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Drop Out Monotonic Rules for Sequencing
Situations

Cristina Fernández1 Peter Borm2 Ruud Hendrickx2,3

Stef Tijs2

Abstract
This note introduces a new monotonicity property for sequencing situa-

tions. A sequencing rule is called drop out monotonic if no player will be
worse off whenever one of the players decides to drop out of the queue before
processing starts. This intuitively appealing property turns out to be very
strong: we show that there is at most one rule satisfying both stability and
drop out monotonicity. For the standard model of linear cost functions, the
existence of this rule is established.

1 Introduction

For various classes of economic situations in which agents can cooperate, allocation

rules have been developed, which handle the problem of allocating the rewards

or cost savings from cooperation among the agents involved. Often, for such an

economic situation, one can define a corresponding cooperative game. In this setting,

stable rules are interesting, which assign allocations that are core elements of the

corresponding games.

In this note, we consider stable rules, which behave well in case agents drop out,

leaving a reduced economic situation. We say that a rule is drop out monotonic if

applying the rule to the reduced situation yields an allocation, which, depending

on the context, either makes all remaining players better off or all players worse off

than in the original situation.
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If the cooperative games corresponding to reduced situations are subgames of the

the original game, then a stable and drop out monotonic rule generates a popula-

tion monotonic allocation scheme (pmas) for the original game (Sprumont (1990)).

In the cases of linear production situations (Owen (1975)), airport situations (Lit-

tlechild and Owen (1973)) and holding situations (Tijs et al. (2000)), the game

corresponding to a reduced situation after one player drops out is a subgame of the

original game. So here, the existence of stable and monotonic rules boils down to the

existence of a pmas. Such pmas-es do not always exist for linear production games.

However, for airport situations, the Shapley value induces one of many stable and

drop out monotonic rules. For holding games, the rule which gives all gains to the

so-called holding house keeper is a pmas.

The property of drop out monotonicity introduced in this note is inspired by the

so-called fairness condition introduced in Ambec and Sprumont (2002). They study

the problem of water management from a game theoretical point of view: given a

river of certain capacity flowing through a number of countries with certain demand

for water, how should the water of the river be allocated?

The fairness condition states that whenever one of the countries ceases to demand

water (drops out), all other countries should be better off. Contrary to the examples

mentioned before, the reduced situation after a player drops out does not give rise to

a subgame of the original game. Ambec and Sprumont show that there is a unique

allocation rule which satisfies both stability (ie, generates a core element) and the

fairness condition. This rule (the µ rule) is the marginal vector corresponding to

the ordering of the countries along the river (from upstream to downstream).

This note studies the drop out monotonicity property in the context of sequencing

situations, as introduced in Curiel et al. (1989), in which there is also a natural

ordering of the players forming the initial queue. Indeed, in the most basic class

of sequencing situations (with linear cost functions), a result similar to Ambec and

Sprumont is established. Within a more general class of sequencing situations (with

regular cost functions), it turns out that there is at most one stable and drop out

monotonic rule, which must be the analogue of the µ rule.
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2 Sequencing situations

In this section, we briefly review the model of sequencing situations as introduced in

Curiel et al. (1989). A sequencing situation is a triple (N, p, k), where N = {1, ..., n}
is a finite set of players waiting in front of a machine in order to have a job processed,

p ∈ RN
++ is a vector of processing times, where pi > 0 represents the time that the

job of player i ∈ N requires to be processed, and k = (ki)i∈N is a vector of cost

functions. For each player i ∈ N , ki(t) represents the costs of player i if his job

is completed in t time units. Costs are assumed to be additive: the total costs

of a coalition S ⊂ N equal the sum of the individual costs of the members of S.

Furthermore, the cost functions are regular, ie, for all i ∈ N , ki(t) is increasing in t

and ki(0) = 0.

We pay special attention to the class of sequencing situations with linear cost

functions: ki(t) = αit for all t ∈ R+ with αi ≥ 0. A sequencing situation with linear

cost functions is denoted by (N, p, α) with α = (αi)i∈N .

In a sequencing situation, there is an initial ordering on the players in the queue,

which without loss of generality we assume to put player 1 at the front and player n

at the back. By swapping adjacent places in the queue, players are allowed to save

costs (cf. Curiel et al. (1989)). As only neighbours can switch, the cost savings of a

coalition of players equals the sum of the savings made by its connected components.

In this note, we consider the resulting sequencing cost game (N, c), where for a

coalition S ⊂ N , c(S) is defined as the minimal total costs of the members of S over

all their admissible rearrangements in the queue.1

The core of a cost game (N, c) is defined by

C(c) = {x ∈ RN |
∑
i∈N

xi = c(N), ∀S⊂N :
∑
i∈S

xi ≤ c(S)}.

Core elements are stable in the sense that if such a vector is proposed as cost

allocation for the grand coalition, no coalition will have an incentive to split off and

cooperate on their own.

A sequencing rule is a function f assigning to every sequencing situation (N, p, k)

a vector f(N, p, k) ∈ RN
+ such that

∑
i∈N fi(N, p, k) = c(N). A rule f is called

stable if µ(N, p, k) ∈ C(c) for every sequencing situation (N, p, k). In this note, we

investigate the µ rule, defined by

1Curiel et al. (1989) consider the related cost savings game. The definition of the cost game is
analogous and omitted for the sake of brevity.
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µj(N, p, k) = c(Pj)− c(Pj−1)

for all j ∈ N , where Pj = {1, . . . , j}. In case the cost functions are linear, we can

rewrite this as

µj(N, p, α) = c({j})−
∑

i∈N :i<j

gij.,

where gij = max{0, αjpi − αipj} equals the cost savings attainable by player i and

j when i is directly in front of j, regardless of the exact position in the order.

According to the µ rule, the gain gij goes fully to player j, who is behind i in the

queue.

Since every sequencing game is σ-component additive (cf. Curiel et al. (1995)),

the µ rule is stable. So letting the players at the front of the queue pay the highest

costs and attributing the gains to the players at the back of the queue results in a

stable outcome.

3 Drop out monotonicity

Suppose that one player in the queue decides to wait no longer and drops out. One

natural question in this situation is how the costs of the other players will be affected

by this. It seems natural that none of the players should be worse off if one of them

drops out of the queue. Formally, a rule f is called drop out monotonic if for all

sequencing situations (N, p, k) and all q ∈ N we have

fj(N, p, k) ≥ fj((N, p, k)−q)

for all j ∈ N\{q}, where (N, p, k)−q = (N\{q}, (pi)i∈N\{q}, (ki)i∈N\{q}) is the reduced

situation without player q, in which the initial ordering on the remaining players is

the same as in the original situation.

Proposition 3.1 µ is drop out monotonic on the class of sequencing situations with

linear cost functions.

Proof: Let (N, p, α) be a sequencing situation with linear cost functions, let

q ∈ N and let j ∈ N\{q}. If j < q, then µj(N, p, α) = c({j}) − ∑
i∈N :i<j gij =

µj((N, p, α)−q). If j > q, then µj((N, p, α)−q) = (
∑j

i=1 pi − pq)αj −
∑

i∈N :i<j gij +

gqj = ((
∑j

i=1 pi)αj −
∑

i∈N :i<j gij) + (gqj − pqαj) = µj(N, p, α)−min{pjαq, pqαj} ≤
µj(N, p, α). ¤
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Proposition 3.1 shows that the µ rule is drop out monotonic in case the cost functions

are linear. The question now arises whether this is the only rule satisfying this

property. In the following theorem, we show that within the class of sequencing

situations with regular cost functions (not necessarily linear), the µ rule is the only

possible stable and drop out monotonic rule.

Theorem 3.2 Let f be a sequencing rule. If f is stable and drop out monotonic,

then f equals the µ rule.

Proof: Let (N, p, k) be a sequencing situation with regular cost functions and let

f be a stable and drop out monotonic rule. Denote the corresponding game by

(N, c) and denote fS
i = fi(S, (pj)j∈S, (kj)j∈S) and µi = µi(N, p, k) for all i ∈ N and

S ⊂ N, S 6= ∅. We show that f = µ by an inductive argument.

First, from drop out monotonicity it follows that fN
1 ≥ f

{1}
1 . From stability we have

fN
1 ≤ c({1}) = f

{1}
1 . Hence, fN

1 = f
{1}
1 = c({1}) = µ1.

Next, let j ∈ {2, . . . n}. Assume fN
i = f

Pj−1

i = µi for all i ∈ Pj−1. From drop out

monotonicity we have fN
i ≥ f

Pj

i for all i ∈ Pj, so
∑

i∈Pj
fN

i ≥ ∑
i∈Pj

f
Pj

i = c(Pj).

By stability,
∑

i∈Pj
fN

i ≤ c(Pj). So
∑

i∈Pj
fN

i = c(Pj) and, using the induction

hypothesis, fN
j = c(Pj)−

∑
i∈Pj−1

fN
i = c(Pj)− c(Pj−1) = µj.

Hence, we may conclude that f = fN = µ. ¤

It follows from Proposition 3.1 and Theorem 3.2 that drop out monotonicity and

stability together characterise the µ rule on the class of sequencing situations with

linear cost functions.
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