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L. Andries van der Ark! and Klaas Sijtsma
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8.1 Entraductmn

Tests and quesi:zom}aazes can: be cmzstruated mamly m two ways. T 1€ ﬁISt
is cxploratory T}m means that the ﬁna test 13 selected from the mm‘ad set,

ft}l the miaab;hty of person oz'dermg The secoﬁd ‘wa}' of test cc:mstl uctaon
is conﬁrmatm‘y Thls means thaﬁ the set @f ztems is co_;.___,__,_: '}_cipred to be ﬁmd

uiar madel wztzhout .-.c,_ha;}gm gthe wmp@SltlonofthelmmSei: I."oz .;.:..cxampl c,
after fifteen years of usethe test constructor may decide-that the norms.for
interpretation of test: results need to beupdated. . The stand-alone software

i'l he first author s research has____beeﬁ_supported by the N’_etherlands Research Councﬁ
(NWO), Grant No. 400, . Thanks are due to Liesbeth van dén Munckhof for her
assistance with the MSP ‘analyses and Joost van:Ginkel for corrécting an error in the
initial compuiation of the statistic A IN.
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148 Van der Ark and Sijtsma

package MSP (Molenaar & Sijtsma, 2000) allows both possibilities. A well
known problem in data analysis for test and questionnaire construction is
that some of the N respondents did not supply an answer to some of the
J items, so that the data matrix X is incomplete. MSP only offers listwise
deletion to handle the missing data problem. This may result in the loss of
many cases, biased estimates of parameters of interest, and reduced accu-
racy of estimates. The topic of this chapter is the comparison of imputation
methods with respect to the outcomes of cxploratory and confirmatory test
construction as implemented in MSP.

8.1.1 Missing Data Mechanisms

Missing item scores may be due to many reasons. Often these reasons arce
unknown to the researcher. For example, the respondent may have misscd
a particular item (e.g., due to inattention or time pressure), missed a whole
page of items, saved the item for later and then forgot about it, did not
know the answer and then left it open, became bored while-taking the test
or questionnaire and skipped a few items, felt the item was embarrassing
(e.g., questions about one's sexual habits), threatening (questions about the
relationship with one's children), or intrusive to privacy (questions about
one’s income and consumer habits), or felt otherwise uncasy and reluctant
to answer.

Rubin (1976; also, see Little & Rubin, 1987; Schafer, 1997) formalized
mechanisms of missing data into three classes. Let ¢ denote the respondent
index and j the item index, and let z;; be the integer score of respondent i
on item j. Let M be an NV x J indicator matrix of with elements m;; = 1
if score x;; is missing, and m;; = 0 if score z;; 1S observed. The observed
part of X is denoted X,ps and the missing part is denoted’ X,:. Thus,
X = (Xops, Xomis). Let [ be a set of parameters governing the data, Xops
and X,,;s, and £ a set of parameters governing the missingness, M. We
may model the distribution of the missing data as P(M|X 5, Xovs, 5, 8)-

The missing data are called missing at random (MAR) when the dis-
tribution of the missing data does not depend on the massmg item scores;
that is |

(M!me: ob.‘,‘sﬁ E) (M!Xob.ss P ob.@.iﬁ

An example of MAR is that missing item scores depend on ctﬁ'ﬁer observed
items or covariates. Such a covariate may be gender. For example, for men
it may be more difficult to admit to the item ‘I cry at weddings’ than for
women (item taken from questionnaire by Vingerhoets & Cornelius, 2001}).
Therefore, a larger proportion of the male respondents ma‘,f decide not to
respond to this item.
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A special case of MAR is mussing completely at random (MCAR). Data
are MCAR when the missing data values are a simple random sample of
all data values; that is,

P(Mlxmi.‘;a XOst/@sé) — P(le)

For MCAR. the parameters in £ only affect the proportion of missing valucs,
but not the pattern of missingness.

Missing data are called nonignorable when their distribution
P{M|X . .is, Xops, 7, €) depends on X ps, Xomis, and &, and indirectly on f3
since these parameters govern Xy and X One example of a nonig-
norable missingness mechanism is that the distribution of the missing data
depends on values of variables that were not part of the investigation. For
example, in a personality inventory missingness may depend on general
intelligence or reading ability. Another example of a nonignorable missing-
ness mechanism is that the distribution of the missing data depends on the
missing iterm scores; for example, respondents who cry.at weddings have
a higher probability of not answering the item ‘I cry at weddings’ than
respondents who never cry at weddings. Consequently, any missing data
method based on available item scores would underestimate the: miqsmg
value. '

8.1.2 Test Construction
Exploratory and confirmatory test construction

Our frame of reference in this study is nonparametric item response theory
(NIRT; Boomsma, Van Duijn, & Snijders, 2001; Mokken, 1971; Sijtsma &
Molenaar, 2002; Van der Linden & Hambleton, 1997). Followmg NIRT, we
define a latent trait 6 that stands for a psychological property or a collection
of psychological properties measured by the J items. FFor example, the 1tem
“I cry at weddings” may be indicative of the latent trait “tendency to cry”
Parameter 8 thus governs the data and zepiaces parameter vector . Let
X; be the random variable for the score on item j. Item scores may be
dichotomous or polytomeus For exa,mpie the item “lvcry at weddings”

may have Only two answer. Categome ,.?-‘__ apphCS Bd doe_ iiot app%y whzci

tendency to cry”, wspectwely. Anather posqtblhty 1§’ th&t the respondcm
indicates on an ordered rating scale the degree to which the item applies
to him/her, and the corresponding polytomous scoring then may be x; =
0,...,g. Latent trait € is estimated by ‘means of X, = 2 X; (Hemker,
Van der Ark, & Sijtsma, 2001; Junker,~1991; Stout, 1990). T\Iote that X4
may either estimate a umdlmensmna g or a multidimensional &.
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The construction of a test or questionnaire mainly follows two possi-
bilities. The first possibility is that one starts from scratch, defining the
construct of interest and a useful operationalization, and then defines a
collection of experimental items. Then a clustering method from MSP may
be used to determine the structure of the data in terms of the underly-
ing latent traits. A cluster is a set of items that measure the same latent
trait. This is an exploratory approach because the dimensionality structure
was not hypothesized prior to the application of the clustering method but
found by the program. The sccond possibility 18 that onc starts with an
existing instrument and wants to know whether it can be used in another
population or at a later point in time. This entatls drawing a new sample
of respondents to which the existing item set is administered, or adminis-
tering the item set to the same respondents once more. Then MSP may be
used to analyze the item set as one cluster and determine its psychometric
propertics. Because the item set is considered to be fixed, we consider this
kind of item analysis to be confirmatory in the sense that for this sef it is
determined whether or not it is a uscful instrument in a new context.

Test construction according to MSP

Scalability coefficients. Both for cxploratory and confirmatory test
construction, MSP uses the scalability cocflicient A (Mokken, 1971, pp.
148-153; 1997; Sijtsma & Molcnaar, 2002, pp. 49-64) as a scaling crite-
rion. For two items 7 and &, Cov(X,;, Xr) defines their covariance and
Cov(X;, Xi)max defines their maximum covariance given the marginal dis-
tributions of their bivariate frequency table. The scalability coefficient for
these two items is defined as

- Cov(X;, Xy)
o COQJ(XP .X}:-)ﬁmx '

Hjp

Cocficient H ;i i1s the basis for the scalability coefficient of one item with
respect to the other J — 1 items; this coefficient is denoted [, and defined
as

J
Z COU(Xj, }{;;)
ks |

J = -
Z Cov (de 3 X Fr )nmx
k3 j
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Finally, scalability cocfficient H for all J items is defined as

J—=1 J
Z{ . Z 3 CO’U(_}{J" X'_,z:)
. JELER=)+
f = J-1 J :
Z Z CQ’U( }‘){' )mm\.
F=1 k=341

Monotone homogeneity model. The use of scalability cocfficients
H;i, H;, and H is related to the monotone homogeneity model (MHM;
Mokken, 1971, p. 118). The MHM assumes a unidimensional latent trait 8,
local independence of the item scores given ¢, and a monotone nondecreas-
ing relationship between P(X; > z;]0) and 8. For scores 23 = 1,...,¢, the
conditional probabilities P(X; > x;|8) are the item step response functions
(ISRFs) (for z; = 0 the ISRF cquals 1 by definition). For dichotomous
items (g = 1) the only relevant ISRF is P(X; > 1|0) = P(X,; = 1{8). This
is the item response function (IRF). Together, the assumptions of unidi-
mensionality, local independence, and monotonicity define the MHM. For
dichotomous items, the MHM implies the stochastic ordering of latent trait
§ by means of obscrvable summary score X4, that is, for an{'y + we have
that P(# > t|X.) is nondecreasing in. X4 (based on Grayson, 1988; also,
see Hemker, Sijtsma, Molenaar, & Junker, 1997). Thus, the MHM implies
ordinal person measurement on § using X4. The more complicated case
for polytomous items is trcated by Van der Ark (in press). |

Relationship between MHM and coefficient H. The T\'IHM 1m-
plics that H;, > O {(Holland & Rosenbaum, 1986; Mokken, 1971, pp.-149-
150). By implication, we have that H; > 0 and H > 0. Based on these
implications, Mokken (1971, p. 184; Sijtsma & Molenaar, 2002, pp. 67-
68) defined a scale as 'a set of dichotomously scored items for which, for a
suitably chosen positive constant ¢, and for product-moment correlation p,

pir > 0, for all item pairs:(5,k); .~ (81

and

H >Cc> O for all 1tems 3 | 89)

Equation 8.1 implies that Hjz > 0. Lquation 8 1 aiso maphcs tha’a H >0
and H > 0. In addition, by specifying that H;.2¢ - Equation 8.2 -poses
minimum zequiroments on the slepe of the IRF That is constant cforf:,-es a

n.nplzed by the MHM.,.__:but beeause ...%:ins _._model .ailow_s Weakiy. S op__c.d IR&F&
and cven flat IRFs as.a borderline .case, the addition.of a minimum dis-
crimination requirement is a practical measure for reliable person ordering.
Finally, the definition of a scale can be extended readily to polytomous
items (Sijtsma & Molenaar, 2002, p..127).. -
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Automated item selection. For exploratory test construction, MSP
selects items according to the definition of a scale (Equations 8.1 and 8.2).
The default option for item selection, to be used here, has the following
steps {Mokken, 1971, pp. 190-194).

1. From the J available items, MSP selects from the item pairs which
have a Hj; that is significantly greater than 0, that pair which has
the highest Hji that is greater than ¢. This is the start set for item
selection.

o

. From the remaining J — 2 items, that item is added to the start sct
that (a) has a positive covariance with both selected items (Equa-
tion 8.1); (b) has an H; value with the selected items that is at least
¢ (Equation 8.2); and {c) has the highest common f value with the
selected items, given all candidate items for selection.

3. The next items are selected following the logic of Step 2. The item
selection for the first scale ends when no more items satisfy the criteria
mentioned in Step 2.

4. If items remain unselected after the first scale has been formed, from
the unselected items MSP tries to form a second scale, a third scale,
and so on, untill no more items remain or no morc items satisfy the
criterion in Step 1.

For confirmatory test construction, the MHM is fitted to the data cor-
responding to the a priori defined test consisting of J items using methods
implemented in MSP (Molenaar & Sijtsma, 2000; Sijtsma & Molenaar,
2002). This includes calculating and evaluating the H; and H coefficients.

8.2 Methods for Missing Data Imputation
We introduce four methods for the imputation of item scores for missing
observations in a data matrix X, plus listwise deletion. Listwise deletion 1s
the only method currently implemented in MSP. It was used as a benchmark
for the other methods. For each of the five methods it was investigated how
they influence the results of the automated item selection procedure in MSP
(exploratory test construction) and how they influence the results of fitting
the MHM to an a priori defined scale (confirmatory test construction). The
five missing data handling methods are discussed next.

Listwise Deletion. Listwise deletion (LD) deletes from the analysis all
cases that have at least one missing item score. Because for data matrices
that contained at least ten percent missing item scores it was found that
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LD led to the rejection of almost the whole data matrix, in these cases
we used the imputation of a random item score as an alternative (called
Random Imputation; abbreviated RI).

Two-Way Imputation. Because in a unidimensional test or ques-
tionnaire all item scores measurce the same latent trait, the scores on the
available items can be used for imputing scores for missing data. Let PM,
be the mean item score of person ¢ calculated across his/her available item
scores; let TAf; be the mean score on item j calculated across the item
scores available in the sample of N persons; and let OM be the mean item
score calculated across all available item scores in X. Then for missing item
score (i, j), we calculate

TVVTJ = PM,; + fﬂ/fj — OM: TW",‘_-}‘ c R.

The item score to be imputed is obtained by rounding TW;; to the nearest
feasible integer. Two-way imputation (TW) was proposed by Bernaards
and Sijtsma (2000; sce Huisman & Molenaar, 2001, for a related method).

Response Function Imputation. Response function imputation (RE;
Sijtsma & Van der Ark, 2003) is based on the idea to zmpute ittem scores
z;; as random draws from the distribution P(X; = z;|6;). The steps in
this procedure are the foilowmg

e First, estimate 6; by means of restscore Ry_; = Xy — Xj; (e.g,
Hemker, et al., 1997; Junker, 1993; Sijtsma & Molenaar, 2002, p. 40).
This is done as follows. _Due to missing data, the number of available
item scores on the remaining J — 1 items may vary across respon-
dents. This number is denoted J; (J; < J —1). Restscore Ry is
computed as the sum of’ these available item scores. Because different
respondents may have different numbers of available item scores, to
have all restscores on the san'le scale cach restscore is multxphed by

(J —1)/J;.

e Second, estimate P(X; = z4]6;) by means of P[X; = z;|Ri_p} for
z; = 0,...,m. The latter probability.is computed in'the subgroup
having an observed score on X;. Eachrespondent’s X is weighted:
by the accuracy with ‘which his/her restscore, «H;(Ljy, estimates Hts
expectation, Ej[R;_j;] ~ Because for each respondent one restscore
is available, the determination of+its: accuracy is based on+its con-
stituent J; item scores. Let the mean item score: of: me;pcmdcnt 1+be

denoted X ; Eﬁj‘ﬁ?—i ‘Let o2 denocte the vanance of the ztem scores
. e - - X X % ::_:..'.:.__._;:__ .
of respondent ¢z, estzmatcd by S2 = Ef( = ) The maccuracy of

X; is given by SE (- X;) = /5% J The wmght for rospan&ent i+in
computing P[X; = ;| Ry is 1/SE(Xy).
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o Third, for a missing score in cell (¢, ) we impute a random draw {rom
P[X;|Ry-5)- In the subgroup of people having a missing score on
item 7, restscores may exist that did not exist in the group with X
observed that was used for estimating P{X;|Ri-5] For example,
among the latter group Ri(—j; = 2 may not have been observed; thus,
PIX;|R;—;y = 2] was not ostimated. In that case, item score proba-
bilities are obtained by linear interpolation between the two nearest
restscores from the group with X; observed. If restscore groups arc
too small for an accurate estimate of PX ;| Ri- 5}, adjacent restscore
groups may be joined. Sce Sijtsma and Van der Ark (2003} for morc

details.

Multiple Response Function Imputation. Multiple response func-
tion imputation (MRF) entails five times the application of the RF proce-
dure. This involves five random draws from P[X;{R;(- 5)» which yiclds five
different completed data matrices. Fach completed data matrix is analyzed

separately, and the results are combined later using Rubin’s rules (sce, c.g.,
Schafer, 1997, pp. 109-110) or a variation 10 be discussed iater.

Multiple multivariate normal imputation. An imputation method
for categorical data proposed by Schafer (1997, pp. 257-275) and imple-
mented in publicly available software (program CAT; Schafer, 1998a) was
considered for item score imputation. This method requires a frequency ta-
ble based on J items with m+ 1 answer categories, which thus has (m+1)”
entries. In our applications, this number was too large for maximum like-
lihood estimation of the imputation model. Thus, CAT could not be used.
Instead we assumed a multivariate normal imputation model as suggested
by Schafer (1997, p. 148; program NORM, Schafer, 1998b). The method
is called multiple multivariate normal imputation (MMNI). Method MMNI
assumes that the item scores have a J-variate normal distribution. In an
initial step the model parameters, the mean vector and the covariance ma-
trix, are estimated using an EM algorithm. Then an iterative procedure
called data augmentation is used to obtain the distribution of the missing
item scores given the observed item scores and the model parameters. The
missing values are imputed by random draws from this conditional distribu-
tion. Since these random draws are real-valued and our data integer-valued,
the random draws were rounded to the nearest feasible integer. For more
detailed information on data augmentation we refer to Tanner and Wong
(1987) and for the implementation of EM and data augmentation in NORM
to Schafer {1997, chap. 5 and chap. 6).
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o
A

8.3 Method

We investigated the influence of each of the five imputation methods on the
results of confirmatory and exploratory item analysis using the program
MSP. Threc real data sets (first design factor) were used. These data sets
arc referred to as original data sets.

e Verbal analogies data {Mcijer, Sijtsma, & Smid, 1990). For this
data set, N = 990 and J = 32, with ¢+ 1 = 2. This test measurcs
verbal intellipence in adults. Meijer et al. (1990) found that 31 items
together formed one scale {cach H; > 0). This was the basis for
the confirmatory analysis. All 32 items were used in the exploratory
analysis.

¢ Coping data (Cavalini, 1992). For this data set, N = 828 and
J =17, with ¢ + 1 = 4. This questionnaire mecasures coping styles
in response to industrial malodors. Cavalini (1992, pp. 53-54) found
four item subscts (17 items in total) measuring different coping styles.
Each of these subsets was used separately in the confirmatory analysis.
The set of 17 items was the input for the exploratory analysis.

e Crying data (Vingerhocts & Cornclius, 2001). Here, N = 3965 and
J = 54, with g+ 1 = 7. This questionnaire measures determinants of
adult crying behavior. Scheirs and Sijtsma (2001) found three subscts
of items {54 items in total), representing three psychological states.
Each subsct was the basis of the conﬁmnatozy analysis. All 54 items
together were subjected to the exploratory analysis.

Fach data sct was complete. In each original data set item sf;o:ésii"""""{i:ere
deleted using procedures that resulted in either MCAR, MAR, or noma’-
norable missingness {sccmld design factar) The percentage of 1 missmg ;tem
scores was cither 5%, 10%, or 20% (thud design’ factor) The da,td sets con-
taining missing data are referred to as mcamplete cEat;a seLs Mzﬂ
was simulated as follows = A D

e MCAR. The probablizt}f of a nussmg SCOR‘E was.-:-the'-f-f=r=same--*-foz -eacl
entry in the data set:~ B s

e MAR. Let L = trunc(J/2) be a cut-off value:that-splits:the item set
into a first half (items 1,.. .., L} and-a second half:(items L1, cu00:J).
When the missing item scores were MAR, theprobability of a missing
itern score in the second half was twice the pmbablhty of a missing
item score in the first-half, T S



156 Van der Ark and Sijtsma

¢ Nonignorable missingness. When missingness was nonignorable,
the missing item scores were MAR in combination with the following
mechanism: Let G = trunc(g/2) be a cut-off value that splits the
item scores into low item scores (0,...,G) and high item scores (G +
1,...,g). The probability of a missing value for high item scorcs was
twice the probability of a missing value for low item scores.

The incomiplete data sets were imputed using listwise delefion (57 missing
item scores) or rendom imputation (10% and 207% missing item scores), two-
way impulation, response function imputation, mulliple response function
imputetion, and multiple multivariate normal tmputalion (fourth design
factor). These data sets are referred to as complelea data sets. Both the
original and the completed data scts were subjected to exploratory and
confirmatory data analysis (fifth design factor).

Exploratory analysis. For the single imputation methods (RI, TW,
and RF), for each incomplete data set, the MCAR, MAR, and nonignorable
missingness conditions were used to construct three different completed
data sets. For each completed data sct, MSP found a cluster solution,
which was compared with the original data cluster solution. Assumec that
an item set consists of five items, indexed 7 = 1,...,5, then the original-
data clustering might be (1,2,2,0,1): The 1 scores indicate that items 1
and 5 werc in the same cluster, the 2 scores that items 2 and 3 were in
another cluster, and the 0 score that item 4 remained unselected. Now,
assume that the completed-data clustering is (1,1,1,0,0); then, ignoring
the cluster numbering (which is nominal) the smallest number of items to
be moved to reobtain the original-data solution is sought. Here, items 1 and
5 need to be moved to a separate cluster. Denote the minimum number of
items to be moved by MIN (with realization min), then for this example
MIN =2, |

 For the multiple imputation methods (MRF and MMNI), for cach in-
complete data sct five completed data sets were generated. The five
completed-data cluster solutions were combined to one by taking the mode
of the cluster indices for cach item. For example, let the five cluster so-
lutions found be (1,2,2,0,1), (2,2,1,0,1), (1,2,1,1,2), (1,2,2,0,1), and
(0, 2,2,0,0); then, the modal solution is (1,2,2,0,1) and the MIN valuc
with respect to the original-data clustering, which was (1,2,2,0,1) (previ-
ous exampie), is determined to be 0.

Confirmatory analysis. The H values of the completed data were
compared with the H values of the corresponding original data. For multi-
ple imputation the mean H of the five completed data matrices was taken,

- The design was completely crossed with 3 (original data matrices) x
3 (missingness mechanisms) X 3 (percentages of missing item scores) x 5



8. Missing Data Imputation 157

Table 8.1: Number of Verbal Analogies Items Incorrectly Clus-
tered in Exploratory Analysis, for Five Imputation Nethods,
Three Missingness Mechanisms, and Three Percentages (35, 10,
and 20) of Imputed Item Scores [J = 32; max(MIN) = 18|.

Method Missingness Mechanism

MCAR MAR Nonignorable
| 5 10 20 5 10 20 5 10 20
LD/RI 13 18 18 10 18 16 8 18 18
TW 8 14 16 5 15 16 4 9 16
RF 4 3 8 5 3 7 3 8 4
MRF 2 2 7 5 6 9 3 3 4
MMNI 10 17 17 1211 16 6 12 16

(imputation methods) x 2 {exploratory vs. confirmatory analysis) = 270
cells. The study was programmed in S-Plus 6 for Windows (2001); the
exploratory and confirmatory analyses were done using MSP (Molenaar &
Sijtsma, 2000).

8.4 Results

8.4.1 Exploratory Analyses

able 8.1 (Verbal Analogies data), Table 8.2 (Coping data), and Table 8.3
(Crying data) give the value of M I N for the complete design. An unscalable
sct of items is one in which each-item forms a unique cluster; for this setup
MIN was determined, and the result was called max(MIN). The valuc of
max(M I N} was used as a benchmark.

Verbal analogies data. Methods LD and RI always led to almost onc
half to all items incorrectly clustered (8 < min < 18). Method TW led to a
misclassification of almost all items for 10% and 20% imputed item scores.
Methods RF and MRF performed best (2 < min < 8). Method MMNI
led to high MIN-values (6 < min < 17). This result was not expected
and may be related to convergence to a local optimum. This is further
claborated in the Discussion. T L

Coping data. For 5% imputed item scores, all methods performed
well. For 10% and 20% imputed item scores, method RI led to large val-
ues of MIN. Methods TW, RF, and MRF led to the misclassification of
approximately one-fifth of the items for 10% imputed ttem scores, and to
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Table 8.2: Number of Coping Data Items Incorrectly Clustered
in Exploratory Analysis, for Five Imputation Methods, Three
Missingness Mechanisms, and Three Percentages (5, 10, and 20)

Van der Ark and Sijtsma

of Imputed Item Scores [J = 17; max(MIN) = 12].

Method Missingness Mechanism
MCAR — MAR Nonignorable
5 10 20 5 10 20 o 10 20
Lb/RI 1 6 10 1 6 10 1 7 10
TW 0 3 6 1 J 5 0 1 4
RF R o 2 3 g 4 4
MRF o 1 6 c 2 4 g 3 5
MMNI 0 O O o 0 1 O 0 0

Table 8.3: Number of Crying Data Items Incorrectly Clustered
in Exploratory Analysis, for Five Imputation Methods, Three
Missingness Mechanisms, and Three Percentages (5, 10, and 20)

of Imputed Item Scores [J = 545 max{MIN) = 45].

Method Missingness Mechanism

MCAR MAR Nonignorable
-5 10 20 5 10 20 5 10 20
LD/RI 10 16 29 9 17 34 1T 21 38
TW 5 3 10 2 7 5 33 12
RF 5 4 7 2 4 6 3 6 10
MRF 3 4 6 3 5 7 1 6 10
MMNI 21 16 44 25 36 44 16 32 44
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Table 8.4: Bias in H (in hundredths; i.e., -2 stands for —.02)
for One Cluster of Verbal Analogies Items, for Five Imputation
Methods, Three Missingness Mechanisms, and Three Percentages
(5, 10, and 20) of Imputed Item Scores (J = 31, H = .25).

Method Missingness Mechanism
MCAR MAR Nonignorabie

5 10 20 5 10 20 5 10 20
LD/RI 1 9 5 -1 -16 —-20 0 —-15 —19
TW -3 =5 =9 -2 -9 =10 -2 -4 ~T
RF 0 o0 -1 0 0 -1 0 0 —1
MRF 0 0 -1 0 0 -1 0 0 —1
MMNI -2 -5 -10 -2 =7 =10 —2 -5 -9

the misclassification of approximately one-third of the items for 20% im-
puted item scores. Method MMNI led to a correct clustering except for
20% item scores that were MAR. Only small differences were found among
the missing data mechanisms MCAR, MAR and nonignorable.

Crying data. Method LD/RI led to a misclassification of approxi-
mately onc-fifth (5% missing item scores, min = 9) to two-thirds (20%
missing item scores, min = 38) of the items. Mecthod MMNI resulted in
cven higher M7 N-values (16 < min < 44). Similar to the results for the
Verbal Analogies data (Table 8.1), this is probably duc to a bad model-fit.
Methods TW, RF, and MRF performed best and yiclded misclassifications
of approximately one-tenth (5% and 10% imputed item scores) to one-fifth
(20% imputed item scores) of the items. Only small differences were found
among the missing data mechanisms MCAR, MAR and nonignorable.

8.4.2 Confirmatory Analysis

Table 8.4 (Verbal Analogies data), Table 8.5 (Coping data), and Table 8.6
(Crying data) give the bias in H for the entire design of a single predefined
cluster of a data set. The bias is defined as H of the completed data minus
H of the original data. For notational convenience the fractional divisions
and leading zeros arc omitted. Thus, a bias notation of —2 stands for —0.02.

Verbal analogies data. For 5% imputed item scores all imputation
methods led to a small bias (Table 8.4). For 10% and 20% imputed itcm
scores, methods TW and MMNI led to a negative bias between —.10 and
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Table 8.5: Bias in H (in hundredths; i.e., -2 stands for —.02) for
Four Clusters of Coping Data Items, for Five Imputation Meth-
ods, Three Missingness Mechanisms, and Three Percentages (5,
10, and 20) of Imputed Item Scores (Cluster I: J =7, H = .31;
Cluster I1: J = 4, H = .50; Cluster III: J =3, H = .56; Cluster 1V:
J =3, H=.35).

Missingness Mechanismi

Method MCAR MAR Nonignorable
5 10 20 5 10 20 5 10 20
Cluster ]
LD/ RI 1 -7 =17 -1 =10 =16 -2 -9 -17
TW 0 0 2 1 0 0 0 1 2
RF i 0 -2 0 -1 -3 -1 U -3
MRF 0 0 =2 0 -1 =3 0 —1 -2
MMNI § 1 —1 0 0 0 § 0 —1
Cluster 11 -
LD/RI -1 ~18 =27 -2 =20 =29 1 -16 =31
TW —1 —6 -2 -3 -7 =T -2 -G -7
RF 0 -3 —6 -2 =2 =11 —2 -3 -7
MRF -1 —3 —7 -2 -4 -10 ~1 —4 -g
MMNI 1 -2 -1 0 -1 -1 0 > -3
Cluster 111 |
LD/RI -2 -13 =21 1 -9 13 —2 -8 =16
TW 1 3 3 1 1 2 1 1 4
RF -2 -4 —14 g -1 ~3 —1 —1 -9
MRF -2 -3 =13 0 -1 =3 —1 —1 -3
MMNI =2 -2 =1 0 0 -2 -1 0 -2
Cluster IV
LD/ RI 1 -9 -14 2 -§ -~14 O -9 -1i6
TW 3 4 7 4 6 13 3 9 16
RF 0 ~32 —1 2 -3 =5 —3 32 -3
MRF 0 -2 -3 0 -3 -4 1 -3 -6
MMNI 0 —1 t 1 0 1 1 1 3
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Table 8.6: Bias in H (in hundredths; i.e., —2 stands for —.02)
for Three Clusters of Crying Data Items, for Five Imputation
Methods, Three Missingness Mechanisms, and Three Percentages
(5, 10, and 20) of Imputed Item Scores (Cluster I: J =22, H = .43;
Cluster II: J = 14, H = 41; Cluster IIL: J =18, A = 30).

Missingness Mechanism

Method MCAR MAR Nonignorabic
5 10 20 5 10 20 5 10 20
Cluster I | |
LD/RI 1 =12 -20 0 -13 -22 -2 -12 22
TW -1 -2 -4 -1 -2 -4 -2 -4 -G
RF -1 -1 =3 0 -1 =3 -1 -2 =5
MRF -1 -1 =3 -1 -1 =3 -1 -2 =5
MMNI 0 0 0 0o -1 0 0 -1 -1
Cluster 11 -
LD/RI -1 -9 -—16 2 -9 -16 0 -10 =17
TW ~2 -4 T e -3 =6 =9
RF 0 -1 =2 0 -1 =2 -1 =1 -4
MRF 0 0 =2 o -1 -2 0 -1 -4
MMNI 0 0 0 0 0 0 0 0 -1
Cluster 11
LD/RI 0 -10 =17 0 —10 =16 -1 =10 -16
TW 0 0 -1 0 0 -1 0 -1 =1
RF o o -1 =2 -4
MRF -1 -1 -4 -1 -1 =3 -1 -1 =4
MMNI 0 -1 0 ~1: =1
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—.04. Methods RF and MRF performed best yiclding unbiased or almost
unbiased results in all cascs.

Coping data. The results for the four clusters of the Coping data arc
presented in Table 8.5. For Cluster I, all methods except LD/RI yielded a
small bias in & in all conditions; method MMNI gave the best results.

For Cluster II, method LD/RI had a small bias for 5% missing item
scorcs and a large negative bias for 10% and 20% missing item scores.
Mecthods TW, RI°, and MRI had a small negative bias within the range
{—.07, .00}, for 5% and 10% imputed item scores, and a larger negative bias
within the range [—.11, —.02], for 20% imputed item scores. Method MMNI
was the most successful method, the largest bias in H being —.03.

Similar to Cluster II, for Cluster III method LD/RI showed a large
negative bias for 10% and 20% imputed item scores. Method TW led to a
small positive bias in H, and method MMNI led to a small negative bias.
Methods REF and MRE showed a large negative bias (—.14) in H when
applied to data with 20% item scores that were MCAR. This unexpected
result may be related to the small number of items in Cluster 11 This is
further claborated in the Discussion.

Similar to Cluster II and Cluster 111, for Cluster IV method LD/RI
showed a large negative bias for 10% and 20% imputed item scores. Meth-
ods RF, MRF, and MMNI] gave the best bias results, which were between
—.06 and .03. Method TW showed large positive bias (.07, .13, and .16)
when applied to data with 20% imputed item scores. This unexpected
result may also be related to the small number of items in Cluster I'V.

For all item clusters it was found that there were only small differences
among MCAR, MAR, and nonignorable missingness. It was also found for
all clusters that methods R and MRF produced approximately the same
results.

Crying data. The results for the three clusters of the Crying data arc
presented in Table 8.6. The results were similar for the three clusters. For
5% imputed item scores all methods led to a small bias in H within the
range [—.03, 02]. For 10% and 20% imputed item scores, methods TW, RF,
MRYF, and MMNI produced satisfactory results although, when applied to
Cluster II, method TW produced a bias that was a little higher {within the
range [—.04, —.09]). Method MMNI performed best. There were only small
differences among MCAR, MAR, and nonignorable missingness.

8.5 Discussion

This chapter showed that using method LD in Mokken scale analysis can
result in cluster solutions that deviate much from the cluster solutions that
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would have been obtained had the data been complete. For 10% and 20%
missingness, the number of cases left may be so small that Mokken scale
analysis becomes impossible. These results are in line with carlier studics
on method LD (e.g., Schafer, 1997, p. 23). The alternative benchmark,
method RI, led to large values of MIN and large biases in f.

By using total scores on the J items, methods TW, RF, and MRE make
use of the property that all items arc indicators of the same latent variabic.
The advantage of method TW is its simplicity, which makes the method
casy to usc for rescarchers. The values of MIN and the bias in H resulting
from method TW were large for the Verbal Analogies data and smaller for
the Coping data and the Crying data.

The results for methods RF and MRF were similar. The main reason
for choosing multiple imputation over single imputation is to obtain more
stable rosults and correct standard errors. For Mokken scale analysis the
standard errors of H usually do not play an important role, and the bias
and the values of H produced by methods RE and MRF were similar. Thus,
we could not demonstrate the advantage of method MRFE over method RF.
Mcthods RF and MRF are not as simple as method TW and involve some
computational decisions, such as the sample size of the restscore-groups
and the weight given to cach restscore. In general, methods RE and MR
performed a little better than method TW with respect to MJ N wvalucs
and bias. |

We found a large bias in H for imputation methods RE and MRF,
for a cluster of 3 items {Coping data, Cluster II1}, 20% missingness, and
missingness mechanism MCAR. When J = 3, the restscore is based on two
iterns. Ciiven these conditions, theoretically under MCAR it is expected
that 32% of the sample has a missing score on one item and 4% of the
sample has missing scores on both items. This may have caused inaccurate
rest-score estimates which led to the large bias. o

Mcthod MMNI yiclded the lowest MIN-values and the smallest bias
of all methods when the number of items was less than 23 (Crying data,
Cluster 1). For larger item sets {Verbal Analogies data [J = 31}, and the
Crying data [J = 54]), the rcsuitsformethod MMNI were worse-than the
results for method LD/RI. The reason may be the EM-algorithm. in program
NORM reached a local optimum for which the fit was much worse than the
required fit. The algorithm then kept iterating (without improvement) until
the maximum number of iterations was reached, viclding a badly fitting
model. Consulting the auxiliary statistics provided by NORM and keeping
track of the number of iterations may prevent the researcher from using
these wrong estimates. The successor of NORM, which is incorporated in
the software package S-plus 6 for Windows (2001), gives an crror message
in these situations without supplying completed data.
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Currently, a more systematic investigation {Van Ginkel, Van der Ark, &
Sijtsma, 2004) is conducted to determine the effect of multiple imputation
using the methods discussed here on resuits of Mokken scaling and several
other psychometric methods. Using simulated data, several comprehensive
designs were analyzed to obtain a more definitive impression about the
usefulness of our (multiple) imputation methods.
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