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1 Introduction

This article discusses a modelling framework that links two well-known sta-
tistical methods: structural equation modelling (SEM) and latent class or
finite mixture modelling. This hybrid approach was proposed independently
by Arminger and Stein [1], Dolan and Van der Maas [4], and Jedidi, Jagpal
and DeSarbo [5]. Here, we refer to this approach as mixture SEM or latent
class SEM.

There are two different ways to view mixture SEM. One way is as a refine-
ment of multivariate normal (MVN) mixtures, where the within-class covari-
ance matrices are smoothed according to a postulated SEM structure. MVN
mixtures have become a popular tool for cluster analysis [6] [10], where each
cluster corresponds to a latent (unobservable) class. Names that are used
when referring to such a use of mixture models are latent profile analysis,
mixture-model clustering, model-based clustering, probabilistic clustering,
Bayesian classification, and latent class clustering. Mixture SEM restricts
the form of such latent class clustering, by subjecting the class-specific mean
vectors and covariance matrices to a postulated SEM structure such as a one-
factor, a latent-growth, or an autoregressive model. This results in MVN mix-
tures that are more parsimonious and stable than models with unrestricted
covariance structures.

The other way to look at mixture SEM is as an extension to standard
SEM similar to multiple group analysis. However, an important difference
between this and standard multiple group analysis is that in mixture SEM
group membership is not observed. By incorporating latent classes into a
SEM model, various forms of unobserved heterogeneity can be detected. For
example, groups that have identical (unstandardized) factor loadings but
different error variances on the items in a factor analysis or groups that show
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different patterns of change over time. Dolan and Van der Maas [4] describe
a nice application from developmental psychology in which as a result of the
existence of qualitative development stages, children that do not master a
certain type of tasks have a mean and covariance structure that differs from
the one for children that master the tasks.

Below, we first introduce standard MVN mixtures. Then, we show how
the SEM framework can be used to restrict the means and covariances. Sub-
sequently, we discuss parameter estimation, model testing, and software. We
end with an empirical example.

2 Multivariate normal mixtures

Let yi denote a P -dimensional vector containing the scores for individual i
on a set of P observed continuous random variables. Moreover, let K be the
number of mixture components, latent classes, or clusters, and πk the prior
probability of belonging to latent class or cluster k or, equivalently, the size
of cluster k, where 1 ≤ k ≤ K. In a mixture model, it is assumed that the
density of yi, f(yi|θ), is a mixture or a weighted sum of K class-specific
densities fk(yi|θk) [4] [10]. That is,

f(yi|π, θ) =
K∑

k=1

πkfk(yi|θk) . (1)

Here, θ denotes the vector containing all unknown parameters and θk the
vector of the unknown parameters of cluster k.

The most common specification for the class-specific densities fk(yi|θk) is
multivariate normal, which means that the observed variables are assumed to
be normally distributed within latent classes, possibly after applying an ap-
propriate non-linear transformation. Denoting the class-specific mean vector
by µk and the class-specific covariance matrix by Σk, we obtain the following
class specific densities:

fk(yi|µk,Σk) = (2π)−P/2|Σk|−1/2 exp
{
−1

2
(yi − µk)

′ Σ−1
k (yi − µk)

}
.

In the most general specification, no restrictions are imposed on µk and Σk

parameters; that is, the model-based clustering problem involves estimating
a separate set of means, variances, and covariances for each latent class.
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Although in most clustering applications the main objective is finding classes
that differ with respect to their means or locations, in the MVN mixture
model clusters may also have different shapes.

An unrestricted MVN mixture model with K latent classes contains (K−
1) unknown class sizes, K ·P class-specific means, K ·P class-specific variances
and K · P · (P − 1)/2 class-specific covariances. As the number of indicators
and/or the number of latent classes increases, the number of parameters to be
estimated may become quite large, especially the number of free parameters
in Σk. Thus, to obtain more parsimony and stability, it is not surprising that
restrictions are typically imposed on the class-specific covariance matrices.

Prior to using SEM models to restrict the covariances, a standard ap-
proach to reduce the number of parameters is to assume local independence.
Local independence means that all within-cluster covariances are equal to
zero or, equivalently, that the covariance matrices, Σk, are diagonal matri-
ces. Models that are less restrictive than the local independence model can
be obtained by fixing some but not all covariances to zero or, equivalently, by
assuming certain pairs of y’s to be mutually dependent within latent classes.

Another approach to reduce the number of parameters is to assume the
equality or homogeneity of variance-covariance matrices across latent classes;
i.e., Σk = Σ. Such a homogeneous or class-independent error structure
yields clusters having the same forms but different locations. This type of
constraint is equivalent to the restrictions applied to the covariances in linear
discriminant analysis. Note that this between-class equality constraint can
be applied in combination with any structure for Σ.

Banfield and Raftery [2] proposed reparameterizing the class-specific co-
variance matrices by an eigenvalue decomposition:

Σk = λkDkAkD
′
k .

The parameter λk is a scalar, Dk is a matrix with eigenvectors, and Ak is
a diagonal matrix whose elements are proportional to the eigenvalues of Σk.
More precisely, λk = |Σk|1/d, where d is the number of observed variables,
and Ak is scaled such that |Ak| = 1.

A nice feature of the above decomposition is that each of the three sets of
parameters has a geometrical interpretation: λk indicates what can be called
the volume of cluster k, Dk its orientation, and Ak its shape. If we think
of a cluster as a clutter of points in a multidimensional space, the volume is
the size of the clutter, while the orientation and shape parameters indicate
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whether the clutter is spherical or ellipsoidal. Thus, restrictions imposed on
these matrices can directly be interpreted in terms of the geometrical form
of the clusters. Typical restriction are to assume matrices to be equal across
classes or to have the forms of diagonal or identity matrices [3].

3 Mixture SEM

As an alternative to simplifying the Σk matrices using the eigenvalue decom-
position, the mixture SEM approach assumes a covariance-structure model.
Several authors [1] [4] [5] have proposed using such a mixture specification
for dealing with unobserved heterogeneity in SEM. As explained in the in-
troduction, this is equivalent to restricting the within-class mean vectors and
covariance matrices by a SEM. One interesting SEM structure for Σk that is
closely related to the eigenvalue decomposition described above is a factor-
analytic model [6] [11]. Under the factor-analytic structure, the within-class
covariances are given by:

Σk = ΛkΦkΛ
′
k + Θk .

Assuming that there are Q factors, Λk is a P×Q matrix with factor loadings,
Φk is a Q × Q matrix containing the variances of and the covariances be-
tween the factors, and Θk is a P × P diagonal matrix containing the unique
variances. Restricted covariance structures are obtained by setting Q < P
(for instance, Q = 1), equating factor loadings across indicators, or fixing
some factor loading to zero. Such specifications make it possible to describe
the covariances between the y variables within clusters by means of a small
number of parameters.

Alternative formulations can be used to define more general types of SEM
models. Here, we use the Lisrel submodel that was also used by Dolan and
Van der Maas [4]. Other alternatives are the full Lisrel [5], the RAM [8], or
the conditional mean and covariance structure [1] formulations.

In our Lisrel submodel formulation, the SEM for class k consists of fol-
lowing two (sets of) equations:

yi = νk + Λkηik + εik

ηik = αk + Bkηik + ς ik.

The first equation concerns the measurement part of the model in which
the observed variables are regressed on the latent factors ηik. Here, νk is a
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vector of intercepts, Λk a matrix with factor loadings and εik a vector with
residuals. The second equation is the structural part of the model, the path
model for the factors. Vector αk contains the intercepts, matrix Bk the path
coefficients and vector ς ik the residuals. The implied mean and covariance
structures for latent class k are

µk = νk + Λk(I−Bk)
−1αk

Σk = Λk(I−Bk)
−1Φk(I−B′

k)
−1Λ′

k + Θk,

where Θk and Φk denote the covariance matrices of the residuals εik and ς ik.
These equations show the connection between the SEM parameters and the
parameters of the MVN mixture model.

4 Covariates

An important extension of the mixture SEM described above is obtained by
including covariates to predict class membership, with possible direct effects
on the item means. Conceptually, it makes sense to distinguish (endoge-
nous) variables that are used to identify the latent classes from (exogenous)
variables that are used to predict to which cluster an individual belongs.

Using the same basic structure as in Equation 1, this yields the following
mixture model:

f(yi|zi, π, θ) =
K∑

k=1

πk(zi) fk(yi|θk) .

Here, zi denotes person i’s covariate values. Alternative terms for the z’s
are concomitant variables, grouping variables, external variables, exogenous
variables, and inputs. To reduce the number of parameters, the probability
of belonging to class k given covariate values zi, πk(zi), will generally be
restricted by a multinomial logit model; that is, a logit model with “linear
effects” and no higher order interactions.

An even more general specification is obtained by allowing covariates to
have direct effects on the indicators, which yields

f(yi|zi, π, θ) =
K∑

k=1

πk(zi) fk(yi|zi, θk) .

The conditional means of the y variables are now directly related to the
covariates as proposed by Arminger and Stein [1]. This makes it possible to
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relax the implicit assumption in the previous specification that the influence
of the z’s on the y’s goes completely via the latent classes (see, for example,
[9]).

5 Estimation, testing and software

Estimation

The two main estimation methods in mixture SEM and other types of MVN
mixture modelling are maximum likelihood (ML) and maximum posterior
(MAP). The log-likelihood function required in ML and MAP approaches
can be derived from the probability density function defining the model.
Bayesian MAP estimation involves maximizing the log-posterior distribution,
which is the sum of the log-likelihood function and the logs of the priors for
the parameters.

Although generally there is not much difference between ML and MAP
estimates, an important advantage of the latter method is that it prevents
the occurrence of boundary or terminal solutions: probabilities and variances
cannot become zero. With a very small amount of prior information, the
parameter estimates are forced to stay within the interior of the parameter
space. Typical priors are Dirichlet priors for the latent class probabilities
and inverted-Wishart priors for the covariance matrices. For more details on
these priors, see Vermunt and Magidson [9].

Most mixture modelling software packages use the EM algorithm or some
modification of it to find the ML or MAP estimates. In our opinion, the ideal
algorithm starts with a number of EM iterations and when close enough to
the final solution, switches to Newton-Raphson. This is a way to combine the
advantages of both algorithms – the stability of EM even when far away from
the optimum and the speed of Newton-Raphson when close to the optimum.

A well-known problem in mixture modelling analysis is the occurrence of
local solutions. The best way to prevent ending with a local solution is to
use multiple sets of starting values. Some computer programs for mixture
modelling have automated the search for good starting values using several
sets of random starting values.

When using mixture SEM for clustering, we are not only interested in
the estimation of the model parameters, but also in the classification of in-
dividual into clusters. This can be based on the posterior class membership
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probabilities

πk(yi, zi, π, θ) =
πk(zi) fk(yi|zi, θk)∑K

k=1 πk(zi) fk(yi|zi, θk)
.

The standard classification method is modal allocation, which amounts to
assigning each object to the class with the highest posterior probability.

Model Selection

The model selection issue is one of the main research topics in mixture-
model clustering. Actually, there are two issues involved: the first concerns
the decision about the number of clusters, the second concerns the form of
the model given the number of clusters. For an extended overview on these
topics, see McLachlan and Peel [6].

Assumptions with respect to the forms of the clusters given their number
can be tested using standard likelihood-ratio tests between nested models,
for instance, between a model with an unrestricted covariance matrix and a
model with a restricted covariance matrix. Wald tests and Lagrange mul-
tiplier tests can be used to assess the significance of certain included or
excluded terms, respectively. However, these kinds of chi-squared tests can
not be used to determine the number of clusters.

The approach most often used for model selection in mixture modelling is
to use information criteria, such as AIC, BIC, and CAIC. The most recent de-
velopment is the use of computationally intensive techniques like parametric
bootstrapping [6] and Markov Chain Monte Carlo methods [3] to determine
the number of clusters, as well as their forms.

Another approach for evaluating mixture models is based on the uncer-
tainty of classification or, equivalently, the separation of the clusters. Besides
the estimated total number of misclassifications, Goodman-Kruskal lambda,
Goodman-Kruskal tau, or entropy-based measures can be used to indicate
how well the indicators predict class membership.

Software

Several computer programs are available for estimating the various types of
mixture models discussed in this paper. Mplus [7] and Mx [8] are syntax-
based programs that can deal with a very general class of mixture SEMs.
Mx is somewhat more general in terms of model possible constraints. Latent
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GOLD [9] is a fully Windows based program for estimating MVN mixtures
with covariates. It can be used to specify restricted covariance structures,
including a number of SEM structures such as a one-factor model within
blocks of variables and a compound-symmetry (or random-effects) structure.

6 An empirical example

To illustrate mixture SEM we use a longitudinal data set made available by
Patrick J. Curran at “http://www.duke.edu/ curran/”. The variable of in-
terest is a child’s reading recognition skill measured at 4 two-year intervals
using the Peabody Individual Achievement Test (PIAT) Reading Recognition
subtest. The research question of interest is whether a one-class model with
its implicit assumption that a single pattern of reading development holds
universally is correct, or whether there are different types of reading recog-
nition trajectories among different latent groups. Besides information on
reading recognition, we have information on the child’s gender, the mother’s
age, the child’s age, the child’s cognitive stimulation at home, and the child’s
emotional support at home. These variables will be used as covariates. The
total sample size is 405, but only 233 children were measured at all assess-
ments. We use all 405 cases in our analysis assuming that the missing data
is missing at random (MAR). For parameter estimation, we used the Latent
GOLD and Mx programs.

One- to three-class models (without covariates) were estimated under five
types of SEM structures fitted to the within-class covariance matrices. These
SEM structures are local independence (LI), saturated (SA), random effects
(RE), autoregressive (AR), and one factor (FA). The BIC values reported in
Table 1 indicate that two classes are needed when using a SA, AR, or FA
structure.1 As is typically the case, working with a misspecified covariance
structure (here, LI or RE), yields an overestimation of the number of classes.
Based on the BIC criterion, the two-class AR model (Model D2) is the model
that is preferred. Note that this model captures the dependence between the
time-specific measures with a single path coefficient since the coefficients
associated with the autoregressive component of the model is assumed to be
equal for each pair of adjacent time points.

1BIC is defined as minus twice the log-likelihood plus ln(N) times the number of pa-
rameters, where N is the sample size (here 450).
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Subsequently, we included the covariates in the model. Child’s age was
assumed to directly affect the indicators in order to assure that the encoun-
tered trajectories are independent of the child’s age at the first occasion.
Child’s gender, mother’s age, child’s cognitive stimulation, and child’s emo-
tional support were assumed to affect class membership. According to the
BIC criterion, this model (Model F) is much better than the model without
covariates (Model D2).

According to Model F, Class 1 contains 61 and class 2 39 percent of the
children. The estimated means for class 1 are 2.21, 3.59, 4.51, and 5.22, and
for class 2 3.00, 4.80, 5.81, and 6.67. These results show that class 2 starts
at a higher level and grows somewhat faster than class 1. The estimates
of the class-specific variances are 0.15, 0.62, 0.90 and 1.31 for class 1, and
0.87, 0.79, 0.94, and 0.76 for class 2. This indicates that the within-class
heterogeneity increases dramatically within class 1 while it is quite stable
within class 2. The estimated values of the class-specific path coefficients
are 1.05 and 0.43, respectively, indicating that even with the incrementing
variance the autocorrelation is larger in latent class 1 than in latent class 2.2

The age effects on the indicators are highly significant. As far as the
covariate effects on the log-odds of belonging to class 2 instead of class 1 is
concerned, only the mother’s age is significant. The older the mother, the
higher the probability of belonging to latent class 2.
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Table 1: Test results for the child’s reading recognition example

Model log-likelihood # parameters BIC
A1. 1-class LI -1977 8 4003
A2. 2-class LI -1694 17 3490
A3. 3-class LI -1587 26 3330
B1. 1-class SA -1595 14 3274
B2. 2-class SA -1489 29 3151
B3. 3-class SA -1459 44 3182
C1. 1-class RE -1667 9 3375
C2. 2-class RE -1561 19 3237
C3. 3-class RE -1518 29 3211
D1. 1-class AR -1611 9 3277
D2. 2-class AR -1502 19 3118
D3. 3-class AR -1477 29 3130
E1. 1-class FA -1611 12 3294
E2. 2-class FA -1497 25 3144
E3. 3-class FA -1464 38 3157
F. D2 + covariates -1401 27 2964
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