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Hierarchical Mixture Models for Nested Data
Structures

Jeroen K. Vermunt1 and Jay Magidson2

1 Department of Methodology and Statistics, Tilburg University, PO Box 90153,
5000 LE Tilburg, Netherlands

2 Statistical Innovations Inc., 375 Concord Avenue, Belmont, MA 02478, USA

Abstract. A hierarchical extension of the finite mixture model is presented that
can be used for the analysis of nested data structures. The model permits a simulta-
neous model-based clustering of lower- and higher-level units. Lower-level observa-
tions within higher-level units are assumed to be mutually independent given cluster
membership of the higher-level units. The proposed model can be seen as a finite
mixture model in which the prior class membership probabilities are assumed to
be random, which makes it very similar to the grade-of-membership (GoM) model.
The new model is illustrated with an example from organizational psychology.

1 Introduction

Social science researchers, as researchers in other fields, are often confronted
with nested or hierarchical data structures. Examples are data from em-
ployees belonging to the same organizations, individuals living in the same
regions, customers of the same stores, repeated measures taken from the same
individuals, and individuals belonging to the same primary sampling units in
two-stage cluster samples.

This paper introduces an extension of the standard finite mixture model
(McLachlan and Peel, 2000) that can take the hierarchical structure of a
data set into account. Introducing random-effects in the model of interest is
a common way to deal with dependent observations arising from nested data
structures. It is well known that the finite mixture model is itself a nonpara-
metric random-effects model (Aitkin, 1999). The solution that is proposed
here is to introduce nonparametric random effects within a finite mixture
model. That is, on top of a finite mixture model, we build another finite mix-
ture model, which yields a model with a separate finite mixture distribution
at each level of nesting.

When using the hierarchical mixture model for clustering, one obtains
not only a clustering of lower-level units, but also a clustering of higher-
level units. The clusters of higher-level units differ with respect to the prior
probabilities corresponding to the lower-level clusters. This is similar to what
is done in multiple-group latent class analysis, with the difference that we
assume that each group belongs to one of a small number of clusters (latent
classes) instead of estimating of a separate latent class distribution for each
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group. The latter approach would amount to using a fixed-effect instead of a
random-effects model.

Because it is not practical to estimate the hierarchical mixture using a
standard EM algorithm, we propose a variant of EM that we call the upward-
downward algorithm. This method uses the conditional independence as-
sumption of the underlying graphical model for an efficient implementation
of the E step.

2 Model formulation

2.1 Standard finite mixture model

Let yik denote the response of individual i on indicator, attribute, or item k.
The number of cases is denoted by N , and the number of items by K. The
latent class variable is denoted by xi, a particular latent class by t, and the
number of latent classes by T . Notation yi is used to refer to the full response
vector for case i. A finite mixture model can be defined as (McLachlan and
Peel, 2000)

f(yi) =
T∑

t=1

π(xi = t) f(yi|xi = t).

where π(xi = t) is the prior class membership probability corresponding to
class t and f(yi|xi = t) is the class conditional density of yi. With continuous
yik, we may take f(yi|xi = t) to be multivariate normal. If the indicators yik

are categorical variables, we usually make the additional assumption that
responses are independent given class membership (Lazarsfeld and Henry,
1968); that is,

f(yi|xi = t) =
K∏

k=1

π(yik|xi = t). (1)

This assumption is justified if – as in our empirical example – the K items
can be assumed to measure a single underlying dimension.

2.2 Hierarchical finite mixture model

For the hierarchical extension of the mixture model, we have to extend our
notation to take into account the extra level of nesting. Let yijk denote the
response of lower-level unit i within higher-level unit j on indicator k. The
number of higher-level units is denoted by J , the number of lower-level units
within higher-level unit j by nj , and the number of items by K. Notation yij

is used to refer to the full vector of responses of case i in group j, and yj to
refer to the full vector of responses for group j.

The latent class variable at the lower level is denoted by xij , a particular
latent class by t, and the number of latent classes by T . The latent class
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variable at the higher level is denoted by uj , a particular latent class by m,
and the number of latent classes by M .

The hierarchical mixture model consist of two parts. The first part con-
nects the observations belonging to the same group. It has the following form:

f(yj) =
M∑

m=1

π(uj = m) f(yj |uj = m)

f(yj |uj = m) =
nj∏
i=1

f(yij |uj = m).

As can be seen, groups are assumed to belong to one of M latent classes with
prior probabilities equal to π(uj = m) and observations within a group are
assumed be mutually independent given class membership of the group. Note
that this conditional independence assumption is similar to the assumption
of the latent class model for categorical variables (see equation 1).

The second part of the model is similar to the structure of a standard finite
mixture model, except for the fact that now we are dealing with f(yij |uj =
m) instead of f(yi); that is, we have to define a density conditional on the
class membership of the higher-level unit. This yields

f(yij |uj = m) =
T∑

t=1

π(xij = t|uj = m) f(yij |xij = t). (2)

In the case of categorical yijk, we will again assume that

f(yij |xij = t) =
K∏

k=1

π(yijk|xij = t).

If we compare the standard mixture model with the hierarchical mixture
model, we see two important differences: 1] we not only obtain information
on class membership of individuals, but also on class membership of groups
and 2] groups are assumed to differ with respect to the prior distribution of
their members across lower-level latent classes.

It should be noted that the hierarchical mixture model is a graphical
model with a tree structure. The upper node is the discrete latent variable
at the higher level. The intermediate nodes consist of the nj discrete latent
variables for the lower-level units belonging to higher-level unit j. These xij

are mutually independent given uj . The lower nodes contain the observed
responses yijk, which in the latent class model are assumed to be mutually
independent given xij .
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3 Maximum likelihood estimation by an adapted EM
algorithm

If we put the various model parts together, we obtain the following log-
likelihood function for the hierarchical mixture model:

log L =
J∑

j=1

log f(yj)

=
J∑

j=1

log
M∑

m=1

π(uj = m)
nj∏
i=1

[
T∑

t=1

π(xij = t|uj = m) f(yij |xij = t)

]
.

A natural way to solve the ML estimation problem is by means of the EM
algorithm (Dempster, Laird, and Rubin, 1977). The E step of the EM algo-
rithm involves computing the expectation of the complete data log-likelihood,
which in the hierarchical mixture model is of the form

E(log Lc) =
J∑

j=1

M∑
m=1

P (uj = m|yj) log π(uj = m)

+
J∑

j=1

M∑
m=1

nj∑
i=1

T∑
x=1

P (uj = m,xij = t|yj) log π(xij = m|uj = m)

+
J∑

j=1

M∑
m=1

nj∑
i=1

T∑
t=1

P (xij = t|yj) log f(yij |xij = t).

This shows that, in fact, the E step involves obtaining the posterior proba-
bilities P (uj = m,xij = t|yj) given the current estimates for the unknown
model parameters. In the M step of the EM algorithm, the unknown model
parameters are updated so that the expected complete data log-likelihood is
maximized (or improved). This can be accomplished using standard complete
data algorithms for ML estimation.

The implementation of the E step is more difficult than the M step. A
standard implementation would involve computing the joint conditional ex-
pectation of the nj + 1 latent variables for higher-level unit j, that is, the
joint posterior distribution P (uj , x1j , x2j , ..., xnjj |yj) with M · Tni entries.
Note that this amounts to computing the expectation of all the “missing
data” for a higher-level unit. These joint posteriors would subsequently be
collapsed to obtain the marginal posterior probabilities for each lower-level
unit i within higher-level unit j. A drawback of this procedure is that com-
puter storage and time increases exponentially with the number of lower-level
units, which means that it can only be used with small nj .

Fortunately, it turns out that it is possible to compute the nj marginal
posterior probability distributions P (uj = m,xij = t|yj) without going
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through the full posterior distribution by making use of the conditional in-
dependence assumptions implied by the hierarchical mixture model. In that
sense our procedure is similar to the forward-backward algorithm that can
be used for the estimation of hidden Markov models with large numbers of
time points (Baum et al., 1970). In the upward-downward algorithm, first,
latent variables are integrated out going from the lower to the higher lev-
els. Subsequently, the relevant marginal posterior probabilities are computed
going from the higher to the lower levels. This yields a procedure in which
computer storage and time increases linearly with the number of lower-level
observations instead of exponentially, as would have been the case with a
standard EM algorithm.

The upward-downward algorithm makes use of the fact that

P (uj = m,xij = t|yj) = P (uj = m|yj)P (xij = t|yj , uj = m)
= P (uj = m|yj)P (xij = t|yij , uj = m);

that is, given class membership of the group (uj), class membership of the
individuals (xij) is independent of the information of the other group mem-
bers. The terms P (uj = m|yij) and P (xij = t|yij , uj = m) are obtained as
follows:

P (xij = t|yij , uj = m) =
π(xij = t|uj = m)f(yij |xij = t)

f(yij |uj = m)

P (uj = m|yj) =
π(uj = m)

∏nj

i=1 P (yij |uj = m)
f(yj)

,

where f(yij |uj = m) =
∑T

t=1 π(xij = t|uj = m)f(yij |xij = t) and f(yj) =∑M
m=1 π(uj = m)

∏nj

i=1 P (yij |uj = m).
In the upward part, we compute f(xij = t,yij |uj = m) for each indi-

vidual, collapse these over xij to obtain f(yij |uj = m), and use these to
obtain P (uj = m|yj) for each group. The downward part involves comput-
ing P (uj = m,xij = t|yij) for each individual using P (uj = m|yi) and
P (xij = t|yij , uj = m).

A practical problem in the implementation of the above upward-downward
method is that underflows may occur in the computation of P (uj = m|yj).
Such underflows can, however, easily be prevented by working on a log scale.
The algorithm described here will be implemented in version 4.0 of the Latent
GOLD program for finite mixture modeling (Vermunt and Magidson, 2000).

4 An empirical example

We will illustrate the hierarchical mixture model using data taken from a
Dutch study on the effect of team characteristics on individual work condi-
tions (Van Mierlo, 2003). A questionnaire was completed by 886 employees
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from 88 teams of two organizations, a nursing home and a domiciliary care
organization. Of interest for the illustration of the hierarchical mixture model
is that employees are nested within (self-managing) teams, where the total
number of observations per team ranged from 1 to 22.

Various aspects of work conditions were measured, one of which was the
perceived task variety. The item wording of the five dichotomous items mea-
suring perceived task variety is as follows (translated from Dutch):
1. Do you always do the same things in your work?
2. Does your work require creativity?
3. Is your work diverse?
4. Does your work make enough usage of your skills and capacities?
5. Is there enough variation in your work?

We had 36 cases with missing values on one or more of the indicators, but
these cases can be retained in the analysis.

The model we use for these dichotomous response variables is an unre-
stricted latent class models. Besides a latent class model for the employees,
we have to take into account the nested data structure. This is done by allow-
ing teams to belong to clusters of teams that differ with respect to the prior
distribution of the task-variety classes of employees. An alternative would
have been to adopt a fixed-effects approach in which each team has its own
prior latent class distribution. However, given the large number of higher-level
units (88), this would yield a model with many parameters.

We fitted models with different numbers of classes of teams and different
numbers of classes of employees within classes of teams. Table 1 reports the
log-likelihood value, the number of parameters, and the BIC value for the
estimated models. In the computation of BIC, we used the total number of
employees (886) as the sample size. As can be seen, the very parsimonious
model with two classes of teams and two classes of employees (within classes
of teams) is the preferred model according to the BIC criterion.

Table 1. Testing results for the estimated models with the task-variety data

Teams Employees Log-likelihood # Parameters BIC value

1-class 1-class -2797 5 5628
1-class 2-class -2458 11 4991
1-class 3-class -2444 17 5004
2-class 2-class -2435 13 4958
2-class 3-class -2419 20 4974
3-class 2-class -2434 15 4970
3-class 3-class -2417 23 4991

The estimated probability of giving a response that is in agreement with a
high task variety (“no” for item 1 and “yes” for the other 4 indicators) equals
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.51, .70, .97, .83, and .93 for the employees in the first latent class and .14,

.17, .20, .42, and .17 for the second latent class. Thus, the first latent class
can be called the high task-variety class and the second the low task-variety
class.

Besides these two classes of employees we encountered two clusters of
teams that differ in their team members’ prior probability of belonging to
the high task-variety class. In the first cluster of teams – containing 66% of
the teams – this prior probability equals .79, whereas it is only .39 in the
second cluster of teams. This shows that there are large differences between
teams with respect to the perceived task variety of their employees. It also
shows that the observations belonging to the same group are quite strongly
correlated.

Whereas in this application the hierarchical structure arises from the nest-
ing of individuals within groups, the proposed methodology is also useful in
longitudinal studies: the higher-level units would then be individuals and the
lower-level units measurement occasions or time points.

5 Variants and extensions

This paper presented the simplest form of the hierarchical mixture model.
Several extensions and variants can be formulated. One important extension
is the use of covariates affecting uj , xij , or yijk. For example, assume that
we have a set of P covariates affecting xij and that zijp denotes a particular
covariate. In that case, we may use the following logit form for π(xij = t|uj =
m, zij):

π(xij = t|uj = m, zij) =
exp(γm

t0 +
∑P

p=1 γtp zijp)∑T
r=1 exp(γm

r0 +
∑P

p=1 γrp zijp)
.

In equation (2), we implicitly assumed that uj has no direct effect on yij .
In some applications one may wish to use an alternative structure for this
equation. For example,

f(yij |uj = m) =
T∑

t=1

π(xij = t) f(yij |xij = t, uj = m),

which can be used for obtaining a three-level extension of the mixture regres-
sion model (see Vermunt, 2004). That is, a nonparametric random-coefficients
model in which regression coefficients not only differ across clusters of lower-
level units, but also across clusters of higher-level units.

The hierarchical mixture model is similar to the grade-of-membership
(GoM) model (Manton, Woodbury and Tolley, 1994). As pointed out by
Haberman (1995) and Esherova (2003), a GoM model can be defined as a la-
tent class model with multiple exchangeable latent variables, which is exactly
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the same as is done in the hierarchical mixture model. Whereas we model the
variation in prior class membership probabilities by nonparametric random
effects, a hierarchical mixture model with parametric random effects would
be even more similar to the GoM model. Vermunt (2003) proposed such a
variant in which the logit of π(xij = t|uj) is assumed to be normally dis-
tributed, which is the common specification for the random effects in logistic
regression models. More specifically,

π(xij = t|uj) =
exp(γt + τt · uj)∑T

r=1 exp(γr + τr · uj)

with uj ∼ N(0, 1).
Whereas the hierarchical mixture model presented in this paper contains

only two levels of nesting, it is straightforward to extend the model and the
upward-downward algorithm to three or more levels.
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