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Chapter 1

Introduction

1.1 Motivation

Games, played in the casino or at home, form an interesting topic of discussion,

for players as well as for spectators. Almost everyone has an opinion about how

to play a game like roulette or blackjack. Moreover, everyone tends to have

an opinion on how much skill is involved in playing these games. However, in

general the amount of skill that is ascribed to a game, varies widely among

the discussants. Take the game of poker as an example. Fanatic poker players

will be convinced that poker is a game of skill, thereby justifying the amount

of time they spend on the game. For other people, like chess devotees, merely

the fact that dealing of cards is involved, is sufficient to qualify poker as a

game of chance.

This tendency of disagreement on the skill level of games becomes a prob-

lem when the exploitation of the games is concerned. Gaming acts, in The

Netherlands and in other European countries, but also in many states in the

USA, distinguish between games of skill and games of chance. Generally speak-

ing, games in which random factors are the main determinants of the outcome

are games of chance, while games in which the behaviour of the players pre-

dominantly influences the game result are games of skill. According to the

Dutch Gaming Act, a licence is required for a casino to exploit a game of

chance, whereas anyone is allowed to offer a game of skill. Therefore, from

a juridical perspective, it is important that one can objectively determine for

a game whether the players have sufficient influence on the game result to

classify it as a game of skill. The determination of the relative skill level of a

1



2 CHAPTER 1. INTRODUCTION

game, by comparing the players’ influence on game results to the influence of

the random factors, is the first primary topic of this thesis.

The other main subject discussed in this dissertation, is the computation

of optimal strategies in two-person games with zero-sum payoffs. For a one-

person game like blackjack, the optimal strategy may be too complex for hu-

man players to memorize and execute it perfectly. However, the computation

of it, using probability theory to deal with the uncertainty generated by the

unknown cards, is relatively simple. In games with two players, like poker,

optimal play is still well-defined as long as the payoffs of the players sum to

zero. However, the computations are difficult, since the quality of a player’s

strategy depends on the strategy used by the opponent. We investigate the

computation of optimal play in two-person variants of poker in this thesis. We

also discuss optimal strategies for a class of take-and-guess games that used to

be rather popular in bars to determine who has to pay for the beer.

1.2 Outline

The dissertation consists of two parts. Part I, consisting of chapters 2 to 4,

mainly deals with relative skill and the role of random factors in games. Part

II, consisting of chapters 5 to 7, is devoted to the computation of optimal

strategies in two interesting classes of games, poker and take-and-guess games.

Part I starts with chapter 2, which presents and motivates a quantitative

measure for the relative skill level of a game. Although the concept of skill in

games is mentioned in the literature much earlier, e.g., by Borel (1953), only

in the last two decades it started to gain more attention. Larkey et al. (1997)

provided an interesting discussion on the interpretation and the relevance of

skill in analyzing and solving games. The reasons they had for writing their

article, however, did not include the motivation that is behind the study of skill

involved in games, as one finds it in this thesis: the current source of inspiration

is the law. The Dutch Gaming Act has been the starting point for the way

in which we tackle the difficult problem of measuring relative skill in games

with random factors. In casino games, random generators like the dealing

of cards or the spinning of a wheel in roulette imply objective probabilities

for the occurrence of the uncertain events in these games. In principle, it is
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possible to repeat these games under the same conditions over and over again.

This makes it possible to speak about a player’s average game result in the

long run or, equivalently, his expected game result. Expected game results

for beginners and advanced (or optimal) players are compared to determine

whether strategic choices by the players influence the outcome of the game. A

comparison with the influence of the chance elements is made by investigating

what game results advanced players could attain if they were informed about

outcomes of the chance moves before making their strategic decisions. This

framework for measuring relative skill in games was initiated by the work of

Borm and Van der Genugten (1998) and extended in Dreef, Borm and Van der

Genugten (2004b).

Chapter 3 studies a type of sports-related competitions that has become

popular in recent years: management games. A participant in such a game

acts as the manager of a fictive sports team. Examples of sports for which

management games are organized are soccer, tennis, cycling and Formula One

racing. Given a set of restrictions, the participant selects players and possi-

bly additional elements for his team. His team earns points for certain events

that occur in the sports competition to which the management game is related.

The primary goal of the game is to maximize the number of points earned dur-

ing the competition. Basically, a team scores well in the management game

if the team members do well in the real competition. The large number of

people participating in management games on the Internet has turned this

type of entertainment into a profitable business. However, since this business

concerns “exploiting games with monetary prizes”, the Gaming Act may re-

quire a licence to organize a management game, depending on the participants’

influence on their results.

In contrast to casino games, in a management game there is no objectively

defined randomization process influencing the scores of the participants. How-

ever, these scores are subject to a different type of uncertainty: the uncertainty

about the results of the real sports events can be interpreted as the random

factor in the management game. With this type of random factors, it is not

possible to compute the expected game result of a player by taking into ac-

count predetermined probabilities. Therefore, we have to adapt the methods

from chapter 2, before we can apply them to a management game in order to

determine whether it should be classified as a game of chance or as a game of
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skill. We use a statistical model to estimate the random factor in the scores

of the participants. The notion of the expected game result of a certain type

of player is replaced by the notion of the average result of a group of players

of this type.

In chapter 4 we return to the class of games in which random generators or

chance moves generate uncertainty using objective probabilities. Think again

of the cards in poker or the throw of dice in backgammon. We focus on how

much the uncertainty created by these chance moves restricts players in their

control over the outcome of a game. When determining a strategy for the

game, a player has to take into account all possible outcomes of the chance

moves. The formulation of a good strategy would be easier if he would know

the outcome of the chance moves in advance. The information about this

outcome is valuable to the player. But how valuable is it? How much is he

willing to pay for this information if he could buy it? Of course, this depends

on the amount by which he can increase (or decrease) his expected payoff using

this extra knowledge. Loosely formulated, the difference between what a player

can do with and without the information, is called the value of information. In

contrast to other definitions of the value of information in the literature (see,

e.g., Borm (1988) and Kamien et al. (1990)) the model in chapter 4 takes into

account that this value may depend on the opposition the player faces. For

example, it might be very useful to have the information if the opponent does

not have it, while it is less valuable to know the outcome of the chance move

if the opponent knows it too. The computations of the value of information in

chapter 4 use a pre-game that was introduced by Sakaguchi (1993). In such

a pre-game, both players get the opportunity to buy information about the

outcome of the chance moves before the start of the game.

Part II of this thesis, consisting of chapters 5 to 7, is devoted to the com-

putation of optimal strategies in two-person zero-sum games. For one-person

games, computing optimal strategies is in general not difficult. However, when

two players are involved, the complexity of the computations increases, since

the quality of a strategy depends on the strategy the opponent uses. Another

complicating factor for determining optimal play in games is formed by the

uncertainty players face as a consequence of random factors. The nature of

the topics studied in Part II influences the style of writing: this part is more
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technical than Part I.

Chapter 5 presents the analysis of a simple poker model. The analysis of

poker is interesting for a wider audience than just for poker players. The game

provides an excellent domain for investigating problems of decision making

under uncertainty. It raises interesting questions about the role of information

in the game and brings challenges to research in artificial intelligence. And,

of course, it is a class of games that is interesting for application of the skill

analysis described in chapter 2. Since poker does not involve playing out cards,

as opposed to a game like bridge, all strategic aspects in the game concern the

bidding by the players. Unfortunately, even though the strategic structure

of the game is relatively simple, real poker games are difficult to analyze.

From a deck of cards, millions of different poker hands can be drawn, so that

the dimension of the representation of the game quickly becomes too large to

analyze, even for modern high-speed computers.

To handle this problem of the large numbers of hands, we can order them

and represent them by numbers between zero and one on the real line. The

highest possible poker hand, a royal flush, then corresponds to one, while the

lowest hand corresponds to zero. To make the analysis of the game simpler,

one can model the card distribution as a continuous distribution on the interval

[0, 1], thereby implicitly increasing the number of possible hands from “very

large” to infinity. This approach is followed in this chapter, which studies

a two-player poker game with alternate bidding that was introduced by Von

Neumann and Morgenstern (1944, chapter 19). In the original model, the

hands of the players are drawn from a continuous uniform distribution on [0, 1].

We extend the model by allowing for other than uniform hand distributions.

We analytically compute the value of the game as well as optimal strategies for

both players. Next, we translate the strategic results in the continuous game

to the situation where the game is played with a deck of 52 cards, from which

real five-card poker hands are drawn. Finally, we determine the relative skill

level of the game.

Chapter 6 discusses the computation of optimal strategies in poker models

with a betting structure that is more difficult than the model from chapter 5.

Whereas the model of Von Neumann and Morgenstern (1944) is sufficiently

simple to find the equilibria of the game directly using a mathematical anal-

ysis, such a direct approach to find equilibria in the game with continuous
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card distributions is not always possible in games with more complex betting

structures. We present a way to find an equilibrium in such a game by sophis-

ticatedly using information from an equilibrium in a related discrete game.

The chapter is concluded by a presentation of the equilibrium of the largest

continuous poker model that we are able to analyze completely. The model

includes a raising possibility for both players. For this game we also determine

the relative skill level.

Chapter 7 studies a less famous but mathematically equally interesting

class of games, formed by the so-called take-and-guess games. This class can

be divided into two subclasses. In both subclasses, each of the two players has

to take a number of objects out of a given private set of objects. After that,

they have to guess the total amount of objects taken by both of them. In the

first class, the morra games, both players have to announce their guesses simul-

taneously. In the other class, the so-called coin games, the players announce

their guesses sequentially.

Take-and-guess games differ from poker in the fact that no external chance

moves are involved. The uncertainty for a player is solely generated by his

opponent. Especially for the coin games, this does not guarantee that the

computation of optimal strategies is easy. We give an overview of the values

for morra and coin games and we describe optimal strategies for both players

for all possible numbers of coins explicitly.

Although it is still difficult to determine the relative skill level of a given

game in practice, Part I of this thesis can help in reaching agreement about

it. This may resolve discussions between players and spectators, but, more

importantly, the methods for measuring relative skill presented in this part

of the dissertation can serve as a tool for a judge who has to decide whether

the exploitation of a game is allowed or not. Part II may be more of direct

interest for those who like playing games, in particular for players of poker and

take-and-guess games. They could use the global information about optimal

strategies to increase their playing level.
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1.3 Publication background

Most of the contents of this thesis has already been published in articles or in

research reports. The exposition of the skill analysis in chapter 2 is to a large

extent based on Dreef, Borm and Van der Genugten (2004b) and the overview

article by Dreef, Borm and Van der Genugten (2004a). The skill analysis for

management games that is described in chapter 3 was originally carried out

for the research report Van der Genugten, Borm and Dreef (2004).

Chapter 4, describing the role of chance moves and information in two-

person games, is based on Dreef and Borm (2005).

Of the two chapters on poker, chapter 5 and 6, only the first is based on an

earlier publication. The contents of chapter 5 have originally been published

as Dreef, Borm and Van der Genugten (2003), except for part of the skill

computations. These computations have served as an illustration in Dreef,

Borm and Van der Genugten (2004a).

The results of chapter 7 have appeared as the discussion paper Dreef and

Tijs (2004).





Part I

Skill and information in games
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Chapter 2

Measuring skill in games

2.1 Introduction

How should one define skill in games? The definition of skill that one finds in

a typical dictionary, is “the special ability to do something well, especially as

gained by learning and practice”. To be able to use such a broad definition

within the context of games, it should be refined. Larkey, Kadane, Austin and

Zamir (1997) defined skill as “the extent to which a player, properly motivated,

can perform the mandated cognitive and/or physical behaviours for success in

a specific game”. Whereas this definition concerns the player, we are interested

in defining the skill level of the game for the whole population of players. To

make the definition of skill applicable to games instead of individual players

within the same game, we modify it such that it expresses how useful the

player’s abilities can be for him in the game. In a game with a high skill

level, skillful players can have a significant advantage over the less competent

participants, whereas this advantage should be relatively small in games with

a low skill level. To give a simple example, a perfect memory may not help

you in roulette, but in poker it does. As the articles of Larkey et al. (1997)

and Reep et al. (1971) indicate, the notion of skill can be defined for a large

class of games, including various ball games as well as card games and mind

sports. The current chapter concentrates on games for which the outcome

can be expressed in terms of money and in which players can be identified

by their strategies. Moreover, the games can, at least in theory, be repeated

under the same conditions. For these games it is possible to give an objective

quantification of uncertainty in terms of probability. This is an important

11
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property of casino games. Although this property applies to a much wider

class of games than what is generally understood by this term, we refer to the

class of games under consideration as casino games.

For casino games, we define skill as the relative extent to which the outcome

of a game is influenced by the players, compared to the extent to which the

outcome depends on the influence of the random factors involved. For random

factors one can think of the spinning of a roulette wheel or the dealing of cards.

The larger the influence of the players on the game outcome, the higher the

skill level. Games without random elements, in which only the players have

influence on the outcome, are called pure games of skill; games in which only

the random factors affect the outcome, are pure games of chance. A game like

chess belongs to the first category, while roulette is intuitively classified as a

pure game of chance.1 Although the classification is easy for these two games,

there is a large number of games in which the two sources of influence are both

present and for which the skill level lies somewhere in the area between the

pure games of skill and the pure games of chance.

From a juridical perspective, it is important that one can determine for

these games in the grey area whether the players are sufficiently influential in

a game to classify it as a game of skill or not. According to the Dutch Gaming

Act, a licence is required to exploit a game of chance, whereas anyone is allowed

to offer a game of skill. Similar laws apply in other European countries, as well

as in many states in the USA. It is not difficult to imagine that the organizer

of a game and the legislator have different opinions about the role of chance in

a game. Qualitatively judging the role of chance is rather subjective and the

exploitation of games of chance is a lucrative business, since these games are

appealing to a large audience. Caillois (1979, p. 115) argues:

“[Games of chance] promise the lucky player a more modest fortune

than he expects, but the very thought of it is sufficient to dazzle

him. Anyone can win. This illusory expectation encourages the

lowly to be more tolerant of a mediocre status that they have no

practical means of improving. Extraordinary luck—a miracle—

would be needed. It is the function of alea to always hold out

1Even pure games of chance are not always classified as such by the participants. The
way the game is presented may lead to misperceived skillful influence over non-controllable
events, as Wohl and Enzle (2002) show.
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hope of such a miracle. That is why games of chance continue to

prosper. The state itself even profits from this. Despite the protest

of moralists, it establishes official lotteries, thus benefiting from a

source of revenue that for once is accepted enthusiastically by the

public.”

The observation that the state itself profits from the appeal of games of chance

is also true for the Netherlands. In practice, the government only grants the

required licence to Holland Casino, a state-owned company. The government

has both the control and the profits of this market. In fact, obtaining the profits

of the legal gambling activities was one of the main goals of the revision of the

Dutch Gaming Act in 1964.

Borm and Van der Genugten (1998, 2001) presented the basics of a method

that can be used to determine whether a game can be classified as a game of

skill or not. This method is based on the Dutch Gaming Act. In the current

chapter, which is based on Dreef, Borm and Van der Genugten (2004a, 2004b),

we discuss the relevant aspects of this method as well as some related practical

issues and we present a slightly modified definition. The general framework is

described in section 2.2. The sections 2.3 to 2.8 are devoted to the description

of the details of the analysis.

Whereas the skill measure is meant to determine the skill involved in the

game as a whole, it is in general interesting to study the skill level of individual

players as well. In sports player skill levels can be recognized, for example,

in the form of handicaps assigned to golf players. Within the class of games

we focus on, one can think of the ELO ratings of chess players that determine

their position on the world ranking. Section 2.9 contains some discussion on

this topic.

In section 2.10 we illustrate the computations involved with the skill anal-

ysis by two examples. The concluding section, section 2.11, sketches some

possibilities to investigate the skill level of games using empirical data. This

last subject will get more attention in chapter 3, in which we discuss a case

study.



14 CHAPTER 2. MEASURING SKILL IN GAMES

2.2 A relative measure of skill

The method that Borm and Van der Genugten (1998, 2001) developed is based

on the following important passage in the Dutch Gaming Act2, which gives a

qualitative characterization of the class of games for which a licence is needed:

[. . . ] it is not allowed to: exploit games with monetary prizes if the

participants in general do not have a predominant influence on the

winning possibilities, unless in compliance to this act, a licence is

granted [. . . ].

All games that satisfy this definition, are called games of chance. By definition,

all games to which this definition does not apply because the players’ influence

on the outcomes is sufficiently large, are referred to as games of skill. Borm

and Van der Genugten (1998) give the following three qualitative requirements

which summarize the basic ideas underlying the Dutch legislation concerning

the exploitation of games with chance elements.

(R1) The legislation applies exclusively to situations which involve the ex-

ploitation of games with monetary prizes.

(R2) The skill of a player should be measured as his average game result in

the long run, i.e., in terms of expected result. For a game to be qualified

as a game of skill, it is necessary that these expected results vary among

players.

(R3) The fact that there is a difference between players with respect to their

expected payoffs does not immediately imply that the underlying game

is a game of skill. For a game of skill it is sufficient that the chance

elements involved do not prohibit these differences to be substantial.

Using the requirements (R1)-(R3), we are ready to give the general framework

of the relative skill measure for one-person games. To take into account re-

quirement (R1), we restrict attention in our analysis to games in which the

“game result” of a player can be expressed in terms of money.

2For a brief description of the legal framework in the USA we refer to Ware and Kadane
(2002). They apply the skill analysis to electronic draw poker and conclude that “the theory
of Borm and Van der Genugten seems promising as a way to describe the relative importance
of skill and chance in games such as electronic draw poker”.
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The difference in player results that is required by (R2), can be measured by

what is called the learning effect in the game. According to (R3), it is not the

absolute size of the learning effect that determines the skill level of a game, but

the relative size of this effect in relation to the restrictive possibilities within

the game set by the chance elements. Therefore, one should also quantify this

restrictive influence of the random factors. One can do this by investigating

the possibilities of the players in the absence of these random moves. This

restriction by the chance elements is captured in the random effect of the

game. Using these two effects, Borm and Van der Genugten (1998) defined

skill level =
learning effect

learning effect + random effect
. (2.1)

Formal definitions of the learning effect and the random effect will follow later,

but let us already note that these concepts will be defined such that the cor-

responding numbers will be nonnegative. This implies that

pure games of chance 0 ≤ skill level ≤ 1 pure games of skill.

Games in which the random effect dominates the learning effect will have a

low skill level. For games in which the learning effect dominates, the skill level

will be high.

The following sections will make clear how the concepts described above

are formally defined in order to obtain an objective way to fix the skill level

of a specific casino game and to compare games on this aspect. The choice of

the appropriate bound between games of chance and games of skill is the task

of a judge. We come back to this issue at the end of section 2.10.

2.3 Player types

The jurisprudence regarding the Dutch Gaming Act indicates how one should

interpret the framework that we presented in the previous section in practice.

Both the learning effect and the random effect should be measured by com-

paring different types of players. For more details concerning the Gaming Act

and the corresponding jurisprudence we refer to Van der Genugten and Borm

(1994) and Van der Genugten, Das and Borm (2001, chapter 9). In this sec-

tion we describe and briefly discuss the three player types that are used in the

analysis. We call them beginners, optimal players and fictive players.
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2.3.1 Beginners

A beginner is a player who has only just familiarized himself with the rules

of the game. He plays a relatively simple, naive strategy. In game theoretic

terms, a beginner can be thought of as a specific type of boundedly rational

player.

It is not always easy to determine the behaviour of beginners in a specific

game. In general, we distinguish three ways to do this. First of all, in games

with a structure like roulette, we think it is reasonable to assume that a be-

ginner chooses randomly between all pure strategies that are not obviously

stupid. The category of games for which this method is suitable, however,

is not the most interesting category with respect to the analysis of skill. In

many games this approach does not make sense. In a poker game, for example,

even a beginner can figure out a more sophisticated strategy than randomly

selecting any of the available actions for each of the 2, 589, 960 poker hands

that he can receive.

Secondly, the behaviour of beginners can be determined by means of ob-

servation. This method has two disadvantages. The collection of data could

be a costly affair and is only possible for games that are already exploited.

The third way to gain insight applies to games that are not (yet) exploited

in practice: have the rules and structure of the game studied by a gambling

expert. This person can use his expert knowledge to formulate an idea for

the beginner’s strategy that satisfies some general ideas of how people act in

games they are not really familiar with. In section 2.4 we devote some more

attention to this approach.

2.3.2 Optimal players

Optimal players have completely mastered the rules of the game and exploit

their knowledge maximally in their strategies. Optimal players can be seen as

the formal representatives of the more natural category of advanced players.

Advanced players are observed in practice in any skillful casino game that has

been around for a longer period. They play a smart strategy which yields them

game results close to the theoretical maximum.

The payoffs of the optimal player can be computed analytically or approx-

imated by means of simulation. In a one-person game the optimal player just
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solves the underlying maximization problem. In a two-person zero-sum game

optimal play is defined by minimax strategies. In more-person games, it is

not immediately clear what constitutes optimal play. We return to the topic

of optimal play in more-person games when we speak about opposition in

section 2.7. Game theorists refer to this type of players as rational players.

2.3.3 Fictive players

Fictive players know in advance the realization of the random elements in

the game. However, they cannot influence the randomization process. We

distinguish between two kinds of random elements. In the first place, a fictive

player is informed about the outcome of the external factors or chance moves.

External chance moves are, for example, the dealing of the cards and the

spinning of the roulette wheel. The other sort of chance move a player can

face, occurs in more-person games and is caused by his opponents. Players

may generate uncertainty for their opponents by playing mixed strategies. We

call these random elements internal chance moves. Besides having information

regarding the external chance moves, a fictive player can be informed about

these internal chance moves of the other players and he can anticipate their

actions. The concept of a fictive player is introduced to obtain a natural upper

bound for the maximal realization of game results.

2.3.4 The use of the three player types in the skill mea-
sure

We will see now how the player types that were defined in the previous three

subsections fit in the framework that was set up in section 2.2. In formula (2.1),

we have seen that the two basic quantities of the relative skill measure are the

learning effect and the random effect. The learning effect is defined as the

difference between the result of the optimal player and the beginner. This

effect measures how much a player can gain in the game by figuring out how

to play a good strategy. The random effect is defined as the difference in game

result between the fictive player and the optimal player. This difference reflects

to what extent the optimal players’ maximum expected gains are restricted by

the uncertainty that is created by the random factors in the game.
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Regarding the random effect, one has to be careful. Two different defini-

tions are used. Borm and Van der Genugten (1998, 2001) use the game results

of the fictive player that is only informed about the external factors or chance

moves. Later in this chapter, we describe an alternative approach, in which

we compare the result of the optimal player to the result of the fictive player

to whom also the realization of the internal chance moves is revealed.

A player type that was not mentioned above, but which certainly is of

theoretical interest when one studies a casino game, is the average player.

When compared to the results of the player types we just introduced, the

results of the average casino visitor in a specific game could be helpful when

determining the skill level of this game. Borm and Van der Genugten (1998)

indeed use the average player in the development of the measure, but they

also explain why this type does not make it into the final model: it is often

hard, if not impossible, to reach agreement about the strategic behaviour of

the average player.

2.4 Beginners

In this section, the beginner is the central player type. In contrast to the

optimal and the fictive player, the expected game result of the beginner cannot

always objectively be determined. For a specific game, the results of beginners

may even vary with the context in which the game is offered: the way new

players play a game, depends on the general popularity of the game at a certain

place at a given time, for example via the information about “smart” beginners’

strategies they obtain from other players.

As mentioned in section 2.3.1, in general there are three ways to formulate

a beginner’s strategy: assuming a random selection of actions, observing naive

players in practice or asking the help of a gambling expert. When choosing

the third possibility, this person can use his expert knowledge to formulate a

strategy that satisfies some general ideas about how people act in games they

are not really familiar with. An example of the combined application of the

second and the third method can be found in section 5.5.1: for a simple poker

game we determine a reasonable beginner’s strategy by projecting a general

tendency among poker players on the strategy space of this particular game.

Especially for the last method, where the beginner’s strategy is determined
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by way of the judgment of a gambling expert, it would be helpful if there

would exist some rules of thumb for formulating such a strategy. Kadane

(1986) makes an attempt to list these rules, when he tries to determine the

skill level of electronic draw poker. From the discussion that follows his short

list, it is clear how difficult it is to formulate a set of rules which the strategy

of a naive player always satisfies.

In principle, it is not necessary for the analysis of skill to define the strategy

of a beginner very precisely; in the end it is his expected game result that is

important. However, in most situations, the best way to determine this number

is via specification of his strategy in the game.

Larkey et al. (1997) investigate the skill of twelve different types of players

in a simplified version of stud poker. Players are defined as algorithms that

determine their strategic choices in the game. By carefully varying certain

characteristics over the algorithms, skill differences among players are created.

To determine the skill level of the game, one would like to know which of the

twelve player types is most representative of a beginner in this stud poker

game. The game results of that player can then be used in the formula for

the skill level. So, we want to know which characteristics of the strategies

(or: which steps in the algorithms) can or cannot be ascribed to inexperienced

players.

In sections 2.4.1 and 2.4.2, we list a number of possible deviations from

rational play, discussed in behavioural economics and psychology literature,

that may give insight in the way beginners act in casino games.

2.4.1 Behavioural aspects

During recent years, the attention for the integration of psychology into eco-

nomics has greatly increased. This has lead to a large stream of literature

on behavioural (or psychological) economics. The goal of researchers in this

field is to investigate departures from the standard assumptions about human

behaviour that are made by economists. To have a concrete frame of reference,

we first formulate the classical model of individual choice under uncertainty.

Economic agents are assumed to maximize the expected value of a utility func-
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tion of the form

max
x∈X

∑

s∈S

π(s)U(x|s), (2.2)

where X is the agent’s set of possible choices, S is the state space, π(s) are

the agent’s subjective beliefs updated using Bayes’ rule, and U is a utility

function that represents the agent’s preferences over all available choices. In

the remainder of this section, we discuss some of the psychological phenomena

that give rise to alternative models of individual decision making. We use

the same division into three categories as Rabin (2002) did in his Alfred Mar-

shall Lecture: assumptions about preferences (section 2.4.1.1), heuristics and

biases in judgment (section 2.4.1.2) and lack of “stable utility maximization”

(section 2.4.1.3).

2.4.1.1 Assumptions about preferences

The first category of departures from the standard theory consists of attempts

to make U(x|s) more realistic. Important lessons in this direction can be learnt

from prospect theory, the theory that was introduced by Kahneman and Tver-

sky (1979). Prospect theory uses two functions to characterize choices: the

value function, which replaces the utility function in standard expected utility

theory, and the decision weight function, which transforms probabilities into

decision weights. One of the key properties of the decision weight function

seems to be important for the behaviour of beginners in games: small prob-

abilities are overweighed. As an example, consider video poker players who

draw new cards too often, hoping for the royal flush that they will proba-

bly receive only once in their lifetimes. They overestimate the probability of

receiving such a good hand.

The value function in prospect theory has three important characteristics:

1. changes in wealth are important, not final asset positions;

2. the function is S-shaped; it is concave for gains and convex for losses;

3. the part regarding losses is steeper than the gains part: this reflects loss

aversion.
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The first point is taken into account in the standard game theoretic analysis

of casino games, since game rules are nearly always presented in terms of bets

and gains. As a consequence, this definition forms the logical basis for the

analysis of the beginners in the game. The other two characteristics may give

rise to some discussion about a beginner’s strategy, because they may give

clues about which strategies are avoided and which strategies will be more

attractive in specific games. Epstein (1977) also discusses the characterics of

utility functions in the context of gambling.

It is also interesting to note that preferences may change over time. They

need not even be constant during an evening in the casino. Participants may

consider the history of play relevant for their strategic choices, even in games in

which plays are independent of each other. Their decisions may be influenced

by losses and gains that were made during previous plays. Thaler and Johnson

(1990) present an interesting investigation of the effects of both prior gains

and prior losses on preferences. Under some circumstances a prior gain can

increase a person’s willingness to accept certain gambles. This phenomenon

is called the house money effect. This change in preferences is explained by

the tendency of gamblers to perceive a loss as a reduction of previously made

gains in this situation. In the case of prior losses, gambles which offer the

possibility of breaking even should be treated differently from those who do

not. The first case is discussed by Kahneman and Tversky (1979, p. 287).

They conclude that “a person who has not made peace with his losses is likely

to accept gambles that would be unacceptable to him otherwise”. Thaler and

Johnson (1990) conjecture that it is important in the examples presented by

Kahneman and Tversky that the second gamble always offers a possibility to

return to the point of departure. If such a possibility is not present, prior

losses may often lead to increased risk aversion. The above findings are all

phrased in terms of preferences over gambles (prospects), but it is not difficult

to apply the results to (preferences over) strategies of a player.

Another class of modifications of the utility function is formed by the alter-

native social preferences. The idea underlying these modifications is that self-

interest is not the only motivation that individuals use when making choices.

People can also be interested in another person’s well-being. This altruism

can be based on the context in which the decision maker is active (see, e.g.,
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Bester and Güth (1998) for some examples), but it can also be based on con-

siderations of fairness or reciprocity, as Rabin (1993) argues. At first sight,

things like fairness and altruism seem to be an unlikely explanation for de-

viation from rational play in casino games. After all, most participants will

have increasing personal welfare as a goal (or at least as a subgoal, besides

the utility they may receive from gambling). Most casino games are, possibly

apart from some entrance fee, zero-sum. Being altruistic in a zero-sum game

is equivalent to being masochistic. A reason why reciprocity may play a role,

however, is the following. In more-person casino games, such as poker, it is

difficult for a professional player to make a profit sitting at a table with other

professionals. When beginners are joining the game, there are possibilities for

the professionals to gain by taking advantage of their weaknesses. This way of

acting by the advanced players is completely rational: “the best way for one

to play a game depends on how others actually play, not on how some theory

dictates that rational people should play” (Goeree and Holt (2001, p. 1419)).

If a beginner somehow notices that some of his opponents are playing “against

him”, he may see this as a motivation to try to keep them from making profit,

instead of focusing on trying to make profit himself. Although it is not im-

mediately clear how this effect could be incorporated in a beginner’s strategy,

such reciprocity considerations could play a role.

2.4.1.2 Heuristics and biases in judgment

Whereas the first category of departures from the standard expected utility

model has to do with taste, the category that we discuss in this section is about

mistakes made by the decision maker. These errors include overconfidence

and a biased judgment about various game elements, but also the inability to

randomize correctly.

The first phenomenon of interest is overconfidence. This reflects the ten-

dency of players to overestimate their own abilities, their prospect for success

or the probability of positive outcomes. In behavioural economics a large

stream of research has been devoted to this subject; see, e.g., Camerer and

Lovallo (1999) and Hvide (2002). Overestimating one’s own abilities, relative

to the others, is sometimes referred to as the “better than average effect”:

more than half of the people think they will perform better than the average
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person. A too positive idea about one’s own skill can also lead to unrealistic

optimism about the chances of attaining good outcomes; see, e.g., Weinstein

(1980). The combination of these types of errors forms a good explanation of

the inexperienced poker players who bet (bluff) too often and with relatively

bad hands.

Another thing that forms a problem for inexperienced players, is random-

ization. They believe in the “law of small numbers”, as Tversky and Kahneman

(1971) phrase it. That is, they wrongfully assume that the pattern of a large

population will be replicated in all of its subsets. This is reflected, for ex-

ample, in roulette: people expect a black number to come up after a series

of red numbers. But it is also applicable in games in which equilibrium play

requires mixed strategies. As an example one can think of bluffing elements in

poker: with a low hand you often fold, but sometimes you bet to mislead your

opponent. Series of decisions that are based on randomization, which should

be independent, will often show a negative correlation if the randomization is

done by beginners. In this way, beginners become preys for the professionals,

because their “random sequences” are predictable. Not only beginners have

problems with this aspect of game play, this is a tendency among people in

general. Palacios-Huerta (2003) claims that an exception is formed by profes-

sional soccer players taking penalties: in his study, he finds that “professionals

play minimax”.

A final type of mistakes made by beginners is simply having an incorrect

or incomplete image of the game they are playing. They make mental models

of the game that need not coincide with the standard game representation,

e.g., by a tree or a normal form. People tend to focus on specific strategies for

various reasons and often they ignore the payoffs of the opponent.3 The mental

model that someone forms of a game will also depend on the way (and order)

in which the rules are explained to him. For examples and a more elaborate

discussion, we refer to Warglien, Devetag and Legrenzi (1999).

3In general, even if they take the opponent’s payoffs into account, people only do a few
steps of iterated reasoning, so that this information is only partly used in strategic decisions;
see, e.g., Camerer (2003, chapter 5).
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2.4.1.3 Lack of “stable utility maximization”

The last category of modifications of the standard assumptions is based on

psychological findings that suggest that there do not exist well-defined utilities

U(x|s) such that behaviour is best described by assuming that people maximize

a function of the form that is given in formula (2.2). For an overview of utility

theory, including a discussion of the preference relations underlying utility

functions, we refer to Luce and Raiffa (1957, chapter 2) or to Fishburn (1970).

An example of a phenomenon that may be relevant for analyzing beginners,

is the tendency of people to “rationalize the past” as Eyster (2002) calls it. A

past choice that is suboptimal given a current action may not be suboptimal

given another current action. If so, then a person can rationalize the past choice

by changing his current action; often someone can choose a current action

consistent with his past choice having been optimal. In casino games, this

phenomenon can be observed when a poker player keeps raising just because

he raised the first time, even though his estimates of the winning probabilities

might have drastically lowered as a result of the actions of his opponents.

A second issue that keeps inexperienced players from maximizing a formula

like (2.2), is the fact that they find it difficult to think through disjunctions:

according to the sure-thing principle (STP), if a person would prefer a to b

knowing that X occured, and if he would also prefer a to b knowing that X

did not occur, then he definitely prefers a to b. Shafir (1994) reviews a number

of experimental studies of decision under uncertainty that exhibit violations

of STP in simple disjunctive situations. The author argues that a necessary

condition for such violations is people’s failure to see through the underlying

disjunctions. In a game theoretic context, this implies that players may not

always be capable of looking ahead in game trees. The more complex the game

is, the more this will be a problem for a beginner who tries to formulate a good

strategy.

2.4.2 Psychological aspects

Although it is not possible to draw a solid line between psychology and be-

havioural economics, we devote a separate section to some “purely psycholog-

ical” aspects that might affect the perceived behaviour of beginners.

The problem that gave rise to this section on naive game play is the analysis
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of skill. We want to find an objective measure of the skill involved in a game.

Since it is already difficult for experts to distinguish between games of skill and

games of chance, it is not surprising that many casino visitors cannot make this

distinction. Often they overestimate their own influence on the game result:

they accredit a too high skill level to games of pure chance like roulette. On

this subject Cohen (1960, p. 85) writes the following.

“Success in many types of gambling seems to the player to depend,

and indeed does in fact depend, on a certain degree of skill and

on an element of chance. Success, that is to say, seems to him

to be determined by two kinds of factor, one kind within, and

the other outside, his control. At one extreme he believes that

success is almost entirely due to his individual skill, the element

of chance being, so he thinks, negligible. At the other extreme,

he believes that success depends almost wholly on ‘chance’ factors

outside his control. Of course his beliefs do not necessarily tally

with the ‘objective’ state of affairs. Nor does he necessarily act in

accordance with any truly ‘objective’ evaluation.”

Psychologists refer to this belief as the illusion of control. Gamblers throw dice

hard to produce high numbers. People want to pay more for specific numbers

in a lottery than for numbers that are randomly assigned (Langer, 1975). For

the case of roulette, Oldman (1974) discusses the illusion of control in detail.

Wohl and Enzle (2002) extend the illusion of control model by Langer (1975)

by including perceptions of personal luck as a potential source of misperceived

skillful influence over uncontrollable events. Participants in their experiments

acted as if luck could be transmitted from themselves to a wheel of fortune

and thereby positively affect their perceived chance of winning.

To conclude this section, we want to remark that the phenomenon of illu-

sory control is closely related to the judgment errors due to overconfidence that

we mentioned in section 2.4.1.2. Clearly, the distinction between the mathe-

matical character of a game and the way the game is perceived by the players

also relates to the mental models discussed in section 2.4.1.3.
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2.4.3 General remarks

In this section we make a few general remarks on the incorporation of findings

from behavioural economics and psychology in the analysis of beginners in

casino games. In the first place, one should try not to stick with global models

and general results when analyzing a game. Local, game-specific considerations

are often more useful. Moreover, the environment in which the game is played,

may influence the strategy of inexperienced players. Think, for example, of

casinos organizing sessions for new players to become familiar with the rules

of the games. In such sessions strategic advise may be given to the audience

or the complex rules of a game can be presented in a simplified way. People

who start playing the game with this information in mind may play a strategy

that is completely different from the strategies used by players who did not

attend such an introductory session.

A second issue that deserves some attention is the distinction between

experiments that are run by psychologists and experiments that are carried

out by economists. Psychologists do not use repetition; they are interested in

initial behaviour. Economists ask their subjects to perform a task repeatedly,

because they want to learn something about equilibrium behaviour. People

who do not get the opportunity to learn may be seen as “real beginners” who

play a game for the very first time. On the other hand, from the behaviour of

subjects in economic experiments we may draw conclusions about the decisions

of people during their whole first evening in the casino.

The last possibility to learn about a beginner’s strategic behaviour that

we want to mention, is the direct observation of the way a player processes

information. A nice example of an investigation of decision rules, which also

measures how subjects attend to payoff information, is the paper by Costa-

Gomes, Crawford and Broseta (2001). The authors “get behind the subjects’

eyes” and see payoffs during the same amount of time and in the same order

as the subjects do. For a discussion of this research we refer to Camerer (2003,

section 5.6).
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2.5 Measuring the game result

In the preceding sections we introduced the learning effect, the random effect

and the three player types whose game results are used to determine these

effects. However, we did not yet define exactly a player’s game result. As

Borm and Van der Genugten (1998) already suggested, the relevant numbers

that should be taken into account are the payoff to the player and the stakes

(bets) that are needed to obtain this payoff. Two sensible definitions of a

player’s game result that one can come up with, using these numbers, are

(net) gains and returns:

gains = payoffs − stakes, returns =
gains

stakes
.

One should be careful when making a selection. Implicitly, the choice of mea-

surement implies an assumption about the goals of the players in a game.

In general, a player’s strategy will depend on his focus: the strategy that

maximizes the expected net gain is not necessarily the same as the strategy

optimizing the expected returns. In practice, mostly players seem to aim for

the highest possible gain.

There are games, however, in which expected gain does not form an ap-

propriate strategy evaluation. A practical example is the game of roulette.

Intuitively, roulette is a pure game of chance. A player cannot influence his

expected results by varying his strategy; i.e., if results are measured in terms

of expected returns. Of course, by betting twice as much, one can double the

expected gain, but the expected returns are not affected. If we define the strat-

egy of a beginner, we have to make assumptions about the bet size he uses.

For roulette we know that the optimal player will bet the minimum, since the

expectation of his gain is negative.4 If we assume that a beginner plays a

strategy that assigns a positive probability to a bet larger than the minimum,

his expected gain will be smaller than for the optimal player and, as a result,

roulette will have a positive learning effect. This positive learning effect will

not occur if we use expected returns to evaluate the player’s strategies.5

4We don’t consider “not playing” as a strategic option; we analyze the behaviour of a
rational player, given that he participates in the game.

5To be complete, we note that there is a difference in expected returns between simple
strategies (e.g., red or black, even or odd) and non-simple strategies (e.g., single numbers).
However, the learning effect will always be small compared to the random effect that is
caused by the fictive player who always bets maximally on the winning number.
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The use of expected returns has some disadvantages. In the first place, the

linearity of the game results is lost. This makes computations more difficult.

Besides that, in more-person games we have the complication that zero-sum

games are turned into games of which the payoffs are not zero-sum. There is

an alternative that seems to use the best of two worlds: one could determine

the strategies in the linear, zero-sum environment, focusing on maximimum

expected gain, and consequently compute the corresponding expected returns

and use these in the relative skill measure. This possibility has a theoretical

drawback. The expected gain of a beginner will be smaller than or equal to

the expected gain of an optimal player and an optimal player will never have

an expected gain that is strictly higher than the expected gain of the fictive

player. However, this logical ordering is not necessarily preserved when when

we look at the expected returns that correspond to the strategies of the three

player types.

Another option is to model the bet size as a pre-game decision of how many

unit games to play at the same time, where the unit game is the game with

fixed, normalized bet size. We can use this way of modelling if the following

conditions are satisfied:

(C1) the size of the bet that is chosen does not affect the course of the game;

(C2) at the moment the bet size is chosen, no information about the outcome

of the chance move is available yet;

(C3) the structure of the payoff function is such that the expected gain of a

player is linear in the bets of the player.

Within the class of one-person games we find games that satisfy the three

conditions above. For example, in roulette, deciding to bet 10 euro on black,

is comparable to deciding to play 10 games of “unit roulette” simultaneously,

in which you bet 1 euro (the fixed, normalized bet size) on black. A similar

decomposition is possible for instance for trajectory games like golden-ten, but

also for blackjack played with an automatic card-shuffling machine.

We think that what one really wants to know if one asks for the skill

involved in a game, is the skill level of the unit game. When playing multiple

instances of a game simultaneously, one has the same relative influence on the

expected result as in one instance of the game. In defining our three player
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types, we can therefore restrict ourselves to defining the strategies they use

in the unit game. Measuring expected gain is then equivalent to measuring

expected returns and the ordering problem will not occur anymore.

In general, in more-person games condition (C1) is no longer satisfied. E.g.,

in a two-person game where the players do not move simultaneously and where

the second player is informed about the amount bet by the first player, different

bets of the first player lead to different information sets of the second player.

This type of bet of the first player is an example of a strategic bet, whereas

the bets that satisfy the conditions above are called non-strategic bets. In a

game that contains strategic bets a reduction to the analysis of a unit game

is not possible. This is not a problem, since for more-person games there is

no need for an alternative definition of game results; expected gains can serve

this purpose very well. The only assumption we have to make in the skill

analysis of more-person games, is that all participants have sufficiently large

resources. In this way, buying out an opponent by means of extraordinarily

large (bluffing) bets is not possible and, as a consequence, the analysis only

takes into account the “real” strategic features of the game.

2.6 One-person games

We are now ready to give the formal definition of the relative skill measure

for one-person games. The definitions apply to games for one player, possibly

with chance moves. Here, the number of chance moves must be finite and for

each chance move the number of possible outcomes must be finite. Moreover,

the rules of the game determine a finite, non-empty set X of pure strategies

of the player. For this game we also consider the fictive situation in which

the player knows the outcomes of the chance moves before he has to make

a decision. This knowledge extends the set of pure strategies to a finite set

X̄ ⊇ X.

The quality of a strategy x̄ ∈ X̄ is determined by its corresponding expected

gain, as (R2) suggests. The expectation of the player’s gain with respect to

the external chance moves is given by the function U that assigns expected

gain U(x̄) to each strategy x̄ ∈ X̄. Let ∆(A) denote the set of all probability



30 CHAPTER 2. MEASURING SKILL IN GAMES

distributions on a finite set A:

∆(A) =

{
p : A → [0, 1] |

∑

a∈A

p(a) = 1

}
.

This defines the sets of mixed strategies ∆(X) and ∆(X̄). Using expectations

with respect to these internal chance elements, the extension U(σ̄) for mixed

strategies σ̄ ∈ ∆(X̄) is immediate.

The definition of (potential) relative skill is based on the expected gains of

three types of players: the beginner, the optimal player and the fictive player.

A beginner is associated with a given strategy σ0 ∈ ∆(X) with corresponding

expected gain

U0 := U(σ0).

The optimal player uses a strategy with maximal expected gain, i.e.,

Um := max
x∈X

U(x) = max
σ∈∆(X)

U(σ).

Clearly, the fact that the optimal player maximizes over his set of pure strate-

gies, instead of its mixed extension, does not affect his maximum expected

gain. The fictive player has the extra information on the outcome of the

chance moves and can do at least as good as the optimal player, but possibly

better. He uses a strategy in X̄ with maximal expected gain. We write

U f := max
x̄∈X̄

U(x̄) = max
σ̄∈∆(X̄)

U(σ̄).

These definitions lead to an ordering of the expected gains of the three player

types: U0 ≤ Um ≤ U f .

We call the difference between the expected gain of the optimal player and

the beginner, Um − U0, the learning effect (LE) in the game, while we refer

to the difference between the expected gain for fictive and optimal players,

U f − Um, as the random effect (RE) in the game. Clearly, the learning effect

relates to the variation of expected results among players that is mentioned

in (R2) in section 2.2. The random effect is used to determine whether this

variation is substantial in relation to the restrictive influence of the chance

elements, as (R3) requires.
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The definition of the relative skill level RS of the game is based on the

ratio of the learning effect and the random effect:

RS =
LE

LE + RE
=

Um − U0

U f − U0
.

Obviously, both the learning effect and the random effect are nonnegative.

As a consequence, 0 ≤ RS ≤ 1. For RS to be equal to its lower bound,

the learning effect must be zero. Therefore RS = 0 indicates a pure game of

chance. On the other hand, we have RS = 1 if there is no random effect in

the game. Therefore, this extreme case corresponds to a pure game of skill.

For the sake of completeness we define RS = 1 if LE = RE = 0. This

boundary case is only of theoretical importance, because in practice this will

not occur. In a game with LE = RE = 0, the chance elements do not have

a restrictive influence on the maximal expected gain a player can attain, but

the game is so easy that even a beginner can figure out how to play optimally

(e.g., tic-tac-toe).

2.7 Definition of opposition

The framework for the skill analysis that was introduced in section 2.2 is not

only applicable to one-person games, but also to games with more players.

Although in one-person games the game results for the three player types are

unambiguously determined by the strategies chosen by the players, in more-

person games the payoff of a player clearly depends on the way the opposition

acts.

In the analysis of skill two approaches are used to model the opposition of

the beginners, the optimal players and the fictive players. Borm and Van der

Genugten (1998, 2001) compute what would be (jointly) optimal for the oppo-

nent(s) against an optimal player. Next, the three player types are evaluated

against this resulting optimal (joint) strategy of the opposition. In section 2.8,

we use a different approach: we assume that the opponents play in such a way

that they offer maximal opposition to the player type under consideration.

Whereas this direct opposition is clear in two-person zero-sum games, in

games with more participants it is not. In a game with three or more players

the mutual competition is of a more indirect and complex nature. Although
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money is still only reallocated in an n-person zero-sum game, two particular

participants cannot be viewed as direct adversaries in the sense that they

should (or could) act such that they oppose each other as strongly as possible,

regardless of what the other players do. As a result, it is not directly clear

how to determine the expected gain of a given player type facing maximal

opposition. The solution that is chosen for this problem in the skill analysis,

is the following. In an n-person game the n − 1 opponents of a specific player

are assumed to act as one. In terms of cooperative game theory these n − 1

players form a coalition. By defining the payoff of the coalition as the sum of

the individual member payoffs, we obtain a two-person zero-sum game again,

in which optimal play is well-defined. Using this pessimistic assumption, we

can find the optimal opposition for any player in the more-person game in the

familiar way.

2.8 More-person games

In this section, we present the generalization of the definition of relative skill

for one-person games to n-person games. We consider a finite game with player

set N := {1, . . . , n}, again possibly with chance moves. In the analysis, we

refer to the players in N as player roles, thereby indicating that these are the

roles or positions that players can take in the game. The finite, non-empty set

Xi contains the pure strategies of player i. The set of strategy profiles of the

players is then X :=
∏

i∈N Xi. For each player i, the fictive situation that he

knows the outcomes of the chance moves leads to the extended set X̄i ⊇ Xi

of strategies. This leads to the extension X̄ :=
∏n

i=1 X̄i. For player i, ∆(Xi)

and ∆(X̄i) denote his sets of mixed strategies as a normal and as a fictive

player respectively. Each player makes his strategic choices independently

of his opponents. Therefore, the product sets
∏n

i=1 ∆(Xi) and
∏n

i=1 ∆(X̄i)

contain all possible strategy profiles.

For each i ∈ N the function Ui assigns to each strategy profile x̄ ∈ X̄

the expected gain Ui(x̄) of player i. The vector U(x̄) = (U1(x̄), . . . , Un(x̄))

specifies the gains of all players. Using expectations, the extension U(σ̄) for

mixed strategy profiles in the set
∏n

i=1 ∆(X̄i) is straightforward.

As before, we base our definition of relative skill on the expected gains of

three types of players: the beginner, the optimal player and the fictive player.
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However, these types must now be defined for each role a player can take. After

all, in most games player roles are not symmetric. The difficulty, compared to

the one-player case, is that a player’s gain may now depend on the strategic

choices of his opponents. Borm and Van der Genugten (2001) dealt with this

difficulty in the following way. For each player i ∈ N the strategy choices of

the other players are considered fixed. The uniform reference for the three

player types in the role of player i is a minimax strategy of the coalition of all

opponents of player i in the related two-person zero-sum game.

A drawback of this method is that the coalition of opponents of player i

in general has multiple minimax strategies. The value of the skill measure

will therefore depend on the minimax strategy selected. Although it does not

influence the expected gain of player i as an optimal player, it does influence

these numbers for this player as a beginner and as a fictive player. Borm and

Van der Genugten (2001) solved this problem by replacing the minimax strat-

egy by an approximation obtained by fictitious play with prescribed accuracy

and starting with the strategy profile consisting of beginners’ strategies. How-

ever, from a numerical point of view this is not a simple solution, so it can still

be judged as a drawback of the concept.

As announced in section 2.7, we drop the earlier idea of a fixed and uniform

reference of the opponents against each type of player in a specific player role.

Instead we let the opponents react optimally, depending on the type of player.

Playing optimally must be interpreted as giving maximal opposition. This

assumption on the behaviour of the coalition of opponents is only reasonable

for zero-sum games. After all, for a zero-sum game, the coalition’s aggregate

gain is higher as the gain of player i is lower (and vice versa), while this relation

does not hold for nonzero-sum games. This is not really a restriction, since any

practical casino game you can think of can, maybe apart from some entrance

fee, be modelled as a zero-sum game. If a bank (or dealer) is involved, this

person should be considered as an extra player with only one strategy.

Another consequence of the the definition of skill proposed by Borm and

Van der Genugten (2001) that deserves attention is the fact that each game

without external chance elements is a game of skill by definition. This is a

result of the fact that the effects of the use of mixed strategies, the so-called

internal chance elements, are not taken into account. The following example

serves as an illustration.
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Example 2.8.1 (Matrix game) Consider the following zero-sum game for

two players. Both players have a coin. They simultaneously put their own

coin on a table and cover it with one hand. The players can choose which side

of the coin will be up, H(eads) or T (ails). If both players decide the same,

then player 1 receives one euro from his opponent. Otherwise, player 1 has to

pay one euro to player 2. The players are allowed to use randomization in the

selection of their strategies. The matrix below summarizes the expected gains

of player 1, the row player.

H T

H

T

(
1 −1

−1 1

)

This two-person zero-sum game has no external chance moves. Therefore, the

random effect is equal to zero. According to the definition from section 2.2,

the consequence is a skill level of one, whatever the learning effect may be.

However, in practice in this game players will always randomize between the

strategies available to them; this is pure gambling. Anyone observing this

game will intuitively associate this randomization with a game of pure chance.

⊳

The message of this example is that merely the fact that optimal play needs

randomization should influence the measure of relative skill. The following

alternative definition of relative skill for more-person games also incorporates

this idea.

We now provide the formal definitions. Let X−i =
∏

j 6=i Xj denote the pure

(coalition) strategies of the opponents of player i. Then for player i as beginner

with strategy σ0
i ∈ ∆(Xi) the gain with optimal play by opponents is

U0
i := min

x−i∈X−i

Ui(σ
0
i , x−i).

The expected gain for player i as an optimal player is given by his expected

gain in a Nash equilibrium of the related two-person zero-sum game against

the coalition of the other players:

Um
i := max

σi∈∆(Xi)
min

x−i∈X−i

Ui(σi, x−i) = min
σ−i∈∆(X−i)

max
xi∈Xi

Ui(xi, σ−i).
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Note that the equality follows from the minimax theorem of Von Neumann

(1928) and that Um
i is exactly the value of the two-person zero-sum game. For

player i as a fictive player we assume that he does not only know the outcome

of the chance moves, but also the outcome of the randomization process of his

opponents. This is the key change with the aim of a better incorporation of the

randomization of the players in the definition of relative skill. A fictive player

can anticipate future actions of his opponents. So in optimal play against a

fictive player randomization has no effect at all. Therefore, the opponents will

choose a pure strategy from X−i, minimizing the maximum gain of a fictive

player i. Player i will choose a strategy from X̄i that maximizes his expected

gain, given the strategy of his opponents. This leads to the expected gain U f
i

of the fictive player:

U f
i := min

x−i∈X−i

max
x̄i∈X̄i

Ui(x̄i, x−i).

It is not difficult to see that, for a specific player i, just as in the one-person

case, we have for the ordering of expected gains of the different player types

that U0
i ≤ Um

i ≤ U f
i . To find the expected gain in the game for each player

type, we take the average over all n possible player roles. For the beginners,

this leads to U0 = 1
n

∑n
i=1 U0

i . Similarly, we have Um = 1
n

∑n
i=1 Um

i and U f =
1
n

∑n
i=1 U f

i for the expected gains for optimal and fictive players, respectively.

The learning effect is again the difference between the expected gains for

beginners and optimal players: LE = Um − U0. The contribution of player i

to this learning effect is 1
n
(Um

i − U0
i ). Analogously, the random effect of the

game is RE = U f −Um, with 1
n
(U f

i −Um
i ) as contribution of player i. Now we

are ready to give the extension of the measure of skill for more-person games.

Analogous to the measure for one-person games we define

RS =
LE

LE + RE
=

Um − U0

U f − U0
=

1
n

∑n
i=1 (Um

i − U0
i )

1
n

∑n
i=1 (U f

i − U0
i )

.

To conclude this section, let us illustrate the formulas with the matrix game

from example 2.8.1.

Example 2.8.2 (Matrix game (continued)) In this example we show how

to calculate the skill measure for the matrix game we defined in example 2.8.1,

starting from a certain characterization of beginner’s play. Recall that the
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payoff matrix A of the game is as follows.

A =

(
1 −1

−1 1

)
,

where the first row and column correspond to H. Both players can choose from

the same set of pure strategies: X1 = X2 = {H,T}. Beginners will probably

choose between H and T randomly, so σ0
1 = σ0

2 = 1
2
H + 1

2
T . To compute the

expected gain of a beginner in the role of player 1, we check what his expected

gain is if player 2 plays optimally against σ0
1. Player 2 can choose any strategy

to obtain a payoff of 0. Therefore, U0
1 = 0 and, because of symmetry, U0

2 = 0.

To compute the expected gains of the optimal players, Um
1 and Um

2 , we

compute the Nash equilibrium of the matrix game. It is not difficult to see

that this equilibrium is unique and that for each player the equilibrium strategy

is equal to the beginner’s strategy. The value of the game, v(A), is zero, so

the optimal players have expected gains Um
1 = Um

2 = v(A) = 0.

In the fictive situation that player 1 can observe the outcome of the possible

randomization of his opponent, he can always put his coin with the same side

up. So, his gain will be 1, independent of the strategy choice of player 2. The

same reasoning holds for player 2 as a fictive player, so we have U f
1 = U f

2 = 1.

Using these numbers, we can now compute the learning effect and the

random effect for our matrix game:

LE = 1
2

∑2
i=1 (Um

i − U0
i ) = 1

2
((0 − 0) + (0 − 0)) = 0,

RE = 1
2

∑2
i=1 (U f

i − Um
i ) = 1

2
((1 − 0) + (1 − 0)) = 1.

The last step is to combine these effects to find the value of the skill measure:

RS =
LE

LE + RE
=

0

0 + 1
= 0.

Thus, following the new definition, we conclude that this is a pure game of

chance. We stress, however, that changes in the assumptions on the behaviour

of the beginners may influence the value of the skill measure. Although the

skill analysis in principle is applicable to any matrix game, one should be

careful with conclusions based on the skill level. The beginner’s strategy may

depend on “the story behind the matrix”.

Note that the expected gains of the optimal players do not influence the

value of RS in a two-person zero-sum game, since these values cancel out in
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the formula. However, if we want to see how much the players individually

contribute to the learning effect and the random effect, we need to know the

values of Um
1 and Um

2 . ⊳

Example 2.8.2 was just a small illustration of the computations the skill anal-

ysis requires. We present the analysis of two more interesting games in sec-

tion 2.10.

2.9 Player skill versus game skill

Before we turn to two particular examples in section 2.10, we would like to

spend a few words on the relation between player skill and game skill. As

the first paragraph of the introduction to this chapter already indicates, there

is a distinction between the two concepts. In a game with a high skill level,

the skillful players can have a significant advantage over the less competent

participants, whereas this advantage is relatively small in games with a low

skill level. The previously mentioned article of Larkey et al. (1997) focuses on

skill differences between players. Their ideas are presented by means of a large

example, in which twelve different player types play a simplified version of stud

poker against each other. Each player is described by means of a complete,

algorithmically described strategy. Skill differences are created by carefully

varying certain characteristics over the twelve strategies. These players play

a complete tournament and in the end the table with game results is used to

draw conclusions about skill differences between players and about different

types of skill that can be useful in the poker game. Their results make clear

that a player’s performance strongly depends on the opposition he faces. The

authors can, given the opposition, distinguish between more and less skillful

player types. However, it is not directly clear how one could use their results

to say something about the skill level of the poker variant itself.

How does this work in our skill analysis? In section 2.2 we defined the

notions of learning effect and random effect that are used to compute the

relative influence of a player on the game result. If we consider a one-person

game, we can just fill in these numbers in formula (2.1) to find the skill level

of the game. For a one-person game, the relative influence that the player

has determines the skill level of the game. For more-person games some extra
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work is required. For each player (or player role) in the game we can compute

the learning effect and the random effect.6 Next, there are two ways to use

these numbers to draw conclusions about the skill level of the game. In the

first place, we can compute the overall learning effect and random effect by

taking the average over the, say, n players and use the results in formula (2.1)

to compute the skill level. This is the approach followed by Borm and Van der

Genugten (1998, 2001), as well as in our approach of section 2.8. An alternative

would be to compute the relative skill level for each player role separately and

take the average over these n numbers to find the skill of the game as a whole.

Both methods seem to make sense, but in general they do not yield the same

results.

We use a subscript to indicate whether we speak about a player or the

game itself and rewrite the formula for the method used in section 2.8:

RSgame =
LEgame

LEgame + REgame

=
1
n

∑n
i=1 LEplayer i

1
n

∑n
i=1 (LEplayer i + REplayer i)

. (2.3)

The alternative method boils down to

RSgame =
1

n

n∑

i=1

RSplayer i =
1

n

n∑

i=1

LEplayer i

LEplayer i + REplayer i

. (2.4)

An example in which the difference between two methods is easily illustrated, is

presented by blackjack. In principle, blackjack is a one-person game. Although

the dealer draws cards too, he cannot make any strategic decisions. For this

one-person game, we can compute the learning effect LEBJ, the random effect

REBJ and the resulting skill level RSBJ. Next, we modify the game such that

you can play it with two players. In each play one of the participants takes

the role of the bank. Having the role of the bank, a player has no choices;

he has to play a fixed, predescribed strategy. Therefore, a beginner and a

fictive player will have the same expected game result as an optimal player.

As a result, the learning effect, and thus the relative skill of this player role

are zero. For the other player we already have the numbers LEBJ, REBJ and

RSBJ. If we use formula (2.3) to determine the skill level of the new game,

we find that it is equal to the skill level of “standard” blackjack, whereas the

6One should not confuse player roles with player types; e.g., in a five-person poker game
we have to analyze for five player roles each of the three player types (beginner, optimal
player and fictive player) that are needed for the skill analysis.
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skill level turns out to be halved according to formula (2.4). Which of the two

alternatives is preferred, depends on the context in which it is used. When

one want to make a consistent comparison with other games, the availability

of information regarding skill for these games may determine the selection of

the formula. Moreover, practical restrictions can require the use of the first

alternative. After all, when empirical data is collected, it is much harder to

collect a player’s results for each player role in a game separately than to collect

aggregated results. If only these aggregated numbers are available, then it is

not possible to use formula (2.4).

2.10 Examples

In this section we illustrate the computations of the skill measure presented

in section 2.8 for two simple, but realistic more-person games. Section 2.10.1

discusses a coin game. Subsequently, in section 2.10.2 we analyze the skill

involved in a simple poker game among three players in which an external

chance element, the dealing of cards, plays a role.

2.10.1 A coin game

In this section we consider a generalization of the n-coin game that was ex-

plored by Schwartz (1959). The n-coin game is a two-person zero-sum game in

which both players have n coins available to play with. In the game we discuss,

this number of coins is not necessarily the same for both players: player 1 has

m coins and player 2 has n coins. We call this generalization the (m,n)-coin

game. Both players also know the number of coins available to the opponent.

We come back in detail to (m,n)-coin games in chapter 7.

First, each player takes a number of his coins, possibly zero, in his hand. A

player cannot see how many coins the opponent has taken in his hand. Now,

first player 1 guesses the total number of coins taken by both players and

then player 2 does the same, but he is not allowed to guess the same total

as player 1. Subsequently, both players show their hands, so that the actual

total can be determined. The game is won by the player who guessed the total

number of coins correctly. The winner receives one euro from the opponent.

If neither of the two guesses the right number, then nothing is paid.



40 CHAPTER 2. MEASURING SKILL IN GAMES

We calculate the relative skill RS of the (1, 2)-coin game. A pure strat-

egy of player 1 has the form (i; j) where i is the number of coins he takes

and j represents the sum he guesses. Player 2 plays a strategy of the form

(k; l0, l1, l2, l3). In this notation, k denotes the number of coins player 2 takes,

while lj tells us what number player 2 will guess if player 1 guessed the total

number of coins to be j.

To find the value of this game, we want to know its normal form. Since

the normal form is rather large, we restrict attention to the quasi-reduced

normal form. Two pure strategies xi and xj of a player are called realization

equivalent if they lead to the same terminal node for every given specification

of the strategies for the other player, i.e., if xi and xj differ only at irrelevant

information sets. The quasi-reduced normal form considers for player i a subset

Qi of his collection of pure strategies Xi, such that no two elements of Qi are

realization equivalent. We can construct this quasi-reduced normal form for

the (1,2)-coin game and delete the (weakly) dominated strategies of player 2

from it. These are the strategies for which there is another pure strategy for

player 2 which gives him a payoff against any pure strategy of player 1 that is at

least as high, and a strictly higher payoff against at least one pure strategy of

player 1. These dominated strategies in the coin game typically are strategies

with which player 2 cannot win the game. An example is a strategy in which

player 2 takes 0 coins and guesses 2 or 3, while he knows that player 1 can have

at most one coin in his hand. In this way we see that the game is equivalent

to the reduced normal form game that is displayed in Table 2.10.1. Player 1

is the row player, while the columns of the table correspond to pure strategies

of player 2.

It is easily verified that, by playing 1
5
(0; 0) + 2

5
(0; 2) + 2

5
(1; 2), player 1 can

guarantee a value of −1
5
. Analogously, player 2 can guarantee this value by

playing 2
5
(0; 1, 0, 0, 1) + 1

5
(1; 1, 2, 1, 2) + 2

5
(2; 2, 3, 3, 2). Therefore, the value of

this game is −1
5
. Then we know the expected gains for the optimal players,

both in the role of player 1 and player 2: Um
1 = −Um

2 = −1
5
.

The next step is to determine the strategies for the beginners. For player 1

two pure strategies can be considered “unreasonable” at first sight. After all,

choosing (0; 3) or (1; 0) ensures him that he will not win the game, because

the sum guessed is not reachable with his own choice of coins. Furthermore,

randomization is a logical thing to do. Therefore, we assume that a naive
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player 1 chooses each of the remaining six pure strategies with equal probabil-

ity. A best reply of player 2 is the pure strategy (1; 1, 2, 1, 2). This results in

the expected gain of player 1 as a beginner: U0
1 = −1

3
.

For player 2 there are a number of strategies that can immediately be seen

to be irrelevant. It makes no sense for player 2 to guess a sum that is smaller

than the number of coins he has in hand. Even someone who plays the game

for the first time will see this. Consequently, all strategies with lj < k for any

j are left out of consideration. A beginner in the role of player 2 will play a

fair randomization over the remaining 109 pure strategies. A best response of

player 1 against this strategy σ0
2 is to play (0;0). With this response, player 1

wins the game with probability 81
109

and loses with probability 10
109

against σ0
2.

In this way player 2 has to pay an expected value of 71
109

. So U0
2 = − 71

109
.

Taking a fair average over the player roles yields us an expected beginner’s

gain of U0 = −161
327

.

Recall that fictive players are assumed to face optimal opposition and recall

that they are informed about all internal and external random moves. Com-

putation of the expected payoffs of these players is based on the normal form

of the game. This implies that a fictive player can anticipate the opponent’s

moves at later stages in the extensive form game. Note that this is consistent

with the model of Borm and Van der Genugten (2001), in which fictive players

Player 2
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,0
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,1
)
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,1

,1
)

(1
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)

(1
;2

,2
,1

,1
)

(1
;2

,2
,1

,2
)

(2
;2

,2
,3

,2
)

(2
;2

,3
,3

,2
)

(2
;3

,2
,3

,2
)

(2
;3

,3
,3

,2
)

(0; 0) 1 1 1 1 −1 −1 0 0 −1 −1 0 0

(0; 1) −1 −1 −1 1 1 1 1 1 −1 0 −1 0

(0; 2) −1 −1 0 0 −1 −1 −1 −1 1 1 1 1

Player 1 (0; 3) −1 0 −1 0 −1 0 −1 0 −1 −1 −1 −1

(1; 0) −1 −1 −1 −1 0 0 −1 −1 0 0 −1 −1

(1; 1) 1 1 1 1 −1 −1 −1 −1 0 −1 0 −1

(1; 2) 0 0 −1 −1 1 1 1 1 −1 −1 −1 −1

(1; 3) 0 −1 0 −1 0 −1 0 −1 1 1 1 1

Table 2.10.1: The reduced normal form of the (1, 2)-coin game.
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know the fixed equilibrium strategy of their opponent. In the new approach

the fictive player also knows the result of any possible randomization of the

other player. Therefore, randomization becomes useless in giving maximal

opposition against a fictive player.

For both player roles in the (1, 2)-coin game, a fictive player can respond to

any pure strategy of the opponent by taking a number of coins so that the other

player’s guess is incorrect. Moreover, he can guess the correct total himself.

After all, a fictive player knows how many coins the opponent has taken in his

hand. With this information, player 1 can always win the game by guessing

the sum of this number and the (arbitrarily chosen) number of coins in his

own hand. There is nothing player 2 can do to prevent him from winning.

Similarly, player 2 as a fictive player will succeed in winning too. Hence, the

expected gains for the fictive players are U f
1 = U f

2 = 1. Consequently, the

average expected gain for a fictive player is U f = 1.

We can now compute the learning effect and the random effect for the

(1, 2)-coin game following the definitions of section 2.8:

LE = 1
2

∑2
i=1 (Um

i − U0
i ) = 1

2
((−1

5
+ 1

3
) + (1

5
+ 71

109
)) = 161

327
,

RE = 1
2

∑2
i=1 (U f

i − Um
i ) = 1

2
((1 + 1

5
) + (1 − 1

5
)) = 1.

The last step is to combine these effects to find the value of the skill measure:

RS =
LE

LE + RE
=

161

488
≈ 0.33.

The resulting skill value of 0.33 strongly depends on our definition of how

beginners act. If the explanation of the (1,2)-coin game to a new player includes

an advise on strategy selections, then a starting player may do significantly

better than “our” beginner and, consequently, the skill level we find for this

game would be lower.

When we compute the skill level for each player separately, we find

LE1 = 2
15

, RE1 = 6
5
, RS1 = 1

10
,

LE2 = 464
545

, RE2 = 4
5
, RS2 = 116

225
.

It is clear now that there is more skill involved in this game for the second

player role, who has to make use in a smart way of the information that is

contained in player 1’s guess. Averaging the two player skill levels according
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to the alternative formula (2.4) yields an overall skill level of 277
900

≈ 0.3078 for

the game.

The next section gives an illustration of the way the skill measure should be

computed for games with more than two players in which an external chance

element is involved.

2.10.2 Drawpoker

In this section we consider the simplified version of standard drawpoker that is

discussed by Binmore (1992, Chapter 12). The first simplification is that there

is no second dealing round in which players can change a number of cards.

The second simplification is that we do not use a standard deck with the usual

types of hands of five cards. Instead of that, all cards have distinct values and

every player gets only one card, dealt with or without replacement. In this way

we get a poker game which still contains many strategic features of standard

drawpoker. First we give a formal description of the game and thereafter we

compute the relative skill of the three-person version of this game that Binmore

(1992) also analyzed. For general references on specific aspects of poker, we

refer to Epstein (1977) and Scarne (1990). We study poker games in more

detail in chapter 5 and chapter 6.

We describe the rules of the most general form of our version of drawpoker

precisely. The game is played with n players, numbered from 1 to n, where

n ≥ 2. At the beginning of the game, each player places the initial bet (or

ante) a into the stakes. Then each player gets one card. This card is randomly

chosen out of a deck of c cards with card values 0, 1, . . . , c − 1. According

to the set-up of the game, cards are dealt with (r = 1) or without (r = 0)

replacement. If they are dealt with replacement, we should have c ≥ 2 to make

the game interesting; in the case of dealing without replacement, we require

c ≥ n + 1.

Then the betting starts, beginning with player 1, followed by player 2 and

so on. Player 1 can pass or open the game with bet. If he bets, then he chooses

an amount bi from a given set of s betting possibilities b1 < . . . < bs and adds

this to the pot. As long as the game is not opened with a bet, the next players

have the same choice of moves. If all players pass, then the game is a draw
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and the ante is returned to the players.

As soon as the game is open, the player whose turn it is can choose between

three actions. He may call, raise or fold. His successors have the same choice.

A call means placing an amount into the pot equal to that of the last bet made.

A raise means that the last bet is raised with some extra amount chosen from

the set of betting possibilities and this new bet is placed into the pot. A fold

means that the player drops out of the game and loses his contribution to the

stakes.

The total number of raises, including the first bet, must not exceed a certain

maximum m. A player cannot raise or call again on his own bet or raise. So

the betting round ends if at a stage where the player whose turn it would be

next is the last player who did not call or fold. If at such a stage this player is

the only player still in the game, then he wins the pot. Otherwise, a showdown

follows. In a showdown all players that are still in the game show their cards.

The player with the highest card wins the pot. If more than one player has

the highest card, which is only possible if cards were dealt with replacement,

then the pot is equally divided between them.

To compute the skill level of our drawpoker game, we have to specify the

strategy of a beginner in all possible player roles. It is not easy to judge how

a beginner would play this game in all variants. Perhaps a very simple way is

to imagine that he has two card values in mind: a raise card CR and a fold

card CF . He uses these values to play as follows.

• If his card value is less than or equal to CF , then he folds whenever this

choice is available to him, otherwise he passes.

• If his card is greater than or equal to CR, then he raises the maximum,

bs, whenever this choice is available to him; after a pass, he bets bs.

• If his card is between CF and CR, then he does not pass, but bets the

minimum, b1. If the game is already open, then he calls.

Of course the values of CF and CR will depend on the game parameters. It

seems reasonable to assume that a beginner bets or raises if, roughly spoken,

his card value is among the highest 10% in the deck. With respect to the

determination of the fold card, we think that the beginner will in general play

with much opportunism and will not pass or fold unless his card is among
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the lowest 50% in the deck. If the number of players becomes larger, this

percentage may increase, but it will probably not exceed 70%. This choice

is reflected in the following formula for CF . Clearly, this is too difficult to

compute for a beginner, but the resulting value for the fold card satisfies the

preceding description of the behaviour of our beginners:

CF = max
{
0, (c − 2) −

⌊
(c − 1)

(
1
2
− 1

10
ln(n − 1)

)⌋}
,

CR = (c − 1) −
⌊

1
10

(c − 1)
⌋
.

Here, ⌊x⌋ denotes the integer part of x. This notion is used to make sure that

the boundaries are given by (integer) card numbers.

So far we kept our notation and definitions with respect to the game as general

as possible. In the remainder of this section we restrict our attention to the

variant for which Binmore (1992) computed the Nash equilibrium. This is the

3-person drawpoker game with 2 cards, L (low) and H (high), that are dealt

with replacement (r = 1). The ante is a = 2 and the only possible betting

amount is b1 = 8. Only one bet is allowed; when the game is open, players are

only allowed to fold or call. This parameter choice enables us to do a large part

of the skill analysis manually. Binmore already showed that the pure strategy

space for all three players can be reduced enormously.

For this game the beginners’ strategies we proposed above boil down to

passing or folding with an L and raising or calling with an H.

For our analysis we are interested in the expected gains of the three players

when the coalition formed by the two opponents gives maximal opposition. Let

us consider the two-person zero-sum game that corresponds to the situation

in which player 1 plays against the coalition of the players 2 and 3. After

elimination of dominated strategies player 1 has two pure strategies left: X1 =

{x1, x2}. Strategy x2 is the beginner’s strategy, i.e., passing or folding with an

L and raising or calling with an H. The other pure strategy, x1, differs from

x2 in one position; it prescribes passing with a high card. This phenomenon

in which a player with a good hand tries to mislead his opponents is called

sandbagging. The coalition of players 2 and 3 also has only two undominated

pure strategies: X23 = {y1, y2}. Translation of these strategies in terms of

strategies for the two individual players in this coalition shows that player 2

always plays the same strategy as the beginner. Player 3 does that too in



46 CHAPTER 2. MEASURING SKILL IN GAMES

strategy y1, but in y2 he bets with a low card when neither of his predecessors

has opened the game. This strategic aspect of poker is more familiar than

sandbagging; it is called bluffing. The matrix A1,23 below displays the net

expected gains for player 1 in this reduced two-person zero-sum game.

A1,23 =

y1 y2

x1

x2

(
−1

2
3
4

0 −1
4

)

In the unique Nash equilibrium of this game player 1 plays 1
6
x1 + 5

6
x2, while

his opponents use the mixed strategy 2
3
y1 + 1

3
y2. The resulting game value is

v(A1,23) = − 1
12

. Therefore, the expected gain for optimal player 1 is Um
1 = − 1

12
.

When player 1 plays the strategy of a beginner, then a possible best answer

of the coalition is to let player 2 play the beginner’s strategy and let player 3

play the bluffing strategy, i.e., to bet with an L when the other players have

not opened the game. Since player 1 already reveals his card in the opening

move, the other players make sure he does not gain anything unnecessary with

an L and that the coalition does not lose any betting amounts if player 1 has

an H. In this way player 1 makes an expected loss of 1
4

and therefore his

expected gain is U0
1 = −1

4
.

Now, let us see what the possibilities of the fictive player are. This player

knows the cards of the other players as well as the result of their possible

randomization. Furthermore, he can anticipate future actions of opponents,

since our analysis is based on the normal form of the game. His opponents are

aware of all this and give maximal opposition. Therefore, for players 2 and

3 bluffing and sandbagging become useless if they face a fictive player. They

both pass or fold with an L and they bet or call with an H. So, if player 1

knows that neither player 2 nor player 3 has a higher card than he has, the

best he can do with an L is to bet (bluff). The opponents will fold. Of course,

if he has a high card, he will always bet. This is how player 1 as a fictive player

can make an expected gain of U f
1 = 1

2
.

For the other players similar reasoning and computations lead to the values

that are displayed in Table 2.10.2. From the numbers in this table we can

compute the learning effect and the random effect for 3-person drawpoker:

LE = 1
3

∑3
i=1 (Um

i − U0
i ) = 1

3
((− 1

12
+ 1

4
) + (− 1

12
+ 1

4
)) + ( 1

10
− 0)) = 13

90
,

RE = 1
3

∑3
i=1 (U f

i − Um
i ) = 1

3
((1

2
+ 1

12
) + (1

2
+ 1

12
) + (1

2
− 1

10
)) = 47

90
.
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player 1 player 2 player 3

beginner −1
4

−1
4

0

optimal − 1
12

− 1
12

1
10

fictive 1
2

1
2

1
2

Table 2.10.2: The expected gains in 3-person drawpoker.

The last step is to combine these effects to find the value of the skill measure:

RS =
LE

LE + RE
=

13

60
≈ 0.22.

When we compute the skill level for each player separately, we find

LE1 = 1
6
, RE1 = 7

12
, RS1 = 2

9
,

LE2 = 1
6
, RE2 = 7

12
, RS2 = 2

9
,

LE3 = 1
10

, RE3 = 2
5
, RS3 = 1

5
.

The result of averaging these numbers according to formula (2.4) yields an

average skill level of 29
135

≈ 0.21, which is close to the value of RS we just

found. Skill does not vary very much over the three player roles in this game.

Just as in the coin game example of section 2.10.1, we would like to stress

that this result depends on our definition of beginners’ behaviour. If this game

is played in a casino where the brochure with the game description ends with

some words on bluffing and sandbagging, then a beginner may use a strategy

that differs heavily from the one we assumed him to use. This may also affect

the skill level we find for the drawpoker game.

2.11 Using empirical data

In the foregoing we have described, discussed and illustrated general aspects

concerning a skill analysis of casino games. In the last section of the chapter we

want to indicate briefly what could be the role of empirical data in determining

the skill level of a game.

In the first place one could think about collecting player results in a casino

and using the resulting numbers as input for the skill measure that was given

in formula (2.1). However, one should be careful. For a one-person game, we
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can imagine that it is possible to collect information about the game results

of beginners and advanced players, or otherwise about the average player that

was mentioned in section 2.3.4. The expected results for the fictive player

should still be computed, since this is a theoretical player type.

For more-person games, the collection of useful data is more difficult. Of

course, it is still possible to observe and collect the game results of beginners

and advanced players. However, one should now know exactly against what

kind of opposition the results in this data set are obtained. In an ideal situation

one should obtain detailed information about the decisions made by all players.

After all, the results for the fictive players still have to be computed and for

these computations information about the opposition is needed.

If information is not available in so much detail, it may still be possible to

come up with a specific solution for the particular situation in which the skill

analysis is applied. In chapter 3, an example of such a context-specific approach

is given: the framework sketched in this chapter is used, in combination with

an analysis of variance, to determine the skill level of a “management game”.

As a final remark we wish to mention the possibility of designing exper-

iments to collect data for a specific game. Yu and Cowan (1995) give an

example of a statistical model using duplicate tournaments to deduce informa-

tion about the luck-skill balance in the game. They argue, however, that it is

difficult to separately estimate effects of luck and effects of the actions chosen

by a player.



Chapter 3

Case study: management games

3.1 Introduction

In recent years the popularity of a certain type of sports-related competitions

has increased: management games. A participant in such a game acts as the

manager of a fictive sports team. Examples of sports for which management

games are organized, are soccer, tennis, cycling and Formula One racing. Given

a set of restrictions, the participant selects players and possibly additional

elements for his team. His team earns points for certain events that occur in

the sports competition to which the management game is related. The goal of

the game is to maximize the number of points earned during the competition.

Basically, a team scores well in the management game if the team members

do well in the real competition.

Management games are made attractive by promising interesting prizes for

the best managers. Moreover, participation fees are kept low. This combi-

nation naturally leads to a large number of participants. With many paying

participants the exploitation of a management game turns into a profitable

business. However, since this business concerns “exploiting games with mon-

etary prizes”, it is interesting to know whether or not a licence is required

for the organization of a management game, according to the passage of the

Dutch Gaming Act that was cited at the beginning of section 2.2. Recall that

such a licence is required if the game is classified as a game of chance. If it

is a game of skill, exploitation is allowed to anyone. The investigation of the

participants’ influence on their winning possibilities or, phrased differently, the

investigation of the skill involved in a management game is the subject of the

49
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current chapter.

The development of the Internet is probably the main reason for the in-

creased popularity of management games. While such competitions were or-

ganized by newspapers and sports magazines before, the Internet has made

the organization of these games much easier and less costly. It is not diffi-

cult anymore to deal with large groups of participants, since the participants

themselves can be made responsible for all their management actions. Using

smart programming work and clear instructions, the interaction of the game

organizers with the game can be restricted to adding new results from the

real sports competition to a central database from which the team scores are

derived.

The example which is studied in detail in this chapter, is a management

game called Grand Prix Manager 2003 (GPM 2003). In this game a team

consists of two drivers, a chassis, an engine and a set of tires that were active

in the FIA Formula One World Championship 2003. Drivers or car parts score

positively for a team in GPM 2003 by reaching good qualifying positions,

achieving good race results, setting fastest lap times, and so on. Crashing

or not finishing for other reasons leads to negative scores in the management

game.

The remainder of this chapter is organized as follows. Section 3.2 discusses

the details of the skill analysis for management games in general, while sec-

tion 3.3 contains the complete analysis of the example game, GPM 2003. The

computations of this example were originally carried out for the research report

of Van der Genugten et al. (2004).

3.2 The analysis of skill

In management games the participants can win prizes and they have to pay a

fee to take part in the competition. Typically, in these games both the skill of

the participants and random factors influence the game results. Therefore, a

logical question is: do management games classify as games of chance according

to the Gaming Act? Skill can be applied by carefully studying the competition

to which the management game is related in order to make a good estimate of

the expected scores of all potential team elements. Data from the past, from

related competitions can be used for this purpose. However, no matter how
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well one is prepared, one never knows whether all predictions will come true.

The uncertainty about the results of the real sports events can be interpreted

as the random factor in the management game. In contrast to casino games,

in a management game there is no objectively defined randomization process

from which one can derive information about the probabilities. Therefore, we

have to adapt the methods from chapter 2 slightly, before we can apply them

to a management game in order to determine if it should be classified as a

game of chance or as a game of skill.

We list the characteristics of a management game that are important for

our analysis:

• the game consists of several comparable rounds of play;

• in each round the participants earn points and the scores of participants

do not (or hardly) influence the scores of other participants;

• the bets (or participation fees) are the same for all participants;

• the distribution of prizes is based on the comparison of the scores of

all participants: a participant’s gains (prizes) in the management game

depend on his own score, but also on the scores of the other participants;

• the game has at least a few thousand participants.

For games with these characteristics it is possible to determine the relative skill

level, based on realized scores of players, the prize schedule and other game

specific information about possibilities for team formation. This is done by

estimating probabilities from the available game data. Clearly, this analysis

can only be carried out after the game has ended. However, it is definitely

reasonable to use the results of such an analysis to draw conclusions about

management games that will be organized in the future, if these games show

a large extent of similarity with the game for which the analysis was carried

out.

Since the bets are the same for all participants, we do not have to take

them into account in our analysis. This influences neither the learning effect

nor the random effect, so the relative skill level is also not affected. Therefore,

in the remainder of this chapter, game results can be interpreted both as gains

and as (the monetary value of) prizes.
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The analysis is based on estimates of the game results of the three player types

beginner, advanced player and fictive player. In the analysis of this practical

situation, the advanced player takes the role of the optimal player, as discussed

in section 2.3.2.

Since the game has a large number of participants, it is reasonable to as-

sume that there will be both beginners and advanced players among them.

Beginners will reach low scores, while the advanced players will attain high

scores that bring them close to the top of the ranking. We assume that the

population of advanced players will be smaller than the population of begin-

ners. Therefore, we fix the score of the type beginner at the average of the

lowest five percent of the scores in the final ranking of the management game.

The score of the type advanced player is defined as the average score of the top

ten of the same ranking. This is a modification of the analysis of chapter 2:

instead of taking expectations with respect to the probabilities determined by

a given randomization process, we take the averages of groups of comparable

participants.

The scores of the players are influenced by the uncertain events in the

sports competition. Therefore, we make a statistical model of the scores of all

participants in each round of play. In this model the player influence on the

score is a systematic component, while the fluctuations around this component

are attributed to the uncertain events. Our estimation of the model is based

on the realized scores of the participants. The scoring possibilities in the

management game are directly determined by the events that occur in the

underlying sports competition. They can vary over rounds. In the example of

GPM 2003, a round of play corresponds to a Grand Prix race. In a race with

many crashing cars there are less (positive) scoring possibilities than in races

in which almost all cars reach the finish. This difference will have a systematic

effect on the scores for the corresponding round of play in the management

game. So, in our statistical model we have to take into account this variation.

Therefore, we use a two-way analysis of variance (ANOVA) with player in-

fluence and round influence as explanatory factors to estimate the distribution

of the scores of all participants. The fit of this model turns out to be good.

Using the given prize schedule of the game, these estimated distributions also

lead to the expected game results of the player types beginner and advanced

player. For the fictive player we do not use the statistical model. His game
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result can be derived from the game data. The fictive player knows in advance

the result of all uncertain events: he knows which team elements score well in

each round. He can use this information to set up a “perfect team”, leading

to the maximum game result that is achievable.

In section 3.3 we present the details of this analysis of skill for the case of

GPM 2003.

3.3 Grand Prix Manager

In this section we give a complete overview of the analysis of relative skill

for the management game Grand Prix Manager 2003 (GPM 2003). This is

a game that was offered by the Dutch company Sportdreams BV on the web

site http://www.f1manager.com. The game is related to the FIA Formula One

World Championship 2003.

In section 3.3.1, we give a description of the basic features and rules of the

game. An overview of the information that was available to us about results of

the management game and of the FIA Championship is given in section 3.3.2.

In section 3.3.3, we use this information to determine the skill level of GPM

2003.

3.3.1 The rules of the game

GPM 2003 is a management game based on the FIA Formula One World

Championship 2003. Each participant uses a given budget to compose a team,

consisting of two drivers, an engine, a chassis and a set of tires. He manages

this team during the championship and earns points for the achievements of

his team elements in the real Formula One competition.

The goal of the game With the team he manages, each participant earns

points during each of the sixteen Grand Prix races of the championship. The

goal of the game is to maximize this number of points in order to reach a top

position in the general ranking. Prizes are available for the top positions in

that ranking.

Composition of a team Each participant gets a budget of e 100 million

to buy the required elements for his team. All drivers, engines, chassis and
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tires are given a value in euros. These values are determined by Sportdreams

and based on the results of the FIA Formula One World Championship 2002.

These values are not changed during the season. Table 3.1 gives an overview

of all values.

Drivers

Name Price (e) Team
Coulthard 33 mln McLaren
Räıkkonen (2) 25 mln McLaren
M. Schumacher 60 mln Ferrari
Barrichello (2) 43 mln Ferrari
Fisichella 18 mln Jordan
Firman (2) 20 mln Jordan
Webber 20 mln Jaguar
Wilson (2) 18 mln Jaguar
Montoya 34 mln Williams
R. Schumacher (2) 42 mln Williams
Trulli 19 mln Mild Seven Renault
Alonso (2) 25 mln Mild Seven Renault
Sato (Villeneuve) 19 mln BAR
Button (2) 18 mln BAR
Heidfeld 24 mln Sauber
Frentzen (2) 20 mln Sauber
Panis 19 mln Toyota
Da Matta (2) 18 mln Toyota
Verstappen 17 mln Minardi
Kiesa (2) 12 mln Minardi

Tires

Name Price (e)
Bridgestone 5 mln
Michelin 3 mln

Chassis

Name Price (e)
McLaren 31 mln
Ferrari 52 mln
Jordan 18 mln
Jaguar 15 mln
Williams 41 mln
Mild Seven Renault 23 mln
BAR 17 mln
Sauber 22 mln
Toyota 16 mln
Minardi 11 mln

Engines

Name Price (e)
Mercedes 31 mln
Ferrari 56 mln
Jordan Ford 17 mln
Jaguar Cosworth 15 mln
BMW 41 mln
Renault 21 mln
BAR Honda 16 mln
Petronas 23 mln
Toyota 15 mln
Minardi Cosworth 11 mln

Table 3.1: Values of all drivers and car parts in GPM 2003.

Some parts of this overview need extra explanation. A (2) after the name of a

driver indicates that he is the second driver of the Formula One team. Second

drivers score differently from first drivers in GPM 2003. The chassis is just

named after the team. The ten different engines are listed in the same order as

the teams that use them. The only extra information we need to know exactly

how all possible team elements are related, is the usage of tires by the different

teams. This information is given in Table 3.2.

Team values and transfers All values given in Table 3.1 are constant

during the competition. However, the team budget changes after each Grand

Prix, depending on the score the team has achieved. For each point the team

earns, the budget is increased by e 0.01 million. All team elements can be

sold and changed after each Grand Prix. As the competition progresses and
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Team Tires
McLaren Michelin
Ferrari Bridgestone
Jordan Bridgestone
Jaguar Michelin
Williams Michelin
Mild Seven Renault Michelin
BAR Bridgestone
Sauber Bridgestone
Toyota Michelin
Minardi Bridgestone

Table 3.2: Tires used by the ten different race teams.

a team does well, its manager is able to select more expensive drivers or car

parts for the team. Each transfer entails transaction costs: 10% of the value

of the sold item is subtracted from the team budget.

Score system The game is based on a rather complex score system. We

give an overview of the details, starting with the points that the drivers can

earn.

The drivers get points for their position at the start of the race, which is

determined during the qualifying session. They earn points for their final race

position, even if they don’t reach the finish. Furthermore, points can be won by

setting the fastest lap during the race, finishing in the Grand Prix and for the

difference between the qualifying position (Posqual) and the final race position

(Posrace). The latter difference can also lead to a negative score. Negative

scores are also obtained, when a car has to leave the race. This can either be

the result of an error of the driver or an accident with another car. Even if the

accident is caused by another driver, this leads to a negative score. A driver is

punished with a negative score for each stop-and-go penalty that is imposed on

him during the race. Second drivers, marked with a (2) in Table 3.1, can earn

extra points by finishing before their team-mate. Table 3.3 gives an overview

of the score system for the drivers.

The engines score points for the manager in a similar way. Points can be

earned with the qualifying position and the position in the final ranking of the

Grand Prix. Apart from that, three things affect the engine score: driving the

fastest lap, finishing and an engine fault leading to elimination of the car from

the race. Since each engine is used in two cars during each Grand Prix, it is

possible that an engine can get a positive score for finishing and a negative
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Position Qualifying Race
1 50 100
2 45 90
3 40 80
4 36 72
5 32 64
6 28 56
7 24 48
8 20 40
9 17 34

10 14 28
11 10 20
12 9 18
13 8 16
14 7 14
15 6 12
16 5 10
17 4 8
18 3 6
19 2 4
20 1 2

Event Score
Fastest lap (first driver) 5
Fastest lap (second driver) 10
Finishing (first driver) 5
Finishing (second driver) 10
Second driver before team-mate 10
Race versus qualifying Posqual − Posrace
Each stop-and-go penalty −5
Not finished: driver fault −10
Not finished: accident −5

Table 3.3: GPM 2003 scoring system for drivers.

score for not finishing as a result of an engine fault at the same time. Table 3.4

shows the details of the engine scores.

Position Qualifying Race
1 25 50
2 23 45
3 20 40
4 18 36
5 16 32
6 14 28
7 12 24
8 10 20
9 8 17

10 7 14
11 5 10
12 5 9
13 4 8
14 4 7
15 3 6
16 3 5
17 2 4
18 2 3
19 1 2
20 1 1

Event Score
Fastest lap 15
Finishing 5
Not finished: engine fault −10

Table 3.4: GPM 2003 scoring system for engines.

The third type of team element that can win or lose points for the manager’s

team, is the chassis. Scores are awarded to the chassis in a way that is very

close to the way the engine scores are determined. The difference is that the

chassis doesn’t get a score for the fastest race lap. Just like an engine, a

chassis is awarded two different scores in each race, since it is used in two cars.
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Table 3.5 gives an overview of the chassis scores.

Position Qualifying Race
1 25 50
2 23 45
3 20 40
4 18 36
5 16 32
6 14 28
7 12 24
8 10 20
9 8 17

10 7 14
11 5 10
12 5 9
13 4 8
14 4 7
15 3 6
16 3 5
17 2 4
18 2 3
19 1 2
20 1 1

Event Score
Finishing 5
Not finished: chassis fault −10

Table 3.5: GPM 2003 scoring system for the chassis.

The final team element affecting the score, is the set of tires. Tires score for

the pole position in the qualification, for the fastest race lap and for winning

a Grand Prix. Each of these events leads to a score of five points, as can be

seen in Table 3.6. So the maximum number of points won with a set of tires

in a Grand Prix is fifteen.

Event Score
Pole position 5
Fastest lap 5
Winning the Grand Prix 5

Table 3.6: GPM 2003 scoring system for the tires.

Quiz Besides the points that can be earned with the team, a participant in

GPM 2003 can also earn 10 points in each round of play by giving the correct

answer to a question related to Formula One racing. No extra team budget is

awarded for a correct answer, so the quiz score only affects the participant’s

position in the ranking.

Prizes For the managers of the teams that end at the top positions in the

final ranking, prizes are available. Apart from that, prizes can also be won in

each individual round of play. We could not retrieve the exact prize schedule
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for GPM 2003. However, since prize schedules for similar games are not altered

much from year to year, the scheme for the next edition of the game, GPM

2004, can very well be used as a approximation. This is the approach that

we followed. Table 3.7 gives an overview of the prizes that can be won in

GPM 2004. We have estimated the monetary value of each prize, to be able

to compare them. These estimates are based on price information from the

Internet, mostly from sites to which the Sportdreams web site directly refers.

Prizes for the final ranking

Position Value (e) Prize (description)

1 800.00 3-day trip to Grand Prix in Barcelona
2 200.00 cap and photo, signed by Michael Schumacher

3- 7 100.00 Formula One fan-package (cap, shirt and flag)
8-12 41.00 lithograph of a driver (of own choice)
13-22 39.95 DVD with overview of the Formula One season 2003

Prizes for each round of play

Position Value (e) Prize (description)

1 64.50 Formula One car (1:18 scale model)
2 40.00 voucher for car maintenance
3 29.00 one year subscription to magazine

4-5 7.95 book about Formula One

Table 3.7: Prizes in GPM 2004 and their estimated values.

3.3.2 Available data

For GPM 2003, we had access to the scores of all participants (managers)

for each separate round of play (corresponding to a Grand Prix). During the

Formula One season of 2003, sixteen races were organized.

For a number of participants, we have not taken into account the scores.

The most important reason was that some participants had scored zero points

in two or more rounds of play. Since the number of negative scores in each

round of play is very small, it is not likely that these zeroes are scored with

teams that satisfy all conditions. Is is more likely that the participants have

not actively participated in the management game during these rounds of play.

An extra argument that supports this conjecture, is that the zeroes are mainly

obtained in the first rounds of the game. Probably, these participants have
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subscribed only after the start of GPM 2003. Therefore, we do not consider

their results relevant for our analysis of the skill level of the management game.

After this elimination of scores according to the criterion we have just

described, we still have the results of 10, 566 participants. Table 3.8 shows a

small part of the table with the scores.

Position GP 1 GP 2 GP 3 · · · GP 14 GP 15 GP 16 Total

1 428 502 478 450 349 428 6,796
2 380 443 488 480 399 455 6,776
3 384 582 486 470 399 488 6,772
4 444 454 530 480 422 329 6,763
5 369 577 535 480 399 251 6,718
6 428 492 478 435 422 508 6,711
7 367 492 468 435 399 513 6,703
8 428 502 478 530 399 395 6,695
9 428 502 478 470 434 394 6,642

10 401 443 488 480 399 325 6,637
...

...
...

...
...

...
...

...
10,557 0 225 260 159 239 125 2,485
10,558 0 235 184 198 266 104 2,344
10,559 0 105 270 133 172 186 2,335
10,560 118 102 237 125 240 149 2,250
10,561 128 96 189 63 253 171 2,190
10,562 107 91 95 136 193 136 2,156
10,563 0 90 85 92 173 203 2,070
10,564 111 95 61 119 184 122 1,862
10,565 116 89 186 97 217 91 1,797
10,566 0 95 51 129 184 112 1,731

Table 3.8: A sample of the scores of the participants of GPM 2003.

Apart from this information, we got the complete race results for all drivers,

for all sixteen races of the FIA Formula One World Championship 2003. Re-

sults for the other team elements (engines, etc.) follow from Table 3.1 and

Table 3.2. Together with the information about the score system of GPM

2003, which is described in section 3.3.1, we can reconstruct the points for all

elements for each separate Grand Prix.
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3.3.3 Analysis of skill

This section contains the details of the skill analysis for GPM 2003. Sec-

tion 3.3.3.1 describes the statistical model we formulated for the participants’

scores. Sections 3.3.3.2-3.3.3.4 contain the derivation of the expected game

results for the three player types involved in the analysis of skill: beginners,

advanced players and fictive players.

3.3.3.1 A statistical analysis of the scores

The scores of the players are influenced by the uncertain events in the sports

competition. Therefore, we make a statistical model of the scores of all partic-

ipants in each round of play. We denote the score of participant i in round j

as yij. Assume that yij can be explained by an overal mean (ν), the influence

of the player (αi) and the influence of the round of play (βj) and an error term

(εij):

yij = µij + εij for i = 1, . . . , a and j = 1, . . . , b,

with

µij = ν + αi + βj.

Here a = 10, 566 is the number of players and b = 16 is the number of rounds.

For identification we assume that
∑a

i=1 αi =
∑b

j=1 βj = 0. Furthermore, we

assume that the errors εij are i.i.d. with normal distribution N(0, σ2). The

LS-estimate of the model is

yij = zij + eij,

zij = ȳ + (ȳi· − ȳ) + (ȳ·j − ȳ)

with

ȳ =
1

ab

a∑

i=1

b∑

j=1

yij, ȳi· =
1

b

b∑

j=1

yij and ȳ·j =
1

a

a∑

i=1

yij.

Table 3.9 gives the two-way ANOVA-table of the round scores. For each

source of variation, the sum of squares (SS), the degrees of freedom (d.f.), the

mean square (MS), the F -ratio and the 0.95-quantile of the corresponding F -

distribution are given. From this table, we see that both factors, the player (A)
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source SS d.f. MS F -ratio F0.05

player (A) 362,587,336.1 10,565 34,319.7 5.9 1.02
round (B) 476,040,019.6 15 31,736,001.3 5,483.4 1.67

model (M) 838,627,355.8 10,580 79,265.3 13.7 1.02
error (E) 917,194,902.1 158,475 5,787.6
corr. total 1,755,822,257.9 169,055

R2 = 0.48

Table 3.9: Two-way analysis of variance of the round scores.

and the round of play (B), have a significant influence on a player’s round score.

The model effect is significant as well. The mean squared error, s2 = MSE,

estimates σ2. Therefore, the estimate of σ is s =
√

MSE = 76.08. To check

some model assumptions, we have plotted a histogram of the standardized

residual values eij/s. Figure 3.1 shows the result. Clearly, the assumption of

the normal distribution is reasonable. There seem to be no outliers either: just

over four percent of the observations lies outside the interval [−2s, 2s].

Figure 3.1: Histogram of the standardized residuals in the two-way ANOVA
for GPM 2003.

The round effects βj have no influence on the positions of the players, since they
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have the same effect on all player scores within one round of play. Furthermore,∑b
j=1 βj = 0. Therefore we eliminate the round effects. So the round scores of

player i are now assumed to be distributed according to N(ν + αi, σ
2). This

distribution is estimated by N(ȳi·, s
2), since ν+αi is estimated by ȳ+(ȳi·−ȳ) =

ȳi·. The total score of player i has distribution N(b(ν +αi), bσ
2), estimated by

N(bȳi·, s
2
tot) with s2

tot = bs2. The cumulative distribution of the expected total

scores of the participants is displayed in Figure 3.2.
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Figure 3.2: Cumulative distribution of the expected total scores for the par-
ticipants in GPM 2003 (the standard deviation for the expected total scores is
stot = 304.31).

In theory, the simultaneous distribution of the prizes follows from the simul-

taneous distribution of the total scores. Using the information from Table 3.7,

this distribution of the prizes gives us the expected gains of all participants.

Since we cannot compute the expected gains analytically, we do it by simula-

tion. Using the estimated distributions of the round scores of the players, we

have simulated over 3.5 million repetitions of GPM 2003 with the given popu-

lation of participants. This number of repetitions is large enough for obtaining

the desired accuracy. Figure 3.3 shows clearly that the expected gains are very

small for most participants.

In the following three subsections we give the expected game results as well
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Figure 3.3: Cumulative distribution of the expected prizes (e) for the partici-
pants in GPM 2003.

as the expected prizes for the three player types that are considered in the skill

analysis.

3.3.3.2 Beginners

For the skill analysis, as introduced in chapter 2, we need to know the ex-

pected game result of beginners in GPM 2003. As mentioned in section 3.2,

we consider the participants that end up in the lowest five percent of the final

ranking as beginners. For this group, the average total score is equal to 3, 367

points. The expected prize of a beginner in GPM 2003 is equal to e 0.00.

3.3.3.3 Advanced players

For the advanced players in GPM 2003, we determine the expected prize and

the expected total score in the same way as we did for the beginners in sec-

tion 3.3.3.2. We use the the top ten of the final ranking. The expected total

score is therefore directly derivable from Table 3.8 and is equal to 6, 721 points.

For the expected prize of the advanced players, we use the simulation results

to find an amount of e 47.70.
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3.3.3.4 Fictive players

For determination of the results of the fictive player, we cannot use the statis-

tical approximation of section 3.3.3.1. The fictive player is informed about the

realization of all elements of uncertainty before determining his strategy. For

GPM 2003 this means that a fictive player knows in advance the race results

of all Grand Prix races and the resulting scores for all drivers, engines, chassis

and tires in the management game.

Since this information is collected during the season, we can only determine

the optimal strategy of the fictive player in GPM 2003 after the end of the

Formula One season. In theory, we could use non-linear programming to solve

the optimization problem that determines this strategy. However, the dimen-

sions of this problem are too large for the memory of our computer. Therefore,

we used an approximation: we found a well-scoring collection of sixteen race

teams (one for each race), that satisfies all rules of the management game. The

team compositions for all rounds of play are given in Table 3.10. The total

score for each Grand Prix includes a maximum quiz score of ten points.

GP Driver 1 Driver 2 Engine Chassis Tires Price Score

1 Räıkkonen (2) Frentzen (2) Mercedes BAR Michelin 96 mln 446
2 Räıkkonen (2) Alonso (2) Renault MS Renault Michelin 97 mln 582
3 Räıkkonen (2) Alonso (2) Renault MS Renault Michelin 97 mln 486
4 Räıkkonen (2) Alonso (2) Renault MS Renault Michelin 97 mln 374
5 Montoya Alonso (2) Renault MS Renault Bridgestone 108 mln 463
6 Räıkkonen (2) Button (2) Mercedes BAR Bridgestone 96 mln 488
7 Räıkkonen (2) Trulli Mercedes MS Renault Michelin 101 mln 512
8 Montoya Alonso (2) Renault Jaguar Michelin 98 mln 441
9 Montoya Alonso (2) Renault Jaguar Michelin 98 mln 398

10 Räıkkonen (2) Kiesa (2) BMW Jaguar Michelin 96 mln 433
11 Räıkkonen (2) Trulli Mercedes Toyota Bridgestone 96 mln 432
12 Montoya Trulli Renault Toyota Michelin 93 mln 512
13 Webber Alonso (2) Renault MS Renault Michelin 92 mln 536
14 Räıkkonen (2) Montoya BAR Honda Minardi Michelin 89 mln 346
15 Räıkkonen (2) Frentzen (2) Toyota Sauber Michelin 85 mln 446
16 Räıkkonen (2) Button (2) BAR Honda BAR Bridgestone 81 mln 453

Total 7,348

Table 3.10: A lower bound for the score of the fictive player in GPM 2003: a
well-scoring strategy.

So we have found a strategy that gives a lower bound for the score of the

fictive player. We can also determine an upper bound by computing an optimal

strategy in a game in which the rules are slightly relaxed. When we assume

that no transfer costs are involved with selling drivers, engines, chassis or tires,
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a player can select the teams that are shown in Table 3.11.

GP Driver 1 Driver 2 Engine Chassis Tires Price Score

1 Räıkkonen (2) Frentzen (2) Mercedes BAR Michelin 96 mln 446
2 Räıkkonen (2) Alonso (2) Renault MS Renault Michelin 97 mln 582
3 Räıkkonen (2) Fisichella Mercedes McLaren Bridgestone 110 mln 583
4 Räıkkonen (2) Alonso (2) Mercedes McLaren Michelin 115 mln 468
5 Barrichello (2) Alonso (2) Renault MS Renault Bridgestone 117 mln 502
6 Räıkkonen (2) Button (2) Mercedes McLaren Bridgestone 110 mln 530
7 Räıkkonen (2) Montoya Mercedes McLaren Michelin 124 mln 586
8 Räıkkonen (2) Alonso (2) BMW Williams Michelin 135 mln 549
9 Montoya Button (2) BMW Williams Michelin 137 mln 533

10 Räıkkonen (2) Montoya BMW Williams Michelin 144 mln 619
11 Räıkkonen (2) Barrichello (2) Ferrari MS Renault Bridgestone 152 mln 566
12 Coulthard Montoya BMW MS Renault Michelin 134 mln 547
13 Räıkkonen (2) Alonso (2) BMW Williams Michelin 135 mln 608
14 Räıkkonen (2) Montoya Ferrari Williams Bridgestone 161 mln 579
15 Räıkkonen (2) M. Schumacher Ferrari Sauber Bridgestone 168 mln 519
16 Räıkkonen (2) Barrichello (2) Mercedes McLaren Bridgestone 135 mln 566

Total 8,783

Table 3.11: An upper bound for the score of the fictive player in GPM 2003: a
very well scoring strategy (which would be possible in a game without transfer
costs).

For the strategies given in Table 3.10 and 3.11, we can also determine to

which prizes they would have led in GPM 2003, as it was played in practice.

In this way, we compute a lower and an upper bound for the prize of the fictive

player. The lower bound is e 993.50, while the upper bound we find in this

way, is equal to e 1, 832.00.

After manually exploring improvement possibilities for the strategy that

gives the lower bound, we think this bound is rather tight. Since the team

prices in the upper bound strategy are much larger than the real player budget

allows, the upper bound probably gives a large overestimation of the possibil-

ities of the fictive player. These considerations have led to our estimate of the

score and the prize of the fictive player: we have taken a weighted average

of the bounds we computed, in which the weight of the lower bound is four

times the weight of the upper bound. This gives a score of 7, 635 points for

the fictive player, and an expected prize of e 1, 161.20.

3.3.4 Relative skill of GPM 2003

Using the definitions from section 3.2 and the numerical results from sec-

tions 3.3.3.2-3.3.3.4, we can determine the relative skill of GPM 2003. Ta-

ble 3.12 gives an overview of all numbers that are relevant for the skill analysis.
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Prizes Scores

Expected result beginner e 0.00 3, 367
Expected result advanced player e 47.70 6, 721
Expected result fictive player e 1, 161.20 7, 635

Learning effect (LE) e 47.70 3, 354
Random effect (RE) e 1, 113.50 914

Relative skill (RS) 0.041 0.786

Table 3.12: Relative skill in GPM 2003.

We distinguish the analysis which is based on the prizes in the game from the

analysis based on the scores of the participants.

We notice a serious difference between the RS based on prizes and RS

based on game scores. If the prize a participant wins would simply be his

score, then the RS of GPM 2003 would be approximately 0.79. However, in

the management game, as it is offered by Sportdreams BV, the scores are only

an intermediate result, on which the distribution of prizes is based. Taking into

account the prize schedule, the RS of GPM 2003 turns out to be approximately

0.04.

Following the jurisprudence concerning the Dutch Gaming Act, which im-

plicitly puts the bound between games of chance and games of skill somewhere

between 0.05 and 0.15, GPM 2003 should be classified as a game of chance.

Consider once again the hypothetical situation in which the total game scores

would be the amount of money won by the participants. In this case, even the

lower bound of RS is much larger than 0.15. This tells us that in this case the

management game should be classified as a game of skill. However, we stress

again that the underlying assumption is invalid: prizes are not equal to scores

in the real game.

These two (apparently contradicting) conclusions are both given to illus-

trate the big difference between an analysis based on the total game scores

and an analysis based on the real prize distribution. The prizes of the partic-

ipants are a function of their game scores. The skill analysis based on prizes

therefore clearly depends on the specific form of this function. A qualitative

explanation for the difference in GPM 2003 is as follows. The scores of be-

ginners differ much from the scores of advanced players. However, there is a

relatively large group of good players outside of the top ten that reach total

scores that are only slightly lower than the scores of the advanced players. To
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Prizes Scores

Expected result fictive player (lower bound) e 993.50 7, 348
Expected result fictive player (upper bound) e 1, 832.00 8, 783

Random effect (lower bound) e 945.80 627
Random effect (upper bound) e 1, 784.30 2, 062

Relative skill (lower bound) 0.026 0.619
Relative skill (upper bound) 0.048 0.843

Table 3.13: Bounds for relative skill in GPM 2003, based on the bounds for
the results of the fictive player.

be more precise, recall from Figure 3.2 that the estimated standard deviation

stot of the total scores is approximately 304. More than 50 players in GPM

2003 have a total score that is within a distance of stot of the score of the

winner. And even more than 400 players have ended within a distance of 2stot

in the final ranking. The scores of these players are within the margins that

are generated by the uncertain factors in the game: if they would have been

lucky, they could have won the game. Since the number of prizes is small, this

random factor plays a serious role in the distribution of the prizes. One can

think of the distribution of the prizes as a lottery between good players with

more or less the same score. For beginners this random factor hardly plays a

role. They never reach prize winning positions in the final ranking, not even

if they are really lucky.

Finally, we use the analysis of section 3.3.3.4 to do some sensitivity analysis.

Table 3.13 lists the bounds we found for the score and prize of the fictive player.

Furthermore, it shows the lower bound and the upper bound for the random

effect (RE) that follow from the bounds for the expected results for the fictive

player. The lower bound for the relative skill (RS) level then follows from

the upper bound for RE and the upper bound for RS is computed using the

lower bound for RE. It turns out that our (subjective) choice for the weighted

average that has led to the results of the fictive player does not influence the

conclusions. Both the upper and the lower bound for the skill level concerning

prizes lead to the conclusion that GPM 2003 is a game of chance.





Chapter 4

Chance moves and information
in two-person games

4.1 Introduction

Picture yourself sitting at a table, playing poker against one opponent. You

play for money and your objective is to make as much money as possible in this

game. Of course, your opportunities to make money depend on a few things:

the dealing of the cards, the strategy of your opponent and your own strategy.

The first two factors are outside your control; you can only influence the third

aspect, your own strategy. This strategy tells you, for each possible poker hand

that you can be dealt and for each possible action taken by the opponent, what

actions you will take. The prescribed action depends on your hand, but it

cannot depend on the hand of your opponent, because you simply don’t know

his cards. But what if there were a possibility to learn your opponent’s hand,

for example by paying someone to hold up a mirror behind his back? To what

extent would this increase your possibilities? Can you use this information to

improve your expected profits in the game? And if that is the case, with what

amount does your expected profit change? Or, in other words, how much are

you willing to pay this person who holds up the mirror?

A one-sided cheating option such as this mirror leads to interesting ques-

tions already, but things become even more interesting when your opponent

can be active behind your back too. What if he also knows your cards? Does

this change the value that “your” man with the mirror has for you?

In this chapter, which is based on Dreef and Borm (2005), we provide an

69
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answer to the questions above. We do this for the class of two-person zero-sum

games in which a chance move at the start of the game determines which game

exactly is to be played. We discuss what will be the consequences when the

outcome of this chance move is revealed to one or both of the players before

the players have to choose their actions. Loosely formulated, the difference

between what a player can do with and without the information is called the

value of information. We take into account that this value may depend on

the kind of opponent this player faces. For example, it might be very useful

to have the information if the opponent does not, while it is less valuable to

know the outcome of the chance move if the opponent knows it too. Besides

that, one may wonder if it is always valuable to know the random outcome if

the opponent has the irrational objective of trying to lose as much as possible.

We formalize the various kinds of opponents later in this chapter.

The value of information has been a notion of interest for a long time. It has

been studied both in a non-strategic and a strategic setting. For the strategic

setting, game theoretic analysis has been applied to many classes of games.

Ponssard (1975) called the class of games that we study, games with an initial

chance move, games with “almost” perfect information. These games were also

subject of study in the papers of Ponssard and Sorin (1980, 1982). Value of

information in two-person zero-sum games has been studied by Ponssard and

Zamir (1973) in the context of sequential games. Ponssard (1976) considers

the constant-sum case, while general bimatrix games are the object of study in

the articles of Levine and Ponssard (1977), Borm (1988) and Kamien, Tauman

and Zamir (1990).

In these papers, most of the definitions concerning the value of information

in a strategic conflict are based on the difference between two numbers. How-

ever, we think that more numbers may be important if one wants to quantify

the worth of information in a game to one or both of the players. In computing

the value of information, we use the idea of an information buying pre-game

that Sakaguchi (1993) introduced. In such a pre-game, both players get the

opportunity to buy information about the outcome of the initial chance move

before the start of the game. The value of information is then determined by

setting the “price of information” in this pre-game at a reasonable level.

The values of information that we compute will be used to determine how

restrictive the chance move in the game is for the players. In fact, these values
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will be used to quantify the extent to which the players have influence on the

game result by defining the (derived) notion of relative control. This notion

will also be referred to as relative influence.

An interesting aspect of our way of analyzing information in two-person

zero-sum games, is that it makes use of various game-theoretic concepts within

a larger framework. Apart from the zero-sum games themselves, coordination

games and amalgamations of games play an important role. Coordination

games form a nice subclass of the (exact) potential games. For an extensive

overview of potential games we refer to Voorneveld (1999). Amalgamations of

games were introduced by Borm, Garćıa-Jurado, Potters and Tijs (1996).

The analysis of relative player influence is closely related to the analysis of

the skill level of a game, which is described in detail in chapter 2. The main

goal of the skill analysis is rather similar to the goal of the current chapter:

with both methods one can draw conclusions about the role of the chance

moves in a game. Central in the skill analysis are three types of players who

can play the game: beginners, optimal players and fictive players. The second

and third category will also appear in our analysis of relative player influence.

The category of the beginners, which generally is the most difficult to describe,

will not play a role here.

The chapter is organized as follows. In the next section, we give some

preliminaries and introduce the most important basic notions that are used

in the text. Then, the sections 4.3 and 4.4 describe the way in which the

value of information and the role of the chance moves are studied. Section 4.5

illustrates the analysis with an example that is based on a simple poker game.

To conclude, section 4.6 contains a few remarks about our model.

4.2 Notation and definitions

In this section we introduce the notation that we use throughout this chapter.

A (strategic) two-person game is a tuple G = 〈X1, X2, u1, u2〉, where

• Xi denotes the finite, nonempty set of pure strategies of player i,

• each player i has a payoff function ui : X1 ×X2 → R specifying for each

strategy profile x = (x1, x2) ∈ X1 × X2 player i’s payoff ui (x) ∈ R.
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The set of pure strategy profiles will be denoted by X = X1×X2. A two-person

game is called zero-sum if u1(x) = −u2(x) for each strategy profile x ∈ X. The

set of probability distributions over a finite set S is denoted ∆ (S):

∆ (S) = {p : S → [0, 1] |
∑

s∈S

p(s) = 1}.

The mixed extension of the finite game G = 〈X1, X2, u1, u2〉 allows each player

i to choose a mixed strategy from ∆ (Xi); a mixed strategy for player 1 (2) is

denoted by p (q). Payoffs are extended to mixed strategies as follows:

ui (p, q) =
∑

x∈X

p(x1)q(x2)ui(x),

i.e., the payoff to a mixed strategy profile is simply the expected payoff. A

pure strategy xi ∈ Xi can be identified with the mixed strategy that assigns

probability one to xi.

A mixed-strategy profile (p, q) ∈ ∆(X1)×∆(X2) is a (mixed-strategy) Nash

equilibrium of the game G if

for all x1 ∈ X1 : u1(p, q) ≥ u1(x1, q) and (4.1)

for all x2 ∈ X2 : u2(p, q) ≥ u2(p, x2). (4.2)

Let A and B be two matrices of equal size. With slight abuse of notation,

we define a bimatrix game 〈A,B〉 as a strategic two-person game with payoff

functions u1(p, q) = p⊤Aq and u2(p, q) = p⊤Bq. Here, p is a column vector of

which the ith element gives the probability with which player 1 plays his ith

pure strategy; q is defined analogously. The column vector corresponding to

the ith pure strategy of a player is written as ei. A matrix game is a bimatrix

game with B = −A, written as 〈A〉. We write matrix games and bimatrix

games without the brackets if they are used as the argument of a function.

A bimatrix game with almost perfect information is a bimatrix game in

which the payoff matrices A and B are formed in a special way. A chance

move determines which of k possible bimatrix games will be played. The game

〈Ai, Bi〉 is played with probability µi (1 ≤ i ≤ k). The µi are such that

each element is selected with positive probability (µi > 0) and the sum of

the probabilities equals one (
∑k

i=1 µi = 1). The payoff matrix A is formed by

taking the weighted sum of the k underlying payoff matrices: A =
∑k

i=1 µiAi.
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Similarly, B =
∑k

i=1 µiBi. All matrices Ai and Bi must have the same size. In

the naming of this type of games we follow Ponssard (1975). A matrix game

with almost perfect information is a matrix game 〈A〉 that is based on the

matrix games 〈Ai〉 in the sense that is described above.

4.3 The strategic possibilities of the players

In the remainder of this chapter, the basic object of study is a matrix game with

almost perfect information 〈A〉, based on the matrix games 〈A1〉, . . . , 〈Ak〉.
〈Ai〉 will be played with probability µi (1 ≤ i ≤ k).

4.3.1 Player types and related games

For the investigation of the possibilities of the players and the role of the chance

move in this game, we distinguish four types of players. On the one side play-

ers can be either egoistic or altruistic, whereas on the other side players can

be clairvoyant or not. Egoistic players want to maximize their own payoffs,

while the aim of an altruistic player is to minimize his own payoff. The nam-

ing stems from the fact that the latter type of player helps his opponent when

playing a zero-sum game. A similar distinction of behavioural patterns in non-

cooperative games is given by Szép and Forgó (1985); for zero-sum games our

altruistic players coincide with both their masochist and philantropic types.

Also in evolutionary settings the distinction between altruistic and selfish at-

titudes is made. A discussion on the context dependence of these types of

preferences can be found in Bester and Güth (1998). The clairvoyance relates

to the outcome of the chance move: clairvoyant players know beforehand which

matrix game will be played. However, they cannot influence the randomiza-

tion procedure. Table 4.1 summarizes the terms we use when we refer to the

resulting four possible player types as well as the corresponding abbreviations.

Not clairvoyant Clairvoyant

Altruistic worst player (W) fictive worst player (FW)

Egoistic optimal player (O) fictive optimal player (FO)

Table 4.1: Four types of players.
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For a given matrix game of the type that we discussed at the beginning

of this section, we want to know to what extent the players are in control.

More precisely, we determine the range of payoffs that can be reached by the

players, given the rules of the game. For each player we want to know how

well he can do, but we are also interested in how badly he can do. Moreover,

we want to know if the uncertainty that is caused by the chance move really

restricts the possibilities of the players. To investigate these questions, we let

each of the four player types take both player roles in the matrix game and we

let all combinations of player types play the game. If we assume that players

always know what type of opponent they are facing, this idea gives rise to the

16 games that are given in Table 4.2.

Player 2 type

FW W O FO

P
la

ye
r

1
ty

p
e

FW
〈−Ai〉

(1 ≤ i ≤ k)
〈−A1〉 〈−A1,−A1〉 〈−Ai,−Ai〉

(1 ≤ i ≤ k)

W 〈−A2〉 〈−A〉 〈−A,−A〉 〈−A2,−A2〉

O 〈A2, A2〉 〈A,A〉 〈A〉 〈A2〉

FO
〈Ai, Ai〉

(1 ≤ i ≤ k)
〈A1, A1〉 〈A1〉 〈Ai〉

(1 ≤ i ≤ k)

Table 4.2: All combinations of player types and the resulting games.

Let us explain the contents of table 4.2 in more detail. The basic situation

is the case where two optimal players face each other. These players both try

to maximize their payoffs in the matrix game 〈A〉. If player 2 acts as a worst

player and thus tries to obtain the lowest possible payoff in 〈A〉, the resulting

strategic situation can be modelled by the coordination game 〈A,A〉. In this

game the payoff for player 1 is the same as in the original game, whereas

player 2 now acts as if he maximizes his payoff, pretending that his payoff

matrix is A instead of −A. However, after we have found an equilibrium in

this game, we have to reverse the sign of player 2’s payoff again. This reasoning

explains the four cells in the middle, the situations where two non-clairvoyant

players meet.
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The notations A1 and A2 require some explanation too. We give the in-

terpretation for A1; the story for A2 goes analogously. The payoff matrix A1

is used in the cells where player 1 is fictive and player 2 is not. Such a situa-

tion can be modelled as an amalgamation of games, following the definition of

Borm, Garćıa-Jurado, Potters and Tijs (1996). In an amalgamation of games

the player set is partitioned into two parties and the game is an aggregation

of the conflicts between two players, one in each party. The payoff of a player

is just the sum of the payoffs in the separate conflicts. In the situation we

study here, we have k “instances” of player 1 (all members of the first party)

playing against one opponent (the only member of the second party). Taking

into account the fact that instance i of player 1 is called to play with probabil-

ity µi, the matrix µiAi is the payoff matrix that is used in the game between

instance i of player 1 and his opponent (1 ≤ i ≤ k). Borm et al. (1996, p. 574,

Proposition 1) showed for the (k + 1)-person game that models this situation

that each equilibrium corresponds to an equilibrium in the related two-person

correlation game. Their result follows from the results by Kuhn (1953) on

behavioural strategies in games with perfect recall. In the correlation game

the k instances of player 1 are considered as one player and are allowed to

pick correlated strategies. Together they choose a strategy from ∆(
∏k

i=1 X i
1),

where X i
1 is the set of pure strategies of player 1 in the matrix game 〈Ai〉. The

payoff matrix of this correlation game, with player 1 as a fictive player, is rep-

resented as A1. Together with the reasoning about the reversed sign as before,

this explains the contents of the eight cells where one player is clairvoyant and

his opponent is not.

The remaining four cells, corresponding to the situations with two clair-

voyant players, speak more or less for themselves. Both players know which of

the k matrix games they play, so they can optimize their strategic behaviour

for each of these games separately.

The following example will illustrate the types of games described above.

Example 4.3.1 Let 〈A〉 be a matrix game with almost complete information,

based on the matrix games 〈A1〉 and 〈A2〉 that are played with equal probability

(µ1 = µ2 = 1
2
). The payoff matrices are given in Figure 4.1. Figure 4.2 gives

the payoff matrices as well as the available strategies both for the situation

where player 1 is a fictive optimal (FO) player and the situation where he is
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f1 f2

e1 5 0

e2 0 2

〈A1〉

f1 f2

e1 2 5

e2 4 0

〈A2〉

Figure 4.1: The matrix games underlying 〈A〉.

an optimal (O) player. With the strategy eaeb we denote the choice of player 1

to play ea if payoff matrix A1 is used and play eb if A2 is used.

f1 f2

e1
7
2

5
2

e2 2 1

〈A〉

f1 f2

e1e1
7
2

5
2

e1e2
9
2

0

e2e1 1 7
2

e2e2 2 1

〈A1〉

Figure 4.2: The resulting games with player 2 as an optimal player and player 1
as an optimal player (〈A〉) and as fictive optimal player (〈A1〉).

⊳

4.3.2 Expected payoffs

We want to compare the equilibrium payoffs of the games that are played in

each of the 16 cells of Table 4.2. Since the central game in this analysis is a

zero-sum game, we can restrict our attention to player 1’s payoff. Player 2’s

payoff is the same number with opposite sign. Note that it is possible to

interchange the roles of the players. With player 2 as the row player the basic

game would be 〈−A⊤〉 and we could construct Table 4.2 in a similar way as

we did for 〈A〉.
In half of the cases equilibrium payoffs are unambiguous. If the players are

both egoistic, the games we have to solve are matrix games and therefore they

have a uniquely defined value. The same holds if both players are altruistic.

In the other eight cells, with one player being altruistic while his opponent is

egoistic, we have to make a selection out of the possibly many Nash equilibria of

bimatrix games. In fact, all bimatrix games we have to solve are coordination
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games. This type of games forms a nice subclass of the (exact) potential games.

For an extensive overview of potential games we refer to Voorneveld (1999) or

to Monderer and Shapley (1996). An obvious Nash equilibrium refinement

choice for these games is the potential maximizer. For coordination games,

the logical choice for a potential function is u1. We denote the payoff for the

players for any x that maximizes u1 in the game G as uPM(G).

We give three reasons justifying the choice of the potential maximizer. First

of all, we are exploring the range of possibilities the players have in the game.

Potential-maximizing strategies certainly form an extremity of the strategic

options of the players. It gives a theoretic bound of the game. Secondly, the

potential maximizer forms an attractive focal point for the players, being a

pure-strategy equilibrium with high payoffs. Finally, Reijnierse, Voorneveld

and Borm (2003) showed that the potential maximizer is in the set of infor-

mationally robust equilibria of the game. This equilibrium refinement concept

is closely related to our idea of leaking of information to one (or both) of the

players. Table 4.3 presents the expressions for the expected payoffs for player 1

in each of the 16 situations.

Player 2 type

FW W O FO

P
la

ye
r

1
ty

p
e

FW −
k∑

i=1

µiv(−Ai) −v(−A1) −uPM(−A1,−A1) −
k∑

i=1

µiuPM(−Ai,−Ai)

W −v(−A2) −v(−A) −uPM(−A,−A) −uPM(−A2,−A2)

O uPM(A2, A2) uPM(A,A) v(A) v(A2)

FO
k∑

i=1

µiuPM(Ai, Ai) uPM(A1, A1) v(A1)
k∑

i=1

v(Ai)

Table 4.3: The expected payoffs of player 1 for all combinations of player types.

Example 4.3.2 We computed the numbers that are given in Table 4.3 for the

game we introduced in Example 4.3.1. The results are in Table 4.4. ⊳

The following lemma states two simple observations regarding the inter-

change of player roles in a matrix game 〈A〉 and a coordination game 〈A,A〉.
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Player 2 type

FW W O FO

P
la

ye
r

1
ty

p
e FW 21

7
15

7
0 0

W 23
7

2 1 0

O 5 31
2

21
2

16
7

FO 5 41
2

211
14

21
7

Table 4.4: The expected payoffs of player 1 for each combination of player
types.

Lemma 4.3.3

(C1) v(−A⊤) = −v(A);

(C2) uPM(A,A) = uPM(A⊤, A⊤).

The first part of the lemma states that equilibrium payoffs in a matrix game

do not depend on who is the row player and who is the column player. The

second part formalizes the fact that interchanging the player roles in a coor-

dination game does not influence the potential maximizing payoffs. We use

the observations in Lemma 4.3.3 to explain some symmetry arguments in the

proof of Theorem 4.3.5.

Lemma 4.3.4 Let 〈A,B〉 be a bimatrix game and let 〈A〉 be the (correspond-

ing) matrix game. Then

(p̂, q̂) ∈ NE(A,B) ⇒ p̂⊤Aq̂ ≥ v(A).

Proof. Let (p̂, q̂) ∈ NE(A,B). Then p̂⊤Aq̂ = max
p

p⊤Aq̂ ≥ min
q

max
p

p⊤Aq =

v(A). �

Let us introduce some notation for the payoffs that are given in Table 4.3. We

write the collection of player types as T = {FW,W,O, FO} and we use the

notation uτ1,τ2 for the expected payoff of player 1 in the game between player 1

of type τ1 and player 2 of type τ2 for all τ1, τ2 ∈ T . Using these definitions, we
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can formulate Theorem 4.3.5. This theorem states that the payoffs in Table 4.3

are higher for egoistic players than for altruistic players against any opponent

type and that clairvoyancy helps a player, independent of the type of opponent

he faces.

Theorem 4.3.5

uτ1,FW ≥ uτ1,W ≥ uτ1,O ≥ uτ1,FO for all τ1 ∈ T , (4.3)

uFW,τ2 ≤ uW,τ2 ≤ uO,τ2 ≤ uFO,τ2 for all τ2 ∈ T . (4.4)

Proof. Since the potential maximizing strategies together form a Nash equi-

librium, it follows directly from Lemma 4.3.4 that uτ1,W ≥ uτ1,O for all τ1 ∈ T .

By writing down the expression for uFW,FW we see that

uFW,FW = −
k∑

i=1

µiv(−Ai) = −
k∑

i=1

µi min
qi∈∆(X2)

max
pi∈∆(X1)

p⊤i (−Ai)qi

≥ − min
q∈∆(X2)

k∑

i=1

max
pi∈∆(X1)

p⊤i (−µiAi)q

= − min
q∈∆(X2)

max
p∈Qk

i=1 ∆(X1)
p⊤(−A1)q

(∗)
= − min

q∈∆(X2)
max

p∈∆(
Qk

i=1 X1)
p⊤(−A1)q = −v(−A1) = uFW,W ,

where (∗) was shown by Borm et al. (1996, p. 574, Proposition 1). Analogously,

one can show that uW,FW ≥ uW,W , uO,O ≥ uO,FO and uFO,O ≥ uFO,FO. In a

similar way, one can show that the inequality between uO,FW and uO,W :

uO,FW = uPM(A2, A2) = max
(p,q)∈∆(X1)×∆(

Qk
i=1 X2)

p⊤A2q

= max
(p,q1,...,qk)∈∆(X1)×Qk

i=1 ∆(X2)

k∑

i=1

p⊤(µiAi)qi

≥ max
(p,q)∈∆(X1)×∆(X2)

k∑

i=1

p⊤(µiAi)q

= max
(p,q)∈∆(X1)×∆(X2)

p⊤Aq = uPM(A,A) = uO,W ,

where the third equality again is an application of the result of Borm et al.

(1996). The validity of the remaining three inequalities in (4.3) can be shown

analogously.
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Finally, the inequalities in (4.4) can be derived from (4.3) by writing down

a table like Table 4.3 with player 2 as the row player and applying Lemma 4.3.3

to the inequalities that (4.3) gives for the payoffs in this table. �

Theorem 4.3.5 states that the payoffs for player 1, as defined in Table 4.3, are

(weakly) decreasing in value if we go through the table from bottom-left to

top-right. Therefore, we know that differences like, for example, uFO,O − uO,O

and uFW,W − uFW,O are nonnegative.

4.4 The role of information

In section 4.4.2 we use the definitions and results of section 4.3.2 to present a

well-defined way to quantify the restrictive role of the chance moves in matrix

games with almost perfect information. But first, in section 4.4.1, we will

see which different types of value of information that are distinguished in the

literature can be derived from Table 4.3.

4.4.1 The value of information

In this section we see how the numbers from Table 4.3 are related to the various

definitions one finds in the literature on the value of information in a strategic

context. For an overview of various types of information and a discussion on

relations between them, we refer to Borm (1988).

The games between two egoistic players, one of the two being clairvoyant,

are games with private information for the clairvoyant player. The difference

uFO,O−uO,O is often referred to as the value of private information for player 1.

According to Theorem 4.3.5, this value is nonnegative. This is a confirmation

of a result of Ponssard (1976). Two egoistic players, both being clairvoyant,

play a game with public information. Therefore, the difference uFO,FO − uO,O

is called the value of public information for player 1. It is not possible to say

anything about the sign of the value of public information; all we can say is

that the value of public information for player 1 will be the opposite of the

value of public information for player 2.

With each matrix game with almost perfect information, we want to as-

sociate eight values of information, one for each player in each possible com-
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bination of attitudes (egoistic or altruistic). We do this using the payoffs in

Table 4.3. As the two definitions in the previous paragraph illustrate, most

definitions concerning the value of information in a strategic conflict are based

on the difference between two numbers. However, we think that at least four

numbers are important if one wants to quantify the worth of information in

a game to one or both of the players. If both players are egoistic, then the

four numbers in the lower right part of Table 4.3 should be taken into account:

uO,O, uFO,O, uO,FO and uFO,FO. To do this, we follow the approach of Sak-

aguchi (1993), who defined an information buying pre-game. In this game both

players have to decide whether to buy information or not. Player i has to pay

an amount ci to his opponent if he wants to be informed about the outcome

of the chance move. These prices are set by an external person, someone like

the “maven” from Kamien, Tauman and Zamir (1990). Figure 4.3 shows the

payoffs of the information buying pre-game. The prices are set in such a way

Player 2

Don’t buy Buy

Player 1
Don’t buy uO,O uO,FO + c2

Buy uFO,O − c1 uFO,FO − c1 + c2

Figure 4.3: The information buying pre-game when both players are egoistic.

that for both players the pre-game is interesting in the sense that information

is neither too cheap nor too expensive. They both really have to think about

buying or not buying it. More formally, c1 and c2 are set such that neither

player has a strongly dominant strategy in the pre-game.

Buy is strongly dominant for player 1 if c1 < c1 = min{uFO,O−uO,O, uFO,FO−
uO,FO}. In other words, it should be profitable to buy the information against

an optimal player, but also against a fictive optimal player. Similarly, Buy is

strongly dominant for player 2 if c2 < c2 = min{uO,O−uO,FO, uFO,O−uFO,FO}.
Analogously, Don’t buy is a strongly dominant strategy for player 1 if c1 > c1 =

max{uFO,O − uO,O, uFO,FO − uO,FO}. Buying is neither profitable against an

optimal player nor against a fictive optimal player. For player 2 Don’t buy is a

strongly dominant strategy if c2 > c2 = max{uO,O − uO,FO, uFO,O − uFO,FO}.
Only between the boundaries ci and ci it is possible for player i to be

made indifferent between buying and not buying by his opponent. Therefore,
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the price of information for player i, ci, should definitely lie between these

boundaries. We follow the approach of Sakaguchi (1993) and set the prices

at a level that ensures that buying the information with probability 1
2

is an

equilibrium strategy for both players. The prices for which the pre-game has

this nice characteristic, are ci = 1
2
(ci + ci) for i ∈ {1, 2}. To make clear that

these prices are the values of information for the players in the game when

they both act egoistically, we write them as cO,O
1 and cO,O

2 .

For the games in which altruistic players are involved, we can define the

prices of information in a similar way. Consider the situation where player 1

is egoistic and player 2 is altruistic. The four payoffs of interest can then

be found in the bottom-left part of Table 4.3: uO,FW , uO,W , uFO,FW and

uFO,W . Figure 4.4 shows the payoffs of the information buying pre-game for

this situation. It is clear that the “fair” price of information for player 1 can

Player 2

Don’t buy Buy

Player 1
Don’t buy uO,W uO,FW + c2

Buy uFO,W − c1 uFO,FW − c1 + c2

Figure 4.4: The information buying pre-game when player 1 is egoistic and
player 2 is altruistic.

be set in the way that we described for the game between two optimal players.

Does this method also work for player 2, who has altruistic motives? Yes, it

does. We know from Theorem 4.3.5 that uO,W ≤ uO,FW and uFO,W ≤ uFO,FW .

The altruistic player 2 is better off if more money in the game is transferred to

his opponent. Since the game is zero-sum, we already implicitly assumed that

an altruistic player was willing to pay one unit for each unit the opponent gets

extra. Therefore, consistent reasoning leads to the conclusion that player 2 is

willing to pay at least c2 = min{uO,FW −uO,W , uFO,FW −uFO,W}. Using similar

reasoning, we can also define the upperbound c2. In order to give the game

the property that buying the information with probability 1
2

is an equilibrium

strategy for both players, we have to define ci = 1
2
(ci + ci) for i ∈ {1, 2} here

too.

For the other two combinations of attitudes, with only player one or both

players being altruistic, we can do similar computations. In this way we can
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associate with each matrix game eight values of information, four for each

player. We give the numbers for our example.

Example 4.4.1 For the game that was discussed in examples 4.3.1 and 4.3.2,

the value of information for player 1, in the situation where he is egoistic and

his opponent is altruistic, should lie between cO,W
1 = min{5 − 5, 41

2
− 31

2
} = 0

and cO,W
1 = max{0, 1} = 1. Taking the average, we get cO,W

1 = 1
2
. This

number is given in the list below, together with the other seven relevant values

of information.

cO,O
1 = 2

7
cO,O
2 = 9

14

cO,W
1 = 1

2
cO,W
2 = 1

cW,O
1 = 1

2
cW,O
2 = 1

2

cW,W
1 = 2

7
cW,W
2 = 3

7

⊳

We use these values of information in the next section to quantify the relative

influence of the players on the game result, compared to the influence of the

initial chance move.

4.4.2 Player control and influence of the chance move

In this section we use the payoffs from Table 4.3, together with the corre-

sponding values of information, to quantify the restrictive role of the chance

moves. By Theorem 4.3.5 we know that the highest possible equilibrium payoff

for player 1 occurs in the situation with two clairvoyant players, with player 1

being egoistic and player 2 being altruistic. In terms of Theorem 4.3.5, this pay-

off is written as uFO,FW . Similarly, the minimal payoff for player 1 is uFW,FO.

These numbers represent the maximum and minimum payoff for player 1, given

that the information on the chance moves can be used by the players. The

difference between these numbers, uFO,FW − uFW,FO, indicates the size of the

fictive range of the game’s payoffs.

We want to compare numbers within this fictive range with the payoffs that

can be attained by non-clairvoyant players, as displayed in the four central cells

in Table 4.3. The payoff information in these four cells can be summarized in a

logical way by considering four differences: for the two players, we compute the
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difference between the maximum and minimum payoff, both against a worst

opponent and against an optimal opponent. These differences give the payoff

variation that can be caused by the players themselves. We are interested in

the relative size of these numbers, compared to the restrictions caused by the

chance move. The restriction can be quantified by two numbers: the value of

information in the case a player tries to minimize his payoff and the value that

this information has to him when he tries to maximize his payoff.

We define γO
i (γW

i ) to be the relative control level of player i against an

optimal (worst) opponent. Formally,

γO
1 =

(uO,O − uW,O)

cO,O
1 + (uO,O − uW,O) + cW,O

1

,

γW
1 =

(uO,W − uW,W )

cO,W
1 + (uO,W − uW,W ) + cW,W

1

,

γO
2 =

(uO,W − uO,O)

cO,W
2 + (uO,W − uO,O) + cO,O

2

,

γW
2 =

(uW,W − uW,O)

cW,W
2 + (uW,W − uW,O) + cW,O

2

.

From these definitions and the result of Theorem 4.3.5, it is clear that 0 ≤
γO

i ≤ 1 and 0 ≤ γW
i ≤ 1 for i ∈ {1, 2}. If γO

i = 1, then the chance move is not

restrictive at all for player i against an opponent playing optimally.

It is interesting to note that the opponents against whom the relative con-

trols γO
2 and γW

1 are computed have the same objective. These opponents both

try to maximize the expected payoff of player 1, but they have to operate from

different role perspectives. In the first case, the opponent has to play from

the “row position”, whereas the opponent against whom γW
1 is computed uses

the “column position”. If γW
1 < γO

2 , then player 2’s control against a rational

opponent, who is maximizing his own payoff, is higher if he can operate from

the row position than if he can act as the column player. Similar comparisons

can be made between γO
1 and γW

2 to say something about the relative control

of player 1 against a payoff-maximizing opponent.
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4.5 An example: minipoker

In this section we illustrate the analysis with a more lively example than the

ones we used so far to explain our definitions. We study a two-person game

called minipoker. This is a game of cards played by two players, player 1

and player 2, and with three cards, namely Q(ueen), K(ing) and A(ce). As

usual, A is higher than K and Q is the lowest card of these three. Before play

starts, both players donate 1 unit to the stakes. After (re)shuffling the deck

of cards each player is dealt one card. Each player knows his own card, but

not the card of his opponent. Thus, the card which remains in the deck is

not shown to either of the players. Player 1 starts the play and has to decide

between P (assing) and B(etting). If he decides to pass, a showdown follows

immediately. In the showdown both cards are compared and the player with

the highest card gets the stakes. If player 1 decides to bet, he has to add

one extra unit to the stakes. Subsequently, player 2 has to decide between

F (olding) and C(alling). If he decides to fold, player 1 gets the stakes. If

player 2 decides to call, he also has to add one extra unit to the stakes and a

showdown follows.

chance

1
6

(Q,K)

F C

P −1 −1

B 1 −2

1
6

(Q,A)

F C

P −1 −1

B 1 −2

1
6

(K,Q)

F C

P 1 1

B 1 2

1
6

(K,A)

F C

P −1 −1

B 1 −2

1
6

(A,Q)

F C

P 1 1

B 1 2

1
6

(A,K)

F C

P 1 1

B 1 2

Figure 4.5: Minipoker as a matrix game with “almost” perfect information.

We can model this game as a matrix game with almost perfect information in

the way that is shown in Figure 4.5: after the initial chance move, the players

play one of the six 2×2 matrix games (all with equal probability). However, if

we model minipoker this way, there is a difference between the normal players

in this game and the normal players we have studied so far. So far, the normal

players were not able to make any distinction between the k matrix games

they could possibly face. In minipoker, both players can exclude outcomes of
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the chance move by looking at their own card. In fact, we can say that the

outcome space of the chance move is the set

{(Q,K), (Q,A), (K,Q), (K,A), (A,Q), (A,K)}

and that player 1 faces can distinguish between elements of the partition

{{(Q,K), (Q,A)}, {(K,Q), (K,A)}, {(A,Q), (A,K)}}.

Similarly, player 2 faces the partition

{{(Q,K), (A,K)}, {(Q,A), (K,A)}, {(K,Q), (A,Q)}}.

The fact that the non-fictive players, together with this formulation of the

game as a matrix game with almost perfect information, do not completely

fit into the framework of this chapter is not a problem. It is not difficult to

see that the proof of Theorem 4.3.5 only uses the fact that the information

partition of the fictive players is a refinement of the partition of the normal

players.

The payoffs in all 16 games that are relevant for determining the relative

influence of the players on their game result are given in Figure 4.7. As an

illustration, we give part of the matrix that corresponds to the game between

a fictive optimal player 1 and an optimal player 2, 〈A1〉, in Figure 4.6. Player 1

can distinguish all six possible deals, so a pure strategy for him prescribes an

action (bet or pass) for each of these situations. As a result, player 1 as a

fictive player has 26 pure strategies. Only part of this set is listed in the figure.

Player 2 only knows his own card. Therefore, a pure strategy for him dictates

a decision for each of the three possible cards he can receive. Player 2 has 23

pure strategies. The subscripts in the strategy labels in Figure 4.6 indicate

the cases to which the decisions correspond. For example, player 2’s strategy

FQFKCA prescribes: fold with a queen or a king, but call with an ace, if

player 1 bets. The value of this game is 1
9
.

We learn from Figure 4.7 that the value of the game is 1
18

. And, as we can see,

the numbers in this table satisfy the order that we need to make all definitions

regarding information and control sensible. Using the numbers in Figure 4.7,

we can determine the values of information and relative control levels for both

players in minipoker. We find that three of the eight prices of information are
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F
Q
F

K
F

A

F
Q
F

K
C

A

F
Q
C

K
F

A

F
Q
C

K
C

A

C
Q
F

K
F

A

C
Q
F

K
C

A

C
Q
C

K
F

A

C
Q
C

K
C

A

PQ,KPQ,APK,QPK,APA,QPA,K 0 0 0 0 0 0 0 0

PQ,KPQ,APK,QPK,APA,QBA,K 0 0 1
6

1
6

0 0 1
6

1
6

PQ,KPQ,APK,QPK,ABA,QPA,K 0 0 0 0 1
6

1
6

1
6

1
6

PQ,KPQ,APK,QPK,ABA,QBA,K 0 0 1
6

1
6

1
6

1
3

1
6

1
3

...
...

...
...

...
...

...
...

...

BQ,KBQ,ABK,QBK,APA,QPA,K 1 0 1
2

−1
2

1
2

2
3

−1
2

−1
3

BQ,KBQ,ABK,QBK,APA,QBA,K 1 0 2
3

−1
3

2
3

5
6

−1
3

−1
6

BQ,KBQ,ABK,QBK,ABA,QPA,K 1 0 1
2

−1
2

1
2

5
6

−1
2

−1
6

BQ,KBQ,ABK,QBK,ABA,QBA,K 1 0 2
3

−1
3

2
3

1 −1
3

0

〈A1〉

Figure 4.6: Minipoker between a fictive optimal player 1 and an optimal
player 2.

player 2 type

FW W O FO

p
la

ye
r

1
ty

p
e FW 0 0 −1

2
−1

2

W 0 0 −1
2

−1
2

O 3
2

4
3

1
18

0

FO 3
2

4
3

1
9

0

Figure 4.7: Expected payoffs for player 1 in minipoker, all combinations of
player types.

unequal to zero: cO,O
1 = 1

36
, cO,O

2 = 1
12

and cO,W
2 = 1

6
. Using these numbers, we

find γO
1 = 20

21
, γW

1 = 1, γO
2 = 46

55
and γW

2 = 1. For both players, it turns out

that playing against a player who minimizes his own payoff is better from a

control point of view.

What’s the explanation for this extremely high level of relative control

against a worst opponent? Well, let us consider the case of player 1 facing an

opponent who tries to minimize his own payoff. If neither player is fictive and
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player 1 acts as an optimal player, then in the unique equilibrium player 1

always bets, while player 2 calls with a queen and folds with a king or with

an ace. The expected payoff for player 1 is then 4
3
. If player 1 acts as a worst

player against his worst opponent, the best thing he can do with any card is

passing (or he can bet with a queen, but this will not be useful since player 2

will not risk winning by calling with a king or an ace). His expected payoff will

then be 0. Since cO,W
1 = cW,W

1 = 0, revealing player 2’s card to player 1 does

not give player 1 additional strategic possibilities. The fact that uO,W > uW,W

is therefore sufficient to obtain a relative control level equal to 1.

From the numbers γO
i and γW

i (i = 1, 2), we want to draw two conclusions.

In the first place, since both γO
1 and γO

2 are smaller than 1, we know that the

dealing of the cards really leads to restrictions in the possibilities of rational

players. In the second place, since γO
1 < γW

2 and γO
2 < γW

1 , we can conclude

that both players in minipoker would prefer the position of the opponent from

a control point of view. In the “column position” of player 2 one has more

control about the expected payoff of player 1 when one is trying to maximize

this payoff. Similarly, the “row position” of player 1 gives more control over

the maximization of player 2’s payoff.

4.6 Concluding remarks

In this chapter we have presented a way to analyze the role of chance moves for

a specific class games. We have given a method that enables us to determine

the value of information about those chance moves for the players. Using this

valuation of the information, we quantified the restrictive role of the chance

moves with respect to the influence of the players on their own payoffs. To

conclude, we wish to make a few remarks about our analysis.

4.6.1 Extension to other classes of games

The starting point in this chapter was a matrix game with almost perfect

information. We used the zero-sum property in the proof of Theorem 4.3.5.

Of course, it is interesting to check whether our analysis can be carried out

for a broader class of bimatrix games. Example 4.6.1 supports the conjecture

that this is possible. Before we give the example, we have to think for a



4.6. Concluding remarks 89

moment about the definition of the altruistic players. Although we prefer

this positive terminology over the term masochistic in the zero-sum context,

we want to stress here that the original idea was that these players try to

minimize their own payoffs. So in a bimatrix game, we interpret the worst

player as a masochistic player.

Example 4.6.1 Consider the following duopoly situation. Two firms produce

some good and they can choose to use grey or green energy for the production

process. The second type is better for the environment, but it is also more

expensive. Therefore, the selling price of the product should be higher. This

leads to a decrease in demand. However, the government is discussing the

possibility of giving subsidy to consumers who buy products that have been

produced in an ecologically sound way. This subsidy is expected to stimulate

the consumers so much that the demand for the product will increase, even if

the price is higher. The probability that the government will decide to give

this subsidy, is estimated by the firms to be 50%. We model this situation

as a bimatrix game with almost perfect information. This game is shown in

Figure 4.8.

government’s decision

1
2

(no subsidy)
grey green

grey 4, 4 4, 3

green 3, 4 3, 3

〈Ans, Bns〉

1
2

(subsidy)
grey green

grey 4, 4 3, 7

green 7, 3 5, 5

〈As, Bs〉

〈A,B〉 = 1
2
〈Ans, Bns〉 + 1

2
〈As, Bs〉

?

(compound game)
grey green

grey 4, 4 31
2
, 5

green 5, 31
2

4, 4

〈A,B〉
Figure 4.8: Duopoly with possible consumer subsidy for ecologically sound
products.

Figure 4.9 contains the payoffs corresponding to the 16 games from which we

wish to draw conclusions about relative control. The bimatrix game corre-

sponding to the situation where firm 1 knows in advance whether the gov-

ernment will give the subsidy, is given in this figure too, since it helps in

quickly checking the 16 payoffs. The presence of a strongly dominant strategy
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in each bimatrix game that we have to consider simplifies the computations.

Using the information in Figure 4.9, we find that the price of information

grey green

(grey, grey) 4, 4 31
2
, 5

(grey, green) 51
2
, 31

2
41

2
, 4

(green, grey) 31
2
, 4 3, 5

(green, green) 5, 31
2

4, 4

〈A1, B1〉

firm 2 type

FW W O FO

fi
rm

1
ty

p
e FW 31

2
, 31

2
31

2
, 4 3, 5 3, 51

2

W 4, 31
2

4, 4 31
2
, 5 31

2
, 51

2

O 5, 3 5, 31
2

4, 4 4, 41
2

FO 51
2
, 3 51

2
, 31

2
41

2
, 4 41

2
, 41

2

Figure 4.9: Information about the duopoly needed for analyzing the relative
influence of the firms on their profits.

is 1
2

for each combination of attitudes. These prices are computed in the

same way as for the zero-sum case: we construct the information buying pre-

game and we set the prices such that the situation in which both players

buy information with probability 1
2

is an equilibrium. These numbers lead to

γO
1 = (4 − 31

2
)/(1

2
+ (4 − 31

2
) + 1

2
) = 1

3
. Similarly, we find γW

1 = 1
2

and, by the

symmetry of the game, γO
2 = 1

3
and γW

2 = 1
2
. For both firms, relative control is

smaller against an optimal opponent than against a worst opponent. Phrased

differently, for both firms the uncertainty about the subsidy being given or not

has more influence on the firm’s profits when its competitor acts as a profit

maximizer.

In non-zero sum games, an egoistic player and his masochistic opponent do

not necessarily have the same objective. Minimizing one’s own payoff is not

the same as maximizing the payoff of the opponent anymore. So, a comparison

between the relative control numbers γO
2 and γW

1 does not make sense. ⊳

In the example above we have a nicely structured bimatrix game with almost

perfect information for which we can carry out our analysis. The following

example shows that our analysis in general does not work for bimatrix games,

not even if the game is such that each of the underlying bimatrix games, as

well as the compound bimatrix game itself, has an equilibrium in strongly

dominating strategies.

Example 4.6.2 This example is based on an example given by Bassan, Scarsini

and Zamir (1997). It is a bimatrix game with almost perfect information in
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which each of the underlying bimatrix games has a unique Nash equilibrium,

consisting of strongly dominant strategies. The numbers that we need for de-

chance

1
2

L R

T 0, 0 6,−3

B −3, 6 5, 5

〈A1, B1〉

1
2

L R

T −20,−20 −7,−16

B −16,−7 −5,−5

〈A2, B2〉

〈A,B〉 = 1
2
〈A1, B1〉 + 1

2
〈A2, B2〉

?L R

T −10,−10 −1
2
,−91

2

B −91
2
,−1

2
0, 0

〈A,B〉

Figure 4.10: The bimatrix game with almost perfect information from Bassan,
Scarsini and Zamir (1997).

termining relative influence of the players in this game, are given in Figure 4.11.

We see that player 1’s payoffs in Figure 4.11 are not decreasing from bottom-

L R

(T, T ) −10,−10 −1
2
,−91

2

(T,B) −8,−31
2

1
2
,−4

(B, T ) −111
2
,−7 −1,−51

2

(B,B) −91
2
,−1

2
0, 0

〈A1, B1〉

player 2 type

FW W O FO

p
la

ye
r

1
ty

p
e FW −71

2
,−71

2
−111

2
,−7 −1,−51

2
−5,−5

W −7,−111
2

−10,−10 −1
2
,−91

2
−4, 1

2

O −51
2
,−1 −91

2
,−1

2
0, 0 −31

2
,−8

FO −5,−5 1
2
,−4 −8,−31

2
−21

2
,−21

2

Figure 4.11: Information needed for analyzing the relative player control in
the game of Bassan, Scarsini and Zamir (1997).

left to top-right, which is a necessary condition to enable computation of the
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value of information in a way that is analogous to the approach presented in

this chapter. ⊳

4.6.2 Relation with the analysis of skill

As stated in the introduction of this chapter, the analysis of relative player

control is related to the skill analysis of a game. The goal of that analysis, of

which we give a detailed description in chapter 2, is similar: with both methods

one can draw conclusions about the role of the chance moves in a game. The

methods even share two “building blocks”: the expected payoffs of the optimal

player and the fictive optimal player. The way the skill analysis defines an

optimal player is exactly the same as the definition we used, but for the fictive

optimal player two different definitions have been used in the skill analysis. In

the analysis of Borm and Van der Genugten (2001), the fictive optimal player

is assumed to have the same kind of information about the chance moves of

the game as our clairvoyant, egoistic player. In the alternative approach, that

we have described in section 2.8, the clairvoyancy of the player is assumed to

be even stronger: the fictive optimal player also knows in advance the outcome

of possible randomization by his opponent. This type of uncertainty, caused

by the players themselves, is sometimes called an internal chance move. To

indicate the contrast, the chance moves of the game itself are called external

chance moves. As stated, our fictive optimal player, whose clairvoyance only

helps him as far as the external chance moves are concerned, is like the fictive

player that was used in the analysis of Borm and Van der Genugten (2001).
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Chapter 5

Von Neumann’s poker model

5.1 Introduction

The analysis of poker is interesting for a wider audience than just for poker

players. The game provides an excellent domain for investigating problems of

decision making under uncertainty. It raises interesting questions about the

role of information in the game and brings challenges to research in artificial

intelligence. And, of course, it is a class of games that is interesting for appli-

cation of the skill analysis described in chapter 2. Since poker does not involve

playing out cards, as opposed to a game like bridge, all strategic aspects in

the game concern the bidding by the players. Unfortunately, even though the

strategic structure of the game is relatively simple, real poker games are dif-

ficult to analyze. From a deck of cards, millions of different poker hands can

be drawn, so that the dimension of the representation of the game quickly

becomes too large to analyze, even for modern high-speed computers.

To handle this problem of the large numbers of hands, we can order them

and represent them by numbers between zero and one on the real line. The

highest possible poker hand, a royal flush, then corresponds to one, while the

lowest hand corresponds to zero. To make the analysis of the game simpler,

one can model the card distribution as a continuous distribution on the interval

[0, 1], thereby implicitly increasing the number of possible hands from “very

large” to infinity. This approach is followed in this chapter, which studies

a two-player poker game with alternate bidding that was introduced by Von

Neumann and Morgenstern (1944, chapter 19). This game is played as follows.

First, both players pay an ante and receive a hand. Next, player 1 chooses
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between betting a fixed bet size, and passing. When player 1 has decided to

bet, then player 2 can choose between folding and calling. In the first case,

he gives up the ante. In the second case, he has to add the same fixed bet

size as player 1 to the pot and then the same thing happens as when player 1

has passed: a showdown follows. In the showdown, the player with the better

hand wins the pot. A specific variant of this game is also studied in the book

of Binmore (1992).

In the model of Von Neumann and Morgenstern (1944) the hands of the

players are drawn from a continuous uniform distribution on [0, 1]. In this

chapter, we extend the model by allowing for other than uniform hand distri-

butions. We compute the value of the game as well as optimal strategies for

both players. Next, we translate our general strategic results to the situation

where the game is played with regular playing cards. We need this informa-

tion to approximate the skill level of this game using the methods described

in chapter 2.

The chapter is organized as follows. First, we give an exact description of

the specific poker game under consideration in section 5.2. In section 5.3 we

compute the optimal strategies for both players and discuss equilibrium play

in some more detail. Subsequently, we approximate optimal play for the case

where this poker game is played with a regular deck of 52 cards. This is the

subject of section 5.4. Finally, we measure the skill involved in this variant of

poker and present the results in section 5.5.

5.2 Game description

We give a formal description of the rules of our poker game, which we call

minipoker throughout this text. To begin the game, both players add an ante

of size a to the stakes. Then the cards are dealt. Instead of considering the(
52
5

)(
47
5

)
= 3, 986, 646, 103, 440 possible hand combinations that can be dealt

in a general poker game, the hands are assumed to be real numbers, indepen-

dently drawn from the interval [0, 1]. So, player 1’s hand is the value u of a

continuous random variable U and player 2’s hand is the value v of a contin-

uous random variable V . U and V are independently, identically distributed

on [0, 1] according to the cumulative distribution function F : [0, 1] → R+.
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The function f : [0, 1] → R++ denotes the probability density function for this

distribution and is assumed to be positive and continuous on its domain.

After seeing his hand, player 1 can choose between passing and betting. If

he passes, a showdown follows immediately. In the showdown, the players com-

pare their hands and the player with the highest hand wins the pot. Betting

means adding an amount b to the stakes. After a bet by player 1, player 2 can

decide to fold or to call. If he folds, then he loses his ante of a to player 1. To

call, player 2 must put an extra amount b in the pot. In that case, a showdown

follows and the player with the better hand takes the pot.

The difference with the case of Von Neumann and Morgenstern (1944) is

that they only consider hands u and v that are drawn independently from

uniform distributions on [0, 1]. Furthermore, they use a terminology for the

strategic options of the players which is different from the usual one.

Figure 5.1 displays the essence of our poker model in extensive form.

Player 2 receives a hand v. In the picture, two possible hands for player 1

are shown together with v: u1 and u2 (with u1 < v < u2). The decision of

player 1 is displayed as if taken before v is dealt to player 2.

chance

u2u1

player 1

BP BP

v v v v

chance

CF CF

player 2
−a a

a −(a + b) a a + b

Figure 5.1: The extensive form of two-person minipoker (u1 < v < u2).
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5.3 Optimal strategies

In this section we search for the Nash equilibria of minipoker. We restrict

attention to behavioural strategies that are measurable functions of the player’s

hands. The structure of the analysis is similar to the way Binmore (1992,

chapter 12) explains a specific variant of this game.

Pure strategies for Von Neumann’s poker model are functions g : [0, 1] →
{P,R} and h : [0, 1] → {F,C}. A mixed strategy is therefore something

rather complex. Since the game has the property of perfect recall, according

to Aumann (1964) we can work with behavioural strategies as well, without

restricting the players in their possibilities.

A behavioural strategy for player 1 is a Lebesgue measurable function p :

[0, 1] → [0, 1], where p(u) is the probability with which he bets if the value

of his hand is u. Similarly, a behavioural strategy for player 2 is a function

q : [0, 1] → [0, 1], where q(v) is the probability with which he plans to call if

he is dealt a hand with value v.

Suppose that the players use the behavioural strategies p and q. Then,

given dealt cards (u, v), we can compute the expected gain z(u, v) of player 1.

This value depends on who has the better hand.

If u > v,

z(u, v) =

B,F︷ ︸︸ ︷
ap(u)(1 − q(v)) +

B,C︷ ︸︸ ︷
(a + b)p(u)q(v) +

P︷ ︸︸ ︷
a(1 − p(u))

= a + bp(u)q(v).

If u < v,

z(u, v) =

B,F︷ ︸︸ ︷
ap(u)(1 − q(v))−

B,C︷ ︸︸ ︷
(a + b)p(u)q(v)−

P︷ ︸︸ ︷
a(1 − p(u))

= 2ap(u) − (2a + b)p(u)q(v) − a.

Even though player 1 does not know what hand player 2 is holding, he can

now compute the expectation with respect to v of his own payoff for a given
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hand u.

E1(u) =

∫

v<u

z(u, v)f(v)dv +

∫

v>u

z(u, v)f(v)dv

=

∫ u

0

(a + bp(u)q(v))f(v)dv

+

∫ 1

u

(2ap(u) − (2a + b)p(u)q(v) − a)f(v)dv

= p(u)S1(u) + T1(u),

with

S1(u) = 2a(1 − F (u)) + b

∫ u

0

q(v)f(v)dv − (2a + b)

∫ 1

u

q(v)f(v)dv,

T1(u) = 2aF (u) − a.

Analogously, for player 2, we get

E2(v) = −
∫

u<v

z(u, v)f(u)du −
∫

u>v

z(u, v)f(u)du

= −
∫ v

0

(2ap(u) − (2a + b)p(u)q(v) − a)f(u)du

−
∫ 1

v

(a + bp(u)q(v))f(u)du

= q(v)S2(v) + T2(v),

with

S2(v) = (2a + b)

∫ v

0

p(u)f(u)du − b

∫ 1

v

p(u)f(u)du,

T2(v) = 2aF (v) − 2a

∫ v

0

p(u)f(u)du − 1.

When we look for a Nash equilibrium (p̃, q̃), all that matters are the signs of

the functions S̃1 and S̃2, obtained by writing q(v) = q̃(v) and p(u) = p̃(u).

How can we see this? Suppose that player 2 uses strategy q̃. Then player 1

will get a payoff of p(u)S̃1(u) + T̃1(u) if he raises with probability p(u) when

dealt u. The second component of this payoff is independent of p(u), so to see

what decision is optimal, we only need to know the sign of S̃1(u). If S̃1(u) > 0,

the choice p(u) = 1 is optimal. If S̃1(u) < 0, the choice p(u) = 0 is optimal.

Only if S̃1(u) = 0, other choices of p(u) are optimal too. Applying similar
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considerations to player 2, we obtain the following necessary conditions for

equilibrium strategies p̃ and q̃:

S̃1(u) > 0 ⇒ p̃(u) = 1; S̃2(v) > 0 ⇒ q̃(v) = 1;

S̃1(u) < 0 ⇒ p̃(u) = 0; S̃2(v) < 0 ⇒ q̃(v) = 0;

0 < p̃(u) < 1 ⇒ S̃1(u) = 0; 0 < q̃(v) < 1 ⇒ S̃2(v) = 0.

In the graphs of Figure 5.2, for F we have chosen the uniform distribution on

the interval [0, 1], while the ratio b
a

of the bet size and the ante is equal to 1.

Figure 5.2(a) shows what the graph of S̃2(v) looks like. To check this, take a

Figure 5.2: Finding the equilibrium strategies p̃ and q̃.

look at the expression for S̃2(v). Since both a and b are positive numbers, f(u)
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is assumed to be positive for all u ∈ [0, 1] and p(u) can only take nonnegative

values, it follows that the function S̃2 is weakly increasing in v. Substituting

v = 0 in the formula for S̃2(v) yields S̃2(0) ≤ 0, while substitution of v = 1

tells us S̃2(1) ≥ 0. Since S̃2 is continuous, there exist numbers x and y such

that x is the smallest number in [0, 1] for which S̃2(x) = 0 and y is the largest

number in [0, 1] for which S̃2(y) = 0. Note that, unless x = y, the function

S̃2 cannot be strictly increasing. The information about S̃2, summarized in

Figure 5.2(a), tells us much about the function q̃. What we know about q̃ is

summarized in Figure 5.2(c).

The expression for S̃2(v) is informative about the function p̃ too. Since

S̃2(v) is constant for v on the interval [x, y], we must have p̃(v) = 0 on the

interval (x, y). However, p̃(v) cannot be zero on a larger open interval I, be-

cause this would imply that S̃2(v) would then be constant on I. This constant

would need to be zero, because S̃2(v) = 0 on the interval [x, y]. However, this

contradicts the fact that [x, y] is the largest interval on which S̃2(v) = 0.

What we have learned about p̃ tells us something about S̃1. It cannot be

that S̃1(u) < 0 immediately to the left of x, because then p̃(u) = 0 immediately

to the left of x. Because S̃1 is continuous, it follows that S̃1(x) ≥ 0. For

similar reasons S̃1(y) ≥ 0. Figure 5.2(c) tells us that q̃(u) = 0 for every u on

the interval (0, x) and that q̃(u) = 1 on the interval (y, 1). Consequently, S̃1

decreases on [0, x] and increases on [y, 1], as indicated in Figure 5.2(b).

Figure 5.2(b) enables us to tie down p̃ completely. We already know that

p̃(u) = 0 for u ∈ (x, y). But now we know that S̃1(u) > 0 on [0, x) and (y, 1].

Thus, p̃(u) = 1 on these intervals, as Figure 5.2(d) shows.

Next, use the information about p̃ and q̃, together with the fact that

S̃1(x) = S̃1(y) = S̃2(x) = S̃2(y) = 0 to see that x and y are determined

by the equations

F (y) = 1 − 2a + b

b
F (x) and F (y) =

a + b

2a + b
+

a

2a + b
F (x).

Since f is assumed to be positive on its domain, we know that F is strictly

increasing and continuous. Therefore, we can solve these equations to find

x = F−1

(
ab

(a + b)(4a + b)

)
and y = F−1

(
(2a + b)2 − 2a2

(a + b)(4a + b)

)
. (5.1)

So p̃ is determined uniquely. However, q̃ is not. For x ≤ v < y, q̃(v) can be
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chosen freely, subject to the constraints

1 − F (y) =

∫ y

x

q(v)f(v)dv and S̃1(u) ≤ 0 for x < u < y.

These constraints boil down to

1

F (y) − F (x)

∫ y

x

q(v)f(v)dv =
a

a + b
,

1

F (y) − F (u)

∫ y

u

q(v)f(v)dv ≥ a

a + b
for x < u < y.

So, q̃ is constrained such that between x and y the average of q̃(v) is a
a+b

, and

on any right end of this interval the average of q̃(v) is at least a
a+b

. Although

there are many choices for q̃ that satisfy these constraints, there is a unique

admissible Nash equilibrium strategy that does this. A strategy is said to be

admissible for a player if no other strategy for that player does better against

one strategy of the opponent without doing worse against some other strategy

of the opponent. This is the strategy with which player 2 folds when his hand

is under a certain threshold value z and calls when his hand is above it, such

that
∫ y

z

f(v)dv =

∫ 1

y

f(v)dv.

It follows that this unique value of z is given by

z = F−1

(
b(3a + b)

(a + b)(4a + b)

)
. (5.2)

This admissible strategy is already indicated in Figure 5.2(c), by the dashed

line. Using the derived strategies p̃ and q̃, we can compute the value of the

minipoker game. In Figure 5.3, all possible hands for player 1 are set out

horizontally, together with the action chosen for each hand u. For player 2,

the hands v and corresponding actions are set out vertically. In each of the ten

areas that appear, we know the combination of actions chosen by both players

and thus we can give the payoff for each possible combination of hands. By

integrating over over all combinations of hand values u and v, we can compute
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−(a
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Figure 5.3: Expected payoff for all (u, v) to player 1 in the Nash equilibrium
(p̃, q̃).

the value va,b of the game with ante a and bet size b.

va,b = a

(∫ y

0

∫ u

0

f(v)dvf(u)du +

∫ 1

y

∫ z

0

f(v)dvf(u)du

)

+a

∫ x

0

∫ z

u

f(v)dvf(u)du

−a

∫ y

x

∫ 1

u

f(v)dvf(u)du + (a + b)

∫ 1

y

∫ u

z

f(v)dvf(u)du

−(a + b)

(∫ x

0

∫ 1

z

f(v)dvf(u)du +

∫ 1

y

∫ 1

u

f(v)dvf(u)du

)

= 2a

∫ 1

x

F (u)f(u)du + 2b

∫ 1

y

F (u)f(u)du − a(4a + 3b)

4a + b
, (5.3)

where x and y are as defined in equation (5.1). The results of the analysis

above are summarized in Theorem 5.3.1.

Theorem 5.3.1 If minipoker is played with ante a and bet size b and the

hands u and v of the players both have cumulative distribution F with positive,

continuous density f on [0, 1], then the value of the game is given by

va,b = 2a

∫ 1

x

F (u)f(u)du + 2b

∫ 1

y

F (u)f(u)du − a(4a + 3b)

4a + b
,
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with x = F−1
(

ab
(a+b)(4a+b)

)
and y = F−1

(
(2a+b)2−2a2

(a+b)(4a+b)

)
. In this case, the unique,

admissible optimal strategies are

Pr{bet with hand u} = p̃(u) =





1 if Pr{v ≤ u} ≤ ab
(a+b)(4a+b)

or Pr{v ≤ u} > (2a+b)2−2a2

(a+b)(4a+b)
,

0 otherwise,

for player 1 and

Pr{call with hand v} = q̃(v) =

{
0 if Pr{u ≤ v} ≤ b(3a+b)

(a+b)(4a+b)
,

1 otherwise,

for player 2.

The results for the case of Von Neumann and Morgenstern (1944) where F is

the uniform distribution on [0, 1], follow directly from Theorem 5.3.1.

Corollary 5.3.2 The minipoker game of Von Neumann and Morgenstern (1944),

in which F was the uniform distribution, has value

va,b =
a2b

(a + b)(4a + b)
.

Optimal strategies are given by

Pr{bet with hand u} = p̃(u) =

{
1 if u ≤ ab

(a+b)(4a+b)
or u > (2a+b)2−2a2

(a+b)(4a+b)
,

0 otherwise,

for player 1 and

Pr{call with hand v} = q̃(v) =

{
0 if v ≤ b(3a+b)

(a+b)(4a+b)
,

1 otherwise.

for player 2.

So, in this simple case, the value of the game is equal to the product of the

ante and the value of the hand that indicates player 1’s strategic boundary

between bluffing and passing. Interesting is the fact that the value is positive

in this case. The game is favourable for player 1. To see for what combination

of values of the ante and the bet size the game is most favourable for player 1,

we fix the ante a and compute the derivative of va,b with respect to b.

d

db
va,b =

a2(2a − b)(2a + b)

(a + b)2(4a + b)2
.
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This derivative is zero at b = 2a. This is the only solution, since both a and

b are positive. Since d2

db2
va,b = − 1

81a
< 0 for these relative values of the bet

size and the ante, we know that the ratio b
a

= 2 is optimal for player 1. This

special case is called pot-limit minipoker, since the maximal bet size (in this

case the only possible bet size) equals the total size of the pot. Now we can

formulate Proposition 5.3.3.

Proposition 5.3.3 The pot-limit variant of minipoker is the unfairest variant

possible with uniform hand distributions.

Another thing that is intuitively clear, is easy to recognize now too: for

minipoker with uniform distributions the strategies of the players depend only

on the ratio r = b
a

of the bet size and the ante. The boundary values x, y and

z given in equations (5.1) and (5.2), can be written as

x =
r

(r + 4)(r + 1)
, y =

r2 + 4r + 2

(r + 4)(r + 1)
and z =

r2 + 3r

(r + 4)(r + 1)
.

The boundary values are plotted as a function of r in Figure 5.4. In this

figure, we recognize the limits for r going to infinity,

lim
r→∞

x = 0 and lim
r→∞

y = lim
r→∞

z = 1,

and the limiting values of the boundaries for the ratio going to zero,

lim
r↓0

x = lim
r↓0

z = 0 and lim
r↓0

y =
1

2
.

The shapes of these curves for larger values of r is intuitively clear: when

betting and calling become relatively expensive, it is wise to choose these

actions not too often. As the ratio goes to zero, the number of hands with

which player 2 calls increases quickly. Giving up the ante by folding becomes

relatively expensive. As a consequence, player 1 only folds with the higher half

of the hands, for which the probability that he has the highest hand is larger

than 1
2
. Finally, at r = 2, the case of pot-limit poker, the hand value below

which player 1 bluffs is maximal.

5.4 A regular deck of cards

In the previous section we derived optimal strategies in the two-person poker

game for both players in a general form. These strategies were given in terms
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Figure 5.4: Boundary values for the optimal strategies as a function of the
ratio b

a
of the bet size and the ante.

of quantiles of the continuous distribution function F , the distribution function

from which the hands of the players were drawn. In this section we see what

these results imply when the game is played with a regular deck of cards, from

which the players draw real poker hands.

5.4.1 Classification of poker hands

Before we start translating strategies, let us first give an overview of the poker

hands that can occur. A poker hand is a combination of five cards, drawn

from a deck of 52 cards. The deck consists of four suits: hearts (♥), clubs (♣),

diamonds (♦) and spades (♠). All suits are equally valuable, while the 13

cards of each suit have, ranked in decreasing order, the values A(ce), K(ing),

Q(ueen), J(ack), 10, 9, . . . , 2. All hands belong to one of the ten classes that

are defined in decreasing order of value in Table 5.1. The order of hands within

a class is determined by comparing the cards of the hands separately, starting

with the most important card of a hand. The importance of the card within
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Class Description Example

RF Royal Flush five consecutive cards of one
suit, starting with an ace

(♣A,♣K,♣Q,♣J,♣10)

SF Straight Flush five consecutive cards of the
same suit (an ace can have
the value 1)

(♠5,♠4,♠3,♠2,♠A)

4K Four of a Kind four cards with equal values (♦4,♣4,♥4,♠4,♦Q)

FH Full House a triplet of cards with the
same values, together with
a pair with equal values

(♠5,♣5,♦5,♦10,♥10)

F Flush five cards of the same suit (♣K,♣J,♣9,♣3,♣2)

S Straight five consecutive cards (♥K,♠Q,♥J,♣10,♦9)

3K Three of a Kind three cards with the same
value

(♣Q,♥Q,♠Q,♦J,♥6)

2P Two pairs two pairs with the same val-
ues within each pair

(♠A,♥A,♦8,♠8,♣3)

1P One pair one pair of cards with equal
values

(♥9,♦9,♣K,♦10,♦4)

HC High Card any combination of cards
that does not fit in any of
the classes above

(♥K,♦J,♦9,♣4,♠2)

Table 5.1: Classification of poker hands

a hand depends on the class to which the hand belongs. In Table 5.1 the card

order in the example hands is such that the most important cards are put in

front.

The total number of different hands of five cards that can be drawn from a

single deck of 52 cards is
(
52
5

)
= 2, 598, 960. The number of hands in each class

and the probability of receiving a hand from this class is given in Table 5.2 for

all ten classes. The decreasing probabilities are the reason that the order of

the classes is as it is. If we pay attention to the order of the hands within the

ten classes, then we obtain 7, 462 ordered subclasses. Within each subclass,

all hands really are equal, meaning that no hand from a given subclass beats

another hand from the same subclass in a showdown. In Figure 5.5 we give

the frequencies with which hands of a certain subclass appear.

The small bar with high frequencies around subclass number 5, 800 corre-

sponds to the Straights, while the somewhat wider block with frequencies of
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Class Number Prob.(%)

RF 4 0.000

SF 36 0.001

4K 624 0.024

FH 3,744 0.144

F 5,108 0.197

S 10,200 0.392

3K 54,912 2.113

2P 123,552 4.754

1P 1,098,240 42.257

HC 1,302,540 50.118

Total 2,598,960 100.000

Table 5.2: Numbers and probabilities for all classes of poker hands
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Figure 5.5: Frequencies of appearance of subclasses of poker hands in a single
deck of 52 cards.

24 corresponds to Full House. Figure 5.6 gives the continuous approximation

of the cumulative distribution of the poker hands, where both hand numbers

and frequencies are normalized.
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Figure 5.6: Continuous approximation of the cumulative distribution of the
7, 462 subclasses of poker hands in a single deck of 52 cards.

5.4.2 From a continuous to a discrete distribution

All results we presented so far were derived using continuous hand distribu-

tions. Now we want to take these results from the continuous situation into

the discrete case, where the hands are drawn from a deck of 52 cards, without

replacement. An intuitive way to approximate optimal strategies in the dis-

crete game is the following. If the 5-card hand of a player ranks n (from the

bottom) out of 2,598,960, we treat his hand as if he were dealt n
2,598,960

in the

continuous game.

As Cutler (1975) remarks, there are at least three objections to this ap-

proximation. First of all, the optimal strategies for the discrete case may

differ considerably from the ones derived for the continuous case. However,

according to Von Neumann and Morgenstern (1944, p. 209), the maximal loss

that can be incurred by playing the “continuous” strategy is not large. More

precisely, the difference is only of the order 1
2,598,960

. Second, some different

hands have an equal value, as the ordering (partly) disregards suits. This fact

is taken care of by using the general distribution F in our derivation. Even if

certain hands occur with higher probability than others, our results still ap-

ply. Finally, the hands are dealt from one deck without replacement. That
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is, the hand one player holds affects what the other may hold. As a result,

increasing the rank of a hand does not necessarily increase its value. Consider

the following example. If a player holds a straight flush to the five, the oppo-

nent may hold 31 higher straight flushes or three equal ones. However, when

the player has four aces and a six, his opponent may only beat him with 27

different straight flushes. We do not take into account this last remark and

focus on the case where minipoker is played with a separate deck of cards for

each player. Or equivalently, it could be interpreted as the game in which the

players’ hands are drawn from a regular deck of 52 cards with replacement.

We give an approximation for optimal play for this game in section 5.4.3.

5.4.3 Optimal play

In this section we tell what the optimal minipoker strategies for both players

mean in terms of real poker hands. We consider the case where hands are

drawn from a regular deck of cards with replacement. Unless stated otherwise

explicitly, the results in this section apply to the case where the ante and the

bet size are equal, i.e., r = b
a

= 1. Recall from Theorem 5.3.1 that if the

players are dealt the hands u and v, the optimal strategy for player 1, stated

in terms of probabilities, for this ratio is

Pr{bet with hand u} = p̃(u) =

{
1 if Pr{V ≤ u} ≤ 1

10
or Pr{V ≤ u} > 7

10
,

0 otherwise,

and that it is optimal for player 2 to play

Pr{call with hand v} = q̃(v) =

{
0 if Pr{U ≤ v} ≤ 2

5
,

1 otherwise.

Using the information that is displayed in Figure 5.6, we can translate these

probabilities to the probabilities of poker hands. We find that the optimal

strategy for player 1 is

Pr{bet with hand u} =





1 if u ≤ (Q, 7, 5, 4, 3),

0 if (Q, 7, 6, 3, 2) ≤ u ≤ (8, 8, 9, 5, 4),

1 if u ≥ (8, 8, 9, 6, 2),

and that it is optimal for player 2 to play

Pr{call with hand v} =

{
0 if v ≤ (A,Q, 8, 6, 2),

1 if v ≥ (A,Q, 8, 6, 3).
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To be precise, for player 1 the hands are selected such that (Q, 7, 5, 4, 3) is

the highest hand for which Pr{V ≤ u} ≤ 1
10

and (Q, 7, 6, 3, 2) is the lowest

hand for which Pr{V ≤ u} > 1
10

. We use this approach to keep the strategy

specifications simple, but we realize that a more accurate interpretation of

the optimal strategies for the continuous game in terms of real poker hands

requires randomization with hands from one subclass at each boundary value.

To indicate the dependency of the strategies on the ratio of bet size and ante,

that was shown for the uniform case in Figure 5.4, Table 5.3 gives the boundary

hands for some other relative values of a and b. In this table, x− is the highest

hand below the boundary x. The definitions for y− and z− are similar. The

case r = 1 is included to compare with the results above. In Table 5.3 we can

x− y− z−

r = b
a

(player 1’s upper (player 1’s upper (player 2’s upper

bound for bluffing) bound for passing) bound for folding)

1 (Q, 7, 5, 4, 3) (8, 8, 9, 5, 4) (A,Q, 8, 6, 2)

2 (Q, 9, 5, 4, 2) (10, 10, Q, J, 2) (3, 3, K, J, 2)

3 (Q, 8, 7, 4, 3) (J, J, A, 9, 3) (6, 6, J, 10, 3)

5 (J, 10, 9, 6, 5) (K,K, 10, 9, 3) (9, 9, J, 10, 6)

10 (J, 9, 6, 5, 4) (A,A,K, J, 10) (Q,Q,K, 4, 2)

100 (9, 7, 5, 3, 2) (K,K,K,Q, 2) (7, 7, 7, K, 4)

Table 5.3: Boundary values of the optimal strategies for both players for vari-
ous ratios r = b

a
.

clearly see that, with a relatively high cost of betting and calling, optimal play

prescribes betting and calling only for a small number of hands.

5.5 Relative skill

In this section we analyze the skill of our poker game. The basis for the

computations will be the game in which the hands u and v for player 1 and

2 are drawn independently from a uniform distribution on [0, 1]. We focus on

the case with equal ante and bet size and normalize to a = b = 1. We carry

out the computations both for the analysis of skill that was proposed by Borm
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and Van der Genugten (2001) and for our alternative, which we have described

in chapter 2. We refer to the first method by using the subscript BG.

From Corollary 5.3.2 we already know the strategies and the game results

of optimal players. When we substitute a = 1 and b = 1 into the formulas, we

see that the expected payoff for player 1 as an optimal player is 1
10

. Since we

deal with a zero-sum game, this is the value of the game and player 2 has an

expected payoff of − 1
10

. In sections 5.5.1 and 5.5.2 we derive the expected game

results of the beginners and the fictive players. Finally, in section 5.5.3, these

numbers are used to produce an overview of the results of the skill analysis.

5.5.1 Beginners

What will be the strategies of players who play this game for the first time, just

after the rules are explained to them? Perhaps they heard about the famous

video poker variant “Jacks or Better”. In this game, as the name suggests,

only hands with a pair of Jacks, Queens, Kings or Aces (and all hands from

higher classes) have value for the player. As a result, naive players may be

betting or calling with exactly these hands. Even if they do not know this

game, this border seems to be a reasonable one. After all, poker players tend

to like hands that look fancy; any hand with at least a pair of images surely

satisfies this condition of prettiness.

What does this reasoning mean for the strategies of the beginners? Player 1

bets only if his hand is at least (J, J, 4, 3, 2). For each player the total probabil-

ity of receiving a hand up to (J, J, 4, 3, 2) is 1189
1498

≈ 0.7937. So we can formulate

the strategy for player 1 as a beginner as

p0(u) =

{
0 if 0 ≤ u ≤ 0.7937

1 if 0.7937 ≤ u ≤ 1,

while the beginner’s strategy for player 2 can be formulated as

q0(v) =

{
0 if 0 ≤ v ≤ 0.7937

1 if 0.7937 ≤ v ≤ 1.

Both strategies are displayed graphically in Figure 5.7. In Figure 5.8 the

expected payoff to player 1 is given for all hand distributions (u, v), assuming

that player 1 uses strategy p0 and player two plays the strategy q̃, that is given
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u0 0.7937 1

p0(u)

0

1

v0 0.7937 1

q0(v)

0

1

Figure 5.7: The strategies p0 and q0 for beginning player 1 and player 2 re-
spectively.
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Figure 5.8: Expected payoff for all (u, v) to player 1 if he plays as a beginner
against the equilibrium strategy q̃ of player 2.

in Corollary 5.3.2. Using this figure, one can find that the expected payoff to

player 1 as a beginner is

U1(p0, q̃) =
310

3817
≈ 0.0812.

We do the same computation for player 2, using Figure 5.9 in which the ex-

pected payoffs to player 1 for the strategy combination (p̃, q0) are shown and
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find that

U2(p̃, q0) = − 265

2254
≈ −0.1176.

u0 1
10

7
10

1
B P B

v

0

0.7937

1

F

C

u = v
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−2

+1

−1

−1
+1

+1

+2
−2

Figure 5.9: Expected payoff for all (u, v) to player 1 if player 2 plays as a
beginner against equilibrium strategy p̃ of player 1 that was given in Corol-
lary 5.3.2.

For the analysis of RS according to the definition we have introduced in sec-

tion 2.8, we need to do some more work. Given the strategies for the beginners

(p0 and q0), we have to find the optimal response of the opponent. We describe

in detail how player 2 determines what will be his best strategy. For each pos-

sible value v of his hand, he has to decide whether calling or folding is optimal

against p0. Figure 5.10 displays the payoff for player 2 for each of his two

actions, given a hand combination (u, v). The P and B under the horizontal

axis indicate for which values of u player 1 passes or bets according to strategy

p0, while b is the boundary value 0.7937 in player 1’s beginner’s strategy p0.

For each of the four marked intervals along the vertical axes (α, β, γ and

δ) we can compute the expected payoff for player 2 for a specific hand value

v. These expected payoffs are displayed in Table 5.4.

Player 2 should base his decisions on the numbers in this table. He has

to compare the expected result for each v in α with the expectations for the

same v in γ. If for a certain v the result in α is better than the result in γ,
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Figure 5.10: Expected payoffs for player 2 against beginner’s strategy p0 of
player 1.

Interval Expected payoff for player 2

α v − (1 − v) = 2v − 1

β b − (1 − b) = 2b − 1

γ v − (b − v) − 2(1 − b) = 2v − 2 + b

δ b + 2(v − b) − 2(1 − v) = 4v − 2 − b

Table 5.4: Expected payoffs for player 2 with a hand v.

player 2 should fold. Otherwise he should call with this hand value. A similar

comparison he should make between β and δ. We find that the optimal reply

against a player playing p0 is

Pr{call with hand v} = q̃0(v) =

{
0 if v ≤ 0.8453,

1 otherwise.

We can now compute the resulting expected gains of player 1. A similar

analysis leads to the payoff for player 2 when he acts as a beginner in the new

model. The optimal strategy for player 1 against player 2 playing q0 is

Pr{bet with hand u} = p̃0(u) =

{
0 if 0.6909 < u ≤ 0.8969,

1 otherwise.
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The resulting expected payoffs are

U1(p0, q̃0) ≈ −0.0053 and U2(p̃0, q0) ≈ −0.4875.

5.5.2 Fictive players

In this section we compute the expected payoffs of fictive players in minipoker.

Fictive players have more information than normal players. They know the

outcome of the chance move in the game and they can use this information in

their strategies. For minipoker, this means that the fictive player can base his

actions on his own hand, but also on the hand of his opponent. Given the fact

that he plays against a player who uses the minimax strategy, he can decide

what will be his best action for any hand combination (u, v).

Figure 5.11 shows the payoff to player 1 for each hand combination if player

1 plays as a fictive player against player 2’s equilibrium strategy q̃. The payoffs

in the figure are such that player 1 takes the optimal action for each pair of

hands (u, v). For example, in the area above the line v = 2
5

and above the line

u = v, player 1 knows that player 2 will always call. Since player 1 has the

lower card, he had better pass. This leads to the expected payoff of −1 that

the figure displays for this area. The expected gains of player 1 can now be

computed with help of Figure 5.11 and are equal to

U1(pf , q̃) =
17

50
.

Figure 5.12 shows the payoff to player 1 for each card combination if player 2

plays as a fictive player against player 1’s equilibrium strategy p̃. The expected

gains for player 2 as a fictive player can now be computed with help of this

figure and are equal to

U2(p̃, qf ) =
7

50
.

We also want to compute the expected gains of the fictive players under the

assumptions of our alternative RS. Under these assumptions, fictive players

are also informed about the outcome of any randomization caused by their

opponents. Therefore, when we determine optimal play for an opponent, we

have to consider pure strategies only; randomizing is useless against such a

fictive player.
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Figure 5.11: Expected payoff for all (u, v) to fictive player 1 if player 2 uses
the equilibrium strategy q̃.
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Figure 5.12: Expected payoff for all (u, v) to player 1, using his equilibrium
strategy p̃, if he faces a fictive player 2.

Let us first focus at player 1 as a fictive player. What is the best thing

player 2 can do if player 1 does not only know both u and v, but can also

anticipate player 2’s actions? If player 2 calls with a specific value v, he will

get 1 dollar if u < v (since player 1 passes) and lose 2 dollars if u > v (player

1 bets). So his expected payoff for calling will be −(−v + 2(1 − v)) = 3v − 2.
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For folding he will get −1 on any hand value v. Therefore, it is optimal for

player 2 to play

Pr{call with hand v} = q̃f (v) =

{
0 if v < 1

3
,

1 otherwise.

As a reply, it is optimal for player 1 to bet with hand u

Pr{bet with hand u} = p̂f (u) =

{
1 if u ≥ v or v < 1

3
,

0 if u < v and v ≥ 1
3
.

The expected gains for player 1 as a fictive player are

U1(p̂f , q̃f ) =
1

3
.

To see what the expected gains of player 2 as a fictive player are, consider

what player 1 gets for betting and what he gets for passing, both with a hand

of value u. Whereas betting will yield him a dollar if he has the more valuable

hand, he will have to pay 2 dollars if his opponent has the better hand. Passing

also gives him a win of one dollar if u > v, but with this action he will only

lose one dollar in case his opponent has the better hand. Passing, therefore,

is optimal for all possible values of u. After a pass of player 1 the action of

player 2 becomes irrelevant, so any strategy of fictive player 2 is a best reply.

Clearly, the expected payoff for player 2 as a fictive player is equal to

U2(p̃f , q̂f ) = 0.

5.5.3 Results of the skill analysis

In sections 5.5.1 and 5.5.2, we have computed the expected payoffs of beginners

and fictive players. Together with the equilibrium information presented in

section 5.4.3, these numbers form all relevant information to complete the skill

analysis. Table 5.5 gives an overview. The expected payoffs of the beginners

and the fictive players are lower in the new RS model. This is what we

expected, since their opponents now try to make life as hard as possible for

them. The results for optimal players are the same in both models. Therefore

the learning effect in the new RS model is larger and the random effect is

smaller than in the RSBG analysis. This combination of effects leads to a
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RSBG RS

Player 1 Player 2 Game Player 1 Player 2 Game

Beginner 0.0812 -0.1176 -0.0182 -0.0053 -0.4875 -0.2464

Optimal 0.1000 -0.1000 0.0000 0.1000 -0.1000 0.0000

Fictive 0.3400 0.1400 0.2400 0.3333 0.0000 0.1667

LE 0.0188 0.0176 0.0182 0.1053 0.3875 0.2464

RE 0.2400 0.2400 0.2400 0.2333 0.1000 0.1667

RS 0.0726 0.0682 0.0704 0.3110 0.7949 0.5965

Table 5.5: Results of the skill analysis.

higher skill level for the game. But of course, RS = 0.5965 and RSBG = 0.0704

indicate the same skill level, since the numbers concern the same game. A

comparison between the skill levels of two games on two different skill measures

does not make sense.

Following the relevant jurisprudence, Van der Genugten (1997) advised a

boundary between 0.05 and 0.15 to separate games of chance from games of

skill. The motivation for these bounds comes from the analysis of a number of

one-person games. In section 2.8 we have argued why we prefer RS to RSBG

as extension of the method for measuring skill to more-person games. When

we compare the skill level of minipoker, 0.5965, with the suggested bounds, it

is clear that this number leads to the conclusion that our poker game should

be classified as a game of skill.

Another observation we wish to make is that, for both measures, RSgame 6=
1
2
RSplayer 1 + 1

2
RSplayer 2, as we indicated in section 2.9. If we compare the skill

of both players within the new RS model, we see that the skill of player 2 is

relatively high. This can be explained by the beginner’s strategy of player 2.

This is a relatively dumb one, in the sense that player 1 can really profit from

his mistakes. So against a player who gives maximal opposition, the beginner

in the role of player 2 does relatively bad.

This is a distinguishing feature of the RS model, which is useful in an

environment where newcomers are easily recognized and exploited by more

experienced players.

We realize that the skill level depends on the strategies that we have as-

cribed to the beginners in minipoker. If this game would be played in practice,



120 CHAPTER 5. VON NEUMANN’S POKER MODEL

we could benefit from empirical information on payoffs of unexperienced play-

ers, using ideas from section 2.11. An alternative way to obtain the desired

information is to offer the game as an experiment and to collect the data in a

laboratory setting. The organization of such an experiment for games with a

more difficult, more realistic betting structure than minipoker, is an interesting

topic for further research.



Chapter 6

Poker

6.1 Introduction

In chapter 5, we have studied a continuous two-person poker model that was

introduced by Von Neumann and Morgenstern (1944). The betting structure

of that model is fairly simple. Both players only have to make (at most)

one decision. This decision is a choice between two possible actions. In fact,

this structure turned out to be sufficiently simple to find the equilibria of the

game analytically. When the betting structure becomes more complicated,

such a direct approach to find equilibria in the game with continuous card

distributions is not always possible. In this chapter we present a way to find an

equilibrium in such a game by smartly using information from an equilibrium

in a related discrete game.

The study of zero-sum continuous poker games for two players with uniform

hand distributions and alternate bidding goes back to Borel (1938) and Von

Neumann and Morgenstern (1944). Borel (1938) discussed a game called “La

Relance”, while Von Neumann and Morgenstern (1944) presented the equilib-

rium of a game with the betting structure that we have seen in chapter 5. We

display the betting tree of this game again in Figure 6.1. Player 1 chooses

between P(assing) and B(etting) and player 2 chooses between F(olding) and

C(alling), only after player 1 has decided to bet. For a more extensive descrip-

tion of the model, we refer to the explanation of the game in section 5.2. The

betting tree of La Relance differs from Von Neumann’s model at one place:

player 1 is not allowed to pass, but has the option to fold instead. Folding does

not lead to a showdown; player 1 gives up the ante if he selects this option.

121
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1

±a

P B
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±(a + b)
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Figure 6.1: Betting tree of minipoker.

So, one of the choices player 1 can make in La Relance leads to a payoff that

does not depend on the relative values of the players’ hands. This makes the

analysis of Borel’s model easier than the analysis of Von Neumann’s model.

Perhaps that is the reason that the literature on continuous poker games with

uniform hand distributions mainly consists of extensions of Borel’s model. The

simplicity of the analysis seems a more plausible explanation than the realism

of the model itself. After all, a game in which player 1 can only choose between

betting and folding is rather restrictive for the first player.

Both models, as well as all extensions explored in the literature discussed

below, are inspired by the game of drawpoker, for which the general setting is

described in section 2.10.2. Each of the models simplifies the game so that it

is simple enough to analyze, thereby keeping some of the essential aspects of

the original game. A detailed comparison of the poker models Von Neumann

and the model of Borel is made by Ferguson and Ferguson (2003). Their paper

also studies a game with a betting tree that forms a link between the models.

As already mentioned, most extensions are made to the model of Borel.

An early example is the article of Bellman and Blackwell (1949), in which

player 1 can choose from two different bet sizes. In the model of Bellman

(1952), player 2 is allowed to raise after a bet by player 1. Karlin and Restrepo

(1957) present further extensions of the betting tree. For an overview of these

and other extensions made in the fifties, we refer to Karlin (1959, chapter 9).

Instead of altering the betting tree, Sakaguchi (1984) discusses a different card

distribution as a modification of Borel’s model by studying a multi-card form

of La Relance: each player receives m cards, of which he can use the highest
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in the game.

An interesting extension of Von Neumann’s model is presented by Newman

(1959), who allows player 1 to bet any nonnegative bet size. Sakaguchi (1985b)

study the mathematical details of Newman’s model. Sakai (1986) analyzes a

restricted version of this model, in which player 1’s betting choices are bounded

from above by some positive real number. Cutler (1975) studies a completely

different extension, allowing an unlimited number of raises under pot-limit

rules.

All these extensions, of both models, have one aspect in common: the left

side of the betting tree is kept very simple. Let us have another look at Von

Neumann’s betting tree, that is displayed in Figure 6.1. If player 1 decides

to pass, then player 2 is not called to play at all. This part of the structure

is crucial for the simplicity of the analysis in chapter 5. If player 1 passes

with a given card u, his expected payoff does not depend on the strategy of

player 2 and can therefore serve as an easy reference point when determining

the optimal strategy of player 1. As soon as we add a decision for player 2 to

the betting tree at the point where player 1 has passed, the complexity of the

analysis increases. The extensions described above already required lengthy

mathematical derivations to find equilibria analytically. And, unfortunately,

even with fairly simple extensions of the left side of the betting tree, it is not

possible anymore to use this approach to find optimal strategies.

In this chapter, we present an idea to solve this problem: we show that it is

still possible to find equilibria of such continuous poker games, if we can make

a good guess of the form of the optimal strategies. It is not difficult to check

if an equilibrium of the guessed form exists, by using equalizing techniques on

each player’s payoff functions corresponding to different actions. The problem

is then to come up with a good guess. For this aim, we use information about

the equilibrium of a game with a discrete card distribution, with the same

betting tree. We expect two games with the same betting tree, but with a

different card distribution, to share certain features of optimal play.

Until recently, finding an equilibrium in a simple discrete poker model was a

difficult task. Even analyzing a discrete version of Von Neumann’s model with

more than ten cards in the deck was hardly possible. The standard approach

of computing equilibria, using the normal form, has the disadvantage that the
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normal form bimatrix grows exponentially with the size of the game tree. Since

computer memory is bounded, the only way to solve large discrete games was

to simplify the computations by smartly using the structure of strategies and

payoffs of a specific game. Fortunately, the computational possibilities have

increased by the introduction of the sequence form. This alternative way of

representing games uses a matrix that grows only linearly with the size of the

tree. This reduction in the size of the representation of a game makes the

sequence form an appropriate tool to use in equilibrium computations. Com-

puting an equilibrium of a discrete poker game with Von Neumann’s betting

tree in which, say, 100 different cards are used, is no problem anymore.

The strategy spaces in the continuous poker models are rather complex.

However, the optimal strategies in these games seem to have a surprisingly

simple structure. Randomization may not be needed at all. Restrepo (1964)

studies a general class of continuous two-person games in which the poker

games are contained. The strategies are functions of the outcome of a random

move. From the characterization of the optimal strategies he concludes that

in these games there must exist optimal strategies with an easy structure. We

show in section 6.3 that it is at least possible to approximate the expected

payoff guaranteed by any equilibrium strategy arbitrarily close using a pure

strategy. Our result is a thoroughly reformulated specific case of a more general

result proved in Bellman and Blackwell (1949).

The analysis of poker is interesting for a wider audience than just for poker

players. The game provides an excellent domain for investigating problems

of decision making under uncertainty. In particular, the role of information

in the game is interesting. Sakaguchi (1985a, 1993) discusses several aspects

of information in poker. Another field of research for which poker brings

challenges, is artificial intelligence. Billings et al. (2002) describe the questions

and problems that came across during their attempts to develop a computer

program for playing two-player Texas Hold’em. This direction of research has

also led to more theoretical results concerning optimal play. Billings et al.

(2003) address the computation of the first complete approximations of game-

theoretic optimal strategies for two-person Texas Hold’em. They combine

linear programming solutions to abstracted versions of parts of the game to

obtain an approximation of an optimal strategy for the complete game. In
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this way, a computer program is created that is able to defeat strong human

players in two-person Texas Hold’em and is competitive against world-class

opponents. Interesting to note is that the focus in this stream of research is

not only on theoretically optimal play, but also on exploiting weaknesses of

opponents.

Other, more general references on various probabilistic and strategic as-

pects of poker games are Zadeh (1977), Epstein (1977) and Scarne (1990).

The set up of the remainder of this chapter is as follows. In section 6.2, we

present the two different approaches for finding equilibria in discrete poker

games: the normal form and the sequence form. Section 6.3 discusses the

structure of equilibria in poker models with a continuous distribution of cards.

In section 6.4, we show how we can use equilibrium information from a dis-

crete poker model to find an equilibrium in the continuous poker model with

the same betting structure. A poker model, of which the betting tree is an

extension of the betting tree of minipoker, is used to illustrate the ideas. The

chapter is concluded by section 6.5, which presents an equilibrium analysis

of a continuous poker game with a raising possibility for both players. For

this game we also determine the relative skill level according to the framework

introduced in chapter 2.

6.2 Discrete poker models

This section discusses an alternative for the continuous hand distributions in

simplified models of poker games. The alternative is to decrease the number of

possible hands a player can receive to a relatively small number. Unfortunately,

even with a small number of hands, analyzing such a discrete poker model is

a difficult task. The traditional way of finding equilibria, using the normal

form, has the disadvantage that the normal form matrix grows exponentially

with the number of hands. Another way of solving such a game uses the

sequence form, an alternative representation of the game. The matrix of the

sequence form grows only linearly with the number of hands. This reduction

in size of the representation has advantages in the computations of equilibria.

We use a discrete version of Von Neumann’s poker model from chapter 5 to

demonstrate the computations, both for the normal form (section 6.2.2) and
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for the sequence form (section 6.2.3). In the next section, we give the details

of the game.

6.2.1 Minipoker with three cards

We use the two-person game minipoker, which was also subject of study in

section 4.5 and in chapter 5, to illustrate the equilibrium computations of

discrete poker games. Minipoker is played by two players, player 1 and player 2.

We focus here on the variant of the game with three cards, namely A(ce),

K(ing) and Q(ueen). As usual, A is higher than K, and Q is the lowest card

of the three. Before play starts, both players donate one unit to the stakes.

After (re)shuffling the deck of cards, each player is dealt one card. Each player

knows his own card, but not the card of his opponent. Thus, the card which

remains in the deck is not shown to either of the players. Player 1 starts the

play and has to decide between P (assing) and B(etting). If he decides to pass,

a showdown follows immediately. In the showdown both cards are compared

and the player with the highest card gets the stakes. If player 1 decides to

bet, he has to add one extra unit to the stakes. Subsequently, player 2 has to

decide between F (olding) and C(alling). If he decides to fold, player 1 gets

the stakes. If player 2 decides to call, he also has to add one extra unit to

the stakes and a showdown follows. Figure 6.2 displays the extensive form of

minipoker with three cards. The displayed payoffs are the payoffs for player 1.

A dotted line between two points indicates that a player cannot distinguish

these points. Since he does not know the card of the opponent, he cannot know

in which node he is when he makes his decision. In game theoretical terms,

the nodes that are connected by a dotted line form an information set.

In the following two sections we discuss the computation of equilibria of the

game, both using the normal form and the sequence form. The description

of the normal form computations will be rather brief, while we give a more

extensive explanation of the use of the sequence form.

6.2.2 Normal form computations

The traditional way of finding equilibria of a game like minipoker uses the

normal form. For this solution we have to construct the payoff matrix N ,

which lists player 1’s payoffs for all possible combinations of pure strategies of
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chance

1
6

PQ BQ

FK CK
−1

1 −2

(Q,K)

1
6

PQ BQ

FA CA
−1

1 −2

(Q,A)

1
6

PK BK

FQ CQ
1

1 2

(K,Q)

1
6

PK BK

FA CA
−1

1 −2

(K,A)

1
6

PA BA

FQ CQ
1

1 2

(A,Q)

1
6

PA BA

FK CK
1

1 2

(A,K)

Figure 6.2: The extensive form of two-person minipoker.

the players. Both players have three information sets, with two actions in each

set. This results in 23 = 8 pure strategies for both players. The payoff matrix

is as follows:

N

F
Q
F

K
F

A

F
Q
F

K
C

A

F
Q
C

K
F

A

F
Q
C

K
C

A

C
Q
F

K
F

A

C
Q
F

K
C

A

C
Q
C

K
F

A

C
Q
C

K
C

A

PQPKPA 0 0 0 0 0 0 0 0

PQPKBA 0 0 1
6

1
6

1
6

1
6

1
3

1
3

PQBKPA
1
3

−1
6

1
3

−1
6

1
2

0 1
2

0

PQBKBA
1
3

−1
6

1
2

0 2
3

1
6

5
6

1
3

BQPKPA
2
3

1
6

1
6

−1
3

2
3

1
6

1
6

−1
3

BQPKBA
2
3

1
6

1
3

−1
6

5
6

1
3

1
2

0

BQBKPA 1 0 1
2

−1
2

7
6

1
6

2
3

−1
3

BQBKBA 1 0 2
3

−1
3

4
3

1
3

1 0

As in the extensive form in Figure 6.2, the subscripts in the strategy names

indicate the card with which the player takes the given actions. For example,

with the strategy PQBKPA, player 1 bets with a king, but passes otherwise.

Using the payoff matrix N , we can find the equilibrium of the game as the
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minimum of the following linear programming problem:

min
y,v

v

subject to Ny −v ≤ 0,

y ≥ 0,

e⊤y = 1.

For any combination of ỹ and ṽ that minimizes the objective function of this

LP, the vector ỹ is an optimal (min-max) strategy ỹ for player 2, while the

shadow prices corresponding to the inequality constraints form an optimal

(max-min) strategy for player 1. The variable ṽ represents the amount that

player 2 has to pay to player 1, the value of the game. We find that optimal

strategies x̃ and ỹ (for player 1 and player 2 respectively) are given by

x̃ =




0
2
3

0

0

0
1
3

0

0




and ỹ =




0
2
3

0
1
3

0

0

0

0




.

Player 1 has to play 2
3
PQPKBA + 1

3
BQPKBA. So it is optimal for him to pass

with a king, to bet with an ace and to randomize between passing and betting

with a queen such that the probability of betting is equal to 1
3
. Player 2 should

play 2
3
FQFKCA + 1

3
FQCKCA. So he should fold with a queen, call with an ace

and with a king he should call with probability 1
3
. In fact, it is not difficult to

check that these are the unique optimal strategies in this game.

6.2.3 Sequence form computations

The sequence form is an alternative strategic description of a game. This

description can only be given for games with perfect recall: if two nodes are

in the same information set for a player, this player’s moves needed to arrive

at any of these two nodes must be the same. Rather than planning a move

for every information set, a player considers for each node in the game tree
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the choices he needs to make so that that node can be reached. These choices

together form a sequence for the player. In the sequence form, Si is the set of

sequences of player i defined by all nodes of the game tree. This set replaces his

set of pure strategies in the normal form. A single sequence can be represented

by a set: the set of actions a player has to take to reach the node. Then the

sequence needed for a player to reach the root node is the empty set. Each

player has at most as many sequences as the game tree has nodes, so the

number of sequences is linear in the size of the tree. Actually, the upper

bound of the number of sequences for a player is determined by the number

of information sets he faces. After all, the sequences leading to two different

nodes in the same information sets are the same in a game with perfect recall.

In the normal form, a player can pick a pure strategy. In the sequence form,

a player cannot just pick a single sequence. In Figure 6.2, for example, player 1

has to decide between PQ and BQ, but also between PK and BK and between

PA and BA. Choosing PQ, PK and PA, just like in the pure strategy PQPKPA

of the normal form game, assigns the realization probabilities 1, 1, 0, 1, 0, 1, 0 to

the sequences ∅, PQ, BQ, PK , BK , PA, BA respectively. These realization proba-

bilities can be ordered in a vector x, which we call a realization plan. A player

can use randomization in one or more of his choices between sequences, but a

realization plan for player 1 should satisfy the following equations:

x(∅) = 1,

x(∅) = x(PQ) + x(BQ), (6.1)

x(∅) = x(PK) + x(BK),

x(∅) = x(PA) + x(BA).

For player 2 we can also construct a (column) vector y, specifying his realization

plan. This realization plan should satisfy the equations belows.

y(∅) = 1,

y(∅) = y(FQ) + y(CQ), (6.2)

y(∅) = y(FK) + y(CK),

y(∅) = y(FA) + y(CA).

We use the notation of Von Stengel (1996) when constructing the optimization

problem of which the solution is an equilibrium of the game.
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The length of a player’s realization plan is equal to the sum over all in-

formation sets of this player of the number of actions in the information set

plus one additional element, corresponding to the empty sequence. This last

element is always equal to one. In minipoker, player 1 has three information

sets. In each of them he can choose between two actions, so the length of x

is 3 × 2 + 1 = 7. The entries of x are real numbers between zero and one.

Similarly, y ∈ R
7 and 0 ≤ yi ≤ 1 for all i ∈ {1, . . . , 7}.

The payoff matrix A contains the expected payoff for player 1 for each pair

of sequences that leads to a terminal node. Player 1’s payoff at the terminal

node is multiplied by the probabilities of chance moves on the path from the

root to this terminal node to obtain the expected payoff. For all combinations

of sequences that do not lead to a terminal node, the corresponding entry in

A is zero. For minipoker with three cards, the payoff matrix A is as follows.

The subscripts of the sequences indicate the information sets to which they

correspond.

A ∅ FQ CQ FK CK FA CA

∅ 0 0 0 0 0 0 0

PQ 0 0 0 −1
6

−1
6

−1
6

−1
6

BQ 0 0 0 1
6

−2
6

1
6

−2
6

PK 0 1
6

1
6

0 0 −1
6

−1
6

BK 0 1
6

2
6

0 0 1
6

−2
6

PA 0 1
6

1
6

1
6

1
6

0 0

BA 0 1
6

2
6

1
6

2
6

0 0

Player 1 chooses a realization plan, x, for the rows of the matrix. The real-

ization plan y, chosen by player 2, indicates the realization probabilities for

the columns of A. The vector x should satisfy the equalities given in equa-

tion (6.1). These equalities can be represented by the expression Ex = e,

with

E =




1 0 0 0 0 0 0

−1 1 1 0 0 0 0

−1 0 0 1 1 0 0

−1 0 0 0 0 1 1


 and e =




1

0

0

0


 .
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Similarly, following the equalities in equation (6.2), y should satisfy Fy = f ,

with F = E and f = e. Furthermore, for both players the realization plans

should be nonnegative.

We follow the derivation of Von Stengel (1996, p. 233–234) to construct

the linear program with which we can compute the equilibrium. Let us first

consider the problem of finding a best response of player 2 against a given

realization plan x of player 1. This is equivalent to solving the following linear

program, in which B = −A:

max
y

(x⊤B)y

subject to Fy = f,

y ≥ 0.

(6.3)

The number of variables in the dual of this LP is equal to the number of

information sets of player 2 plus one. These variables are unconstrained and

are represented by the vector q. The dual LP to (6.3) is

min
q

q⊤f

subject to q⊤F ≥ x⊤B.
(6.4)

Analogously, finding a best response x of player 1, given that player 2 plays

according to y, is equivalent to solving the following problem:

max
x

x⊤(Ay)

subject to x⊤E⊤ = e⊤,

x ≥ 0.

(6.5)

The dual problem to (6.5) uses the unconstrained vector p of which the length

is equal to the number of information sets of player 1 plus one and reads

min
p

e⊤p

subject to E⊤p ≥ Ay.
(6.6)

In order to find an equilbrium, both x and y have to be treated as variables.

In this way, the objective functions in (6.3) and (6.5) are not linear anymore.

However, a zero-sum game can still be solved by a linear program. Note that

the LP (6.5) and its dual (6.6) have the same optimal value e⊤p. If player 2

can vary y, he will try to minimize this value: an optimal choice of y will be
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a min-max strategy. In order to be a well-defined realization plan, y has to

satisfy y ≥ 0 and Fy = f . This defines the modified LP

min
y,p

e⊤p

subject to −Ay +E⊤p ≥ 0,

−Fy = −f,

y ≥ 0.

(6.7)

Again, consider the dual of this LP:

max
x,q

−q⊤f

subject to x⊤(−A) −q⊤F ≤ 0,

x⊤E⊤ = e⊤,

x ≥ 0.

(6.8)

In a zero-sum game, −A = B, so (6.8) is just (6.4) but with variables q and x,

subject to the constraints of (6.5). This LP can be interpreted as the problem

of finding a min-max strategy for player 1. Von Stengel (1996, Theorem 5.1)

proves that the optimal solutions to (6.7) and (6.8) indeed define an equilibrium

for the zero-sum game.

When we solve the linear program given in (6.7), we find that the game

value is equal to 1
18

and that optimal realization plans x̃ and ỹ are given by

x̃ =




1

2
3

1
3

1

0

0

1




and ỹ =




1

1

0

2
3

1
3

0

1




.

The realization plans are easily interpretable in terms of behavioural strategies.

For player 1 it is optimal to pass with a king and to bet with an ace. With

a queen, he has to bet with probability 1
3
. Player 2 should fold with a queen,

call with an ace and with a king he should call with probability 1
3
. Of course,

the conclusion is the same as in section 6.2.2, since the optimal strategies in

this game are unique.
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6.2.4 More cards in the deck

Borm and Van der Genugten (1996) computed the skill level of the discrete

version of minipoker. They carried out the computations for the game with

three cards, which we have studied in the preceding sections, but also for other

game variants, in which the number of cards varied from four to ten. The

reason that the maximum number of cards used was ten, is the complexity of

the equilibrium computations using the normal form.

Since constructing the matrices that we need for the sequence form compu-

tations does not require too much effort for variants of minipoker with a larger

number of cards, we can check what computational advantages this alterna-

tive approach brings us. It turns out to be not too difficult to find optimal

behavioural strategies for games with, say, up to 52 cards.1 Therefore, it would

now be possible to carry out the skill analysis for minipoker with a complete

deck of cards. Although that is not the aim of this section, we want to include

the results of the equilibrium computations for minipoker with 52 cards. Since

tables with equilibrium strategies for this game are rather large, we think one

can gain the most insight by plotting the strategies for both players. This is

what we have done in Figure 6.3 and Figure 6.4 for player 1 and 2, respectively.

The value of the game is approximately 0.0999.

Some more computations show that the value of the game approximates
1
10

as the number of cards increases. This is the value of the continuous vari-

ant of minipoker, studied in chapter 5, in which the dealing of poker hands

is approximated by drawing (independently) two random variables from the

uniform distribution on the interval [0, 1]. Also the strategies in the discrete

game with a full deck of cards approach the strategies in the continuous game.

When we compare the game with 52 cards with the original game with

three cards, we recognize in both games the same structure of the equilibrium

strategies. Player 1 has to bet with high cards, pass with intermediate cards

1To be more precise, using Matlab, the equilbrium computations for minipoker with
a full deck of cards take less than four seconds on a Pentium III computer with a clock
speed of 700 Mhz. With two decks of cards, it still takes less than fourteen seconds. Using
the normal form, equilibrium computations for minipoker with two full decks of cards are
impossible: the number of rows and columns of the game matrix N exceeds 2 ·1031, whereas
Matlab already uses about 800 megabytes of memory for a matrix with 104 rows and 104

columns. For the game with 11 cards, over 33 megabytes of memory is needed to store the
normal form matrix.
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Figure 6.3: An equilibrium strategy for player 1 for minipoker with 52 cards.

and bluff (bet) with low cards. Player 2 has to fold with low cards and call

with high cards. With intermediate cards, he must randomize between these

two actions, in such a way that he increases his calling probability as his card

gets higher.
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Figure 6.4: An equilibrium strategy for player 2 for minipoker with 52 cards.
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6.3 Equilibrium structure

For poker games with a more complex betting structure than minipoker the

equilibrium analysis of the continuous variant may be difficult. However, it

may not be necessary to consider mixed or behavioural strategies in the anal-

ysis. Bellman and Blackwell (1949) have shown that pure strategies play an

important role in a class of games which contains our poker games.

In the class of zero-sum continuous poker games that we discuss, the deal of

cards has the same structure as in minipoker. Player 1’s hand is the value u of a

continuous random variable U and player 2’s hand is the value v of a continuous

random variable V . U and V are independently, identically distributed on [0, 1]

according to the uniform distribution function. Player 1 does not know the

value of v and player 2 does not know the value of u. A pure strategy of

player 1 is a function s : [0, 1] → S, where S = {s1, ..., sM} is a finite set.

Similarly, a pure strategy for player 2 is a function t : [0, 1] → T , where

T = {t1, ..., tN} is a finite set. For elements of these sets S and T , one can

think of combinations of decisions for all information sets of a player. When

the number of information sets for a player is finite, and the number of actions

that can be chosen in each information set is finite, then the set S (or T ) is

finite as well. A mixed strategy in such a game is a difficult thing. However, we

only consider games with perfect recall. For these games, Aumann (1964) has

shown that we can restrict attention to behavioural strategies without ignoring

strategic possibilities for the players. A behavioural strategy for player 1 is a

function f : [0, 1] → ∆(S), where ∆(S) is the set of all probability distributions

on S. A behavioural strategy f can be seen as a combination of M functions

p1(u), . . . , pM(u), such that for every u ∈ [0, 1],

pk(u) ≥ 0 for 1 ≤ k ≤ M,
M∑

k=1

pk(u) = 1.

Here, pk(u) specifies the probability of choosing sk ∈ S with a given u. Simi-

larly, a behavioural strategy for player 2 is a function g : [0, 1] → ∆(T ) that

can be written as a combination of N functions q1(v), . . . , qN(v), such that for
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every v ∈ [0, 1],

qℓ(v) ≥ 0 for 1 ≤ l ≤ N,
N∑

ℓ=1

qℓ(v) = 1.

F and G denote the sets of all behavioural strategies of player 1 and player 2

respectively. Pure strategies can of course be written as behavioural strategies

with degenerate probability distributions.

For given u and v ∈ [0, 1], sk ∈ S and tℓ ∈ T , H(u, v, sk, tℓ) ∈ R is the

payoff for player 1. In a poker game, H is bounded and, for given sk and tℓ,

H is constant on the sets

{(u, v) ∈ [0, 1] × [0, 1] | u < v} and {(u, v) ∈ [0, 1] × [0, 1] | u > v}.

For a fixed behavioural strategy g ∈ G of player 2, a fixed choice of sk ∈ S

and a given card u ∈ [0, 1], we write the expected payoff for player 1 as

E1(u, sk, g) =
N∑

ℓ=1

∫ 1

0

H(u, v, sk, tℓ)qℓ(v)dv.

The expected payoff V (f ; g) for player 1 for a given pair of behavioural strate-

gies f ∈ F and g ∈ G, can be written as

V (f, g) =
M∑

k=1

∫ 1

0

E1(u, sk, g)pk(u)du.

The following theorem states that the payoff for player 1 that is guaranteed

by any behavioural strategy in a zero-sum continuous game where the payoffs

satisfy some conditions can be approximately guaranteed by a pure strategy

as well. It is a special case of a theorem of Bellman and Blackwell (1949).

Theorem 6.3.1 For a zero-sum continuous poker game as described above,

for every behavioural strategy f ∈ F for player 1 and every ε > 0, there is a

pure strategy s, such that for every behavioural strategy g ∈ G of player 2

V (f, g) ≤ V (s, g) + ε. (6.9)
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Proof. Since H is uniformly bounded, we can find K ∈ N, such that |H| ≤ K.

Let ε > 0, define n = ⌈2K
ε
⌉ and choose δ = 1

n
. Divide [0, 1] into disjoint

subintervals I1, . . . , In, such that the Lebesgue measure λ(Ij) = δ for all 1 ≤
j ≤ n. Recall that pk(u) specifies the probability of choosing sk ∈ S with

a given u. Divide Ij into M disjoint intervals Ij1, . . . , IjM , so that λ(Ijk) =∫
Ij

pk(u)du for all 1 ≤ j ≤ n and all 1 ≤ k ≤ M . This division is possible,

since
∑M

k=1 pk(u) = 1 for each u ∈ [0, 1]. Then we claim that the pure strategy

s̃(u) = sk if u ∈ Ijk (1 ≤ j ≤ n, 1 ≤ k ≤ M)

is the required approximation to f . Let g ∈ G. If we define

D = V (f, g) − V (s̃, g),

then we have to show that D ≤ ε. We define Djk as follows:

Djk =

∫

Ij

E1(u, sk, g)pk(u)du −
∫

Ijk

E1(u, sk, g)du.

Then we can write

D =
n∑

j=1

M∑

k=1

Djk,

and clearly

|D| ≤
n∑

j=1

M∑

k=1

|Djk|. (6.10)

As a result of the specific properties of the function H, we know that for any u

and u′ in [0, 1] the difference ∆ = E1(u
′, sk, g)−E1(u, sk, g) is bounded. To see

this, let u, u′ ∈ [0, 1] with u < u′. The expected payoff E1(u, sk, g) for player 1

can be expressed as

E1(u, sk, g) =
N∑

ℓ=1

∫ 1

0

H(u, v, sk, tℓ)qℓ(v)dv

=
N∑

ℓ=1

(∫ u

0

H(u, v, sk, tℓ)qℓ(v)dv +

∫ u′

u

H(u, v, sk, tℓ)qℓ(v)dv

)

+
N∑

ℓ=1

∫ 1

u′

H(u, v, sk, tℓ)qℓ(v)dv.



6.3. Equilibrium structure 139

Since H is constant on the set

{(u, v) ∈ [0, 1] × [0, 1] | u > v},

we know that

N∑

ℓ=1

∫ u

0

H(u, v, sk, tℓ)qℓ(v)dv =
N∑

ℓ=1

∫ u

0

H(u′, v, sk, tℓ)qℓ(v)dv.

Similarly,

N∑

ℓ=1

∫ 1

u′

H(u, v, sk, tℓ)qℓ(v)dv =
N∑

ℓ=1

∫ 1

u′

H(u′, v, sk, tℓ)qℓ(v)dv

and, as a result

∆ =
N∑

ℓ=1

∫ u′

u

(H(u′, v, sk, tℓ) − H(u, v, sk, tℓ)) qℓ(v)dv.

Since |H(u, v, sk, tℓ)| ≤ K, we know that ∆ ≤ 2K(u′ − u). In particular, if

u′ − u ≤ δ, then ∆ ≤ 2Kδ. Therefore, if we define Ujk and Ljk to be the

maximum and minimum of E1(u, sk, g) over the interval Ij, then we know the

following inequality holds for all j and all k:

|Djk| ≤
∣∣∣∣∣Ujk

∫

Ij

pk(u)du − Ljk

∫

Ijk

1du

∣∣∣∣∣ = (Ujk −Ljk)λ(Ijk) ≤ 2Kδλ(Ijk).

(6.11)

Combining equations (6.10) and (6.11) gives us the required result:

|D| ≤ 2Kδ

n∑

j=1

M∑

k=1

λ(Ijk) = 2Kδ = 2K
1

⌈2K
ε
⌉ ≤ 2K

2K
ε

= ε.

�

Crucial for the proof is that the opponent’s strategy cannot depend on the

value of player 1’s card, u.

Repeating the steps in the proof for player 2, which can be done in a

straightforward way, one can show that for any behavioural strategy of player 2
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there exists a pure strategy with which he can approximately attain the same

expected payoff against any behavioural strategy of player 1. So, the theorem

shows that players in a poker game can approximate their equilibrium payoff

up to an arbitrarily small amount using pure strategies.

The intuition behind this result is as follows. A player may want to deceive

or confuse his opponent by using randomization in his decisions. However,

since the number of cards he can be dealt is infinite, he can just as well con-

fuse the other player by smartly distributing his actions over the cards. For

example, instead of betting and passing with equal probability with “low”

cards, he can bet with half of the low cards and pass with the other half.

Although we have not been able to prove it, our conjecture is that the

special structure of the payoffs in continuous poker games ensures that mixed

strategies are not needed for equilibrium play. We keep this conjecture in

mind, when we search for equilibrium strategies for a particular poker game

in section 6.4.

6.4 Cassidy’s poker model

In this section, we study a poker game with a more symmetric betting tree than

minipoker. Cassidy (1998) finds optimal strategies for the continuous variant

of this game in an analytical way. The current section uses this specific game

to illustrate our approach of finding optimal strategies in a continuous model

using information from a related discrete model. In section 6.4.1 we describe

the betting structure of the game, while in section 6.4.2 we present optimal

strategies of the discrete variant of this game with 52 cards. Sections 6.4.3 and

6.4.4 are devoted to the continuous version of the game.

6.4.1 Game description

In this section we describe the game that is studied by Cassidy (1998). The

betting structure of this game is related to the minipoker game that we have

discussed in chapter 5 and in section 6.2. The structure of the betting in this

game is displayed in Figure 6.5. Before play starts, both players add an ante

a to the stakes. Then the players receive their cards. Player 1 opens the game

at decision node 1A, facing the choice between betting and passing. If he bets,
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1A

Pass

2A

±a

Pass Bet

1B

a

Fold

±(a + b)

Call

Bet

2B

a

Fold

±(a + b)

Call

Figure 6.5: The decision tree of the poker game of Cassidy (1998).

he adds b to the stakes; moreover, player 2 then has to decide at decision node

2B if he folds or calls. Folding means giving up the ante and calling leads

to a showdown, after player 2 has put b in the stakes too. In the showdown,

the player with the highest card wins the stakes. So far, it is exactly like the

betting structure in minipoker. However, the two structures are different from

the moment player 1 passes. In minipoker, a showdown occurs in this case. In

Cassidy’s model, player 2 gets the opportunity at node 2A to bet (the same

amount b that player 1 could have bet) or to pass. If he passes, the game ends

in a showdown after all. If he bets, player 1 is called into play once more: at

node 1B, he has to choose between folding and calling. Since the betting in

this tree happens after the dealing of the cards, different decision nodes in this

betting tree correspond to different information sets.

Intuition tells us that the addition of branches to the decision tree of

minipoker seems to open new perspectives for player 2. Cassidy’s game is

probably less favourable for player 1 than minipoker. In section 6.4.3 we will

see whether this intuition is correct: there we search for optimal strategies for

the continuous game with ante a = 1 and bet size b = 2, in which the hands

of the players are uniformly and independently distributed on [0, 1].
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6.4.2 Optimal strategies in a discrete model

We have used the sequence form technique described in section 6.2.3 to find

optimal strategies for a discrete version of the poker game of Cassidy (1998).

The results are presented in this section.

In the discrete game, both players receive a card from a deck of 52 cards,

numbered 1 to 52 and increasing in value. The cards are drawn without re-

placement. Inspiration for choosing the number of cards equal to 52 clearly

comes from the size of a regular deck of cards. However, we want to remark

here that we are not speaking about five-card poker hands. What is important,

is that this number is sufficiently large to recognize the general structure of

the optimal strategies. The ante is fixed at a = 1 and the bet size is chosen

equal to b = 2. We present the optimal strategies we found for both players

only in figures, without giving the obtained numerical details. An impression

of the structure of the optimal strategies in the discrete game is enough. After

all, it is this structure that is important in our search for optimal strategies in

the continuous game.

Figures 6.6 and 6.7 describe optimal behaviour for player 1 in his infor-

mation sets 1A and 1B (of Figure 6.5) respectively. Figures 6.8 and 6.9 show

optimal behaviour for player 2 in the information sets 2A and 2B. We stress

that these optimal strategies are not unique; they are just the optimal strate-

gies we found with an algorithm that uses the sequence form. We discuss the

structure of these optimal strategies by studying the results for each of the four

information sets separately. In Figures 6.6 to 6.9, we distinguish two types of

regions: regions where a pure action choice is played and regions where the

optimal action involves randomization. In Figure 6.6, we recognize one region

of the first type: player 1 has to pass with cards 10 to 35. With other cards,

he has to randomize between passing and betting with certain probabilities,

but there is no clear system in these betting probabilities. In information set

1B, according to Figure 6.7 player 1 has to fold with cards 1 to 9, he has to

call with cards 36 to 52 and he has to randomize with all cards in between.

The probability of calling with these intermediate cards increases if the card

gets higher.

The given optimal behaviour in information set 2A, which is displayed in

Figure 6.8, appears very definite. For player 2 it is clear when he has to pass
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Figure 6.6: Optimal play for player 1 in his first information set (1A) in the
discrete game with 52 cards.
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Figure 6.7: Optimal play for player 1 in his second information set (1B) in the
discrete game with 52 cards.
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Figure 6.8: Optimal play for player 2 in his first information set (2A) in the
discrete game with 52 cards.

and when he has to bet: with low cards (1 to 8) and with high cards (36 to 52)

he has to bet, with intermediate cards (10 to 35) he has to pass and with one

card (9) he has to randomize with almost equal probabilities between passing

and betting. The optimal behaviour for player 2 in information set 2B is very

similar to the optimal behaviour for player 1 in information set 1B: he has

to fold with cards 1 to 9, he has to call with cards 36 to 52 and he has to

randomize with all cards in between. The probability of calling with these

intermediate cards increases if the card gets higher.

We have seen that the optimal strategies in Figures 6.6-6.9 require ran-

domization. Since we want to find pure strategies that are optimal in the

continuous game, we have to deal with this randomization in a smart way.

Consider, for example, the information set 1A of player 1 (see Figure 6.6).

With cards 10 to 35, he plays his first action, passing, with probability 1.

With the other cards he randomizes between passes and betting. For all these

card values, player 1 is indifferent between the two actions. For cards 1 to 9,

player 1 bets with a probability of approximately 0.47 on average. The idea is

to replace the decisions for this part of the deck with a simpler combination of
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Figure 6.9: Optimal play for player 2 in his second information set (2B) in the
discrete game with 52 cards.

decisions without losing optimality of the strategy, as long as we do not change

the average betting probability for this set of cards. A simple solution would

be to bet with the lowest 47% of the lowest nine cards and to pass with the

other 53%. In the discrete case such a solution requires randomization for at

most one card within the interval under consideration. In the continuous case,

we just interpret this interval as the lowest 9
52

of the deck. So, in the case of

draws from U([0, 1]), it is the interval [0, 9
52

]. If player 1 bets with the lowest

47% of the hands in this interval, he bets roughly with all hands in [0, 0.08]

and he passes with all hands in (0.08, 9
52

]. For cards 36 to 52, the average

betting probability is approximately 0.50, implying that player 1 should pass

with approximately half of the cards in the interval [35
52

, 1]. If we select the

lowest half of the interval for passing, this implies that he passes with cards in

[35
52

, 0.84] and he bets with all higher cards. Similar considerations for cards 10

to 35 in Figure 6.7, card 9 in Figure 6.8 and cards 10 to 35 in Figure 6.9 lead to

the suggestions for good pure interval strategies in the continuous game that

are shown in Figure 6.10.

Consider again the optimal behaviour for information set 1B of player 1,
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1A

0 0.08 0.84 1

B P B

1B

0 0.52 1

F C

2A

0 0.16 0.67 1

B P B

2B

0 0.53 1

F C

Figure 6.10: Suggestion for good pure interval strategies in the continuous
game, following from the discrete game with 52 cards.

that is displayed in Figure 6.7. Player 1 has to call with cards 10 to 35

approximately 34% of the time. When we construct a pure interval equivalent,

based on this information, and we have to choose between calling with the

highest 34% in this interval or calling with the lowest 34%, we can use the

shape of the optimal behaviour in Figure 6.7 as a guideline. The figure clearly

suggests that the probability of calling should be higher with higher cards. For

information set 2B of player 2, our decision is also motivated by the fact that

the probability of calling increases with the value of the cards. For information

set 1A, Figure 6.6 does not point this clearly in any direction: neither for cards

1 to 9 nor for 36 to 52 the probabilities are increasing or decreasing.

We choose the distribution of the actions over the cards in such a way that

the number of “switches” in the resulting pure interval strategy is minimized.

In Figure 6.10 we see that the number of switches between actions in infor-

mation set 1A is only two: from action B to P at 0.08 and back to B again

at 0.84. We have chosen the cards in the interval [0, 9
52

) with which player 1

passes in such a way that the interval at which he passes is connected to the

interval [ 9
52

, 35
52

], at which he has to pass anyway. A similar decision for the

interval with the highest cards leads to the suggestion for the good strategy in

the continuous game that is shown in Figure 6.10.

In the next section, we use the “sophisticated” guesses for optimal strategies

from Figure 6.10 as a starting point for analyzing the continuous version of

Cassidy’s poker model.
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6.4.3 A continuous card distribution

In the previous section, we have presented optimal strategies for Cassidy’s

poker model with ante a = 1 and bet size b = 2 for the game in which the

players each get a card from a deck of 52 cards. One could expect the opti-

mal strategies in the continuous game, in which the cards of both players are

drawn independently from the uniform distribution on [0, 1], to have roughly

the same structure. To be more precise, one may expect that there exists an

equilibrium in the continuous game in which the behaviour of the players is

close to what Figure 6.10 suggests. So we return to the framework of sec-

tion 6.3, but we still study the betting structure from the tree in Figure 6.5.

Player 1’s hand is the outcome u of a continuous random variable U and player

2’s hand is the outcome v of a continuous random variable V . U and V are

independently, identically distributed on [0, 1] according to the uniform distri-

bution function. A pure strategy of player 1 is a function s : [0, 1] → S, where

S = {PF, PC,B}. A pure strategy for player 2 is a function t : [0, 1] → T ,

where T = {PF, PC,BF,BC}. The interpretation of the elements of S and T

is straightforward: PF means passing at the first information set and folding

at the second, BC means betting at the first information set and calling at the

second. For player 1, the third element of S just means betting at information

set 1A. If he bets there, he will never have to make a decision at information

set 1B. Action combinations BF and BC are therefore equivalent, so instead

of including these two combinations in S, we can include only B as well. The

sets of behavioural strategies, F and G, are defined as in section 6.3.

Aggregating the information from Figure 6.10 for each player, we find the

suggestions for optimal strategies in the continuous version of Cassidy’s poker

model that are displayed in Figure 6.11.

1
0 0.08 0.52 0.84 1

B BPF PC

2
0 0.16 0.53 0.67 1

BF PF PC BC

Figure 6.11: Suggestion for good pure interval strategies in the continuous
game, following from the discrete game with 52 cards.
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By computing the best response of player 2, we can calculate that player 1

guarantees himself an expected payoff of approximately −0.08, if he uses his

strategy from Figure 6.11. If player 2 uses the strategy that this figure describes

for him, he guarantees that the expected payoff for player 1 will not be higher

than −0.06. Now we are going to find out if we can find slightly modified

versions of the strategies in Figure 6.11, for which these guaranteed expected

payoffs are equal. That is, we are looking for strategies that together form

an equilibrium. The only modifications that we allow when we check this are

slight movements of the bounds in the pure interval strategies, such that the

joint order of the bounds for player 1 and player 2 is preserved. That is, we

want to know if there exist optimal strategies of the form that is displayed

in Figure 6.12, such that u1 ≤ v1 ≤ u2 ≤ v2 ≤ v3 ≤ u3. In the continuous

1
0 u1 u2 u3 1

B BPF PC

2
0 v1 v2 v3 1

BF PF PC BC

Figure 6.12: Suggestion for the structure of good pure interval strategies in
the continuous game, following from the discrete game with 52 cards.

version of Cassidy’s poker model, player 1’s payoffs for all combinations of

actions sk ∈ S and tℓ ∈ T only depend on the relative value of u and v, and

can therefore be summarized in two matrices, which we call HH and HL. Here,

HH(sk, tℓ) is the payoff to player 1 if u > v, while HL(sk, tℓ) is the payoff to

player 1 if u < v. With a = 1 and b = 2, we obtain the following matrices.

HH PF PC BF BC

PF 1 1 −1 −1

PC 1 1 3 3

B 1 3 1 3

HL PF PC BF BC

PF −1 −1 −1 −1

PC −1 −1 −3 −3

B 1 −3 1 −3

From this payoff structure, one can derive that the expected payoff function

E1(u, sk, g) for player 1, defined as in section 6.3, for given sk ∈ S and a given

behavioural strategy g ∈ G, is continuous and non-decreasing in u.

We now derive the conditions that must be satisfied, if strategies with the

structure of Figure 6.12 should form an equilibrium. If we call the equilibrium
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strategies of player 1 and player 2 s̃ and t̃, respectively, then we know that s̃

can only be optimal if

E1(u,B, t̃) ≥ E1(u, sk, t̃) for all sk ∈ S and for all u ∈ (0, u1).

A similar condition must hold for the intervals (u1, u2), (u2, u3) and (u3, 1).

Next, consider the card u1. The conditions for the intervals (0, u1) and (u1, u2),

together with continuity of the functions E1, imply that

E1(u1, B, t̃) = E1(u1, PF, t̃). (6.12)

We can explicitly determine these expected payoffs for the given structure of

the players’ strategies, since we know the joint order of the strategy bounds

and t̃ can be written as

t̃(v) =





BF if v ∈ [0, v1],

PF if v ∈ (v1, v2],

PC if v ∈ (v2, v3],

BC if v ∈ (v3, 1].

We compute the expected payoff for player 1, if he bets with card u1:

E1(u1, B, t̃) =

∫ u1

0

HH(B,BF )dv +

∫ v1

u1

HL(B,PF )dv

+

∫ v2

v1

HL(B,PF )dv +

∫ v3

v2

HL(B,PC)dv +

∫ 1

v3

HL(B,BC)dv

= u1 + (v1 − u1) + (v2 − v1) − 3(v3 − v2) − 3(1 − v3)

= 4v2 − 3.

Analogously, we find the expected payoff of passing and subsequently folding

with u1:

E1(u1, PF, t̃) = −1.

Using these expressions, we find that equation (6.12) gives us an equilibrium

condition for the bound v2 of player 2:

E1(u1, B, t̃) = E1(u1, PF, t̃) ⇒ v2 =
1

2
.

For the bounds u2 and u3, we can formulate similar indifference equations.

E1(u2, PF, t̃) = E1(u2, PC, t̃) ⇒ v1 = 1
2
(1 − v3),

E1(u3, PC, t̃) = E1(u3, B, t̃) ⇒ 1 − v2 = v1 + (1 − v3).
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Let E2(v, f, tℓ) denote the expected payoff of player 2 when he plays pure action

tℓ with a given card v against strategy f of player 1. Then the indifference

equations for the three bounds of player 2 are as follows.

E2(v1, s̃, BF ) = E2(v1, s̃, PF ) ⇒ (u3 − u2) = 1
2
(u3 − v1),

E2(v2, s̃, PF ) = E2(v2, s̃, PC) ⇒ u1 = 1
2
(1 − u3),

E2(v3, s̃, PC) = E2(v3, s̃, BC) ⇒ (u3 − u2) = 2(u3 − v3).

The indifference conditions for the bounds in the strategies form a system of six

linear equations with six variables, which turns out to have a unique solution,

resulting in the strategies displayed in Figure 6.13:

u1 =
1

12
, u2 =

1

2
, u3 =

5

6
, v1 =

1

6
, v2 =

1

2
and v3 =

2

3
.

It is not difficult to check that these strategies are mutually best responses, so

these strategies are optimal in the continuous variant of Cassidy’s poker model

with ante a = 1 and bet size b = 2. Observe that the bounds satisfy the joint

order that we required: u1 ≤ v1 ≤ u2 ≤ v2 ≤ v3 ≤ u3. The only inequality

that is satisfied as an equality is u2 ≤ v2. Apparently, u2 = v2 = 1
2

in the

equilibrium: the optimal bound between folding and calling is the same for

both players. The value of the game is the expected payoff for player 1, when

both players use the given equilibrium strategies, and is equal to − 1
12

.

1
0 1

12
1
2

5
6

1

B BPF PC

2
0 1

6
1
2

2
3

1

BF PF PC BC

Figure 6.13: Optimal strategies in the continuous game with a = 1 and b = 2.

Now we are interested in the interpretation of these bounds in terms of

real poker hands. Using the same approach as for Von Neumann’s model in

section 5.4, we give the optimal strategies for both players for the case that

Cassidy’s game is played with two separate decks of cards, from which real

five-card poker hands are drawn. For the details about poker hands as well as

the notation used, we refer to section 5.4. For player 1, having hand u, it is
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optimal to





bet if u ≤ HC(J, 10, 8, 3, 2),

pass and fold if HC(J, 10, 8, 4, 2) ≤ u ≤ HC(A,K,Q, J, 6),

pass and call if HC(A,K,Q, J, 7) ≤ u ≤ 1P (Q,Q, 9, 7, 4),

bet if u ≥ 1P (Q,Q, 9, 7, 5).

For player 2, having hand v, it is optimal to





bet and fold if v ≤ HC(Q, J, 9, 8, 3),

pass and fold if HC(Q, J, 9, 8, 4) ≤ v ≤ HC(A,K,Q, J, 6),

pass and call if HC(A,K,Q, J, 7) ≤ v ≤ 1P (7, 7, 8, 6, 5),

bet and call if v ≥ 1P (7, 7, 9, 3, 2).

Let us have a closer look at the form of the optimal strategies. Player 1 logically

bets with the highest cards and he passes with intermediate cards. It is not

surprising that he has to call with the highest of the intermediate cards and

fold with the lowest of these cards. Just as we have seen in chapter 5 for the

equilibrium of minipoker, we see again that player 1 has to bet with really low

hands. He bluffs, thereby hoping to deceive his opponent and make him fold.

Player 2’s strategy has the same form. However, for the hands with which

he bets, he also has to decide whether he folds or calls, because player 1 can

already decide to bet. For the high hands with which he bets, he clearly must

call. But for the low hands with which he bets, his bluffing region, it is wiser

to fold. There is no way he can deceive his opponent by calling, and in a

showdown the probability of winning with a low hand is very small.

In the next section, we discuss the equilibrium of Cassidy’s model for gen-

eral values of the ante and the bet size.

6.4.4 General ante and bet size

The calculations in section 6.4.3 were based on the results of the equilibrium re-

sults for the discrete game with ante a = 1 and bet size b = 2 from section 6.4.2.

For other ratios of a and b, the structure of the equilibrium strategies in the

discrete game is similar. In this section, we repeat the computations of the

previous section for general ante and bet size and we use Figure 6.12 (and the

corresponding joint order of the strategy bounds) as our starting point again.
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For general ante a and bet size b, the payoff matrices HH and HL are as follows.

HH PF PC BF BC

PF a a −a −a

PC a a (a + b) (a + b)

B a (a + b) a (a + b)

HL PF PC BF BC

PF −a −a −a −a

PC −a −a −(a + b) −(a + b)

B a −(a + b) a −(a + b)

We compute the expected payoff for player 1, if he bets with card u1 and

player 2 uses strategy t̃:

E1(u1, B, t̃) =

∫ u1

0

HH(B,BF )dv +

∫ v1

u1

HL(B,PF )dv

+

∫ v2

v1

HL(B,PF )dv +

∫ v3

v2

HL(B,PC)dv +

∫ 1

v3

HL(B,BC)dv

= au1 + a(v1 − u1) + a(v2 − v1) − (a + b)(v3 − v2)

−(a + b)(1 − v3)

= (2a + b)v2 − (a + b).

Passing and folding with the same card against strategy t̃ of the opponent

yields

E1(u1, PF, t̃) = −a.

The indifference equations corresponding to all six bounds now give us the

following equilibrium conditions.

E1(u1, B, t̃) = E1(u1, PF, t̃) ⇒ v2 = b
2a+b

,

E1(u2, PF, t̃) = E1(u2, PC, t̃) ⇒ v1 = b
2a+b

(1 − v3),

E1(u3, PC, t̃) = E1(u3, B, t̃) ⇒ 1 − v2 = v1 + (1 − v3),

E2(v1, s̃, BF ) = E2(v1, s̃, PF ) ⇒ (u3 − u2) = 2a
2a+b

(u3 − v1),

E2(v2, s̃, PF ) = E2(v2, s̃, PC) ⇒ u1 = b
2a+b

(1 − u3),

E2(v3, s̃, PC) = E2(v3, s̃, BC) ⇒ (u3 − u2) = 2(u3 − v3).
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Again the system of six linear equations with six variables has a unique solu-

tion:

u1 = 2 a2b
(2 a+b)2(a+b)

, v1 = ab
(a+b)(2 a+b)

,

u2 = b
2 a+b

, v2 = b
2 a+b

,

u3 = (3 a+b)b
(a+b)(2 a+b)

, v3 = b
a+b

.

The value of the game with ante a and bet size b is

va,b =
−a2b2

(2 a + b)2 (a + b)
. (6.13)

We remark that the linear system, formed by the indifference equations, does

not need to have a unique solution. There are two other possibilities: either

the system is inconsistent or it has infinitely many solutions. In the first case,

the guess for the optimal strategy forms is not a good guess. In the second

case, there is some freedom in choosing the values of the strategy bounds. The

solution set then describes the conditions the boundary values must satisfy,

apart from the joint order that is used as a starting point in computing the

expected payoffs.

The strategies of the players depend only on the ratio b
a

of the bet size

and the ante and not on the absolute values of b and a. In Figure 6.14 and

Figure 6.15 we have plotted the value of the strategy bounds (see Figure 6.12)

as a function of the ratio b
a
, for player 1 and player 2 respectively. Above

b
a

= 2, one recognizes the equilibrium strategies for the game with a = 1 and

b = 2, that we have found in section 6.4.3.

The value is negative for each combination of (positive) values for a and b:

Cassidy’s game is favourable to player 2. The value can be plot as a function

of the ratio b
a

too. We have done this in Figure 6.16. It is interesting to

investigate at which ratio of ante and bet size the advantage for player 2 is

maximized. For which value of b
a

is the game the most favourable to player 2?

By fixing a, differentiating the expression for va,b from equation (6.13) with

respect to b and setting the result equal to zero, we find that the function that

is shown in Figure 6.16 is minimized at b
a

= 1 +
√

5. The value of the game

with that ratio of b and a, is 11−5
√

5
2

≈ −0.09.

When poker players speak about relative sizes of bet size and ante, they

often refer to the total stakes at a certain stage of the game. For example,



154 CHAPTER 6. POKER

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bet size/ante

st
ra

te
gy

 b
ou

nd
s

u
1
 

u
2
 

u
3
 

Pass/Fold 

Pass/Call

Bet

Bet

Figure 6.14: Boundary values for the optimal strategies of player 1 as a function
of the ratio b

a
of the bet size and the ante.
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of the ratio b
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of the bet size and the ante.
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Figure 6.16: The value of the continuous version of Cassidy’s poker model as
a function of the ratio b

a
of the bet size and the ante.

when referring to pot-limit poker, a poker player means a game in which the

bet size cannot exceed the total size of the pot. In Cassidy’s poker game, at

the moment a bet can be made, both players have added the ante a to the

pot. The total stakes are equal to 2a. The relative size of the bet, should

therefore be expressed as b
2a

. But this means that the optimal ratio, from

the viewpoint of player 2, is equal to b
2a

= 1
2

+ 1
2

√
5, in which we recognize

a well-known mathematical value: this is the golden ratio. When playing the

continuous version of Cassidy’s poker game, player 2 understands why this

number is called the golden ratio!

6.5 A poker model allowing raising

The approach of finding equilibria that we applied to Cassidy’s poker model in

section 6.4 can also be applied to poker models with more complicated decision

trees. In this section, we present the results for a poker model that is an

extension of the model of section 6.4. The extension is formed by the possibility
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of raising after a bet of the opponent. Both players get this opportunity.

Raising means adding the bet size b and an additional raising amount c to the

stakes. After a raise, the opponent has the choice between folding and calling.

As usual, folding means giving up the stakes. Calling means paying the same

amount c, after which the winner is determined by means of a showdown.

Figure 6.17 displays the decision tree as well as the payoffs of the game.

1A

P

2A

±a

P B

1B

−a

F

±(a + b)

C R

2C

(a + b)

F

±(a + b + c)

C

B

2B

a

F

±(a + b)

C R

1C

−(a + b)

F

±(a + b + c)

C

Figure 6.17: Betting tree of the poker game with the possibility of raising for
both players.

Section 6.5.1 contains equilibrium results for the continuous version of this

poker model with general payoffs. Section 6.5.2 interprets the results of a spe-

cial case, pot-limit poker, in terms of real poker hands. We use the equilibrium

results of pot-limit poker in section 6.5.3, where we present the analysis of skill

for this game.

6.5.1 Equilibrium results

The continuous poker game with the betting tree of Figure 6.17, in which the

hands are uniformly and independently distributed on [0, 1], is too complicated
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to be analyzed by the standard tools for finding an equilibrium. However, using

the approach that was demonstrated in section 6.4, we have found optimal

strategies for the players with the structure that is shown in equations (6.14)

and (6.15). Stars indicate that an information set will not be reached, so that

the player’s decision at that information set is irrelevant. For player 1 it is

optimal to play





PR* if u ∈ [0, u1],

B*F if u ∈ (u1, u2],

PF* if u ∈ (u2, u3],

PC* if u ∈ (u3, u4],

B*F if u ∈ (u4, u5],

B*C if u ∈ (u5, u6],

PR* if u ∈ (u6, 1].

(6.14)

The three letters (or stars) indicating which actions should be taken within

the specified intervals, refer to the three information sets of player 1. The

first, second, and third symbol correspond to information sets 1A, 1B and 1C

respectively. Using the same logic of notation for player 2, we found that it is

optimal for him to play





BRF if v ∈ [0, v1],

BFF if v ∈ (v1, v2],

PF* if v ∈ (v2, v3],

PC* if v ∈ (v3, v4],

BCF if v ∈ (v4, v5],

BCC if v ∈ (v5, v6],

BRC if v ∈ (v6, 1].

(6.15)

We have found the exact expressions for all twelve strategy bounds for general

values of a, b and c using the same approach as we used for Cassidy’s poker

game in section 6.4.4. However, we do not include them here, since some of

these expressions are so long that they are hardly informative. The joint order

of the bounds is as follows:

u1 ≤ v1 ≤ u2 ≤ v2 ≤ u3 = v3 ≤ v4 ≤ u4,

u4 ≤ u5, v4 ≤ v5 and v5 ≤ u5 ≤ v6 ≤ u6.
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The order of u4 and v5 depends on the relative size of the ratios b
a

and c
a
.

For ante a = 1 and bet size b = 2, the strategy bounds for both players are

displayed in Figure 6.18 as a function of c. The general expression for the value
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Figure 6.18: The bounds of the optimal strategies as function of the raising
amount c, given ante a = 1 and bet size b = 2.

does not depend on the order of u4 and v5 and is given in equation (6.16).

va,b,c =
(−4 a3c−4 a2b2−8 ca2b−8 b3a−9 acb2−4 b4−5 cb3−c2b2)(2 a+2 b+c)2a2b2

(2 a+b)2(8 ab2+5 cb2+4 b3+2 ca2+c2b+7 cba+4 a2b)2(b+a)
(6.16)

When we fix the size of the ante at a = 1, we can plot the value as a function of b

and c. This is done in Figure 6.19. We see that the value of this game is always

negative. Just as was the case with Cassidy’s model, this game is favourable

for player 2. We also learn from Figure 6.19 that the value does not depend

too much on the value of the raise size c. The intuition for this result lies in the

fact that the players do not raise often when using the equilibrium strategies.
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Figure 6.19: The value of the game if a = 1.

In fact, the higher c, the less players raise, as we can see in Figure 6.18. As

a consequence, the payoffs corresponding to this action do not influence the

expected payoff very much.

6.5.2 A special case: pot-limit poker

If a = 1 and b = c = 2, both the bet size and the raising amount are equal to

2a, the size of the initial pot. We call this special case pot-limit poker. The

bounds for the optimal strategies are as follows:

u1 = 11
722

≈ 0.015, v1 = 1
38

≈ 0.026,

u2 = 161
2166

≈ 0.074, v2 = 8
57

≈ 0.140,

u3 = 10
19

≈ 0.526, v3 = 10
19

≈ 0.526,

u4 = 889
1083

≈ 0.821, v4 = 41
57

≈ 0.719,

u5 = 307
361

≈ 0.850, v5 = 15
19

≈ 0.790,

u6 = 339
361

≈ 0.939, v6 = 17
19

≈ 0.895.
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The value v1,2,2 of the game is then − 88
1083

≈ −0.0813. We can translate

these strategy bounds into poker hands, thereby defining strategies that are

approximately optimal in the game that is played with two separate decks of

52 cards, from which real poker hands are drawn. This gives us the results that

are displayed below. For the details about poker hands as well as the notation

used, we refer to section 5.4. For player 1, having hand u, it is optimal to play





PR* if u ≤ HC(9, 8, 6, 3, 2),

B*F if HC(9, 8, 6, 4, 2) ≤ u ≤ HC(J, 9, 8, 7, 4),

PF* if HC(J, 9, 8, 7, 5) ≤ u ≤ 1P (2, 2, A, 6, 4),

PC* if 1P (2, 2, A, 6, 5) ≤ u ≤ 1P (J, J, A, 8, 4),

B*F if 1P (J, J, A, 8, 5) ≤ u ≤ 1P (Q,Q,K, J, 8),

B*C if 1P (Q,Q,K, J, 9) ≤ u ≤ 2P (9, 9, 6, 6, 2),

PR* if u ≥ 2P (9, 9, 6, 6, 3).

For player 2, having hand v, it is optimal to play





BRF if v ≤ HC(10, 7, 6, 5, 4),

BFF if HC(10, 8, 4, 3, 2) ≤ v ≤ HC(Q, 10, 9, 5, 4),

PF* if HC(Q, 10, 9, 6, 2) ≤ v ≤ 1P (2, 2, A, 6, 4),

PC* if 1P (2, 2, A, 6, 5) ≤ v ≤ 1P (8, 8, K, J, 10),

BCF if 1P (8, 8, K,Q, 2) ≤ v ≤ 1P (10, 10, A, 9, 6),

BCC if 1P (10, 10, A, 9, 7) ≤ v ≤ 1P (A,A, 8, 4, 3),

BRC if v ≥ 1P (A,A, 8, 5, 2).

Perhaps more interesting than the details about the poker hands at the bounds

is the structure of the optimal strategies. In the optimal betting behaviour of

player 2 we recognize bluffing: with rather low hands, between HC(10, 8, 4, 3, 2)

and HC(Q, 10, 9, 5, 4), player 2 must bet if player 1 passes. However, if player 1

raises after this bluffing bet, he should fold. He should also fold in case player 1

has already bet. Even more aggressive bluffing is required with the worst pos-

sible hands, at most equal to HC(10, 7, 6, 5, 4). With these hands, player 2

should also bet after a pass of player 1. The aggressive bluffing follows after

an initial bet of player 1, since in this situation player 2 should raise, hoping

that he can frighten player 1 and make him fold. This is possible in the case

that player 1 was already bluffing when making his bet.
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In the optimal strategy of player 1, we also recognize bluffing: with hands

between HC(9, 8, 6, 4, 2) and HC(J, 9, 8, 7, 4) he bets at the start of the game,

although his hand is not good. However, we see another strategic possibility:

with really good hands, hands that are at least as good as 2P (9, 9, 6, 6, 3),

player 1 should begin with passing instead of betting. This way of trying to

deceive the opponent is known as sandbagging. By passing, player 1 tries to

make his opponent think that his hand is not so good. In this way, he hopes

that player 2 may be brave enough to bet. Of course, after a bet, player 1

would respond with raising, leading to a fold of player 2 or a showdown with

high stakes.

Player 1 should do the same, pass first but raise after a bet of player 2,

also with very bad hands (at most equal to HC(9, 8, 6, 3, 2)). He bluff-raises,

thereby hoping to make the opponent fold. In this way, player 1 ensures that

his sandbagging behaviour with high hands remains profitable. If he would

only pass and subsequently raise with high hands, the opponent would know

that calling after such a raise is only wise with an extremely good hand, but

by doing the same with low hands he forces player 2 to call every now and

then to see whether player 1 is bluffing.

6.5.3 Analysis of skill

In the previous section we presented optimal strategies and the value for the

continuous version of pot-limit poker with a raising possibility for both players.

We can use this information to analyze the skill involved in this game. The

results of the skill analysis are presented in this section. We restrict ourselves

to the approach that we introduced in section 2.8, in which the opponents are

assumed to give maximal opposition and a fictive player is informed about the

results of any randomization in the opponent’s strategy.

The expected payoff of the optimal players follows directly from the value,

that we already presented in section 6.5.2. The expected payoff of player 1 as

an optimal player is equal to the value v1,2,2 = −0.0813. The expected payoff

of player 2 is then 0.0813.

For the beginners, we have to define reasonable strategies. We assume that
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a beginner in the role of player 1 plays as follows:
{

PF* if u ∈ [0, u1],

B*C if u ∈ (u1, 1],

where u1 ≈ 0.5012, the bound between the classes High Card and One Pair.

With at least a pair in hand, the beginner thinks his hand is sufficiently good

to bet or to call. With a lower hand, he decides to pass and to fold if required.

Although he may find certain high hands sufficiently attractive to raise, he will

never play this action: each hand that is good enough for raising is also good

enough for betting, so that player 1 will never end up with a high hand at the

information set where raising is possible.

Player 2, if acting as a beginner, plays the following strategy:




PF* if v ∈ [0, v1],

BCC if v ∈ (v1, v2],

BRC if v ∈ (v2, 1],

where v1 = u1 and v2 ≈ 0.9237, the bound between the classes One Pair and

Two Pair. Hands that do not even contain one pair are not good enough to

do anything but passing and folding; hands with one pair are good enough to

bet or to call, but for raising a beginner in the role of player 2 needs to have

at least two pairs.

When player 1 plays according to the simple strategy for the beginner that

is described above, and his opponent takes advantage of the weakness of this

naive strategy, he has an expected payoff of −0.4585. Optimal counterplay of

player 2 is as follows:




BFF / BFC if v ∈ [0, 0.5012],

PF* / BFF / BFC if v ∈ (0.5012, 0.6675],

PC* / BCF / BCC if v ∈ (0.6675, 0.7506],

PR* / BRF / BRC if v ∈ (0.7506, 1].

Next, consider player 2 as a beginner. If player 1 plays optimally, given the

naive strategy that player 2 uses, the expected payoff for player 2 is −0.2074.

Optimal play for player 1 is as follows:




B*F if u ∈ [0, 0.0024],

PF* if u ∈ (0.0024, 0.6675],

PC* / B*F if u ∈ (0.6675, 0.7506],

PR* if u ∈ (0.7506, 1].
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If player 1 is a fictive player, then it is optimal for player 2 to play

{
PF* if v ∈ [0, 1

2
],

PC* if v ∈ (1
2
, 1].

An optimal response of the fictive player 1 is to play





anything if v ∈ [0, 1
2
] and u > v,

B*F / B*C if v ∈ [0, 1
2
] and u < v,

B*F / B*C if v ∈ (1
2
, 1] and u > v,

PF* / PC* / PR* if v ∈ (1
2
, 1] and u < v.

The expected payoff of the fictive player 1 is then 1
2
. If player 2 is a fictive

player, then it is optimal for player 1 to play

{
PF* if u ∈ [0, 1

2
],

PC* if u ∈ (1
2
, 1].

An optimal response of the fictive player 2 is to play





anything if u ∈ [0, 1
2
] and u < v,

BFF / BFC / BCF / BCC / BRF / BRC if u ∈ [0, 1
2
] and u > v,

BFF / BFC / BCF / BCC / BRF / BRC if u ∈ (1
2
, 1] and u < v,

PF* / PC* / PR* if u ∈ (1
2
, 1] and u > v.

The expected payoff of the fictive player 2 is then 1
2
. Table 6.1 gives an overview

of the numbers that are relevant for the skill analysis.

RS

Player 1 Player 2 Game

Beginner -0.4585 -0.2074 -0.3330

Optimal -0.0813 0.0813 0.0000

Fictive 0.5000 0.5000 0.5000

LE 0.3772 0.2887 0.3330

RE 0.5813 0.4187 0.5000

RS 0.3935 0.4081 0.3997

Table 6.1: Results of the skill analysis for pot-limit poker with raising.
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Comparing the skill level, 0.3997, to the highest bound between games of

chance and games of skill that was advised by Van der Genugten (1997), 0.15,

leads undisputedly to the classification of the poker game with raising as a game

of skill. We can also compare this skill level to the result of the skill analysis

for minipoker from section 5.5.3. Then we see that the relative skill involved in

the poker game with raising is lower than for minipoker. However, we should

be careful when making this comparison. As we have already mentioned in the

comments upon the skill level of minipoker in section 5.5.3, the choice of the

beginners’ strategies influences the final result. Apparently, our guess for the

beginners’ strategies in the model with raising has lead to strategies that are

relatively smart, compared to the ones we used in the analysis of minipoker.

Empirical information on game results of beginners could help to confirm or

adjust our guesses. Therefore, field studies or laboratory experiments to obtain

this information form an interesting subject for further research.



Chapter 7

Take-and-guess games

7.1 Introduction

In this chapter two classes of take-and-guess games are studied. In both classes

of games, each of the two players (I and II) has to take a number of objects

out of a given private finite set of objects. After that, they both have to guess

the total amount of objects taken by both players. For the objects, one can

think of fingers, coins or matches. Player 1 has m ∈ N objects available: he

can take any number in {0, 1, . . . ,m}. His opponent has n objects available.

The values of m and n are common knowledge.

In the first class, the morra games, the objects used in general are the

fingers of the players’ hands. Both players have to announce their guesses

simultaneously. A player wins a particular play of this game if he guesses the

total number of fingers correctly, while his opponent guesses a wrong number.

If both players guess correctly, the play is a draw. This is also the case if both

players guess a wrong total.

In morra with an equal number of fingers for both players, the player roles

are symmetric. As expected, these games turn out to be fair (i.e., their value

is zero). We prove this in section 7.2 and we also show that if one player can

use more fingers than his opponent (m 6= n), then this player has an advantage

in the game.

In the other class of take-and-guess games, the so-called (m,n)-coin games,

the players announce their guesses sequentially. The second player is not al-

lowed to guess the same total as the first player. In the naming of the games,

we follow Schwartz (1959), who studied the games with m = n. He called

165
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these games n-coin games. If a player guesses right, he wins. If neither player

guesses the total correctly, the play ends in a draw.

Since coin games are not symmetric for any m and n, it is not clear at first

sight whether any of these games is fair. However, Schwartz (1959) has shown

that the games with m = n are fair. We show in section 7.3 that a much

larger class of coin games is fair: the game value is zero for any coin game in

which the starting player has at least as many coins as the opponent (m ≥ n).

Furthermore, (m,n)-coin games with m < n are not fair. We give an overview

of the values for all these games and we describe optimal strategies for both

players for all m and n.

The remainder of this chapter, which is based on Dreef and Tijs (2004), is

organized as follows. Morra is discussed in section 7.2. In section 7.3, we

study coin games in detail. Section 7.4 presents some concluding remarks and

comparisons of morra and coin games.

7.2 Games of morra

Morra is a game that has been played since ancient Egyptian times. It is

still played throughout different parts of the world, especially in Europe and

Northern Africa. For a more detailed historic description we refer to Ifrah

(1985, p. 67–70) and Perdrizet (1898). The game is fairly simple and can be

played by two or more players, but it is usually played by two. The players

face each other, each holding up a closed fist. At a given signal, they both

hold up zero to five fingers and at the same time announce a number from zero

to ten. If both hands are used, the number can range from zero to twenty.

A player wins if the number he calls out is the total number of fingers shown

by both players. However, if the opponent guesses the same number, the play

ends in a draw. Also if neither of the players guesses the correct number, then

there is no winner. Winning will be formally represented by getting one unit

from the opponent. Payoffs in this zero-sum game can therefore only be −1,

0 and 1.

Variants of morra are a popular subject in game theory lectures (see, for

example, Rector (1987)). The proof of the result that we derive in this section

(or parts or variants of it), appears as an exercise in various course notes
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concerning non-cooperative game theory. Proposition 7.2.1 is mainly included

to be able to compare morra with the coin games that are studied in section 7.3.

In the general version of morra that we study in this chapter, the first

player is allowed to hold up a maximum of m ∈ N fingers, while his opponent

can choose to hold up at most n ∈ N fingers. We refer to this game as (m,n)-

morra, or briefly Mm,n. In the analysis of these games and the coin games

that are studied in section 7.3, we will often encounter sets of integers of the

form {a, a+1, . . . , b−1, b}. It is therefore convenient to introduce a shorthand

notation for such a set: [a, b].

A pure strategy for player I in Mm,n will be denoted by (x1, y1), where x1

is the number of fingers he decides to hold up and y1 is the sum he guesses.

Clearly, with a strategy for which y1 < x1, player I can never win. Neither can

he win with a strategy for which y1 > x1+n. Such a strategy is called infeasible.

We restrict attention to feasible strategies. That is, the pure strategy space for

player I is S1 = {(x1, y1) | (x1 ∈ [0,m])∧ (y1 ∈ [x1, x1 + n])}. Analogously, the

pure strategy space for player II is given by S2 = {(x2, y2) | (x2 ∈ [0, n])∧(y2 ∈
[x2, x2 +m])}. The cardinalities of the strategy spaces are equal: |S1| = |S2| =

(m + 1)(n + 1).

The game (m,n)-morra can be modelled as a matrix game and is then

completely defined by the matrix A = [a(x1,y1),(x2,y2)], where

a(x1,y1),(x2,y2) =





1 if (y1 = x1 + x2) ∧ (y1 6= y2),

−1 if (y2 = x1 + x2) ∧ (y1 6= y2),

0 otherwise.

Proposition 7.2.1 Let m,n ∈ N. The value v(Mm,n) of (m,n)-morra is
m−n

(m+1)(n+1)
.

Proof. Let x1 ∈ [0,m] and y1 ∈ [x1, x1 + n]. The strategy (x1, y1) of player I

will win against all strategies (x2, y2) ∈ S2 of player II for which x2 = y1 − x1

and y1 6= y2. Player II has exactly m strategies that fulfil these conditions. On

the other hand, (x1, y1) will cause a victory for player II if he uses a strategy

(x2, y2) ∈ S2 for which y2 = x2 + x1 and y2 6= y1. That is, player I will lose

against any of the n elements of the set {(x2, x2 + x1) | x2 ∈ [0, n]\{y1 − x1}}.
Against any other strategy of player II, (x1, y1) will cause a tie. Therefore,

the elements of each row of A sum to m − n. Consequently, by playing all
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(x2, y2) ∈ S2 with equal probability, 1
|S2| , player II can guarantee that player I

will not get more than m−n
(m+1)(n+1)

.

In an analogous way, one can show that player I can guarantee himself
m−n

(m+1)(n+1)
by playing each of his pure strategies with probability 1

|S1| . This

completes the proof. �

From the proof of Proposition 7.2.1, we can see that optimal strategies in this

game are rather simple. Both players just have to play all their pure strategies

with equal probability. It is interesting to notice that v(Mm,n) = −v(Mn,m).

Furthermore, one can easily derive the following results by studying the effect

of varying m and n on the value v(Mm,n).

Corollary 7.2.2 Only the (m,n)-morra games with m = n are fair. For

m 6= n, the advantage is for the player who can use more fingers.

Corollary 7.2.3

lim
m→∞

v(Mm,n) = lim
m→∞

m − n

(m + 1)(n + 1)
=

1

n + 1
.

The intuition behind the limit of Corollary 7.2.3 is that if one of the players

has extremely many objects available (in terms of fingers it becomes difficult

to imagine), then his opponent will not be able to guess the number of objects

he takes. The value of the game is therefore completely determined by the

probability that this player guesses correctly the number of objects chosen by

the other player.

7.3 Coin games

In this section we study a second class of take-and-guess games, the (m,n)-

coin games. In contrast to morra, the players have to announce their guesses

sequentially in these games. Schwartz (1959) studied the games with m = n

and called these games n-coin games. In the naming of our generalization, we

also generalize the name he suggested.

The taking part of the (m,n)-coin game (or briefly Cm,n) is the same as in

(m,n)-morra. The first player is allowed to take a maximum of m ∈ N objects,
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while his opponent can pick at most n ∈ N objects. The numbers m and n are

common knowledge. When played in practice, the objects are not fingers, but

things that can be hidden in a hand. As the name of the game suggests, coins

are suitable. In Dutch bars the game used to be played with matches.

The difference with morra lies in the guessing part. The players have to

announce their guesses sequentially instead of simultaneously. Player II hears

the guess of player I and is not allowed to guess the same total as his opponent.

If a player guesses right, he wins (i.e., obtains one unit of his opponent). If

neither player guesses the total correctly, the play ends in a draw.

Now we can formally write down the strategy spaces of the players. Since

coin games are games of perfect recall, the result of Kuhn (1953) tells us that we

can restrict our analysis to behavioural strategies. A pure behavioural strategy

for player I in Cm,n is a choice (x1, y1(x1)) ∈ S1, where S1 = [0,m]× [0,m+n].

As in morra, x1 represents the number of coins he takes in hand, while y1 is

his guess of the total number of coins taken by him and his opponent. Note

that y1 may depend on x1.

Player II picks a combination (x2, y2(x2, y1)) ∈ S2, where S2 = [0, n] ×
[0,m + n], such that y2(x2, y1) 6= y1 for all x2 ∈ [0, n]. Here, x2 is the number

of coins taken by player II and y2 is the total that he guesses.

Notice that infeasible strategies, like guessing a total that is less than what

one has taken in hand, are included in the strategy spaces. In the analysis of

morra we did not take this kind of strategies into account. Here we do, and

there is a reason for this difference. It is easy to see that infeasible strategies

cannot help a player in morra, since the players’ decisions are made simultane-

ously. Misleading the opponent doesn’t make sense. In coin games, however,

infeasible strategies could be useful for player I, at least in theory. If the game

is advantageous for player II, then it may be interesting for player I to mislead

his opponent by guessing a total of coins that cannot be correct, given his own

hand. In this way, he could try to reduce player II’s probability of guessing

the right sum. Although he thereby reduces his own probability of guessing

right to zero, the combined effect might be in his advantage. For this reason

we include infeasible strategies in the strategy spaces. However, we show that

for each Cm,n we can find optimal behavioural strategies for both players in

which the infeasible strategies are not used.
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Let us give a short overview of the organization of the remainder of this sec-

tion. We start by introducing a graphical model for (m,n)-coin games in sec-

tion 7.3.1. In section 7.3.2, we present the equilibria for a large class of Cm,n,

all games with m ≥ n. Section 7.3.3 studies the games in which player II has

one coin more available than his opponent. Sections 7.3.4 and 7.3.5 contain

the equilibrium analysis of two boundary cases within the collection of games

for which n > m + 2. In section 7.3.6, the list of values is completed. This

section is devoted to the games in which player II has two coins more than

player I. The results of all subsections are summarized and discussed in sec-

tion 7.3.7. Included in this summarizing section is Table 7.2, which illustrates

the theorems of the preceding sections by listing the values for the (m,n)-coin

games with small values of m and n. At some points earlier in the exposition

we refer to this table.

7.3.1 A graphical model of an (m, n)-coin game

The structure of coin games is more difficult than morra. We will see that for

many combinations of m and n, finding the optimal strategies takes some smart

construction work. To keep our arguments clear, and to make the constructions

and proofs readable, we introduce a graphical representation of a coin game

in (x1, x2)-diagrams. In such a diagram, it is not too difficult to see what a

player can achieve with a specific strategy. To illustrate the interpretation

of the diagrams, we compute the expected payoff that results from a specific

combination of strategies. Moreover, we will show how to derive for each player

a best reply against a given strategy of the opponent.

7.3.1.1 Representation of strategies in diagrams

Let us introduce the diagrams that we use to depict strategies for coin games.

For the (m,n)-coin game, an (x1, x2)-diagram is a grid with m + 1 columns

(corresponding to x1 ∈ [0,m]) and n + 1 rows (corresponding to x2 ∈ [0, n]).

In the “taking” part of the game, player I picks a column and player II picks a

row. Then player I guesses a sum y1, where his guess can depend on x1. In the

(x1, x2)-diagram, this choice can be represented by a point in the column that

was chosen by player I. On the line with slope −1 that goes through this point

are all points in the grid for which x1 + x2 = y1. Points on this line cannot



7.3. Coin games 171

be guessed by player II. Player II has to guess a different line with slope −1.

For each combination of x2 (the number of coins in his own hand) and y1

(the opponent’s guess) he has to make such a decision. Different choices of x2

correspond to different rows, but for each possible value of y1 we have to draw

a separate (x1, x2)-diagram to represent a strategy of player II. To describe a

behavioural strategy (with mixed decisions per information set), we give the

conditional probability with which each of the actions is played.

Let us clarify this description with an example. The diagrams in Fig-

ure 7.1 give two graphical representations of one specific behavioural strategy

of player I in C1,2.

(a)

0 1
0

1

2

1
3

2
3

1
4

3
4

1
4

3
4

(b)

0 1
0

1

2

1
3

2
3

1
4

3
4

Figure 7.1: Strategy for player I in C1,2, represented in two ways in an (x1, x2)-
diagram.

Figure 7.1(a) gives the general representation for the strategy. This (x1, x2)-

diagram should be read as follows. Player I picks the left column (x1 = 0)

with probability 1
3

and he picks the right column (x1 = 1) with probability 2
3
.

Next, he has to pick y1. Given x1 = 0, he picks the point (0, 1) (corresponding

to y1 = 0 + 1 = 1) with probability 1
4

and (0, 2) (corresponding to y1 = 2)

with probability 3
4
. Similarly, given x1 = 1, player I picks (1, 0) and (1, 1) with

probabilities 1
4

and 3
4

respectively.

Since the conditional probabilities for the choice of y1 are the same for

x1 = 0 and x1 = 1, we can depict this strategy of player I also a little simpler.

This is done in Figure 7.1(b). This figure gives the same probabilities for the

choices of the two columns, but summarizes the probabilities for the guessed

sum, y1, in the two lines with slope −1 that are chosen with the probabilities
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1
4

(y1 = 1) and 3
4

(y1 = 2). Such a representation is only possible if the player’s

conditional probabilities of guessing y1 are the same for all x1 that are chosen

with positive probability. For many values of m and n, we present equilibrium

strategies for the (m,n)-coin game that can be written in this simple form.

For player II we have also depicted a strategy in C1,2 in (x1, x2)-diagrams.

These diagrams are given in Figure 7.2. We draw one diagram for each possible

value of y1 ∈ [0,m + n], since the decisions of player II may depend on this

value.

0 1
0

1

2

y1 = 0

1
4

1
2

1
4

1
3

2
3

1
2

1
2

0 1
0

1

2

y1 = 1

1
4

1
2

1
4

1
2

1
2

0 1
0

1

2

y1 = 2

1
4

1
2

1
4

0 1
0

1

2

y1 = 3

1
4

1
2

1
4

1
2

1
2

1
2

1
2

Figure 7.2: Strategy for player II in C1,2, represented in four (x1, x2)-diagrams.

In the first place, player II has to pick a number of coins, i.e., he has to choose

a row in the grid. A mixed decision is a probability distribution over the rows

of the (x1, x2)-diagram. Clearly, this distribution cannot depend on y1, so it

is constant over the four diagrams in Figure 7.2. Player II takes one coin with

probability 1
2

and he takes zero or two coins both with probability 1
4
.

Next, after choosing x2 and hearing the opponent’s guess, y1, player II has

to decide what sum to guess. So for each row in each of the four diagrams,

player II can give a probability distribution over the guesses that are interesting

for him. In the first diagram, corresponding to y1 = 0, we see that if player II

has 2 coins in his hand, he chooses randomly between y2 = 2 (the point (0, 2))

and y2 = 3 (the point (1, 2)). If x2 = 1, he picks y2 = 1 with probability
1
3

and y2 = 2 with probability 2
3
. For x2 = 0, player II has no choice. He

is not allowed to guess the same number as his opponent and we can see in

the diagram that y2(0, 0) = 1. We omit the 1, the value of the conditional

probability of choosing y2(0, 0) = 1, since it is clear anyway. For y1 = 1,

we recognize two of those fixed guesses: y2(0, 1) = 0 and y2(1, 1) = 2. In the
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diagram that corresponds to y1 = 2, we illustrate how we deal with probability

zero: we simply don’t draw the dot. Since it is clear now that the probability

of choosing y2(0, 2) = 0 must be equal to one, we don’t write this number

explicitly in the figure.

Note that it is not possible to display all so-called infeasible strategies for

the players in the diagrams. For example, to enable player I to guess a sum

y1 < x1, we would have to extend the (x1, x2)-diagram at the bottom. Also,

to display a strategy in which player II guesses a sum of m + n while he picks

x2 = 0 himself, we would have to make an extension of the diagram to the

right. As we already mentioned in the introduction of this section, these types

of strategies are never needed in equilibrium. Therefore, this incompleteness of

the diagrams is not a problem. For player II it is immediately clear that there is

no point in not trying to win. For player I infeasible strategies could be useful,

at least in theory, to try to deceive the opponent with his irrational guess.

However, also for the first player these strategies turn out to be redundant

when we look for an equilibrium for any Cm,n.

7.3.1.2 Expected payoffs

For the combination of the strategies in Figure 7.1 and Figure 7.2, we can com-

pute the expected payoff for player I (and directly derive the expected payoff

for player II in this zero-sum game) by summing over all possible combina-

tions of takes and guesses that occur with positive probability. For example,

the combination (x1, x2, y1, y2) = (0, 0, 1, 0) occurs with probability

Pr{x1 = 0}Pr{x2 = 0}Pr{y1(0) = 1}Pr{y2(0, 1) = 0} =
1

3
· 1
4
· 1
4
·1 =

1

48
.

With this combination of takes and guesses player II wins, for y2 = x1+x2 = 0.

The payoff for player I is therefore −1. Table 7.1 illustrates the computations

that result in the expected payoff of 11
288

for player I. Only the combinations

(x1, x2, y1, y2) that occur with positive probability are included in the table.

7.3.1.3 Best replies

We have introduced our graphical representation of strategies for coin games

and we have illustrated how to compute the expected payoff that results from

a combination of strategies. Since we are going to study equilibria, best replies
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x1 x2 y1 y2 prob payoff prob × payoff

0 0 1 0 1
48

−1 − 1
48

0 0 2 0 1
16

−1 − 1
16

0 1 1 2 1
24

1 1
24

0 1 2 1 1
8

−1 −1
8

0 2 1 2 1
96

−1 − 1
96

0 2 1 3 1
96

0 0

0 2 2 3 1
16

1 1
16

1 0 1 1 1
24

1 1
24

1 0 2 0 1
8

0 0

1 1 1 1 1
36

0 0

1 1 1 2 1
18

−1 − 1
18

1 1 2 2 1
4

1 1
4

1 2 1 2 1
48

0 0

1 2 1 3 1
48

−1 − 1
48

1 2 2 2 1
16

0 0

1 2 2 3 1
16

−1 − 1
16

total 1 11
288

Table 7.1: Computing the expected payoff of the combination of strategies in
Figures 7.1 and 7.2.

will play an important role in the remainder of this chapter. Let us see how

we derive best replies for each player against a given strategy of the opponent.

First, we study the possibilities of player II against the strategy of player I

that is depicted in Figure 7.1. In Figure 7.3, this strategy is shown again, but

this time the probabilities for taking and guessing are not separated. The prob-

abilities that are given in the diagram are for the four combinations (x1, y1)

that are chosen with positive probability. For example, we learn from Fig-

ure 7.3 that player I picks the combination (x1, y1) = (0, 1) with a probability

of 1
12

. This number was found by simply multiplying the probability of taking

x1 = 0 coins, 1
3
, and the probability of guessing y1 = 1 with 0 coins in hand,

1
4
.

The easiest way to study the possibilities of player II is to consider each

possible value of x2 separately and see what the optimal corresponding choices
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0 1
0

1

2
1
12

3
12

2
12

6
12

Figure 7.3: Probabilities for (x1, y1)-combinations for player I’s strategy.

y2(x2, y1) are. To see what is the best reply, we compare the results for all

x2 ∈ [0, n]. Please observe the following: given the strategy of player I and the

choice of x2 by player II, the probability with which player I wins the play is

fixed. Therefore, optimality regarding the selection of y2(x2, y1) only concerns

the probability with which player II wins.

Suppose first that player II chooses a strategy with x2 = 0. Then he loses

if player I selects one of the points on the corresponding row, (0, 0) and (1, 0).

According to Figure 7.3, this happens with probability 0 + 2
12

= 2
12

. What

choices of y2 are optimal for player II, given his choice x2 = 0? He must

make a decision for y2(0, y1) for each value of y1 that player I can guess. From

Figure 7.3 we know that player I guesses either y1 = 1 or y1 = 2.

Let us focus on the case y1 = 1 first. Two of the points in Figure 7.3 that

are chosen with positive probability correspond to y1 = 1: (0, 1) and (1, 0). In

the first case, the correct total number of coins taken by the players is 0+0 = 0,

in the second case the total is 1 + 0 = 1. Since y1 = 1, player II is not allowed

to guess y2 = 1, so the only choice for y2(0, 1) with which he can win is 0.

His probability of winning is then 1
12

. For y1 = 2, the analysis is slightly more

difficult. The points in Figure 7.3 that correspond to this guess are (0, 2) and

(1, 1). Given x2 = 0, the correct totals for these points are 0 and 1 respectively.

Both totals are allowed as a guess, so player II has a choice. He can select

the point on the line y1 = 2 for which the conditional probability that player I

chooses it, given y1 = 2, is maximal. This is equivalent to selecting the point

on the line y1 = 2 for which the probability shown in Figure 7.3 is maximal.

In this case, the optimal choice is y2(0, 2) = 1. With this choice, player II wins

with probability 6
12

, the probability with which player I plays (x1, y1) = (1, 2).

The total probability with which player II wins is now 1
12

+ 6
12

= 7
12

. Combining
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this with the probability of player I winning, 2
12

, results in an expected payoff

of 5
12

for player II.

We can apply similar reasoning to strategies of player II with x2 = 1 and

x2 = 2 and find that the maximal expected payoffs for player II in these cases

are − 2
12

and 5
12

respectively. A best reply of player II against the strategy of

player I from Figure 7.1 (not unique) is therefore the strategy that we discussed,

with x2 = 0, y2(0, 1) = 0 and y2(0, 2) = 1. The corresponding expected payoff

for player II is 5
12

.

Finding a best reply for player I against player II’s strategy from Figure 7.2

is easier. We simply compute the expected payoffs for all (x1, y1) ∈ S2 and

compare them. Consider (x1, y1) = (0, 1). With this strategy, player I wins

with probability 1
2
, the probability that x2 = 1, but he loses with probability

Pr{(x2, y2(x2, 1)) = (0, 0)} + Pr{(x2, y2(x2, 1)) = (2, 2)} = 1
4

+ 1
4
· 1

2
= 3

8
. His

expected payoff with this strategy is therefore 1
2
− 3

8
= 1

8
. By computing the

expected payoff for all his strategies, we can conclude that the unique best reply

of player I is (x1, y1) = (1, 2), for which the expected payoff equals 1
2
− 1

4
= 1

4
.

In the remainder of section 7.3, we describe equilibria for Cm,n for all (m,n) ∈
N

2. The results will be grouped into a number of classes of combinations of m

and n. Within each class, the presented equilibrium strategies have a similar

structure.

7.3.2 Fair coin games

Before we start with the analysis of the (m,n)-coin games for which m ≥ n,

we formulate a trivial but helpful result that enables us to use the value of

Cm,n for a certain combination (m,n) to derive bounds for the values of games

with a different number of coins for one of the players. The value of Cm,n is

denoted by v(Cm,n).

Lemma 7.3.1 For all m,n ∈ N, the following two statements hold:

(a) v(Cm,n) ≤ v(Cm+1,n),

(b) v(Cm,n) ≥ v(Cm,n+1).

Proof. The validity of both statements is verified by realizing that a player

can ignore extra possibilities he gets by an increase of the number of coins that
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is available to him. By copying his equilibrium strategy from Cm,n, player I

will be able to guarantee himself at least v(Cm,n) in the game Cm+1,n. This is

what statement (a) says. Analogous reasoning leads to statement (b). �

As we have already mentioned, Schwartz (1959) has studied the special class

of (m,n)-coin games for which m = n. He called the games n-coin games.

Proposition 7.3.2 (Schwartz (1959)) Let m ∈ N. Then the (m,m)-coin

game is fair, i.e., v(Cm,m) = 0.

Proof. We show that v(Cm,m) ≥ 0 and postpone the other half of the proof

to (the proof of) Theorem 7.3.3. Consider the behavioural strategy µ for

player I that is shown in Figure 7.4 and defined by the probabilities µ(x1, y1) =

µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1

for each x1 ∈ [0,m],

µ2(y1) =

{
1 if y1 = m,

0 otherwise.

0 m
0

m

1
m+1

· · · 1
m+1

Figure 7.4: An optimal strategy for player I in Cm,m.

When player I plays according to µ, then his probability of winning is exactly
1

1+m
against any strategy (x2, y2) ∈ S2 of player II. Player II wins with proba-

bility 1
m+1

if he uses only feasible strategies (i.e., if he puts all of his conditional

probability of choosing y2(x2, 1) inside the (x1, x2)-diagram) and with a lower

probability otherwise. Therefore, for any (x2, y2) ∈ S2 the expected payoff of
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player I is

U(µ, (x2, y2)) = Pr{I wins} − Pr{II wins} ≥ 1

1 + m
− 1

1 + m
= 0.

Therefore, v(Cm,m) ≥ 0. �

In the next theorem we show that a much larger class of (m,n)-coin games is

fair.

Theorem 7.3.3 The m,n-coin game is fair if m ≥ n.

Proof. The combination of Lemma 7.3.1(a) and Proposition 7.3.2 already

shows that v(Cm,n) ≥ 0. We will define a strategy ν for player II, which

guarantees him that he will not have to pay more than zero. In this way we

show that v(Cm,n) ≤ 0. Before we can define this strategy, we have to define

the sets

C(y1) = [y1 − n, y1] ∩ [0,m].

For a given y1, C(y1) is the set of values for x1 for which (x1, y1) is a fea-

sible strategy. We use this set to define a set of points in N
2, F (x2, y1) =

{(a, x2) | a ∈ C(y1)}. Figure 7.5 illustrates such a set in an (x1, x2)-diagram.

0
n

x2

y1

y1

n

m

︷ ︸︸ ︷F (x2, y1)

Figure 7.5: The set F (x2, y1).

Now we are ready to define the mixed strategy ν for player II, which is

determined by the probabilities ν(x2, y2|y1) = ν1(x2)ν2(y2|x2, y1), where

ν1(x2) =
1

n + 1
for all x2 ∈ {0, . . . , n}
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and

ν2(y2|x2, y1) =





1
|F (x2,y1)|−1

if ((y2 − x2, x2) ∈ F (x2, y1) \ {(y1 − x2, x2)})
∧((y1 − x2, x2) ∈ F (x2, y1)),

1
|F (x2,y1)| if ((y2 − x2, x2) ∈ F (x2, y1))

∧((y1 − x2, x2) /∈ F (x2, y1)),

1 if (x2 = 0) ∧ (y1 = 0) ∧ (y2 = 1),

1 if (x2 = n) ∧ (y1 = m + n) ∧ (y2 = m + n − 1),

0 otherwise.

0 y1 n m
0

n

y1

1
n+1

1
n+1

1
n+1

1
n+1

1
n+1

1
n+1

1
n+1

Figure 7.6: Sketch of the structure of an optimal strategy for player II in Cm,n

with m ≥ n.

The third and fourth line of the specifications of ν2 are arbitrary, but necessary

for ν to be properly defined. Figure 7.6 shows the structure of ν for a specific

y1. Conditional probabilities for the choice of y2 are omitted to keep the figure

clear. On each x2-row in the grid, all dots are chosen with equal probability,

such that these probabilities sum to one. With infeasible strategies of the form

(x1, y1) with x1 /∈ C(y1), player I cannot win, so his expected payoff is non-

positive. With a feasible strategy, (x1, y1) with x1 ∈ C(y1), the probability

that player I wins is 1
n+1

. It is immediately clear from Figure 7.6 that the
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probability that player II wins against this strategy is

Pr{II wins} =
1

n + 1

(
(|C(y1)| − 1)

1

|C(y1)| − 1
+ ((n + 1) − |C(y1)|)

1

|C(y1)|

)

=
1

n + 1
+

(n + 1) − |C(y1)|
(n + 1)|C(y1)|

≥ 1

n + 1
,

with equality for the y1 for which [y1 − n, y1] ⊆ [0,m]. As a result,

U((x1, y1), ν) = Pr{I wins} − Pr{II wins} ≤ 1

1 + n
− 1

1 + n
= 0.

�

Note that the result of Schwartz (1959), Proposition 7.3.2, can now be seen as a

corollary of Theorem 7.3.3, since the case m = n is included in the case m ≥ n.

In particular, the strategy ν in the proof of Theorem 7.3.3 can therefore also

be used for the second half of the proof of Proposition 7.3.2.

Example 7.3.4 (C3,2) In the (3, 2)-coin game, the strategy shown in Fig-

ure 7.7 is optimal for player II and guarantees that the expected payoff of

player I will not be positive. ⊳
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Figure 7.7: An optimal strategy for player II in C3,2.
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7.3.3 Games in which player II has one coin more

In the next theorem, we give the value of all coin games in which player II has

one coin more than player I.

Theorem 7.3.5 Let m ∈ N and let n = m + 1. Then v(Cm,n) = − 1
2m+3

.

Proof. Consider the strategy µ for player I that is depicted in Figure 7.8.

The strategy is defined by the following taking and guessing probabilities:

µ(x1, y1) = µ1(x1)µ2(y1|x1), where

µ1(x1) =

{
5

4m+6
if x1 ∈ {0,m},

4
4m+6

if x1 ∈ [1,m − 1],

µ2(y1|x1) =





1
2

if (y1 ∈ [m,m + 1]) ∧ (x1 ∈ [1,m − 1]),

2
5

if (y1 = m) ∧ (x1 = 0),

3
5

if (y1 = m + 1) ∧ (x1 = 0),

3
5

if (y1 = m) ∧ (x1 = m),

2
5

if (y1 = m + 1) ∧ (x1 = m),

0 otherwise.
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Figure 7.8: An optimal strategy for player I in Cm,m+1.
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Without giving the formal proof of optimality of µ, we demonstrate how one

can quickly check what player II can achieve against this strategy. In our

reasoning, we follow the lines of section 7.3.1.3. First observe that one can

compute the conditional probability that player I has chosen x1, given that he

has guessed a specific y1. For example,

Pr{x1 = 0|y1 = m+1} =
3
5
· 5

4m+6
3
5
· 5

4m+6
+ (m − 1) · 1

2
· 4

4m+6
+ 3

5
· 5

4m+6

=
3

2m + 4
.

Let us see, for example, what player II can achieve against µ by taking x2 = m

and selecting his guesses optimally. Player II knows that he will lose with

x2 = m if his opponent plays (x1, y1) ∈ {(0,m), (1,m + 1)}. Player I will

select one of these two strategies with probability 5
4m+6

· 2
5

+ 4
4m+6

· 1
2

= 2
2m+3

.

According to µ, player I guesses either y1 = m or y1 = m+1. To maximize his

winning probability, player II has to compute for which x ∈ [0,m]\{(y1 − m)}
the probability Pr{x1 = x|y1 = m} is maximized. He has to do the same for

the probability Pr{x1 = x|y1 = m + 1}. For the case y1 = m, this conditional

probability is maximal for x1 = m, Pr{x1 = m|y1 = m} = 5
4m+6

· 3
5

= 3
4m+6

.

For player II, it is therefore optimal to choose y2(m,m) = 2m. If y1 = m + 1,

the maximal probability is assigned to x1 = 0, and it is also equal to 3
4m+6

. So

player II should choose y2(m,m+1) = m. If he does this, he will win against µ

(with x2 in his hand) with probability 2 · 3
4m+6

= 3
2m+3

. So the expected payoff

for player I will be 2
2m+3

− 3
2m+3

= − 1
2m+3

. By considering all other possible

values of x2, we can show that the expected payoff for player I is never lower

than − 1
2m+3

.

Next, consider the strategy ν for player II that is shown in (x1, x2)-diagrams

in Figure 7.9. The taking probabilities can be read directly from the diagrams.

We don’t explicitly list all underlying guessing probabilities, but we give the

idea behind the construction of the strategy diagrams. Let us fix y1 for a mo-

ment. The corresponding y1-line crosses at least one of the rows that player II

selects with positive probability, say p. The column in which this crossing oc-

curs, corresponds to a value of x1. With this number of coins in hand, player I

wins with probability p. In order to guarantee a value v < 0 for player II, the

strategy must imply a probability p + v of winning for player II against this

combination of x1 and y1. This probability should come from the other x2-rows

that are selected with positive probability. In this way we ensure column-wise
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compensations for each possible value of y1. This guarantees the value v for

player II against any choice of (x1, y1) by player I. �
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Figure 7.9: Optimal strategy for player II in Cm,m+1.

Example 7.3.6 (C2,3) In the (2, 3)-coin game, the strategy shown in Fig-

ure 7.10 is optimal for player I, while the strategy given in Figure 7.11 is

optimal for player II. The value of C2,3 is −1
7
. ⊳
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Figure 7.10: An optimal strategy for player I in C2,3.
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Figure 7.11: An optimal strategy for player II in C2,3.
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7.3.4 A special case: Cm,n(m,k)

The games in the following proposition turn out to be special (boundary) cases

(see Table 7.2), with respect to their values, within the collection of (m,n)-coin

games with m < n. The proposition gives lower bounds for the values for these

games. These lower bounds will turn out to be tight later in the chapter.

Proposition 7.3.7 Let m ∈ N and let k ∈ N with k ≥ 2. Define n(m, k) =

k(m + 1) − 1. Then v(Cm,n(m,k)) ≥ m−n(m,k)
(m+1)(n(m,k)+1)

.

Proof. Consider the behavioural strategy µ for player I that is shown in

Figure 7.12 and defined by the probabilities µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1

for all x1 ∈ [0,m],

µ2(y1) =

{
1
k

if y1 ∈ {j(m + 1) − 1 | j ∈ [1, k]},
0 otherwise.

The idea behind the strategy is that each x2-row is covered by exactly one

(x1, y1) combination, played with probability 1
k(m+1)

. We can apply the same

line of reasoning as in the proof of Theorem 7.3.5, using maximum conditional

probabilities of having chosen x1, given y1. In this way, the reader can verify

that player I loses with the strategy µ with a probability that is at most equal

to 1
m+1

, so that µ guarantees the value that is given in Proposition 7.3.7. �

Example 7.3.8 (C2,5) In the (2, 5)-coin game, the strategy shown in Fig-

ure 7.13 is optimal for player I and guarantees that his expected payoff will

not be smaller than −1
6
. ⊳

7.3.5 Another special case: Cm,n(m,k−1)+1

In this section we study another class of special combinations of m and n. In

the games of the next proposition, player II has (roughly speaking) one coin

more than in the games of the special case of section 7.3.4. For this collection

of games, which also turn out to form a boundary case (see Table 7.2), we

derive an upper value.
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Figure 7.12: An optimal strategy for player I in Cm,k(m+1)−1 (k ∈ N, k ≥ 2).
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Figure 7.13: An optimal strategy for player I in C2,5.

Proposition 7.3.9 For all m ∈ N and all k ∈ N with k ≥ 2, we define

n(m, k) = k(m + 1) − 1. Let k ∈ N with k ≥ 3.1 Then

v(Cm,n(m,k−1)+1) ≤
m − n(m, k)

(m + 1)(n(m, k) + 1)
.

Proof. Consider the following mixed strategy ν for player II. Define, for all

(x2, y2) ∈ [0, n(m, k − 1) + 1] × [0,m + n(m, k − 1) + 1] and all y1 ∈ [0,m +

1Proposition 7.3.9 concerns the games in which player II has one coin more than in the
games of Proposition 7.3.7. Although we require k ≥ 3 here, the value of n that we consider
is n(m, k − 1) + 1. So, also for the case k = 2 in Proposition 7.3.7, the game in which
player II has one coin more is included here.
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n(m, k − 1) + 1],

ν(x2, y2|y1) = ν1(x2)ν2(y2|x2, y1),

where

ν1(x2) =

{
1
k

if x2 mod (m + 1) = 0,

0 otherwise

and

ν2(y2|x2, y1) =





1
m

if (y1 ∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m] \ {y1}),
α if (y1 /∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m])

∧(|y2 − y1| mod (m + 1) = 0),

β if (y1 /∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m])

∧(|y2 − y1| mod (m + 1) 6= 0),

0 otherwise.

Here,

α =
k + m

(k − 1)(m + 1)
and β =

(k − 1)m − (m + 1)

(k − 1)m(m + 1)
.

It is easy to check that

∑

x2∈[0,n(m,k−1)+1]

ν1(x2) = 1

and
∑

y2∈[0,m+n(m,k−1)+1]

ν2(y2|x2, y1) = 1 for all (x2, y1).

and that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Thus, ν1 and ν2 are well-defined

probability distributions. Figure 7.14 gives an illustration of the (conditional)

probabilities that ν prescribes for a game Cm,n(m,k−1)+1 for a specific value of y1.

The idea behind the strategy is as follows. The given y1-line crosses exactly

one of the x2-rows that is chosen with positive probability. The column in

which this crossing occurs, indicates with which choice of x1 player I will win.

This winning probability of player I should be made up for by generating a

probability of winning for player II in the same column. This compensation is

taken care of by the αs. The values of α and β are chosen in such a way that
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Figure 7.14: An illustration of the strategy ν, which is optimal for player II in
Cm,n(m,k−1)+1.

the excess probability of winning for player II is the same in all x1-columns.

Now, let (x1, y1) ∈ [0,m] × [0,m + n(m, k − 1) + 1]. Then, if U(x, y) denotes

the expected payoff for player I for the (mixed) strategy profile (x, y), we can

determine U((x1, y1), ν) by distinguishing two cases:

(i) |y1−x1| mod (m+1) = 0 (a positive probability of winning for player I),

(ii) |y1 − x1| mod (m + 1) 6= 0 (probability zero of winning for player I).
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Case (i):

U((x1, y1), ν) = ν1(y1 − x1) −
∑

x2∈[0,(k−1)(m+1)]\(y1−x1)

ν1(x2)ν2(x1 + x2|x2, y1)

=
1

k
−

∑

{x2 | x2 mod (m+1)=0

and x2 6=y1−x1}

ν1(x2)ν2(x1 + x2|x2, y1)

=
1

k
− 1

k

∑

{x2 | x2 mod (m+1)=0

and x2 6=y1−x1}

ν2(x1 + x2|x2, y1)

=
1

k
− 1

k
(k − 1)α =

1

k

(
1 − (k − 1)

k + m

(k − 1)(m + 1)

)

=
m + 1

k(m + 1)
− k + m

k(m + 1)
= −k − 1

k

1

m + 1

=
m − n(m, k)

(m + 1)(n(m, k) + 1)

Case (ii):

U((x1, y1), ν) = −
∑

x2∈[0,(k−1)(m+1)]

ν1(x2)ν2(x1 + x2|x2, y1)

= −1

k

∑

{x2 | x2 mod (m+1)=0}
ν2(x1 + x2|x2, y1)

= −1

k

1

m
− 1

k

∑

{x2 | x2 mod (m+1)=0

and y1 /∈[x2,x2+m]}

ν2(x1 + x2|x2, y1)

= −1

k

1

m
− 1

k
(k − 1)β

= −1

k

(
1

m
− (k − 1)

(k − 1)m − (m + 1)

(k − 1)m(m + 1)

)

= −
(

(m + 1) + (k − 1)m − (m + 1)

km(m + 1)

)
= −k − 1

k

1

m + 1

=
m − n(m, k)

(m + 1)(n(m, k) + 1)
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The combination of the payoffs in both cases shows that the (mixed) strategy

ν guarantees an expected payoff of U((x1, y1), ν) = n(m,k)−m
(n(m,k)+1)(m+1)

for player II.

�

Example 7.3.10 (C2,6) In the (2, 6)-coin game, the strategy shown in Fig-

ure 7.15 is optimal for player II and guarantees that the expected payoff of

player I will not be higher than −2
9
. ⊳

The n(m, k) from the definition in Proposition 7.3.9 is exactly the value of

n from Proposition 7.3.7. Therefore, combining these two propositions with

Lemma 7.3.1(b) yields the following result.

Theorem 7.3.11 Let m ∈ N, let k ∈ N with k ≥ 3 and let n ∈ [n(m, k− 1) +

1, n(m, k)]. Then v(Cm,n) = m−n(m,k)
(m+1)(n(m,k)+1)

.
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Figure 7.15: An optimal strategy for player II in C2,6.
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7.3.6 Games in which player II has two coins more

In the next proposition, we give the value of all coin games in which player II

has two coins more than player I.

Proposition 7.3.12 Let m ∈ N. Then v(Cm,m+2) = − 1
2(m+1)

.

Proof. We leave it to the reader to verify that the strategy µ for player I

that is depicted in Figure 7.16 guarantees the value given in the proposition.

The strategy is defined by the following taking and guessing probabilities:

µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1

for all x1 ∈ [0,m],

µ2(y1) =

{
1
2

if y1 ∈ {m,m + 2},
0 otherwise.

0 · · · m
0

...

m

m + 2

1
m+1

· · · 1
m+1

1
2

1
2

Figure 7.16: Optimal strategy for player I in Cm,m+2

Next, consider the strategy ν for player II that is shown in (x1, x2)-diagrams

in Figure 7.17. We don’t give a formal description of the taking and guessing

probabilities, but we give the intuition behind the construction of the strategy.

An y1-line will intersect at most two of the four rows player II selects with

positive probability. The winning probabilities for player I that result from
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these intersections can be compensated within these two rows (in Figure 7.17,

the two dots in the rows for x2 ∈ {m + 1,m + 2} do the trick). The remaining

rows can be used to generate an excess probability of winning for player II of

at least 2 · 1
4
· 1

m+1
= 1

2(m+1)
. When the y1-line only crosses of the four rows,

then any of the other three rows can be used for compensation. The remaining

points on the crossed row can, for example, be selected with equal probability.

�
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1
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1
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Figure 7.17: The strategy ν, which is optimal for player II in Cm,m+2.

Example 7.3.13 (C2,4) In the (2, 4)-coin game, the strategy shown in Fig-

ure 7.18 is optimal for player I, while the strategy given in Figure 7.19 is

optimal for player II. The value of C2,4 is −1
6
.

⊳

Observe that the value of Cm,m+2 is exactly the lower bound v of the value of

Cm,2(m+1)−1 that we derived in section 7.3.4:

v(Cm,2(m+1)−1)
Prop 7.3.7

=
m − n(m, 2)

(m + 1)(n(m, 2) + 1)
=

m − (2(m + 1) − 1)

(m + 1)2(m + 1)

= − 1

2(m + 1)

Thm 7.3.12
= v(Cm,m+2).
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Figure 7.18: An optimal strategy for player I in C2,4.

Therefore, we can combine the results of Theorem 7.3.12 and Proposition 7.3.7

and use Lemma 7.3.1(b) to obtain the following result.

Theorem 7.3.14 Let m ∈ N and let n ∈ [m + 2, 2m + 1]. Then v(Cm,n) =

− 1
2(m+1)

.

Although Theorem 7.3.14 completes our list of values for all (m,n)-coin games

(see Table 7.2), we did not yet present optimal strategies for both players

for all the games. In particular, for at least one of the players we did not

mention how he play optimally in the games Cm,n with k ∈ N (k ≥ 3) and

n ∈ [(k− 1)(m + 1), k(m + 1)− 2] and in the games Cm,n with m ∈ N (m ≥ 3)

and n ∈ [m + 3, 2m + 1]. These are the games for which the values are

derived in Theorems 7.3.11 and 7.3.14. Following the argument of the proof

of Lemma 7.3.1, an equilibrium strategy for Player II can be copied from a

game Cm,n with a smaller value of n. Of course, this strategy is not defined

for high guesses y1, since these guesses are not allowed in the game from which

player II’s strategy is copied. For these values of y1, player II has to play all

feasible guesses with equal probability for each value of x2 that he takes with

positive probability.

For player I, the reader can verify that the strategy with the structure that

is displayed in Figure 7.20 is optimal in all these games.
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Figure 7.19: An optimal strategy for player II in C2,4.
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Figure 7.20: An optimal strategy for player I in the remaining (m,n)-coin
games (k = ⌈ n+1

m+1
⌉).

The strategy structure of Figure 7.20 is formally defined by the probabilities

µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1

for all x1 ∈ [0,m],

µ2(y1) =

{
1
k

if y1 ∈ {j(m + 1) − 1 | j ∈ [1, k − 1]} ∪ {n},
0 otherwise,

where k = ⌈ n+1
m+1

⌉. This strategy is similar to the strategy of player I in the

boundary case of section 7.3.4 (see Figure 7.12). Compared to these strategies,

the value of the highest guess is shifted down.

7.3.7 A summary of the results

In sections 7.3.2 to 7.3.6, we have given the values for Cm,n for all combinations

of m and n. The main results were divided over four theorems (7.3.3, 7.3.5,

7.3.11 and 7.3.14). Table 7.2 illustrates these theorems by listing the values

for the (m,n)-coin games with small values of m and n.

From the table, we can get an idea about what happens if the amount of coins

available to one of the players becomes extremely large. This is the subject of

the following proposition.
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17 −4
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· · ·
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9
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5
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−1

9
− 2
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− 1

16
− 1

18
− 1

20
· · ·

15 − 7
16

− 5
18

− 3
16

− 3
20

−1
9

− 2
21

− 1
16

− 1
18

− 1
20

· · ·
14 − 7

16
− 4

15
− 3

16
− 2

15
−1

9
− 2

21
− 1

16
− 1

18
− 1

20
· · ·

13 −3
7

− 4
15

− 3
16

− 2
15

−1
9

− 1
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− 1
16

− 1
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− 1
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· · ·
12 −3

7
− 4
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− 3

16
− 2

15
−1

9
− 1

14
− 1

16
− 1
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− 1

20
· · ·

11 − 5
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−1
4

−1
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− 2
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− 1
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− 1
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− 1
16
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− 1
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· · ·
10 − 5
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−1

4
−1

6
− 2
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− 1
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− 1
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− 1
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− 1
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− 1

21
· · ·

n 9 −2
5

−1
4

−1
6

− 1
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− 1
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− 1
14

− 1
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− 1
19

0 · · ·
8 −2

5
−2

9
−1

6
− 1
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− 1
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− 1
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− 1

17
0 0 · · ·

7 −3
8

−2
9

−1
8

− 1
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− 1
12

− 1
15

0 0 0 · · ·
6 −3

8
−2

9
−1

8
− 1

10
− 1

13
0 0 0 0 · · ·

5 −1
3

−1
6

−1
8

− 1
11

0 0 0 0 0 · · ·
4 −1

3
−1

6
−1

9
0 0 0 0 0 0 · · ·

3 −1
4

−1
7

0 0 0 0 0 0 0 · · ·
2 −1

5
0 0 0 0 0 0 0 0 · · ·

1 0 0 0 0 0 0 0 0 0 · · ·
1 2 3 4 5 6 7 8 9 · · ·

m

Table 7.2: Values for Cm,n for small values of m and n.

Proposition 7.3.15 Let Cm,n be an (m,n)-coin game. Then

lim
m→∞

v(Cm,n) = 0,

and

lim
n→∞

v(Cm,n) = − 1

m + 1
.

Proof. The first part of the proposition is trivial. We prove the second part
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by using the expression given in Theorem 7.3.11.

lim
n→∞

v(Cm,n) = lim
k→∞

m − n(m, k)

(m + 1)(n(m, k) + 1)
= lim

k→∞

m − (k(m + 1) − 1)

(m + 1)((k(m + 1) − 1) + 1)

= lim
k→∞

1 − k

k(m + 1) − 1
= − 1

m + 1
.

�

Comparing the result with Corollary 7.2.3, we see that the limiting value for

the case where the number of coins of player II goes to infinity coincides with

the limiting value for this case in morra. From Table 7.2 we can further observe

the following interesting facts.

• Although coin games are never symmetric, there is a surprisingly large

collection of fair (m,n)-coin games.

• For fixed values of m (and m < n), the value v(Cm,n) is constant for

series of m+1 values of n. Within this series, player II is not necessarily

better off with more coins available. As an example, consider the game

C3,5. The game becomes more favourable for player II, only if he gets at

least three more coins available. One or two extra coins would not help

him.

• On the other hand, if m < n, player I is always better off with one

more coin if he has less coins available than his opponent. Formally,

m < n ⇒ v(Cm,n) < v(Cm+1,n).

• If n = m + 1, i.e., if player II has only one more coin available than his

opponent, player II cannot take the “regular advantage” that leads to

the values for n ≥ m + 2.
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7.4 Concluding remarks

In this chapter, we have studied two classes of two-person take-and-guess

games: morra and coin games. In both games, the players first have to take a

number of objects and then guess the total number of objects taken by both

players. In a game of morra, the players guess simultaneously, while in a coin

game player II has to wait for player I’s call and is not allowed to guess the

same number.

The structure of coin games is less symmetric than the structure of morra.

Surprisingly, all coin games in which player I has at least as many objects as

player II are fair, while morra is only fair if both players have the same number

of fingers available. For all other take-and-guess games in the two classes, the

advantage is for the player who has more objects available than his opponent.

Unfair coin games, i.e., (m,n)-coin games with m < n, have the same

value as (m,n)-morra only in the boundary case of section 7.3.4, where n =

k(m + 1) − 1 for some k ∈ N. For all other unfair combinations of m and

n, the (m,n)-coin game is more favourable for player II than (m,n)-morra:

v(Cm,n) < v(Mm,n).

Finally, we want to mention three interesting extensions of the analysis in

this chapter, which are possible subjects for further research. The first exten-

sion that deserves attention in the future is formed by take-and-guess games

with more than two players. The winner of such a game receives one unit of

all of his opponents. In the case of morra, where there can be multiple win-

ners for the same play, the losers all pay one unit and the winners share the

pot equally. A general difficulty in the analysis of games with more than two

players, is that optimal play is not defined anymore. Multiple Nash equilib-

ria can exist and the equilibrium strategies are not interchangeable between

equilibria. Moreover, the payoffs to the players are not necessarily the same in

each equilibrium; there is no such thing as a value in these games.

A second interesting modification of the game would be to make the payoffs

dependent of the total number of objects taken by the players. Instead of

winning one unit, the winning player receives an amount equal to this total.

Guessing higher totals correctly becomes more profitable and at the same time

taking higher numbers in hand becomes more risky.

The third and last extension we want to mention is one that is inspired by
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the way coin games were played in Dutch bars. Instead of playing one round

of the take-and-guess game, the player roles are interchanged after each draw

until there is a winner. Such a modification turns the game into a stochastic

game, which requires a more sophisticated analysis. Especially for coin games

with m < n this change will probably affect the optimal strategies within

a round of play too. It might become useful for player I to play infeasible

strategies, since apart from winning the game it is interesting now to try to

get in the advantageous role of the second player.
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Behendigheid en strategie in
spelen

Samenvatting

Spelletjes, of ze nu thuis of in het casino gespeeld worden, vormen een in-

teressant discussieonderwerp, zowel voor spelers als voor toeschouwers. Bijna

iedereen heeft een mening over hoe roulette of blackjack moet worden gespeeld.

Daarnaast hebben veel mensen wel een idee over hoeveel behendigheid er komt

kijken bij het spelen van deze spelletjes. De mate van behendigheid die aan

een bepaald spel wordt toegeschreven, varieert echter sterk onder de discus-

sianten. Als voorbeeld nemen we het pokerspel. Fanatieke pokerspelers zijn

ervan overtuigd dat poker een behendigheidsspel is vanwege de blufmogelijk-

heden. Voor anderen, zoals liefhebbers van schaken, is alleen het feit dat het

delen van kaarten onderdeel is van het spel al voldoende om poker als kansspel

te kwalificeren.

Meningsverschillen over het behendigheidsniveau van spelen vormen een

probleem als het gaat om de exploitatie van spelen. Wetgeving in Nederland

en in andere Europese landen, maar ook in veel staten in de Verenigde Staten,

maakt onderscheid tussen kans- en behendigheidsspelen. Ruwweg is een spel

voor deze wetten een kansspel, wanneer toevalselementen de voornaamste fac-

toren zijn bij het bepalen van de speluitkomst. Een spel waarin de beslissingen

van de spelers van overwegende invloed zijn op de uitkomst van het spel, is

een behendigheidsspel. Volgens de Nederlandse Wet op de Kansspelen is voor

het exploiteren van een kansspel een vergunning vereist, terwijl zo’n vergun-

ning niet benodigd is voor het aanbieden van een behendigheidsspel. Vanuit

juridisch oogpunt is het dus belangrijk dat voor een spel objectief vastgesteld

kan worden of de spelers voldoende invloed op de spelresultaten hebben om

209
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het te spel als behendigheidsspel te classificeren. De bepaling van het relatieve

behendigheidsniveau van een spel, door het vergelijken van de spelersinvloed

op het spelresultaat met de invloed van de toevalselementen, is één van de

twee centrale onderwerpen van dit proefschrift.

Het andere centrale onderwerp is de berekening van optimale strategieën

voor tweepersoonsnulsomspelen. Hierbij is de winst van de ene speler gelijk

aan het verlies van de andere speler. Voor een éénpersoonsspel als blackjack is

de optimale strategie wellicht te complex om als speler te onthouden en perfect

uit te voeren. De berekening ervan, gebruikmakend van kansrekening in ver-

band met de onzekerheid die veroorzaakt wordt door de onbekende kaarten,

is echter relatief eenvoudig. In spelen met twee spelers is optimaal spel nog

steeds goed gedefinieerd, zolang de winsten van de spelers tot nul optellen. De

berekeningen zijn echter ingewikkelder, aangezien de kwaliteit van een strate-

gie van een speler nu afhangt van de beslissingen die de tegenstander neemt.

In dit proefschrift bestuderen we het bepalen van optimale strategieën in po-

kervarianten voor twee spelers. Daarnaast bespreken we optimale strategieën

voor een klasse van zogenaamde take-and-guess-spelen, die vroeger populair

waren in cafés om te bepalen wie een rondje moest betalen.

Het proefschrift bestaat uit twee delen. Deel I, dat bestaat uit de hoofdstukken

2 tot en met 4, gaat voornamelijk over relatieve behendigheid en de rol van

toevalsfactoren in spelen. Deel II, bestaand uit de hoofdstukken 5 tot en met

7, is gewijd aan de berekening van optimale strategieën in pokervarianten en

in take-and-guess-spelen.

Deel I begint met hoofdstuk 2, waarin we een kwantitatieve maat voor het

relatieve behendigheidsniveau van een spel presenteren en motiveren. De Wet

op de Kansspelen is het uitgangspunt geweest voor de manier waarop we om-

gaan met het probleem van het meten van relatieve behendigheid in spelen met

toevalselementen. In casinospelen leggen toevalsgeneratoren, zoals het delen

van kaarten of het draaien van een cilinder in roulette, objectief de kansen op

bepaalde gebeurtenissen vast. In principe zijn deze spelen onder gelijke om-

standigheden en met dezelfde strategieën van spelers te herhalen. Dit maakt

het mogelijk om te spreken van het gemiddelde spelresultaat van een speler

op lange termijn, ofwel zijn verwachte spelresultaat. Om te bepalen of strate-
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gische keuzes van spelers de uitkomst van het spel bëınvloeden, vergelijken we

het verwachte spelresultaat van beginners met dat van optimale spelers. Een

vergelijking van de spelersinvloed met de invloed van de toevalsfactoren maken

we door te bepalen welk spelresultaat een optimale speler naar verwachting zou

kunnen behalen, als hij de uitkomst van alle toevalselementen zou weten voor-

dat hij zijn strategie moet bepalen. De basis voor deze methode om relatieve

behendigheid in spelen te meten is gelegd in het werk van Borm en Van der

Genugten (1998). In dit hoofdstuk nemen we de belangrijkste aspecten van de

methode onder de loep. In het bijzonder besteden we aandacht aan beginners,

de definitie van het spelresultaat en aannames over tegenspel door opponenten

in meerpersoonsspelen. Een kritische blik op de oorspronkelijke methode leidt

uiteindelijk tot een herziene definitie van de relatieve behendigheidsmaat voor

meerpersoonsspelen.

Hoofdstuk 3 bestudeert sport-gerelateerde competities die de laatste jaren

aan populariteit hebben gewonnen: managementspelen. Een deelnemer aan

zo’n spel vervult de rol van manager van een fictieve sportploeg. Voorbeelden

van sporten waarvoor managementspelen worden georganiseerd, zijn voetbal,

tennis, wielrennen en formule-I autoracen. Een deelnemer selecteert spe-

lers en mogelijk aanvullende onderdelen voor zijn team, waarbij hij rekening

moet houden met bepaalde restricties. Dit team verdient punten met de

prestaties van de teamleden in de sportcompetitie waarop het management-

spel is gebaseerd. Het voornaamste doel van een deelnemer aan het spel is het

maximaliseren van het aantal punten van zijn team. Ruwweg komt het erop

neer dat een team in het managementspel het goed doet, wanneer de teamle-

den het goed doen in de echte competitie. Het grote aantal deelnemers aan

managementspelen op het internet heeft deze vorm van vermaak tot een com-

merciële aangelegenheid gemaakt. Aangezien het hier gaat om het aanbieden

van spelen waarmee prijzen gewonnen kunnen worden, is het van belang om

te weten of managementspelen onder de Wet op de Kansspelen vallen.

In tegenstelling tot casinospelen, zijn er bij managementspelen geen objec-

tief gedefinieerde toevalsprocessen die de scores van de deelnemers bëınvloeden.

Er is echter een andere vorm van onzekerheid die een rol speelt: de onzekerheid

over de resultaten in de werkelijke sportcompetitie kan worden gezien als de

toevalsfactor in het managementspel. Met dit soort toevalselementen is het

niet mogelijk om het verwachte spelresultaat van een deelnemer te berekenen



212 SAMENVATTING

met behulp van door toevalsgeneratoren bepaalde kansen. Daarom moeten

we de methoden uit hoofdstuk 2 aanpassen, om ze te kunnen toepassen op

een managementspel voor de classificatie als kans- of als behendigheidsspel.

Het verwachte spelresultaat van een bepaald type speler vervangen we hier-

bij door het gemiddelde spelresultaat van een groep spelers van dit type. Bij

het bepalen van de gemiddelde spelresultaten voor groepen spelers maken we

gebruik van de scores van deelnemers in een reeds gespeelde editie van het ma-

nagementspel. Doordat we deze gegevens nodig hebben voor onze berekenin-

gen, kunnen we het behendigheidsniveau van een managementspel pas achteraf

bepalen.

In hoofdstuk 4 keren we terug naar de klasse van spelen waarin toevalsge-

neratoren of toevalszetten onzekerheid creëren met objectief bepaalde kansen;

denk hierbij opnieuw aan het delen van kaarten in poker of het gooien met

dobbelstenen in backgammon. We concentreren ons op de beperkingen die

deze toevalszetten veroorzaken voor de spelers als het gaat om hun invloed

op de speluitkomst. Bij het bepalen van een strategie voor het spel moet een

speler alle mogelijke uitkomsten van de toevalszetten in beschouwing nemen.

De keuze van een goede strategie zou eenvoudiger zijn, wanneer de speler het

resultaat van de toevalszetten van tevoren zou weten. Informatie hierover is

waardevol voor spelers. Maar hoe waardevol is deze informatie? Hoeveel zou

een speler ervoor willen betalen, wanneer hij de informatie kon kopen? Na-

tuurlijk hangt dit af van de verandering in zijn verwachte winst, die hij kan

realiseren met deze extra kennis. Ruwweg wordt het verschil in de verwachte

uitbetaling die een speler met en zonder de informatie kan bereiken de waarde

van informatie genoemd. In tegenstelling tot andere definities van de waarde

van informatie in de literatuur, houdt het model in hoofdstuk 4 er rekening

mee dat deze waarde kan afhangen van de tegenstander die een speler heeft.

Het kan bijvoorbeeld zeer nuttig zijn om de informatie over de toevalszet te

hebben, wanneer de tegenstander deze informatie niet heeft, terwijl de infor-

matie minder waardevol is, wanneer de tegenstander ook gëınformeerd is. De

berekeningen van de waarde van informatie in hoofdstuk 4 maken gebruik van

het informatie-koopspel dat is gëıntroduceerd door Sakaguchi (1993). In zo’n

informatie-koopspel krijgen beide spelers de gelegenheid om informatie over de

uitkomst van de toevalszetten te kopen voordat het echte spel begint.
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Deel II van het proefschrift, dat bestaat uit de hoofdstukken 5 tot en met 7, is

gewijd aan de berekening van optimale strategiën in tweepersoonsnulsomspe-

len. Voor eenpersoonsspelen is het soms al moeilijk om optimale strategieën

te bepalen. Bij spelen voor twee spelers zijn de berekeningen nog veel com-

plexer, aangezien de kwaliteit van een strategie nu afhangt van de strategie

die de tegenstander gebruikt. Een andere factor die het bepalen van opti-

maal spel ingewikkeld maakt, is de onzekerheid die veroorzaakt wordt door

toevalsfactoren.

Hoofdstuk 5 bevat de analyse van een eenvoudig pokermodel. Aangezien

in poker geen kaarten worden uitgespeeld, zoals bij bridge, hebben alle strate-

gische aspecten van het spel te maken met het bieden en trekken. Hoewel

de strategische structuur van het spel relatief eenvoudig is, zijn echte poker-

spelen moeilijk om te analyseren. Uit een stok kaarten kunnen meer dan

tweeëneenhalf miljoen verschillende pokerhanden worden gevormd, zodat de

dimensie van de representatie van een specifieke variant van het pokerspel snel

te groot wordt om te analyseren, zelfs voor moderne, snelle computers.

Om dit probleem van het grote aantal verschillende pokerhanden aan te

pakken, ordenen we de handen en stellen we ze voor als getallen tussen nul en

één op de reële rechte. De hoogst mogelijke pokerhand, een royal flush, corres-

pondeert dan met het getal één, terwijl de laagst mogelijke hand nul is. Om

de analyse van het spel nu eenvoudiger te maken, kunnen we de kaartverdeling

benaderen met een continue verdeling op het interval [0, 1]. Daarmee verhogen

we impliciet het aantal mogelijke handen van heel veel naar oneindig. Deze

aanpak volgen we in dit hoofdstuk, waarin we een pokermodel met twee spelers

bestuderen dat gëıntroduceerd is door Von Neumann en Morgenstern (1944,

hoofdstuk 9). In het oorspronkelijke model worden de handen van de spelers

getrokken uit de continue, uniforme verdeling op [0, 1]. Wij breiden dit model

uit door het toestaan van andere dan uniforme kansverdelingen voor de poker-

handen. We berekenen analytisch de optimale strategieën voor beide spelers en

de verwachte uitbetalingen die bij die strategieën horen. Vervolgens vertalen

we de gevonden resultaten naar de situatie waarin het spel wordt gespeeld

met een stok van 52 kaarten, waaruit pokerhanden van vijf kaarten worden

getrokken. Ten slotte bepalen we het relatieve behendigheidsniveau van dit

pokerspel.

Hoofdstuk 6 gaat over de berekening van optimale strategieën in poker-
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modellen met een biedstructuur die ingewikkelder is dan die in het model van

hoofdstuk 5. In dergelijke modellen met continue kaartverdelingen is het niet

altijd mogelijk om evenwichten op een analytische manier te vinden. We tonen

een manier om optimale strategieën in een dergelijk spel te vinden door gebruik

te maken van kennis over optimale strategieën in een gerelateerd spel met een

discrete kaartverdeling. Het hoofdstuk wordt afgesloten met de beschrijving

van de optimale strategieën in het meest complexe pokerspel dat we tot nu

toe compleet hebben kunnen analyseren. In dit model hebben beide spelers

de mogelijkheid tot verhogen, nadat de tegenstander geboden heeft. Ook voor

dit spel presenteren we een analyse van het relatieve behendigheidsniveau.

In hoofdstuk 7 komt een minder bekende, maar wiskundig gezien inte-

ressante klasse van tweepersoonsspelen aan bod. Het gaat om de zogenaamde

take-and-guess-spelen. Deze klasse kan worden opgesplitst in twee deelklassen.

In beide deelklassen moeten de spelers een aantal objecten in de hand nemen.

Daarna moeten ze het totaal aantal in de hand genomen objecten raden. In

de eerste deelklasse, die van de morraspelen, moeten beide spelers hun gok

simultaan uitspreken. In de andere deelklasse, gevormd door muntenspelen,

raden de spelers na elkaar het totaal.

Take-and-guess-spelen verschillen van poker door het afwezig zijn van ex-

terne toevalsfactoren. De onzekerheid waar een speler mee te maken krijgt,

wordt enkel en alleen veroorzaakt door zijn tegenstander. Dit biedt, in het

bijzonder voor de muntenspelen, geen garantie dat de berekening van opti-

male strategieën in deze spelen eenvoudig is. Slechts voor een deelklasse van

de muntenspelen waren optimale strategieën bekend. Voor de overige munten-

spelen binnen deze klasse was de bepaling van deze strategieën en de spel-

waarden een openstaand probleem. Dit probleem hebben we opgelost: we

geven in hoofdstuk 7 een overzicht van de waarden en de optimale strategieën

van morra- en muntenspelen met alle mogelijke aantallen objecten voor beide

spelers.
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