing by arbitrage of derivatives is impossible: the volatility risk

premium is not fixed. By using option prices observed in the market, we are able

to estimate the empirically relevant prices of volatility risk. Our finding, that the

estimated implied price of volatility risk changes over time, is in line with the existing

literature. We model explicitly the dynamics and investigate statistical properties

of the implied prices of volatility risk. We show that modelling dynamics of the

implied prices of volatility risk improves out-of-sample option pricing performance

with respect to the specifications studied before.
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4.A Tables and figures

S&P500 returns: Sample Characteristics
N Mean Std.Dev. Skewness Kurtosis Maximum Minimum

R(t) 1769 0.154 0.131 -0.607 12.116 12.572 -17.924

Autocorrelations
N ρ(1) ρ(2) ρ(3) ρ(8) ρ(10) ρ(15)

R(t) 1769 -0.002 -0.025 -0.028 -0.009 0.056 -0.016
t-stat 0.09 -0.72 -0.97 -0.05 0.48 -0.27
R2(t) 1769 0.265 0.14 0.079 0.086 0.087 0.076
t-stat 5.9 5.7 5.5 4.2 4.1 2.9

Tabel 4.1: Annualized summary statistics of S&P 500 index returns for the period
1992-1998.
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Maturity (days)
Moneyness ≤ 60 60− 180 > 180

< 0.94 Mid price 1.24 2.28 10.18
Bid-Ask spread 0.24 0.3 0.57

Implied volatility 14% 12% 12%
N contracts 646 3064 2369

0.94− 0.97 Mid price 2.12 5.95 18.51
Bid-Ask spread 0.25 0.4 0.75

Implied volatility 12% 12% 13%
N contracts 3961 5761 2070

0.97− 1.00 Mid price 5.62 13.02 28.18
Bid-Ask spread 0.35 0.58 0.84

Implied volatility 13% 13% 14%
N contracts 7291 6834 2688

1.00− 1.03 Mid price 15.23 23.46 39.74
Bid-Ask spread 0.63 0.76 0.95

Implied volatility 15% 14% 15%
N contracts 7366 6800 2857

1.03− 1.06 Mid price 28.42 35.24 50
Bid-Ask spread 0.86 0.88 0.96

Implied volatility 17% 16% 16%
N contracts 6670 6273 2839

> 1.06 Mid price 44.26 49.42 63.46
Bid-Ask spread 0.96 0.94 1.01

Implied volatility 21% 17% 17%
N contracts 5724 5479 2111

Tabel 4.2: Characteristics of European call option data: The average midpoint price,
the average bid-ask spread, the average implied volatility and the total number of
observations for different moneyness and the time-to-maturity.

S&P annualized
Estimates Std. Err.

µ 0.154 0.045
α 0.0173 0.0022
β 16.18 9.47
σ 1.3 0.40
ρ -0.67 0.43

Tabel 4.3: Annualized estimated parameters of the SV model. The left column
contains standard errors of the estimates.
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∆λ(t): Sample Characteristics
N Mean Std.Dev. Skewness Kurtosis Maximum Minimum

∆λ(t) 1408 -0.0034 1.15 -0.0401 6.548 7.676 -6.255

Autocorrelations
N ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(6)

∆λ(t) 1408 -0.203 -0.071 -0.01 -0.006 -0.023 0.016

Tabel 4.4: Sample Characteristics of the Implied Prices of Volatility Risk.

ARMA(2,1)
Param. Estimates t-statistic
AR(1) 0.66 11.38
AR(2) 0.11 2.71
MA(1) -0.90 -21.74

Tabel 4.5: Modelling the dynamics of the Implied Price of Volatility Risk, parameter
estimates.

Average Absolute Relative Prediction Errors
BS λ = 0 λ(t) = λ λ(t + 1) = λ(t) ARMA(2,1)

1 day 22.7% 17.00% 15.00% 10.19% 10.16%
0.15% 0.07% 0.07% 0.05% 0.05%

5 days * * * 10.83% 10.76%
* * * 0.05% 0.05%

20 days * * * 12.03% 11.8%
* * * 0.06% 0.06%

Tabel 4.6: Out-of-sample predictive performance for the stochastic volatility model
with various specifications of the implied price of volatility risk λ. The numbers are
the average absolute relative errors and their standard errors.
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Figuur 4.1: Annualized E-GARCH filtered volatilities.
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Assessing credit with equity: A

constant elasticity of variance

model with jump to default

5.1 Introduction

Theoretical credit risk models developed in the financial literature can be divided

into two categories: structural models and reduced-form models. Introduced by

Merton (1974), structural models describe default as an event triggered by underly-

ing processes of state variables related to the capital structure of the debt issuer.1

As opposed to the structural models, which link default explicitly to the first time

asset falls below a certain level, a more recent literature adopted the reduced-form

approach, assuming that the default arriving intensity exists and expressing it di-

rectly as a function of latent state variables or predictors of default, see, for example,

Jarrow and Turnbull (1995), Artzner and Delbaen (1995), and Duffie and Singleton

(1999). This approach allows straightforward application of statistical methods for

1Examples of this approach are, among others, Cathcart and El-Jahel (1998), Leland and Toft

(1996), and Longstaff and Schwartz (1995).

127
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estimating the incidence of default. It has recently been shown by Duffie and Lando

(2001) and Giesecke (2003) that structural models augmented with incomplete in-

formation can be consistent with a reduced form representation.

Investors have been showing an increasing appetite for models that simulta-

neously handle credit and equity instruments, which is important in managing a

portfolio including these two instruments. Indeed, cross-asset trading of credit risk

has been gaining momentum among credit hedge funds and banks. The rise of cap-

ital structure arbitrage2 is a good example, see, for instance, Yu (2004). Due to a

weak and indirect linkage to the firm’s capital structure, reduced-form models of

credit risk might not be of great help. Among the papers that actually model this

linkage through a default hazard rate factor model, see, for example, Bakshi et al.

(2004). Structural models are driven by the value evolution in the firm’s assets.

The assets-value evolution is often assumed to be diffusive3 so that the default can

be seen predictably coming by observing changes in the capital structure of the

firm (see the seminal papers of Merton (1974) and Black and Cox (1976)). While

appealing, structural models reveal certain disadvantages when it comes to appli-

cations. The underlying (the sum of the firm’s liabilities and equity) is illiquid and

often non-tradable. Obtaining accurate asset volatility forecasts and reliable capital

structure leverage data is difficult. In addition, predictability of the default event

implies the counterfactual prediction of zero credit spreads for short maturities.4

Finally, arbitrary use of the structural default barrier is often a temptation hard to

resist, while endogenous barriers are impractical because of the unrealistic capital-

2Capital structure arbitrage is a term used in the financial industry for positions in credit

instruments hedged with equity or equity derivatives.
3There are few exceptions which incorporate jumps. Examples are Huang and Huang (2002)

and Zhou (2001). Duffie and Lando (2001) and Giesecke (2003) take into account incomplete

accounting information.
4See, for example, the empirical studies by Sarig and Warga (1989) and Beneish and Press

(1995).
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structure assumptions under which they are derived, see, as an example, Hui et al.

(2003).

We propose a parsimonious credit risk model that does look at the firm’s balance

sheet, but avoids the application mishaps of structural models. We take as underly-

ing the most liquid and observable corporate security: equity. This modelling choice

brings in hedging viability and the possibility of reliable model calibration since in-

frequent and often noisy leverage information from book values can be avoided. We

parsimoniously represent default as equity value hitting the zero barrier either diffu-

sively or with a jump. The presence of an equity-value drop to zero has its credit-risk

foundation in the incompleteness of accounting information (see Duffie and Lando

(2001)) and rules out default predictability. The model is especially appealing for

pricing credit securities of distressed companies. The equity price, being an imper-

fect hedge against default events, becomes a very informative credit indicator as the

company approaches bankruptcy.

We assume that the continuous-path part of the equity value is a Constant-

Elasticity-of-Variance (CEV) diffusion,5 which enables absorption at zero, and that

the jump to default is driven by a Poisson process. Such distributional assumptions

allow us to obtain closed forms for Corporate Bond (CB) prices and Credit Default

Swap (CDS) rates, from which hedge ratios can be easily calculated. These assump-

tions and a careful specification of the state-price density also empower analytic

credit-risk management. We provide closed form solutions for the objective default

probabilities in the presence of systematic jump-to-default risk. Albanese and Chen

(2004) and Campi and Sbuelz (2004) also use a CEV-equity model to price credit

instruments, but they disregard the default predictability issue. In deriving closed-

5The CEV process has been first introduced to finance by Cox (1975). The CEV-based asset-

pricing literature includes the works of Albanese et al. (2001), Beckers (1980), Boyle and Tian

(1999), Cox and Ross (1976), Davydov and Linetsky (2001), Emanuel and MacBeth (1982), Forde

(2005), Goldenberg (1991), Leung and Kwok (2005), Lo et al. (2000), Lo et al. (2001), Lo et al.

(2004), Sbuelz (2004), and Schroder (1989).
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form values, we build upon a CEV result in Campi and Sbuelz (2004). Brigo and

Tarenghi (2004), Naik et al. (2003) and Trinh (2004) introduce a hybrid debt-equity

model that considers equity as a primitive, but that, like structural models, neces-

sitates an exogenous default barrier, which is then left to potentially ad-hoc uses.

Equity value is usually assumed to be a geometric Brownian motion, except in Brigo

and Tarenghi (2004)6. Das and Sundaram (2003) have proposed an equity-based

model that accounts for default risk, interest risk, and equity risk using a lattice

framework. As such, they do not seek hedger-friendly analytic solutions. Numerical

credit risk pricing based on equity has also been suggested by the convertible bond

literature (see, for example, Andersen and Anreasen (2000), Andersen and Buffum

(2003), and Tsiveriotis and Fernandes (1998); McConnel and Schwartz (1986) ignore

the possibility of bankruptcy). Linetsky (2005) builds upon the convertible bond lit-

erature to assess zero-coupon CB prices within a geometric-Brownian motion model

with jump-like bankruptcy, where the hazard rate of bankruptcy is a negative power

of the share price. The dependence of the hazard rate on the share price severely

complicates the analysis7.

The remainder of the chapter is organized as follows. Section 5.2 describes the

underlying equity value process. Section 5.3 provides analytic results for corporate

bonds and credit default swaps. Section 5.4 specifies a pricing kernel that permits

analytic objective default probabilities. Section 5.5 concludes. An Appendix gathers

proofs and technical details.

6Brigo and Tarenghi (2004) and Hui et al. (2003) employ a flexible time-varying default barrier.

Hui et al. (2003) do not take equity as the underlying.
7The valuation formulae in Linetsky (2005) are spectral expansions that embed single integrals

with respect to the spectral parameter and calculations imply the use of numerical-integration

routines.
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5.2 The equity value

We fix the risk-neutral probability space (Ω,F ,Q) and the information filtration

(F) = {Ft : t ≥ 0}, satisfying the usual conditions.8 Suppose further that the equity

price S of a debt issuer is a Markov process with respect to (F) in R+, solving the

stochastic differential equation

dSt = (r + λ− q) St−dt + σSρ
t−dzt − St−dNt, (5.1)

where z is an (Ft)-standard Brownian Motion in R and N is a pure jump process

with exponentially distributed arrival time τ . The parameters of the stochastic

differential equation (5.1) are the risk-free interest rate r, the dividend payout rate

q, the constant scale factor for the diffusive volatility σ > 0, and the elasticity

parameter9 of the diffusive volatility ρ. We denote the left-continuous version of

the process St by St− = limε↘0 St−ε, which is the left time limit. The process N is

defined as

Nt =





0 if 0 ≤ t < τ

1 if t ≥ τ

,

where the arrival time τ has the exponential probability density function

fτ (t) = λe−λt,

with intensity parameter λ > 0. The process N can be interpreted as a first-jump-

stopped Poisson process with respect to filtration (Ft). Notice, that the Brownian

Motion z and the Poisson jump process N defined on the probability space (Ω,F ,Q)

and with respect to the same filtration (Ft) are independent by construction, see, for

example, Shreve (2004), Corollary 11.5.3. Moreover, any random variable depending

only on the path of z will be independent on any random variable depending only

on the path of N .

8F0 contains all the null sets of F and {Ft} is right continuous.
9Note, that the elasticity of volatility is ρ− 1.
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The equity process S is the default-state process. We assume that the default

happens as soon as St becomes zero for the first time. According to the SDE (5.1) the

default can happen either when the process is diffusively absorbed at zero, or when

a jump happens. To rigorously define these defaults we introduce a pure diffusive

counterpart Sc of the process S, satisfying the stochastic differential equation

dSc
t = (r + λ− q) Sc

t dt + σ(Sc
t )

ρdzt. (5.2)

The paths of the processes St and Sc
t coincide before the jump time τ , i.e.,

St =





Sc
t if 0 ≤ t < τ

0 if t ≥ τ

.

We define the stopping time ξ = inf{t : Sc
t = 0} as the time of diffusive absorbtion

at zero10. We call the stopping time ξ the time of diffusive default, and the stopping

time τ the time of jump default. The default time η is defined as the minimum

between τ and ξ

η ≡ τ ∧ ξ = inf{t : St = 0}.

Notice, that since τ and ξ are independent the default survival probability is the

product of the diffusive default survival probability and the jump default survival

probability

PQ (η > t) = PQ (τ > t)PQ (ξ > t) .

10According to the boundary classification, an inverse relationship between volatility and share

price (ρ < 0) is necessary to have absorbtion at zero. Such an assumption is unlikely to be

counterfactual.
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5.3 Analytic results for corporate bonds and credit

default swaps

Let V Q(S, T, y) be the T -truncated Laplace transform of the default time η proba-

bility density function under the risk-neutral probability measure Q

V Q(S, T, y) ≡ EQ
0

[
exp(−yη)1{η≤T}

]
,

where y is the parameter of the Laplace transformation. This quantity is the building

block for the analytic pricing of corporate bonds (CB) and credit default swaps

(CDS). There is a simple interpretation of the Laplace transform of the default time

probability density function. The value V Q(S, T, y) represents the present value of

1 unit of currency at default discounted at rate y, if default occurs within the time

interval [0, T ]. It is straightforward that the Laplace transform V Q(S, T, r) is the fair

present value of the contract with time to maturity T that pays 1 unit of recovery

at default, and V (S, T, 0) is the risk-neutral probability of default within the time

interval [0, T ].

The next proposition is a neat and useful result stemming from the independence

between the standard Brownian motion {z} and the Poisson jump process {N}. It

gives an analytic characterization of the T -truncated Laplace transform V Q(S, T, y).

The proposition states that the Laplace transform is the linear convex combination

of the adjusted risk-neutral probability of default within time T (with weight λ
y+λ

)

and of the (y + λ)-discounted value of 1 unit of currency at the diffusive default

within T (with weight y
y+λ

). The latter is the T -truncated Laplace transform of the

diffusive default time probability density function with Laplace parameter y + λ,

EQ
0

[
exp (− (y + λ) ξ) 1{ξ≤T}

]
,

and its closed form11 has recently been derived by Campi and Sbuelz (2004). The

closed form is provided in Appendix 5.A.

11Davydov and Linetsky (2001), see pp. 953 and 956, point out that the T -truncated Laplace
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Proposition 5.1 Under the above assumptions, the T -truncated Laplace transform

of η’s Q-p.d.f. with Laplace parameter y is

V Q (S, T, y) =
λ

y + λ

[
1− exp (− (y + λ) T )

(
1− EQ

0

[
1{ξ≤T}

])]

+
y

y + λ
EQ

0

[
exp (− (y + λ) ξ) 1{ξ≤T}

]
.

Proof. See Appendix 5.A.

Proposition 1 empowers analytic pricing of corporate bonds (CB) and credit

default swaps (CDS). Consider a reference entity’s CB that has face value F and

pays an (annualized) coupon C at dates T1 < T2 < . . . < Tk = T up to its maturity

T . The fair CB price is

PCB (S, T, r) =
k∑

j=1

exp (−rTj)
[
1− V Q (S, Tj, 0)

]
C

+ exp(−rT )
[
1− V Q (S, T, 0)

]
F

+V Q (S, T, r) RF,

where R is the recovery rate at default, which is a fixed input parameter in applica-

tions. CB’s defaultable part is assessed under the assumption of Recovery of Face

Value at Default (RFV), which bears the value V Q (S, T, r) RF . Under RFV, CB

holders receive the same fractional recovery R of the face value F at default for CBs

issued by the reference entity regardless of maturity. Guha and Sbuelz (1991) show

that the RFV recovery form is consistent with a typical bond indenture language

(for example, the claim acceleration clause), defaulted bond price data, and stylized

transform of ξ’s Q-p.d.f. with Laplace parameter y + λ can be obtained by numerically inverting

the closed-form non-truncated Laplace transform

1
a
EQ0 [exp (− (y + λ + a) ξ)] ,

where the inversion parameter is a > 0.
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facts that are relevant for interest rate hedging (for example, the low duration of

high-yield bonds).

Consider a CDS related to the CB just described. It offers a protection payment

of (1−R) F in exchange for an (annualized) fee fCDS paid at the dates T ∗
1 < T ∗

2 <

. . . < T ∗
m = T ∗ up to the contract’s maturity12. The fair CDS rate is

fCDS (S, T ∗, r) =
V Q (S, T ∗, r) (1−R)∑m

j=1 exp
(−rT ∗

j

) [
1− V Q

(
S, T ∗

j , 0
)] .

The holder of a CB can achieve total recouping of the face value F at default by being

long a CDS with similar maturity and payment dates. Being short ∂
∂S

PCB (S, T, r)

shares the CB holder can hedge against the pre-default price shocks driven by diffu-

sive news. Recent evidence shows that such equity-based hedges perform reasonably

well for high-yield CBs (see Naik et al. (2003)). Given analytic CB prices, an easy

and effective measure of the Delta-hedge ratio is

∂

∂S
PCB (S, T, r) ' PCB (S + ε, T, r)− PCB (S − ε, T, r)

2ε
,

where ε is a small positive number. Finally, parallel shifts of the (flat) term structure

of the interest rates can be hedged by selling a portfolio of default-free bonds that

has interest-rate sensitivity equal to ∂
∂r

PCB (S, T, r). Such a hedge ratio can be easily

calculated in our model. More details on model-based CB hedging are in Appendix

5.C.

5.4 The objective default probability

Our equity-based model of credit risk (5.1) is specified under the risk-neutral prob-

ability measure Q since the focus of the analysis so far was on pricing credit deriv-

atives. It is, however, sometimes of interest to be able to determine the objective

default probabilities as well as to analyze dynamics of the underlying equity under

12Notice, that the CDS rate payment dates need not coincide with the coupon payment dates

of the reference CB. In fact, they are usually different.
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the physical probability measure P empirically. The specification (5.1) implies a link

between the risk-neutral measure Q and the physical probability measure P through

the specification of the Radon-Nikodým derivative or the pricing kernel.

Suppose that we have an objective probability space (Ω,F ,P) on which a Brown-

ian motion zPt and a Poisson process NP
t with intensity λP are defined with respect

to the same filtration Ft, t ≥ 0. The specification (5.1) of the equity price process

under the risk-neutral probability measure Q imposes restrictions on the dynamics

of the price process under the physical probability measure P. In particular, dy-

namics of the price process under the physical probability measure should satisfy

the SDE

dSt = [σSρ
t−Θ(t) + (r − q + λ) St−] dt + σSρ

t−dzPt − St−dNP
t ,

which is implied by the Radon-Nikodým derivative of the form

Π(t) = Π1(t)Π2(t),

Π1(t) = exp

{
−

∫ t

0

Θ(u)dzPu −
1

2

∫ t

0

Θ2(u)du

}
,

Π2(t) =

(
λ

λP

)NPt

exp {(λP − λ)t} ,

where Θ(t) is an arbitrary bounded adapted càglàd (left continuous with right limits)

process.13 In order to guarantee that the dynamics of the equity price process

under the physical probability measure is described by a CEV-jump process with a

constant drift, analogous to (5.1), one needs to assume the specific functional form

of the adapted process Θ(t), which is

Θ(t) = θS1−ρ
t− .

The dynamics of the equity price process {S} under the objective measure follows

straightforwardly:

dSt = (µP + λP) St−dt + σSρ
t−dzPt − St−dNP

t . (5.3)

13See, for example, Theorem 11.6.9 in Shreve (2004).
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The relation between the SDE parameters under P and Q are the following

µP = r − q + θσ + (λ− λP),

where we call θσ the premium for the diffusive risk, and δ ≡ λ − λP the premium

for the jump-like default risk. Such a terse specification of {S}’s P-dynamics makes

a neat account of systematic jump-like default risk. The sign of the jump-like risk

premium λ is an empirical question. Nevertheless, given the fact that investors

would like to be compensated for the unanticipated default risk, it is reasonable to

assume that the jump-to-default intensity under Q is always greater than its level

under P, i.e., δ ≥ 0. If the systematic nature of the jump-like default risk is washed

away, so that risk-neutral and objective jump-to-default intensities tend to coincide

(δ ↘ 0), then the jump-risk is not priced.

As far as the diffusive risk is concerned, if its premium faints, it is either because

such a risk is not priced (θ ↘ 0) or because the risk is dimming (σ ↘ 0).

Since the objective drift is constant (EP
t [dSt] = µPSt−), arguments similar

to those behind Proposition 5.1 lead to an analytic expression for the quantity

V P (S, T, y):

V P (S, T, y) =
λP

y + λP

[
1− exp (− (y + λP) T )

(
1− EP

0

[
1{ξ≤T}

])]

+
y

y + λP
EP

0

[
exp (− (y + λP) ξ) 1{ξ≤T}

]
,

where the T -truncated Laplace transform of ξ’s P-p.d.f. with Laplace parameter

y + λP is analytic (see Campi and Sbuelz (2004)). Its closed form is provided in

Appendix 5.B.

In summary, we achieve analytic objective default probabilities by augmenting

the original parameter set {r, q, σ, ρ, λ} with two preference-based parameters, θ for

the diffusive risk, and δ for the jump-like default risk.
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5.5 Conclusion

We present an equity-based credit risk model that, by taking as primitive the most

liquid and observable part of a firm’s capital structure, overcomes many of the

problems suffered by structural models in pricing and hedging applications. Our

parsimonious model avoids any assumption on the firm’s liabilities. It empowers

the analytical pricing of CBs and CDSs and it can match non-zero short-maturity

spreads. Cross-asset hedging is viable and easy to implement. A careful specifica-

tion of the diffusion part of the equity price process under the physical probabil-

ity measure enables analytic credit-risk management in the presence of systematic

jump-to-default risk.
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5.A Laplace transform

From the independence between ξ and τ we have that

EQ
0

[
1{τ∧ξ>s}

]
= EQ

0

[
1{τ>s}1{ξ>s}

]
= EQ

0

[
1{τ>s}

]
EQ

0

[
1{ξ>s}

]
,

Hence, the time-s-evaluated Q-p.d.f. of the stopping time η = τ ∧ ξ is

fη (s) = − d

ds
EQ

0

[
1{τ>s}1{ξc>s}

]

= − d

ds

(
EQ

0

[
1{τ>s}

]
EQ

0

[
1{ξ>s}

])

= fτ (s) EQ
0

[
1{ξ>s}

]
+ fξ (s) EQ

0

[
1{τ>s}

]

= λ exp (−λs) EQ
0

[
1{ξ>s}

]
+ fξ (s) exp (−λs) .

The T -truncated Laplace transform of η’s Q -p.d.f. with Laplace parameter y is

V Q (S, T, y) = EQ
0

[
exp (−yη) 1{τ∧ξ≤T}

]

=

∫ T

0

exp (−ys) fτ∧ξ (s) ds

= λY1 + Y2,

Y1 =

∫ T

0

exp (− (y + λ) s) EQ
0

[
1{ξ>s}

]
ds,

Y2 =

∫ T

0

exp (− (y + λ) s) fξ (s) ds.

Y2 is the T -truncated Laplace transform of ξ’s Q-p.d.f. with Laplace parameter

y + λ,

Y2 = EQ
0

[
exp (− (y + λ) ξ) 1{ξ≤T}

]
.
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Its closed form has been derived by Campi and Sbuelz (2004) and it can be found

below after this proof. An integration by parts gives

Y1 =
−1

y + λ
exp (− (y + λ) s) EQ

0

[
1{ξ>s}

]∣∣∣∣
T

0

−
∫ T

0

−1

y + λ
exp (− (y + λ) s) (−fξ (s)) ds

=
1

y + λ

[
1− exp (− (y + λ) T ) EQ

0

[
1{ξ>T}

]]− 1

y + λ
Y2.

This completes the proof.

5.B The discounted value of cash at ξ within [0, T ]

The T -truncated Laplace transform of ξ’s Q-p.d.f. with Laplace parameter w (w ≥
0) has been shown by Campi and Sbuelz (2004) to be

EQ
0

[
exp (−w · ξ) 1{ξ≤T}

]
= lim

ε↘0

∞∑
n=0

an (A,B)
(x

2

)n Γ(ν − n, x
2K

, x
2ε

)

Γ(ν)
,

Γ(ν) =

∫ +∞

0

uν−1e−udu (Gamma Function),

Γ(ν − n,
x

2K
,

x

2ε
) =

∫ x
2ε

x
2K

u−nuν−1e−udu (Generalized Incomplete Gamma Function),

an (A,B) = (−1)n C (B, n) An ,

C (B, n) =

∏n
k=1 (B − (k − 1))

n!
1{n≥1} + 1{n=0} ,

x = S2(1−ρ),

ν =
1

2(1− ρ)
,

A =
2 (r − q + λ)

σ2(1− ρ)
,

K =
σ2(1− ρ)

2 (r − q + λ)

(
1− e−2T (r−q+λ)(1−ρ)

)
,

B =
w

2 (r − q + λ) (1− ρ)
.
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The Generalized Incomplete Gamma Function, the Incomplete Gamma Function,

and the Gamma function are built-in routines in many computing softwares like

MATLAB and Mathematica, which makes the above expressions fully viable.

5.C Model-based CB hedging

Full dynamic hedging of a long position in a CB implies being short δ units of stocks

and γ units of CDSs a given the CDS rate f . Let Z be the recovery rate, and X be

the notional of the CDS. Introduce the notation

DCDS = V Q (S, T ∗, r) (1− Z) X −
k∑

j=1

exp
(−rT ∗

j

) [
1− V Q (

S, T ∗
j , 0

)]
f

Then δ and γ are adapted processes that satisfy the following system of risk-

nullifying equations:

∂

∂S
PCB − δ − γ

∂

∂S
DCDS = 0,

R · F − PCB (S, T, r) + δ − γ ((1− Z) X −DCDS) = 0.

Our model also states that, in the case of a jump to default (η = τ), pure Delta

hedging recoups a fraction

∂
∂S

PCB (Sτ−, T − τ, r) Sτ−
PCB (Sτ−, T − τ, r)−R · F

of the CB loss suffered at default.
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5.D The objective probability of default at ξ within

T

The replacement of the risk-neutral intensity-added drift r−q+λ with the objective

intensity-added drift µP+ λP implies that the T -truncated Laplace transform of ξ ’s

P-p.d.f. with Laplace parameter w (w ≥ 0) has this analytic expression:

EP
0

[
exp (−w · ξ) 1{ξ≤T}

]
= lim

ε↘0

∞∑
n=0

an (AP, BP)
(x

2

)n Γ(ν − n, x
2KP

, x
2ε

)

Γ(ν)
,

AP = 2(µP+λP)
σ2(1−ρ)

, KP = σ2(1−ρ)
2(µP+λP)

(
1− e−2T (µP+λP)(1−ρ)

)
,

BP = w
2(µP+λP)(1−ρ)

.

The analytic expression of the objective probability of diffusive default within time

T is retrieved by taking w = 0.



Hoofdstuk 6

Samenvatting

De hoekstenen van de moderne financieringstheorie zijn portefeuillekeuzetheorie

en het prijzen via arbitrage. De moderne portefeuilletheorie, gëıntroduceerd door

Markowitz (1952), beoogt te verklaren hoe individuele of institutionele beleggers

hun vermogen (zouden moeten) alloceren over risicovolle financiële activa. De the-

orie van het prijzen via arbitrage, in eerste instantie gebruikt voor het pijzen van

opties door Black en Scholes (1973) en Merton (1973), en verder ontwikkeld door

Harrison en Kreps (1979), Harrison en Pliska (1981), en gegeneraliseerd door Del-

baen en Schachermayer (1994, 2005), betreft het prijzen van financiële activa via

afwezigheid-van-arbitrage argumenten. Dit proefschrift bevat vier essays op het

terrein van de portefeuillekeuze en het prijzen van activa via arbitrage.

Een portefeuillekeuze wordt gewoonlijk beschouwd als een afweging tussen ren-

dement en risico van de portefeuille. Investeerders, die portefeuilles met hogere ren-

dementen prefereren, pogen in het algemeen te volatiele activa te vermijden. Vanuit

het perspectief van kapitaalreguleringvereisten hebben institutionele investeerders

vaak ook belang bij het beperken van hun risicoblootstelling. Een traditionele be-

nadering in de moderne portefeuilletheorie is ontwikkeld door Markowitz (1952),

die heeft voorgesteld om de variantie van de portefeuille als risicomaatstaf te ge-

bruiken en het verwachte rendement als beloningsmaatstaf. Gedurende talloze jaren

143
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was deze benadering de industriestandaard, vooral ook vanwege de eenvoud van de

berekeningswijze. Echter, vanuit het perspectief van risicobeheer is de variantie geen

bevredigende risicomaatstaf. Ten eerste worden vanwege de symmetrie in geval van

de variantie winsten en verliezen als even ongewenst beschouwd. Dit nadeel werd

in het bijzonder duidelijk door de ontwikkeling van activaderivaten, zoals opties, en

kredietgestructureerde produkten, zoals portefeuillefaillesementsrenteruilovereenkom-

sten (portfolio default swaps) en onderpandige schuldverplichtingen. Ten tweede is

de variantie ongeschikt om risico’s op extreme gebeurtenissen met een kleine kans,

zoals faillissementen, te beschrijven. Ten slotte, en gezien vanuit een theoretisch

perspectief, is de verwachte rendement-variantie benadering niet in overeenstem-

ming met tweede orde stochastische dominantie en dus ook niet met de verwachte-

nutsbenadering voor portefeuilleselectie.

Er zijn alternatieve modellen bedacht waarin de afweging tussen beloning en

risico blijft gehandhaafd, maar met alternatieve risicomaatstaven voor de variantie

om de modellen geschikter te maken voor praktische toepassingen. Gelijktijdig is

er een axiomatische benadering ontwikkeld voor de theorie van risicometing door

Artzner et al. (1999), die het concept van een coherente risicomaatstaf hebben

gëıntroduceerd, zodanig dat de risiscomaatstaf voldoet aan eigenschappen wenselijk

vanuit het oogpunt van regulering. Bijzondere aandacht, zowel vanuit theoretisch

als vanuit praktisch oogpunt, is geschonken aan verwacht-tekort (expected short-

fall), een coherente risicomaatstaf consistent met tweede orde stochastische domi-

nantie. Basset et al. (2004) en Portnoy en Koenker (1997) hebben laten zien dat

een verwacht-rendement-verwacht-tekort- portefeuilleselectieprobleem, gebruikmak-

end van steekproefgegevens, kan worden geherformuleerd als een lineair-programmeringsprobleem

dat op een efficiënte wijze kan worden opgelost met behulp van bestaande simplex

en inwenig-punt-algoritmes. Zoals aangetoond door Kusuoka (2001) kan verwacht-

tekort worden gegeneraliseerd tot de klasse van coherente reguliere risicomaatstaven

(CRR-maatstaven) die de wenselijke eigenschappen van verwacht-tekort behouden.
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In de hoofdstukken 2 en 3 worden de statistische en economische eigenschappen van

verwacht-rendement-CRR-portefeuilles bestudeerd.

In Hoofdstuk 2 wordt een statistische spanningstoets ontwikkeld voor verwacht-

rendement-CRR-efficiënte-grenzen, toegepast in hoofdstuk 3. Spanningstoetsen voor

de combinatie verwacht-rendement-variantie, gëıntroduceerd door Huberman en Kan-

del (1987), maken gebruik van regressie-analyse om te toetsen of de verwacht-

rendement-variantie-efficiënte-grens gegenereerd door een bepaalde verzameling ac-

tiva statistisch overeenkomt met de verwacht-rendement-variantie-efficiënte-grens

gegenereerd door een deelverzameling van de activa. Sindsdien zijn verschillende

modificaties voorgesteld van deze verwacht-rendement-variantie-spanningstoets. Een

aardig overzicht hiervoor is De Roon en Nijman (2001). Zodra een investeerder ertoe

besluit over te gaan van de conventionele verwacht-rendement-variantie benader-

ing op de verwacht-rendement-CRR-portefeuilleselectie, ontstaat de noodzaak voor

vergelijkbare toetsen in de nieuwe situatie. Analoog aan de verwacht-rendement-

variantie-efficiënte-grens in de verwacht-rendement-variantie benadering kan men

verwacht-rendement-CRR-efficiënte-grenzen construeren. De spanningstoets voor

verwacht-rendement-CRR-efficiënte-grenzen is een belangrijke statistisch middel om

de eventuele redundantie te beoordelen van bepaalde deelverzamelingen van ac-

tiva vanuit het gezichtspunt van verwacht-rendement-CRR-efficiënte-grenzen. Zoals

hoofdstuk 2 laat zien, kan deze toets, geheel in de geest van Huberman en Kan-

del (1987), worden uitgevoerd via een eenvoudige semiparametrische instrumentele-

variabelen-regressie, waar de instrumentele variabelen een directe link hebben met

de stochastische verdisconteringsvoet. De toets is gebaseerd op een relatie on-

twikkeld door Tasche (1999), die geldt voor alle activa die voorkomen in de verwacht-

rendement-CRR-efficiënte-portefeuille. Toepassingen van de verwacht rendement-

CRR-spanningstoets voor verschillende coherente reguliere risicomaten, inclusief het

welbekende verwacht-tekort, worden gëıllustreerd.

In hoofdstuk 3 worden de verwacht-rendement-variantie-efficiënte-portefeuille
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en de verwacht-rendement-CRR-efficiënte-portefeuille vergeleken, zowel statistisch

als economisch. CRR-maten worden steeds populairder in empirische toepassin-

gen. Echter, Bertsimas et al. (2004) laten zien dat de variantie en een CRR-

maat dezelfde optimale portefeuilles zullen opleveren voor activarendementen met

elliptisch-symmetrische verdelingen. Alhoewel theoretische voordelen van een CRR-

maat ten opzichte van de variantie in talloze studies zijn aangetoond, blijft de vraag

bestaan naar de praktische significantie van het verschil tussen de beide benaderin-

gen. Dit is in het bijzonder het geval voor typische financiële activa, zoals aandelen,

valuta en marktindices, waarvan de rendementsverdelingen vaak bij benadering el-

liptisch symmetrisch blijkt te zijn. De vergelijking in hoofdstuk 3 vereist de afleiding

van de asymptotische verdeling van optimale portefeuillegewichten verkregen uit een

steekproefgebaseerde verwacht-rendement-risico-optimalisatie. De resultaten doen

vermoeden dat zelfs voor typische activa de uitkomsten van verwacht-rendement-

risico en verwacht-rendement-CRR optimalisaties statistisch en economisch ver-

schillend kunnen zijn. De toetsen, ontwikkeld in dit hoofdstuk, laten tevens zien

hoe schattingsonzekerheid, veroorzaakt door steekproeffouten in verwachte rende-

menten, hetgeen, zoals gerapporteerd door Chopra en Ziemba (1993) problematisch

kan zijn in de context van portefeuillekeuze, als het ware kan worden uit- en aangezet.

Ten slotte worden diverse verwacht-rendement-CRR-spanningstoetsen, ontwikkeld

in hoofdstuk 2, toegepast op verschillende marktindices. De uitkomsten van de

verwacht-rendement-variantie- en de verwacht-rendement-CRR-spanningstoetsen blijken

voor conventionele activaklassen typisch dezelfde uitkomsten op te leveren. Echter,

in geval van activa met asymmetrische rendementen wordt de verwacht-rendement-

CRR-efficiëntie van verwacht-rendement-variantie-efficiënte portefeuilles verworpen.

Dit suggereert superioriteit van de CRR-maat in geval van portefeuilles bestaande

uit niet-standaard produkten, zoals combinaties van kredietinstrumenten en -derivaten.

In geval van conventionele activa, zoals aandelen en valuta, leveren de verwacht-

rendement-variantie en verwacht-rendement-CRR-benaderingen vergelijkbare uitkom-
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sten.

De hoofdstukken 4 en 5 van het proefschrift bestuderen toepassingen van ac-

tivaprijstheorieën voor het prijzen van opties en het modelleren van kredietrisico.

De activaprijstheorie betreft gewoonlijk het prijzen zonder arbitrage van derivaten

geschreven op enkele onderliggende basisactiva, waarvan de dynamiek statistisch

wordt gemodelleerd. Een mooi voorbeeld van deze benadering wordt gegeven door

Black en Scholes (1973) en Merton (1973), die de prijzen afleiden van Europese

opties, geschreven op een onderliggend activum, dat een geometrisch Wienerpro-

ces volgt. Met groeiende georganiseerde en onderhandse markten voor afgeleide

instrumenten is de activaprijstheorie een belangrijk hulpmiddel geworden voor het

prijzen van afgeleide instrumenten. Optieprijsmodellen worden wijdverbreid ge-

bruikt in de industrie, soms met geavanceerde veronderstellingen betreffende de on-

derliggende activa. Gemotiveerd door het empirisch bewijs aangaande de scheefheid

van de gëımpliceerde volatiliteit biedt Heston (1993) een gesloten vorm oplossing

in geval van een stochastisch volatiliteitsoptieprijsmodel. In dit model wordt in de

optieprijzen ook rekening gehouden met de additionele volatiliteitsrisicofactor, die

het model realistischer maakt door de rendementsverdeling aan te passen aan vaak

waargenomen bovenmatige kurtosis en negatieve scheefheid. Duffie et al. (2000) gen-

eraliseren Hestons stochastische volatiliteitsmodel tot de klasse van affiene-sprong

diffusies. Net zoals de activaprijstheorie kan worden toegepast op het prijzen van

aandeelderivaten kan de activaprijstheorie ook toegepast worden op kredietinstru-

menten. Merton (1974) heeft de zonder-arbitrage-prijsprincipes toegepast op het

prijzen van bedrijfsschulden, door gebruik te maken van de hefboomratio als on-

derliggend proces waarvan de dynamiek statistisch wordt gemodelleerd. Talloze

variaties op Mertons idee zijn toegepast in kredietrisicomodellen die worden gebruikt

door financiële instellingen. Mertons model dient ook als basis voor structurele vorm

benaderingen voor het modelleren van kredietrisico in de academische literatuur.

Het belangrijkste oogmerk van hoofdstuk 4 is de empirische kant van het prijzen
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van opties onder de veronderstelling van Hestons stochastische volatiliteit. Samen-

klontering en stochastische dynamiek van rendementsvolatiliteit is een empirisch feit

dat allicht opgenomen dient te worden in realistische, statistische modellen voor ac-

tivaprijsgedrag. Diverse ARCH en GARCH modellen ontsproten aan Engle (1982)

en Bolerslev (1986) zijn geopperd om rekening te houden met de geobserveerde het-

eroskedasticiteit in activarendementen in discrete-tijdmodellen. Nelson (1991) intro-

duceerde het E-GARCH-model dat ook het hefboomeffect in rendementsverdelingen

kan modelleren.

Naast het modelleren van realistische dynamiek van activarendementen heeft

de empirische literatuur aangaande optieprijzen laten zien dat het Black-Scholes

model toegepast op waargenomen optieprijzen resulteert in een verschijnsel bek-

end als de gëımpliceerde volatiliteitsglimlach of -scheefheid, die inconsistent is met

het model. Dit verschijnsel wordt vooral toegeschreven aan zowel het hefboom-

effect in activarendementen als aan de dikke staarten van de empirische rende-

mentsverdeling, welke worden genegeerd in het Black-Scholes model. Stochastis-

che volatiliteitsoptieprijsmodellen corrigeren de inconsistentie tussen de optieprijs

en de onderliggende aandeeldynamiek gedeeltelijk. Echter, het is bekend dat in

geval van stochastische volatiliteitsmodellen de financiële markten in het algemeen

incompleet zijn in termen van het onderliggende activum, aangezien de stochastische

volatiliteit niet kan worden afgedekt. Dit betekent dat de volatiliteitsrisicopremie

niet identificeerbaar is op basis van uitsluitend de onderliggende activumdynamiek.

Verhandelde optiecontracten kunnen worden gebruikt om de ontbrekende informatie

over het prijsmechanisme te achterhalen. In het bijzonder kunnen, analoog aan de

gëımpliceerde volatiliteiten in het Black-Scholes-model, de gëımpliceerde prijzen van

het volatiliteitsrisico worden geschat via optieprijzen. De prijs van het volatiliteit-

srisico kan worden gëınterpreteerd als de markthouding jegens risico. Hoofdstuk 4

analyseert de dynamiek van de gëımpliceerde prijzen van het volatiliteitsrisico va-

nuit dit perspectief. Het onderzoekt de dynamiek van de gëımpliceerde prijzen van
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het volatiliteitsrisico en laat zien dat het modelleren van de dynamiek hiervan een

significante bijdrage levert aan het verbeteren van de optieprijsprestatie buiten de

steekproef.

Hoofdstuk 5 stelt een alternatieve wijze voor om kredietrisico van bedrijven in

nood te modelleren. Bestaande structurele-vorm-kredietrisicomodellen vereisen het

gebruik van infrequente en vaak verstoorde informatie over de kapitaalstructuur

van een bedrijf. De resulterende prijsprestaties van deze modellen, met name voor

bedrijven in nood, is niet naar tevredenheid, zie Eom et al. (2004). De aandeel-

prijs van een bedrijf in nood daarentegen kan een informatieve indicatie zijn van de

kredietrisico volgens de markt. Als imperfecte afdekking tegen faillissement wordt

de aandeelprijs informatiever als het bedrijf dichter aankomt tegen faillissement.

Vanuit een econometrisch oogpunt is het modelleren van een faillissement via de

aandeelprijs ook aantrekkelijk vanwege de betere kwaliteit en frequentere beschik-

baarheid van data. In tegenstelling tot de srructurele- en herleide-vorm-modellen

voor kredietrisico, stelt het model in hoofdstuk 5 voor om het aandeel te gebruiken

als liquide en waarneembare primitieve om analytisch bedrijfsobligaties en kredi-

etfaillissementsrenteruilovereenkomsten te modelleren. Op deze wijze worden re-

stringerende veronderstellingen aangaande de bedrijfskapitaalstructuur vermeden.

Faillissement wordt eenvoudigweg weergegeven als de aandeelprijs die de nulgrens

passeert of op continue wijze of via een sprong, hetgeen een kredietwijdte ongelijk

nul impliceert voor korte looptijden. Eenvoudige kruisactivumafdekking wordt mo-

gelijk. Via een bondig geformuleerde Radon-Nikodym afgeleide maken we ook an-

alytisch kredietrisicomanagement mogelijk in geval van systematisch sprong-naar-

faillissementsrisico.
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