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L. Andries van der Ark, Marcel A. Croon, and Klaas Sijtsma
Tulburg Unwversity

This volume contains a collection of papers on the analysis of categorical
data by means of advanced statistical methods. Most methods presented
use one or more latent variables to explain the relationships among the
observed categorical vaiuiables If the latent variables are also categorical the
method is called lateﬂt ciass analysns (LC ﬁk) and if they are continuous the

method is called ztom response. theory. (IRT) or.latent variable modelhng
Both LCA and IRT are used to.analyze categorical data from at least

two, but often many variables collected in a multidimensional contingency

table. It is for this.-fz;__easgn- t-hat this irm*aducizory chaptcr star‘ts -with a bricf

The focus of the COI}tTIbﬁtIOHb is apphed i:hat 18, &fter a method is
explained, the potential-of the method for analyzing-categorical data is
ilustz aned by means 0f a real data exa_mplc The edltors ex:press theu h@pe

the behavzoral sciences, and pGSSIbl}’ in-other ﬁelds (e g., language studzes
marketing, political science, ‘social medical research) as well, to use the
advanced and multi-purpose models discussed here in their own rescarch.
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1.1 Categorical Data and Analysis of Contin-
gency Tables

Many variables collected in social and bchavioral science rescarch are cat-
egorical. Agresti {2002) distinguishes two kinds of categorical variables.
Nominal variables have two or more numerical values that distinguish class-
es, for cxample, gender [men (e.g., score 0) and women (¢.g., score 1)}, reli-
gion [c.g., catholic (1), protestant (2), jewish (3), islamic {4)], and political
persuasion [democratic (1), republican (2)]. The scores serve to distinguish
group membership. Ordinal variables have numerical values that describe
an ordering. Examples arc level of education [low (1), intermediate (2),
high (3)], preference for a brand of beer (c.g., scores 1,....10: a higher
score indicates a stronger preference), and level of agreement with a par-
ticular statement about abortion (e.g., 0,...,4; a higher score indicates a
stronger cndorsement). In these examples, the scores serve to order the
respondents on the variable of interest.

Traditionally, relationships between categorical variables are studied by
means of contingency tables. The simplest contingency table gives the
two-dimensional layout for two variables, such as gender and political per-
suasion. In the example, the table has two rows (gender) and two columns
(political persuasion). For a sample of respondents, the cells of the table
give the number of democratic men, republican men, democratic women,
and republican women. The margins of the table give the sample frequency
distributions of gender and political persuasion. An example of such a sinmi-
ple two-way contingency table is Panel A of Table 2.6 on page 29,

The relationship between gender and political persuasion can be studied
by means of several statistics. For tables of any dimension (i.c., number
of variables) and any order (i.c., number of categories per variable}, the
chi-square statistic {denoted x?) can be used to test a null hypothesis of
expected cell frequencies under a particular model for the data against an
unspecified alternative. An example of a more general two-way contingency
table is Table 5.1 on page 85. These expected frequencies can only be
calculated under certain assumptions about the population. A common
assumption is that the observed marginal distributions are the population
distributions, which are kept fixed, and used to calculate cell frequencics
expected under independence of the variables. The assumption then is that
the variables’ marginal distributions generated the data. If the chi-squared
statistic is significant, the null hypothesis is rejected and it is inferred that
there is a relationship between the variables. Other null models can be
formulated, and expected cell frequencies calculated and tested against the
observed cell frequencics, using the chi-squared statistic.
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For some simple tables, the strength of the re clationship can be expressed
by association cocfficients. For example, in a 2 x 2 table for gender {rows;
scored 0, 1) and political persuasion (columns; scored 1, 2), assuming the
marginal distributions fixed one can casily verify tmt Lhe table has one
degree of freedom. Consider the “democratic men” cell [ic., the (0, 1)
cell]. Given fixed marginals and a given sample size, N the expeeted
frequency of democratic men can be calculated and comparcd with the
obscrved frequency. Obviously, the observed frequency can deviate from
the expected frequency by being cither higher or lower, and the more it
deviates in either direction, the stronger the reiatzonsth The strength
of this relationship can be expressed by the ¢ coefficient. To define this
coctficient, denote the cell frequencies of the gender by political persuasion
table as ng1., ng2, n11, and nye, and the marginal frequencics of the rows
as ny4+ and niy, and of the columns as ny;, and n42. The ¢ coefficient is
defined as
Tigy M2 — Tigaiiyg
VIo+ M+ g

b =

The dependence of ¢ on the x? statistic is clear through

b= /%
N
This relationship shows that, given fixed N, the higher x? (i.c., the greater
the discrepancy between observed and expected cell Ercqucnues) the higher
¢, cither positive or negative (i.c., the str onger the association between
gender and political persuasion). The ¢ coefficient is equal to the Pearson
product-moment correlation, applied to the respondents’ nominal scores on
gender (0,1) and political persuasion ( 1,2), and thus attains values on the
interval {—1;1] provided that the marginal distributions of the variables are
equal. The more the marginal d}stnbutlans are diﬂCI‘GHL thc smailor the
range of ¢. |
The dependence of ¢ on the mar gmai dzstzabu_t_’zons of the table obviously
mpairs its interpretation. This dlawba(.k___zs rerr"icdacd by Mekken (1971
see Loevinger, 1948) H coeflicient. Lot ¢ae denatc the maximum corre-
lation given the marginals of the ta Jle' thcn the H cecﬁicmnt *is""deﬁnod

Qbmu:r -

Division by ¢4, guarantees that the maximum M is a}wa,ys 1.
Probably the best known association coefficient for contmﬁency tables is
the odds-ratio (e.g., Agresti, 2002, pp. 44-47). For cell frequencies denoted

H=
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N1, Moz, 1. and nye, the odds ratio, denoted O, is dehned as

O = LTy ._

o2y

[t takes values in the interval [0, 00). An odds ratio smaller than 1 indicates
a negative relationship and an odds ratio greater than 1 a positive relation-
ship. The odds ratio is not influenced by the marginal distributions of
the table. AU three coofficients can be generalized to two-way contingency
tables of greater order.

Another example of a contingency table in which association can be
determined is the following. Imagine two psychologists who independently
rated children's inclination to cngage in self-directed behavior.  Assume
that inclination is taken as the degree to which children exhibit this kind
of bechavior, recorded by means of a checklist, when they arc observed in
a playground among their peers. Assume that both psychologists cbserve
cach child for a fixed period of time, and then rate the child as either “low-
level,” “average,” or “high~lcvel.” For N rated children, the ratings of the
two psychologists can be collected in a 3x 3 contingency table, with diagonal
cells containing the frequencies by which they agreed, and the off-diagonal
cells the frequencies by which they disagreed. The marginal distributions
express cach psychologist’s propensity for assigning children from the popu-
lation of interest to the three categories. Assuming the marginals fixed, the
expected frequencies can be calculated and compared to the observed fre-
quencies, using a chi-squared test. The degree to which the psychologists
agree can be expressed by means of Cohen’s k coeflicient, which is nor-
malized to have a maximum of 1 independent of the marginals, expressing
maximum agreement, a 0 value expressing independence, and a negative
minirnwmn which depends on the marginals. Cohen’s k has been generalized
to more raters and different numbers of categories used per rater, and also
the differential weighing of the off-diagonal cells.

‘The methods discussed thus far are suited especially for small tables,
but may miss several interesting cficets in tables based on more variables
and/or more categorics per variable. For example, consider a 3 x 4 table
with level of education in the rows (low, intermediate, high) and religion
in the columns {catholic, protestant, jewish, islamic). A rescarcher nay
hypothesize, in particular, that people with a low educational level are more
often catholic than expected on the basis of the marginal frequencics of low
educational level and catholic religion alone. Similarly, he/she may expect
higher or lower frequencies elsewhere in the table, but not everywhere. The
overall chi-squared statistic and the association coefficients cannot reveal
such specific cffects, but log-linear models can.

Conceptually. log-linear models may be compared with analysis of vari-
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ance models (Stevens, 1992, p. 502}. Log-lincar models compare effects of
rows and columns of a contingency table with a “grand mean” and are also
capable of explaining deviates from marginal effects in cells by means of
interaction effects. Let X and Y be two categorical variables with values
x=1,...,my and y = 1,...,my, respectively. The natural logarithm of
the expected frequency in cell (z,y), denoted ey, is modelled to be the
sum of a grand mean, X, a row effect, A, a column cffect, )\’ , and an

interaction effect, /\f‘y" , such that

X o \Y XY

Log-lincar models that contain all main effect and interaction cffect param-
cters—so-called saturated models—cannot be tested because there are no
degrees of frecdom left in the data. More importantly, the principle of
parsimony requires models to be as simple as possible and this is realized
best when the researcher defines the effects of interest before he/she starts
analyzing the data. The other effects can be set to 0, comparable to what
one does with the factor loadings in a confirmatory factor analysis, and the
fit of the restricted model to the data can be tested using chi-squared test
statistics. Also, competing models which are nested can be tested against
one another. For example, for cell {z, y) nested models with and without the
interaction parameter can be tested against cach other. A significant result
means that obscrved frequency is different from the expected frequency
under the null model. See Wickens {1989), Hagenaars (1990}, Agresti (1996,
2002}, Stevens (1992}, and AndreB, Hagenaars, and Kiihnel (1997) for more
information on log-linear models; also sec Bergsma and Croon (chap. 5, this
volume). |

1.2 Categorical
Analysis

Data and Latent Class

LCA models assume that the frequency counts in a contingency table can
be explained by finding an appropriate subgrouping ‘of 3%pond_ents such
that in cach table corresponding to-a: subﬂroup the: ceil**ﬁ ;:quencies caﬂ be
explained from the marginal dzstubutwns for Lh&t table As the subgmups
arc not defined a priori but estimated from de " G c:ox:xsxdemd
to be latent; hence, latent class analys}s O TR
Assume a discrete latent variable.on: thch homagancous classes Of re-
spondents can be distinguished, and denote thxs wvariable 4, Wmh W classes,
indexed w = 1,...,W. Also, assume an- aa'bztrary number say, J, of ob-
served categomcai vari.ables denoted X, with g1, 0.0, J, and collected
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in a vector X with realization x. The LCA model assumes independence
between the observed variables given a fixed value of 8. This is known as
local independence (LI), which means that

J
P(X=x|§=w)=[] P(X; = ;|0 = w).

J=1

Now, using the property of independent events, Aand B, that P(AAB) =
P(B)P(A), and applying LI to P(A), we may write the LCA model as
(Goodman, 2002; Heinen, 1996, p. 44; MecCutcheon, 2002),

PX=xA8 =w) =Pl =w) ][] P =116 = w).

The probability that a ranidomly chosen respondent produces score pattern
X =X, 15

W

P(X = 3 P(6= w)HP(Y = 2|0 = w).

qai=1

This equation shows how the LCA models the J-variate distribution of
the observable variables in terms of latent class probabilitics, P(6 = w),
and pmbabﬂaues of having: particular scores z; on observable variable X
(j =1,...,J) given class yembership, P(X; = ;16 = w).

The class pmbabihtma and the conditional probabilities can be esti-
mated from the data for sewveral choices of the number of latent classes, W.
In practical data analysis, T4 often varies between 1 and 5. The paramcter
estimates for the best-fittinng model arc used to estimate the discrete distri-
bution of 8, P(6 = w), with w = 1,...,W. This distribution can be uscd
together with the conditional pmbablh_txes, P(X; = 24|80 = w), to assign
people to latent classes. For respondent v, this is done using probabilitics
P8 = w|X, =Xx3), forw = 1,..., W, after which he/she is assigned to the
class that has the greatest subjective probability.

For a given number of latent classes, one thus finds a typology for a
population in terms of response patterns on J variables; that is, different
classes are characterized by different patterns of scores on the J observable
variables. For example, a sociologist may be interested in the types of atti-
tudes with respect tomale and female role patterns, interpreted in terms of
the typical answer pattern on the J items in a questionnaire. Heinen (1996,
pp. 44-49) found that three classes fitted the data best. One class (45% of
the respondents) represented a pro-women's lib point of view, another class
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(11%) was traditional, and the third (44%) was liberal on some issucs but
traditional on others. Another example comes from developmental psychol-
ogy, where rescarchers may be interested in different developmental groups.
FEach group may be characterized by another solution strategy for a partic-
ular cognitive problem, which reflects the cognitive stage of the group (e.g..
Bouwmeester, Siitsma, & Vermunt, 2004; Jansen & Van der Maas, 1997;
Laudy, Boom, & Hoijtink, chap. 4, this volume).

It may be noted that, thus far, latent classes have been assumed to be
unordered, that is, to have nominal measurement level. This leads to an
unrestricted LCA model. A recent development is to put order restrictions
on the conditional probabilities, P(X; = ;|0 = w), so as to express the
assumption that there is an ordering among the latent classes, such that
people in a higher latent class have a higher probability, P(X; = z;]6 = w),
to give a particular answer to the item. This makes sense, for example,
when a higher class stands for a higher reading ability and the items con-
tain questions about a rcading text, or when higher classes correspond to
progressively higher levels of endorsement with abortion and the items are
positively worded statements about abortion that have to be answered on
a rating scale. Croon (1990, 2002) introduced these ordered latent class
models, which were studied further by Hoijtink and Molenaar {1997), Ver-
munt (2001} Vermunt and Magidson (chap. 3, this volume), and Van Onna
(2002); scec Emons, Glas, Mcijer, and Sijtsma (2003) for an application
to the analysis of odd responsc patferns on sefs of cognitive test items,
and Laudy, Boom, and Hoijtink {chap. 4, this volume) for a application
to balance-scale data. Haberman (1979) and Heinen (1996) discussed the
close mathematical relationships between log-linear models and LCA mod-
cls. More information on LCA models can be found in McCutcheon (1987)
and Hagenaars and McCutcheon (2002).

1.3 Categorical D ataandﬂem Respanse "
Theory "

IRT models assurne that the frequency counts«in a J-dimensional contin-
gency table based on the J items from a test can be explained-by one ore
more continuous latent variables on which the respondents-are located. For
onc latent variable, given a fixed value; each contingency: table correspond-
ing to this value can be explained from the marginal.distributions for-that
table. This is the assumption of localiindependence (LI} for IRT models.
The item scores usually are ordinaliexpressing progressively ‘higher lev-
els of endorsement {c.g., Masters, 1982; Samecjima, 1969), and sometimes
nominal, as with multiple-choice items when' students-select one option
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) . rd 5 TS 31 TP, -‘}r t . ) .
from four or five unordered options (c.g.. Bock, 1972; Thissen & Steinberg,
1997). Assume that we have @ continuous latent variables, cnumerated
By,...,00, and collected in vector 6. Then, LI is dehined as

J
P(X =x|8) =[] P(X; = x;18).
J=1

For simplicity we assume that onc latent variable, 8, suffices to explain the
data structure, and that the prabability density of 8 is denoted g(6). Then,
the multivariate distribution of the data can be written as

J
P(X =x)= / H P(X; = z;]0)g(8)d8.
0 ;=1

The difference with the multivariate distribution of the data in an LCA
model is that in IRT the latent variable is continuous, thus mntroducing an
integral instead of a summation, while in LCA models the latent variable
is discrete.

IRT models imposec restrictions on the conditional response probabili-
ties, P(X; = z;}0). These restrictions can be orderings only (c.g., the re-
sponse probability increases in the latent variable) or consist of the choice
of a parametric function, such as the normal-ogive or the logistic. Onee a
model is chosen, it is fitted to the data. If a misfit is obtained, cither the
restrictions on the conditional response probabilities, P(X; = 2,18}, or the
dimensionality of the model are changed, or items that were badly fitted
by the model are removed from the analysis. Either way, the new model is
fitted to the complete data set or the original model is fitted to the modified
data set. When a fitted model is obtained, parameter cstimates for items
are used to calibrate a scale () for respondents, on which respondent v
is located by means of ML (or Bayesian) estimates of 8, (v = 1,..., N).
This scale is then used as a measurement rod for the psychological property
operationalized by the items.

Many applications of IRT models exist. For example, they are used to
build large item collections—item pools—with known measurement prop-
erties (Kolen & Brennan, 1995), from which tests with desirable propertics
can be assembled (Van der Linden, 1998). Item pools arc also the basis
of computerized adaptive testing, which is the one by one adminstration
of items to-individuals where the choice of the next item is determined by
the estimate of the individual’s value on the latent variable based on the
previous items, until an estimate of sufficient accuracy is obtained {Van der
Linden & Glas, 2000). IRT models are also used to detect items that are
biased against a particular minority group {(Holland & Wainer, 1993), and
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individuals that show atypical test performance (Meijer & Sijtsma, 2001).
Another application is the study of the cognitive process underlying the
item responscs by means of an appropriate re-parametrization of the item
parareters in an IRT model {e.g., Fischer, 1974; Embretson, 1997).

An intercsting development in the 1990s has been that IRT models
have become part of a larger, morc encompassing statistical tool box. For
example, they have become the measurement part of linear hierarchical
models for analyzing nested data (Fox, chap. 12, this volume; Fox & Glas,
2001; Patz, Junker, Johnson, & Mariano, 2002). This development in IRT
is comparable to the intcgration of multilevel models, event-history mod-
els, regression models, and factor analysis models in LCA. See Vermunt
(1997) for the development of the general framework in which these mod-
cls were incorporated. Both developments reflect the increased availability
of advanced statistical machinery for analyzing complex data, integrating
structural analysis with the analysis of differences between groups {LCA)
or individual differences (IRT). |

Another interesting development is the integration of LCA and IRT. For
exampie, nonparametric [RT models often restrict the conditional probabil-
ities, P{X; = z;|8), to be nondecreasing. This assumption reflects the idea
that a higher latent variable value, for example, arithmetic ability increases
the probability of solving arithmetic problems correctly. This monotonicity
assumptlon has recently inspired the approximation of continuous nonpara-
metric IRT models by discrete ordered LCA models (Hoijtink & Molenaar,
1997: Van Onna, 2002). The idea is that a small number of ordered la-
tent classes can approxtmate the continuous latent variable with sufficient
accuracy, and then make available for nonparamectric IRT the repertoire
of standard statistical techiniques necded for investigating model -fit. LCA
models have also been used in the context of parametric IRT models, for
example, the Rasch model; sec Rost (1990). Introductions to IRT models
can be found in Embretson and Reise (2000); Fischer and Molenaar (1995),
Van der Linden and Hambleton (1997), and Sijtsma and Molenaar (2002).

Hagenaars (chap. 2) discusses how misclassification and:measurement er-
rors in categorical variables lead to phenomenasthat aresimilar:to the well-
known regression toward the mean effect for continuousivariables: -He argues
that for categorical variables one should rather speak-of tendency toward
the mode and shows by means of well-chosen examples-how frequently this
phenomenon occurs in social science: research. He also discusses how ten-
dency toward the mode can be fixed by appropriate latent class analyses of
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the data.

Vermunt and Magidson (chap. 3) attempt to bridge the differences be-
tween the lincar factor analysis model for continuous data and the latent
class model for categorical data. In their approach, a lincar approximation
to the parameter cstimates obtained under a particular latent class model,
the latent class factor analysis model is obtained. By means of this model
they ensure that the output of their analysis is similar to that of standard
factor analysis, which may be casier to interpret than the output from the
original LCA.

Laudy, Boom, and Hoijtink {chap. 4) use LCA to test hypotheses in-
volving inequality restrictions (c.g., Group A is expected to perform better
on test T than Group B}, and discuss how a rescarcher may choose anong
competing hypotheses. The authors analyze categorical balance-task data
obtained from 900 children of diffcrent age groups, and compare several
theories explaining the associations in these data.

Bergsma and Croon {(chap. 5) discuss a broad class of modals for testing
complex hypotheses about marginal distributions for categorical data. The
modecls are defined by means of the nonlinear equality constraints imposcd
on the cell probabilitics in the corresponding contingency table. Further-
more, the authors discuss how the maximum likelihood estimates of these
constrained cell probabilitics may be obtained, and how the corresponding
model can be tested.

Moustaki and Knott (chap. 6) usc the EM cstimation procedure and a
Bayesian estimation procedure to estimate the parameters of three latent
variable models for catcgorical data. The authors demonstrate how latent
variable models for categorical data can be formulated on the basis of sub-
stantial theory. They discuss the merits and the pitfalls of both estimation
procedurcs using software that is freely available.

Van Rijn and Molenaar (chap. 7) discuss dynamic latent variable mod-
els that allow the analysis of categorical time series observations on a single
subject. The authors describe a model that integrates the basic principles
of the Rasch measurement model and the assumptions of a simple stochas-
tic model for describing individual change. They also discuss parameser
cstimation for this dynamic Rasch model.

Van der Ark and Sijtsma (chap. 8) discuss the imputation of item scores
for missing values in data stemming from the administration of tosts and
questionnaires. They consider simple and more complex methods for miss-
ing data handling and single and multiple imputation. They apply their
methods to three real data sets in which a priori fixed numbers of scores
have been deleted artificially using several missing data mechanisms, and
then impute scores for the missingness thus created. The effects of each
imputation method on confirmatory and exploratory IRT scale analysis i
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mvestigated.

Kelderman (chap. 9) formulates measurement models for categorical
data m terms of graphical independence models, exchangeability models,
and log-lincar models. By bringing these concepts under a single umbrella,
hc demonstrates how to start from scratch and construct an IRT model
using important concepts such as exchangeability and internal and external
consistency as building blocks.

Bechger, Maris, Verstralen, and Verhelst (chap. 10) discuss the Nedel-
sky IRT model for the analysis of test data from multiple-choice items on
which some of the examinees may have rfuessed for the correet answer. The
model rests on the assumptions that an examinee first eliminates the item’s
distracters he or she recognizes to be incorrect, and then guesses at random
from the remaining options. They apply the modcl to data from a national
test administered to eighth grade elememtmy school pupz]s assessing tlmn
tollow-up school level. : '

Drancy and Wilson {chap. 11) discuss the saltus IRT model. This is
a mixture Rasch model. The saltus model is especially suited for devel-
opmental data stemming from several subpopulations who are in different
developmental stages. The model assumes one item difficulty paramcter
for cach item and formalizes change from one subpopulation to the next
by means of a small number of parameters. The authors apply the saltus
model to data obtained from 460 children ranging in age from 5 to 17 years,
who took a test assessing proportional reasoning, and show how the data
should be analyzed and the results interpreted.

Fox {chap. 12) discusses a multilevel IRT model. He analyzes the data
of a mathematics test administered to 2196 pupils {level 1 of the multilevel
IRT model) from 97 clementary schools {level 2). This chapter focuses on

the goodness of fit of the multilevel IRT m{)dci and the detectlon of outlying
response patterns. o o
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