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Joint Correspondence Analysis by Maximum Likelihood

Jeroen K. Vermunt

Department of Methodology and Statistics, Tilburg University

Carolyn J. Anderson

Department of Educational Psychology, University of Illinois

Abstract

Parameter estimation in joint correspondence analysis (JCA) is typically per-

formed by weighted least squares using the Burt matrix as the data matrix.

In this paper, we show how to estimate the JCA model by means of max-

imum likelihood. For that purpose, JCA is defined as a model for the full

K-way distribution by generalizing the correspondence analysis model for

three-way tables proposed by Choulakian (1988a, 1988b). The advantage

of placing JCA in a more formal statistical framework is that standard chi-

squared tests can be applied to assess the goodness-of-fit of unrestricted and

restricted models.

1 Introduction

Correspondence analysis (CA) is a popular technique for the exploratory

analysis of two-way frequency tables. Widely used statistical software pack-

ages such as SPSS, SAS, and BMDP contain a CA routine. Two types of

related extensions have been developed for the analysis of K-way frequency
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tables: multiple correspondence analysis (MCA) and joint correspondence

analysis (JCA; Greenacre, 1988, 1993). MCA is a form of principal compo-

nent analysis, while JCA is factor-analytic technique for categorical variables

(Boik, 1996).

Similarly to standard factor analysis, the JCA model is defined in terms

of the second-order moments. Since we are dealing with categorical vari-

ables, the second-order moments are the two-way marginal frequencies. The

matrix with one-way margins on the diagonal and two-way margins on the

off-diagonal blocks is referred to as the Burt matrix. Parameter estimation is

typically performed by weighted least squares (WLS; Greenacre, 1988; Boik,

1996) using this Burt matrix as data matrix. Recently, Tateneni and Browne

(2000) presented a slightly different noniterative estimation procedure that is

also based on the Burt matrix. The main advantage of ignoring higher-order

moments is that it is possible to deal with large numbers of variables, which

is important in exploratory data analysis. An important disadvantage is,

however, that there are no formal statistical tests to assess whether a par-

ticular model fits the data. This makes it impossible to use JCA in a more

confirmatory manner as can be done with standard factor analysis.

In this paper, we show how to estimate the JCA model by means of max-

imum likelihood (ML). For standard CA of two-way tables, ML estimation

methods have been developed, yielding what is known as a row-column corre-

lation model (Goodman, 1985, 1987) or canonical analysis of two-way tables

(Gilula & Haberman, 1986; De Leeuw & Van der Heijden, 1991). To be able

to estimate the JCA model by ML, it has to be defined as a model for the

full K-way distribution rather than as a model for the bivariate marginal
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distributions. The formulation we propose is a generalization to K-way ta-

bles of the CA model for three-way tables proposed by Choulakian (1988a,

1988b). An important feature of our new model is that the bivariate marginal

distributions are exactly in agreement with the constraints implied by JCA.

An advantage of the proposed ML method compared to the standard

limited information WLS approach is that JCA is placed in a more formal

statistical framework. We are now able to apply standard goodness-of-fit

chi-squared tests to assess the overall fit of a model, as well as to compare

competing models with one another in order to check whether certain restric-

tions hold.

The next section describes standard JCA. In Section 3 we derive the

formulation of JCA as a model for a K-way table. Section 4 presents two

empirical examples and Section 5 concludes.

2 Joint correspondence analysis

Let πY1Y2...YK
y1y2...yK

denote an expected cell proportion in the K-way contingency

table formed by the categorical variables Y1, Y2, ..., and YK . The number

of levels of variable Yk is denoted by Jk and a particular level by yk (i.e.,

yk = 1, ..., Jk).

JCA can be defined as a model for all bivariate marginal distributions

πYkY`
yky`

. For each variable pair Yk and Y`, where k 6= `, the R-dimensional JCA

model states that

πYkY`
yky`

= πYk
yk

πY`
y`

(
1 +

R∑
r=1

λrη
Yk
ryk

ηY`
ry`

)
. (1)

Here, πYk
yk

denotes an entry in the univariate marginal distribution of variable
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Yk, ηYk
ryk

is the quantification or scale value of category yk of variable Yk for

dimension r, and λr is the singular value or the “average” correlation between

the variables in dimension r.

It should be noted that with K = 2, the model described in Equation (1)

equals a standard CA model. In addition, a MCA is obtained by dropping

the condition that k 6= `.

For identification purposes, several constraints have to be imposed on

the model parameters. The typical centering, scaling, and orthogonalization

constraints are:

Jk∑
yk=1

πYk
yk

ηYk
ryk

= 0,
K∑

k=1

Jk∑
yk=1

πYk
yk

(
ηYk

ryk

)2
= K,

K∑
k=1

Jk∑
yk=1

πYk
yk

ηYk
ryk

ηYk
syk

= 0,

for all r and s 6= r. As can be seen, each set of category quantifications

is assumed to be centered. To identify λr, one has to impose one scaling

constraint per dimension. Furthermore, to uniquely determine the various

dimensions, one orthogonalization constraint must be imposed per pair of

dimensions. The scaling and orthogonalization constraints involve a sum

over all variables, as is common practice in MCA. Similar to factor analysis,

other types of constraint can be used to identify λr, such as, for instance,

imposing the scaling constraint on a single variable, say Y1. The same applies

to the necessary constraints to uniquely determine the various dimensions.

Alternative identification constraints are, for example, equating r − 1 scale

values to zero in dimension r or orthogonalizing the scale values of a single

variable.

It is also possible to drop the scaling constraints and absorb the λr pa-
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rameters in the category quantifications. In that case, we obtain

πYkY`
yky`

= πYk
yk

πY`
y`

(
1 +

R∑
r=1

ηYk∗
ryk

ηY`∗
ry`

)
(2)

for all pairs Yk and Y`, with

Jk∑
yk=1

πYk
yk

ηYk∗
ryk

= 0,
K∑

k=1

Jk∑
yk=1

πYk
yk

ηYk∗
ryk

ηYk∗
syk

= 0

for all r and r 6= s, respectively. It can easily be verified that ηYk∗
ryk

=
√

λrη
Yk
ryk

.

Estimation of the parameters is typically done by means of weighted least

squares (Greenacre, 1988; Boik 1996). The appendix provides more detail

on parameter estimation.

3 A multivariate correlation model

The ML-variant of CA is called the row-column correlation model (RCCM,

Goodman, 1985, 1987) or canonical analysis of two-way tables (Gilula &

Haberman, 1986). Several extensions have been proposed for tables with

more than two dimensions. Gilula and Haberman (1988) suggested dividing

the cross-classified variables into two sets, each of which can be treated as

a single polytomous variable. A restricted canonical correlation model is

specified for this “two-way” table, where the category quantifications are

linear functions of the original variables.

Choulakian (1988a) proposed the following extension of the RCCM for

the trivariate case:

πY1Y2Y3
y1y2y3

= πY1
y1

πY2
y2

πY3
y3

[
1 +

R∑
r=1

(
σrν

Y1
ry1

νY2
ry2

+ σrν
Y1
ry1

νY3
ry3

+ σrν
Y2
ry2

νY3
ry3

)]
. (3)
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This trivariate correlation model (TCM) can also be formulated in a slightly

more compact manner as

πY1Y2Y3
y1y2y3

=

(
3∏

k=1

πYk
yk

)1 +
R∑

r=1

3∑
k=1

3∑
`=k+1

σrν
Yk
ryk

ν
Y

`
ry`

 .

The meaning of the parameters is similar to the ones in JCA: πYk
yk

denotes

the marginal probability that Yk = yk, R is the number of dimensions, σr

denotes the canonical correlation in dimension r, and νYk
ryk

is the quantification

of category yk of variable Yk for dimension r.

The constraints on the ν
Y

k
ryk parameters are the same as the ones on the

η
Y

k
ryk parameters in the JCA model described in the previous section; that is,

Jk∑
yk=1

πYk
yk

νYk
ryk

= 0,
3∑

k=1

Jk∑
yk=1

πYk
yk

(
νYk

ryk

)2
= 3,

3∑
k=1

Jk∑
yk=1

πYk
yk

νYk
ryk

νYk
syk

= 0,

As can be seen, the quantifications are assumed to be centered for each

variable and each dimension. It is important to note that the centering con-

straints are not arbitrary constraints needed for identification but real model

restrictions. In fact, the centering restrictions are necessary to guarantee that

the univariate marginal distributions are reproduced by the model. In addi-

tion to the centering restrictions, one scaling constraint has to be imposed per

dimension in order to identify σr. Furthermore, in order to uniquely define

the various dimensions or solve the rotation problem, one orthogonalization

constraint has to be imposed per pair of dimensions.

In the original paper, Choulakian (1988a) proposed imposing the orthog-

onalizing constraints per variable,
∑Jk

yk=1 πYk
yk

νYk
ryk

νYk
syk

= 0, but this was cor-

rected in an Errata (Choulakian, 1988b). Another minor difference is that he

imposed scaling constraints on each variable separately,
∑Jk

yk=1 πYk
yk

(
νYk

ryk

)2
=
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1, and was therefore able to identify different σr per variable pair. Our

representation and his are, however, equivalent.

Although Choulakian’s TCM differs from JCA in that it is a model for a

trivariate distribution rather than for the three bivariate distributions, it is

strongly related to JCA. The exact relationship becomes visible if we derive

the implications of Choulakian’s model for the bivariate marginal tables. Let

us take πY1Y2
y1y2

as an example:

πY1Y2
y1y2

=
J3∑

y3=1

πY1
y1

πY2
y2

πY3
y3

[
1 +

R∑
r=1

(
σrν

Y1
ry1

νY2
ry2

+ σrν
Y1
ry1

νY3
ry3

+ σrν
Y2
ry2

νY3
ry3

)]

= πY1
y1

πY2
y2

 J3∑
y3=1

πY3
y3

+
R∑

r=1

σrν
Y1
ry1

νY2
ry2

J3∑
y3=1

πY3
y3

+ σrν
Y1
ry1

J3∑
y3=1

πY3
y3

νY3
ry3

+ σrν
Y2
ry2

J3∑
y3=1

πY3
y3

νY3
ry3


= πY1

y1
πY2

y2

(
1 +

R∑
r=1

σrν
Y1
ry1

νY2
ry2

)
.

The last simplication is based on the fact that
∑J3

y3=1 πY3
y3

= 1 and
∑J3

y3=1 πY3
y3

νY3
ry3

=

0.

The above derivation shows that as far as the bivariate marginals are

concerned, the model proposed by Choulakian is equivalent to JCA. In other

words, the TCM can be seen as the underlying model for the three-way table

when the JCA model holds for the two-way tables. Choulakian proposed

estimating his model by means of ML yielding what could be called a ML

variant of JCA for the three-variable case.

Using the results on the relationship between Choulakian’s extended row-

column correlation model and JCA, we propose the following extension to

K-way tables:

πY1Y2...YK
y1y2...yK

=

(
K∏

k=1

πYk
yk

)1 +
R∑

r=1

K∑
k=1

K∑
`=k+1

σrν
Yk
ryk

νY`
ry`

 . (4)
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We label this model a multivariate correlation model (MCM). The meaning

of parameters and the identifying constraints are the same as in the trivariate

case, of course, with 3 replaced by K.

The proposed multivariate extension of the RCCM is similar to the class of

row-column association models proposed by Anderson and Vermunt (2000).

One of their row-column association models has exactly the same set of bi-

linear terms as the model described in Equation (4).

As in JCA, it is possible to drop the scaling constraint and absorb the σr

parameter in the category quantifications. In that case, we obtain

πY1Y2...YK
y1y2...yK

=

(
K∏

k=1

πYk
yk

)1 +
R∑

r=1

K∑
k=1

K∑
`=k+1

νYk∗
ryk

νY`∗
ry`

 , (5)

where νYk∗
ryk

=
√

σrν
Yk
ryk

.

Because the MCM is a model for the joint distribution, its parameters

can be estimated by means of maximum likelihood (ML) assuming a Poisson

sampling scheme. In the computation of the ML estimates it is important

to take into account the centering constraints, which are not arbitrary con-

straints needed for identification but are real model restrictions. Another

important issue is that the algorithm should guarantee that all estimated

cell entries are at least zero. The Appendix describes two algorithms for

obtaining the ML estimation, a simple unidimensional Newton method and

a Fisher scoring method.

4 Comparison of JCA and the MCM

It can be verified that the JCA model and the MCM defined in Equations

(1) and (4) have the same number of free parameters. With R dimensions,
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the number of free parameters, TR, equals

TR = T0 +R · (T0 + 1)−R ·
(

1 +
(R− 1)

2

)
= T0 +R ·

(
T0 + 1− (R + 1)

2

)
.

Here, T0 denotes the number of parameters of the independence model, the

model with 0 dimensions: T0 =
∑K

k=1(Jk − 1).

Despite the fact that the bilinear structures appearing in the JCA model

and the MCM are similar, the important difference is, of course, that the

former is defined as a model for all two-way tables while the latter is a model

for the K-way table. As in the trivariate case, collapsing πY1Y2...YK
y1y2...yK

, as defined

in Equation (4), over all variables except for Yk and Y` yields

πYkY`
yky`

= πYk
yk

πY`
y`

(
1 +

R∑
r=1

σrν
Yk
ryk

νY`
ry`

)
. (6)

The bilinear terms involving variables other than Yk or Y`, say Ym, cancel

because
∑ym

ym=1 πYm
ym

= 1 and
∑ym

ym=1 πYm
ym

νYm
rym

= 0.

It will be clear that, apart from the notation, Equation (6) is equivalent

to Equation (1). This shows that a MCM implies that the two-way tables are

in agreement with a JCA model. Consequently, an R-dimensional JCA will

exactly reproduce the Burt matrix obtained from the estimated frequencies

of a R-dimensional MCM.

The relationship between MCM and JCA shown in Equation (6) also

suggests how to obtain estimated cell entries in the K-way table using the

results from a JCA; that is, how to derive the reversed relationship between

the two models: We may fill in the JCA parameters in the MCM model; that

is,

πY1Y2...YK
y1y2...yK

=

(
K∏

k=1

πYk
yk

)1 +
R∑

r=1

K∑
k=1

K∑
`=k+1

λrη
Yk
ryk

ηY`
ry`

 . (7)
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In the WLS estimation method of JCA, there is no guarantee that all esti-

mated cell probabilities will be at least zero. Note that even some entries

in the two-way tables, πYkY`
yky`

, may be smaller than zero. When all estimated

πY1Y2...YK
y1y2...yK

are in the permissible range, estimation of a MCM using such a

constructed K-way table as data matrix will give a perfect fit, and with the

same identifying constraints also the same parameter estimates.

On the basis of the above comparison, it can be concluded is that the

proposed MCM can be regarded as a full information ML-variant of JCA.

The implication is that the MCM formulation can be used to place JCA

within a more formal statistical framework. This makes it possible to assess

the goodness-of-fit of the specified model using asymptotic chi-squared tests,

as well as to perform more confirmatory analyses. On the other hand, JCA

can seen as a limited information WLS-variant of the MCM. Actually, we are

dealing with two equivalent models that are estimated in different manners.

5 Examples

[INSERT TABLES 1 and 2 ABOUT HERE]

Tables 1 and 2 present two small data sets that we will use to illustrate

the new MCM, as well as to compare it with other factor-analytic techniques

for categorical variables. Table 1 cross-tabulates 5 dichotomous political

attitude variables from the Political Action Survey (Hagenaars, 1993). Table

2 is a four-way cross-tabulation taken from McCutcheon (1987). The items

from the General Social Survey 1982 measure respondents’ (Y1 and Y2) and

interviewers’ (Y3 and Y4) evaluation of the survey.
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[INSERT TABLES 3 and 4 ABOUT HERE]

Tables 3 and 4 present the testing results for the various models we es-

timated using these two data sets. Besides the independence model and

MCM models with different number of dimensions, we used Bock’s nominal

response model (NMR), the latent class cluster model (LCCM), the latent

class factor model (LCFM), and the multivariate association model (MAM).

Bock’s (1972) NRM is an IRT model that could be used for these types of

variables. The LCCM model was used because of the similarity between

JCA and latent class analysis pointed out by Van der Heijden, Gilula, and

Van der Ark (1999). The LCFM (Magidson & Vermunt, 2001) is similar to

Bock’s NRM, except for the fact that the latent variables are assumed to

be dichotomous instead of continuous. The MAM is a factor-analytic model

that has the same types of bilinear terms as the MCM described in this paper

(Anderson & Vermunt, 2000).

The measures reported in Tables 3 and 4 are the likelihood-ratio chi-

squared (G2), its associated number of degrees of freedom and p value, the

Bayesian information criterion (BIC), and the proportional reduction in G2

compared to the independence model (∆G2).

As far as the testing results are concerned, we see the same kind of pat-

tern in both data sets. Although the MCM with two dimensions does not

fit perfectly, it describes around 90 percent of the association between the

variables (see ∆G2). This means that there is clear evidence that there are

two underlying dimensions. This is confirmed by the results obtained with

the other four methods. However, the two-dimensional NRM, LCFM, and

MAM fit the data somewhat better, which illustrates that working with odds-
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ratios instead of correlations gives somewhat more flexibility when modeling

relationships between categorical variables (Goodman, 1991).

[INSERT TABLES 5 and 6 ABOUT HERE]

Tables 5 and 6 report the parameter estimates and the estimated stan-

dard errors for the two-dimensional MCM. For both data sets, the unrotated

solution shows a pattern that is well-known from unrotated factor solutions:

all items are positively related to the first dimension, while some are posi-

tively and others are negatively related to the second dimension. The rotated

solutions were obtained by setting one category quantification equal to zero

rather than using the orthogonality constraint. In the model for the Political

Action data, νY3
11 was set to zero. It can now be seen, that the other four

items are strongly related to the first dimension and that Y2, Y3 and Y4 are

related to the second dimension. After setting νY2
21 = 0 in the model for the

General Social Survey data, we obtained a solution in which Y1, Y2 and Y4

are related to the first dimension and Y3 and Y4 to the second dimension.

Because several parameter estimates reported in Tables 5 and 6 do not

differ significantly from zero, it makes sense to impose additional constraints.

Setting νY1
21 = νY5

21 = 0 in the first data set, for example, yields a very small

increase in G2 compared to the unrestricted MCM(2) model (i.e., G2 = 29.43

versus G2 = 29.39 on 2 degrees of freedom). A similar small increase in G2

is found in the second data set by setting νY3
11 = νY1

21 = νY1
21 = 0: G2 = 30.82

versus G2 = 28.57 on 3 degrees of freedom.
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6 Conclusions

In this paper we developed a ML variant of JCA called the multivariate

correlation model. A nice feature of the proposed ML variant of JCA is

that it provides formal tests to check whether a specified model fits the

data. Another improvement over WLS estimation is that it seems to be

more stable: for instance, Heywood cases as reported by Boik (1996) are

less likely to occur. A disadvantage of ML estimation is that it may take

somewhat longer, especially in large frequency tables.

In the empirical application, we compared the performance of the MCM

with other models that could be used for the same types of data. Although

the MCM yielded the same conclusion in terms of number of dimensions,

models based on odds-ratios seem to be superior to the MCM in terms of

model fit.

A consequence of defining JCA as a statistical model is that it can be

applied in a more confirmatory manner. As in confirmatory factor analysis,

an interesting type of constraint is to set the category scale values of variable

Yk on dimension r equal to zero, which is similar to setting a factor loading

equal to zero. A related extension would be to allow for correlated dimen-

sions. This was illustrated in the examples. Constraints that make sense

with ordinal variables are fixed (equal-interval) or monotone category scale

values. Another interesting extension is the inclusion of grouping variables

or covariates influencing the correlation parameters or the category quantifi-

cations.
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Appendix: Estimation Issues

WLS estimation of the JCA model

The parameters of the JCA model are usually estimated by weighted least

squares (WLS); that is, by minimizing:

W = 1/2
K∑

k=1

K∑
` 6=k

Jk∑
yk=1

J∑̀
y`=1

(
pYkY`

yky`
− πYkY`

yky`

)2

pYk
yk pY`

y`

. (8)

Here, pYkY`
yky`

and pYk
yk

denote observed sample proportions. It can easily be

verified that the WLS estimates for the marginal probabilities πYk
yk

are equal

to their sample equivalents pYk
yk

.

Using the formulation of JCA in which the λr parameters are absorbed

into the category quantifications (see Equation 2), the above loss function

can also be written as follows:

W = 1/2
K∑

k=1

K∑
` 6=k

Jk∑
yk=1

J∑̀
y`=1

pYk
yk

pY`
y`

(
ξYkY`
yky`

−
R∑

r=1

ηYk∗
ryk

ηY`∗
ry`

)2

, (9)

where ξYkY`
yky`

=
(
pYkY`

yky`
− pYk

yk
pY`

y`

)
/
(
pYk

yk
pY`

y`

)
. One of the algorithms that has

been proposed to obtain the category score scale values ηYk∗
ryk

makes use of

MCA; that is, it performs a singular value decomposition on the matrix

collecting the elements
√

pYk
yk pY`

y` ξ
YkY`
yky`

for all two-way tables (Greenacre, 1988).

The difference with MCA is that the diagonal elements of this matrix are

updated at each iteration cycle. More precisely, the diagonal elements are

estimated with the provisional parameter values from the previous iteration:

ξ̂YkYk(t)
ykyk

=
R∑

r=1

η̂Yk∗(t−1)
ryk

η̂Yk∗(t−1)
ryk

.
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In a certain sense, this iterative algorithm is similar to an EM algorithm;

that is, fill in the expected values for the missing data in one step and solve

the “maximization” problem in a second step.

Other more efficient algorithms have been proposed that minimize W

directly making use of its first and second derivatives with respect to ηYk∗
ryk

(see Boik, 1996). These derivatives equal

∇W (ηYk
ryk

) =
K∑

` 6=k

J∑̀
y`=1

pYk
yk

pY`
y`

(
R∑

r=1

ηYk∗
ryk

ηY`∗
ry`
− γYkY`

yky`

)
ηY`∗

ry`
,

∇2W (ηYk
ryk

) =
K∑

` 6=k

J∑̀
y`=1

pYk
yk

pY`
y`

(
ηY`∗

ry`

)2
.

A simple unidimensional Newton or alternating least squares updating scheme

for the category quantifications ηYk∗
ryk

involves adjusting the parameters as fol-

lows:

η̂Yk∗(t)
ryk

= η̂Yk∗(t−1)
ryk

+
∇W (ηYk

ryk
)

∇2W (ηYk
ryk)

.

After updating the rth set of scale values for variable Yk, they should be

centered. The orthogonalization of the scale values for the various dimensions

can be done afterwards, for instance, by performing one cycle of the algorithm

described above.

ML estimation of the multivariate correlation model

For the ML estimation of the MCM, we use the formulation of Equation (5)

in which the σr parameters are absorbed in the category quantifications. In

order to deal with the centering constraints, we simply write the category

quantification for the last category Jk as a function of the quantifications for
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the other categories:

νYk∗
rJk

= −
Jk−1∑
yk=1

pYk
yk

pYk
Jk

νYk∗
ryk

.

Let I denote the number of cells in the contingency table and i a particular

cell entry. The observed cell frequencies are denoted by ni, the total sample

size by N , and an expected cell proportion by πi(β), where β is the vector

of unknown parameters. Furthermore, let xYk
iyk

equal 1 if Yk = yk, −pYk
yk

/pYk
Jk

if Yk = Jk, and 0 otherwise. Let zYk
iyk

equal 1 if Yk = yk, −1 if Yk = Jk, and 0

otherwise.

Assuming Poisson sampling, ML estimation involves maximizing the ker-

nel of the log-likelihood function

L(β) =
I∑
i

[ni ln πi(β)−Nπi(β)] .

In order to simplify notation, we define πi(β) = π0
i γi, where

π0
i =

K∏
k=1

 Jk∑
yk=1

πYk
yk

zYk
iyk

 ,

and

γi =

1 +
R∑

r=1

K∑
k=1

K∑
`=k+1

Jk∑
yk=1

J∑̀
y`=1

(
νYk∗

ryk
xYk

iyk

) (
νY`∗

ry`
xY`

iy`

) .

The two algorithms described below use the first-order derivatives of πi(β)

with respect to the unknown parameters; that is,

∇πi(ν
Yk∗
ryk

) = π0
i

∑
`6=k

J∑̀
y`=1

(
νY`∗

ry`
xY`

iy`

)
xYk

iyk
,

∇πi(π
Yk
yk

) =

 K∏
`6=k

 J∑̀
y`=1

πY`
y`

zY`
iy`

 γiz
Yk
iyk

.

Goodman (1985) and Choulakian (1988a) proposed using a simple uni-

dimensional Newton algorithm for ML estimation of correlation models for

16



two- and three-way tables. This algorithm can easily be generalized to deal

with the MCM. The ML estimates for the πYk
yk

terms are simply their sample

equivalents pYk
yk

. The unidimensional updating scheme for the νYk∗
ryk

parameter

is defined as follows:

ν̂Yk∗(t)
ryk

= ν̂Yk∗(t−1)
ryk

−
∇L(νYk∗

ryk
)

∇2L(νYk∗
ryk )

,

where the first and second derivatives of L(β) with respect to νYk∗
ryk

equal

∇L(νYk∗
ryk

) =
∑

i

(
ni −Nπi(β)

πi(β)

)
∇πi(ν

Yk∗
ryk

),

∇2L(νYk∗
ryk

) = −
∑

i

ni

πi(β)2∇πi(ν
Yk∗
ryk

)2.

One set of quantifications is updated at a time fixing all the other param-

eters at their current values. The identifying orthogonality constraints can

be imposed afterwards, for instance, by a singular value decomposition. As

was already mentioned, an alternative way to deal with the rotation problem

is to equate certain scale values to zero.

Gilula and Haberman (1986) proposed obtaining ML estimates for the

parameters of the bivariate correlation model by Fisher scoring. The same

procedure can also be applied in the context of the MCM. An important

difference with a standard Fisher scoring algorithm is that the identifying

(orthogonality) constraints should be defined as side constraints in the max-

imization problem. We will denote these constraints by h(β) = 0. The task

to be performed is finding the parameter estimates β̂ that fulfill the following

two conditions:

g(β̂) = ∇L(β̂) + λ′∇h(β̂) = 0,

h(β̂) = 0,
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where λ is a vector of Lagrange multipliers. The gradient vectors for β and

λ, g(β) and g(λ), and the Fisher information matrix, F(β), are obtained by

g(β) =
∑

i

πi(β)−1[ni −Nπi(β)]∇πi(β) + λ′∇h(β),

g(λ) = h(β),

F(β) = N
∑

i

πi(β)−1∇πi(β)∇πi(β)′.

After collecting β and λ into a single vector θ, the Fisher-scoring updating

scheme can be defined as follows

θ̂(t) = θ̂(t−1) + H(θ̂)−1g(θ̂),

where

H(θ) =

 F(β) −∇h(β)

−∇h(β) 0

 . (10)

The upper left part of the inverse of H(θ̂) contains the estimated variances

and covariances of the unknown parameters.

A problem with the ML estimation of the MCM model is that there is

no guarantee that all πi(β) ≥ 0. This problem may occur when some of

the observed cell frequencies are equal to zero. The Fisher-scoring method

described above can, however, easily be modified to include nonnegativity

constraints on the expected cell proportions: a term [πi(β)−ε] is added to

the vector h(β) for each i. Because we are dealing with inequality constraints,

the corresponding Lagrange multipliers should be at least zero, which means

that the equality constraint πi(β) = ε is only activated if the corresponding

inequality πi(β) ≥ ε would otherwise be violated. The value of ε can be set

very near to zero, say 10−8, but not exactly equal to zero.
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Table 1: Cross-tabulation of five variables from the Political Action Survey

System Conventional

Responsive- Ideological Repression Protest Participation (Y5)

ness (Y1) Level (Y2) Potential (Y3) Approval (Y4) 1. Low 2. High

1. Low 1. Low 1. High 1. Low 109 8

2. High 59 44

2. Low 1. Low 28 18

2. High 48 54

2. High 1. High 1. Low 4 19

2. High 7 32

2. Low 1. Low 3 3

2. High 10 26

2. High 1. Low 1. High 1. Low 49 92

2. High 46 96

2. Low 1. Low 16 16

2. High 33 80

2. High 1. High 1. Low 7 38

2. High 10 63

2. Low 1. Low 3 12

2. High 8 55
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Table 2: Cross-tabulation of four variables from the 1982 General Social

Survey

Cooperation (Y4)

Purpose Accuracy Understanding 3.Hostile/

(Y1) (Y2) (Y3) 1. Interested 2. Cooperative Impatient

1. Good 1. Mostly true 1. Good 419 35 2

2. Fair/Poor 71 25 5

2. Not true 1. Good 270 25 4

2. Fair/Poor 42 16 5

2. Depends 1. Mostly true 1. Good 23 4 1

2. Fair/Poor 6 2 0

2. Not true 1. Good 43 9 2

2. Fair/Poor 9 3 2

3. Waste 1. Mostly true 1. Good 26 3 0

2. Fair/Poor 1 2 0

2. Not true 1. Good 85 23 6

2. Fair/Poor 13 12 8
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Table 3. Testing results of the models estimated with the Political Action

Survey data

Model G2 df p BIC ∆G2

Independence 296.56 26 .00 113.19 .00

MCM(1) 105.09 21 .00 -43.02 .65

MCM(2) 29.39 17 .03 -90.51 .90

LCCM(2) 95.79 20 .00 -45.26 .68

LCCM(3) 24.28 14 .04 -74.46 .92

LCFM(1) 95.79 20 .00 -45.26 .68

LCFM(2) 11.73 14 .63 -87.00 .96

NRM(1) 98.46 21 .00 -49.64 .67

NRM(2) 15.92 16 .46 -96.92 .95

MAM(1) 98.49 21 .00 -49.61 .67

MAM(2) 16.21 17 .51 -103.69 .95

1.MCM = Multivariate Correlation Model; LCCM = Latent Class Cluster

Model; LCFM = Latent Class Factor Model; NRM = Nominal Response

Model; MAM = Multivariate Association Model.

2. ∆G2 is the proportional reduction of G2 compared to the independence

model.
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Table 4. Testing results of the models estimated with the 1982 Social Survey

data

Model G2 df p BIC ∆G2

Independence 257.26 29 .00 51.60 .00

MCM(1) 98.59 23 .00 -64.54 .62

MCM(2) 28.57 18 .05 -99.08 .89

LCCM(2) 79.34 22 .00 -76.68 .69

LCCM(3) 21.89 15 .11 -84.48 .91

LCFM(1) 79.34 22 .00 -76.68 .69

LCFM(2) 10.93 15 .76 -95.45 .96

NRM(1) 81.43 23 .00 -81.68 .68

NRM(2) 12.40 17 .78 -108.16 .95

MAM(1) 80.34 23 .00 -82.80 .69

MAM(2) 13.13 18 .78 -114.53 .95

1.MCM = Multivariate Correlation Model; LCCM = Latent Class Cluster

Model; LCFM = Latent Class Factor Model; NRM = Nominal Response

Model; MAM = Multivariate Association Model.

2. ∆G2 is the proportional reduction of G2 compared to the independence

model.
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Table 5. Parameter estimates for MCM(2) obtained with the Political Action

data.

Unrotated Solution Rotated Solution

r = 1 r = 2 r = 1 r = 2

σr 0.145 (0.010) 0.089 (0.024) 0.129 (0.011) 0.105 (0.025)

νY1
r1 -0.858 (0.167) 0.725 (0.216) -1.090 (0.133) 0.028 (0.151)

νY1
r2 0.731 (0.142) -0.618 (0.184) 0.929 (0.113) -0.024 (0.129)

νY2
r1 -0.613 (0.070) 0.238 (0.178) -0.655 (0.074) -0.199 (0.102)

νY2
r2 1.751 (0.200) -0.678 (0.509) 1.870 (0.211) 0.567 (0.292)

νY3
r1 -0.618 (0.359) -1.251 (0.160) 0.000 (0.000) -1.362 (0.275)

νY3
r2 1.111 (0.646) 2.251 (0.288) 0.000 (0.000) 2.451 (0.495)

νY4
r1 -1.245 (0.182) -0.877 (0.777) -0.728 (0.152) -1.464 (0.602)

νY4
r2 0.900 (0.132) 0.634 (0.561) 0.526 (0.110) 1.058 (0.435)

νY5
r1 -1.559 (0.301) 1.287 (0.258) -1.967 (0.170) 0.028 (0.185)

νY5
r2 0.958 (0.185) -0.791 (0.158) 1.209 (0.105) -0.017 (0.114)
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Table 6. Parameter estimates for MCM(2) obtained with the 1982 General

Social Survey data

Unrotated Solution Rotated Solution

r = 1 r = 2 r = 1 r = 2

σr 0.182 (0.021) 0.119 (0.032) 0.170 (0.026) 0.131 (0.029)

νY1
r1 -0.777 (0.164) 0.415 (0.132) -0.874 (0.113) -0.035 (0.102)

νY1
r2 1.777 (0.465) -0.461 (0.520) 1.824 (0.503) 0.501 (0.453)

νY1
r3 2.954 (0.678) -1.864 (0.569) 3.426 (0.441) -0.114 (0.394)

νY2
r1 -0.915 (0.178) 0.536 (0.345) -1.046 (0.285) 0.000 (0.000)

νY2
r2 0.991 (0.193) -0.581 (0.374) 1.133 (0.309) 0.000 (0.000)

νY3
r1 -0.268 (0.229) -0.671 (0.377) -0.010 (0.070) -0.715 (0.422)

νY3
r2 1.185 (1.010) 2.963 (1.662) 0.044 (0.311) 3.155 (1.863)

νY4
r1 -0.364 (0.163) -0.434 (0.429) -0.184 (0.048) -0.558 (0.430)

νY4
r2 1.615 (0.771) 1.978 (1.964) 0.798 (0.268) 2.523 (1.969)

νY4
r3 3.134 (1.284) 3.500 (3.618) 1.671 (0.437) 4.604 (3.614)
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