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THE O R D E R - R E S T R I C ~ D  ASSOCINFION MODEL: 
TWO ESTIMATION ALGORITHMS AND ISSUES IN TESTING 

FRANCISCA GALINDO-GARRE 

ACADEMIC MEDICAL CENTER, UNIVERSITY OF AMSTERDAM 

JEROEN K. V E R M U N T  

T I L B U R G  U N I V E R S I T Y  

This paper presents a row-column (RC) association model in which the estimated row and column 
scores are forced to be in agreement with an a priori specified ordering. Two efficient algorithms for 
finding the order-restricted maximum likelihood (ML) estimates are proposed and their reliabili ty under 
different degrees of association is investigated by a simulal ion study. We propose testing order-resU'icted 
RC models using a parametric bootstrap lXocedme, which turns out to yield reliable p values, except for 
situations in which the association between the two variables is very weak. The use of order-restricted RC 
models is illustrated by means of an empirical example. 

Key words: Row-column association models, order-conslraints, ML estimalion algorithms, parametric 
bootstrap. 

1. Introduction 

Nowadays, several statistical tools are available to analyze ordinal categorical data, such as 
correspondence analysis, regression models for transformed cumulative probabilities, and log- 
linear and log-bilinear association models (see, e.g., Agresti, 2002; Clogg & Shihadeh, 1994). 
Goodman (1979) presented a class of log-linear and log-bilinear models to study the bivariate 
association between ordinal variables. This family contains four types of association mode l s - -  
uniform, row, column and row-column (RC)--sui ted for the analysis of ordinal data. 

Nevertheless, association models are not really ordinal models because ordinal models as- 
sume a monotone relationship, no more and no less. The uniform association model assigns a 
priori scores to the categories of the row and column variables, which means that the variables 
are treated as interval level. The row model assumes that the column scores are known and that 
the row scores are unknown parameters. This model treats the column variable as an interval 
level variable and (since there is no guarantee that the estimated row scores have the assumed 
order) the row variables as nominal. The same applies to the column model. In the log-bilinear 
RC association model, both the row and column scores are estimated without order restrictions. 
Again, there is no guarantee that the category scores have the right order since the same ML 
estimates would be obtained if the levels are permuted in any way. Therefore, some restrictions 
should be imposed on the row and column scores to analyze ordinal relations. 

Several methods have been proposed to overcome the problem that row or column scores 
do not have the assumed ordering. A first class of methods adapts the Goodman (1979) uni- 
dimensional Newton algorithm to deal with inequality restrictions. Both the work of Agresti, 
Chuang, and Kezouh (1987) on order-restricted row models and of Ritov and Gilula (1991) 
on order-restricted RC models fit within this framework. A different type of method based on 
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using prior distributions for row and column scores was proposed by Agresti and Chuang (1986). 
Recently, Bartolucci and Forcina (2002) showed how to define the RC model within the marginal 
modeling framework, that is, as a reduced-rank structure on the matrix of log-odds ratios. Within 
this framework, inequality constraints can be introduced to obtain order-restricted variants of RC 
models for various types of odds ratios. 

This paper presents two simple algorithms, which are adaptations of Goodman's (1979) 
algorithm to order-restricted RC association models. The first method is a pooling adjacent vi- 
olators algorithm (Robertson, Wright, & Dykstra, 1988) and the second one is an active-set 
algorithm (Gill & Murray, 1974). Both methods can also be used for ML estimation of order- 
restricted row models. The proposed algorithms overcome some of the problems associated with 
the procedure of Ritov and Gilula (1991). Moreover, the methods are simpler than the more 
general procedure proposed by Bartolucci and Forcina (2002) and can easily be implemented in 
existing RC modeling programs or routines that are based on Goodman's algorithm. 

This paper is built up as follows. First, unrestricted and order-restricted RC models are de- 
scribed. Second, ML estimation of their model parameters is discussed. Then, the performance 
of the proposed algorithms, described in the former paragraph, and the Ritov-Gilula method are 
evaluated by a simulation study. Next, the testing of this model is investigated, and the para- 
metric bootstrap (Efron & Tibshirani, 1993, sec. 21.5) is used to approximate p values for a 
two-hypotheses test, and its performance is investigated in a simulation study. Finally, the new 
approach is illustrated by means of an empirical example. 

2. Description of the RC Model 

Let nij  and mij  denote an observed and an expected cell count, respectively, in an I x J 
table. The assumed model for the expected frequencies is a log-bilinear RC association model, 
that is, 

l o g m i j  = )v + Li R + L c + ¢l~iVj.  (1) 

The )v, )v/R, and )v c parameters are standard log-linear effects, ~b is the association parameter, and 
i~i and vj  are unknown row and column scores. For identification, some restrictions have to be 
imposed on the row and column scores and on the log-linear parameters, for instance, 

~_~ [~ i = ~_~ V j = 0 , 
i j 

. 2  = ~ v2 = 1, 

i j 

(2) 
i j 

The uniform, row, and column association models can be seen as special cases of the RC model. 
As was shown by Goodman (1979), the parameters of the RC model are directly related to 

the log-local odds ratios, that is, 

l o g  m i j m i + l j + l  _ q ) ( / ~ i + l  - I ~ i ) ( V j + l  - v j ) .  
m i + l j m i j + l  

Although the RC model was originally proposed by Goodman (1979) for the analysis of two-way 
tables having ordered categories, there is no guarantee that the ML solution will be ordinal unless, 
assuming (p > 0, the row and column scores are constrained to be monotonically increasing or 
decreasing. 
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3. MI~ Estimation of the Unrestricted RC Model 

For the ML estimation discussed below, it is somewhat easier to use a slightly different 
formulation of  the above RC model, such as 

where 

C 
l o g  mij -= )~ + )~i R + )~j 4- t) iaj ,  (3) 

Pi = ~ o'j = O. (4) 
i j 

The equivalence between the formulation in I~uations (1) and (3) becomes clear if one notes that 
~lJ~iVj = Pi~j ,  where Pi = q}Y//,i and c~j = ¢~vj for any × and 3 whose sum is one. The simplest 

choice is obtained when g = 3 = ½ because it gives equal weights to the row and column scores, 
and ensures that the sum of squares of  row scores and the sum of squares of column scores are 
equal. 

The likelihood equations for the log-linear parameters have the well-known form 

nij - ~ mij = 0 ,  
J J 

nij - ~ mij = 0 .  
i i 

These likelihood equations can be solved using simple iterative proportional fitting (IPF) adjust- 
ments. The likelihood equations for the Pi and ¢rj parameters are 

~-~flijtyj - Z t t t i j c r j  = 0  and ~-~nijPi - ~-~mijPi = 0 ,  
j j i i 

respectively. It should be noted that the conditions described in the above likelihood equations 
are necessary but not sufficient for a solution to be the ML solution. Because the log-likelihood 
function is not necessarily concave, there may be local maxima. A manner to decrease the proba- 
bility of  ending up with a local maximum is to re-estimate the model various times using different 
sets of  (random) starting values for the row and column scores. 

As was already shown by Goodman (1979), the likelihood equations for the RC model 
can be solved by means of  a simple uni-dimensional Newton algorithm (see also Clogg, 1982; 
Becker, 1990). This method solves these equations with the following updates of  the Pi and c~j 
parameters: 

( t - - l ) _  ( t -- l )  
p}t) = p}t--1) g(Pi)  (t) __ p}t--1) ~ j  nijcr) t - l )  -- ~ j  mij  o j  

H(pi) ( t )  - ( t - l )  ~ (t-1),~2 ' ( 5 )  
-- ~ j  mij (~'j J 

and 

_ ttlij Pi 

- -  z - - , i  ij Iloi ) 

where p}t) and c~} t) denote the tth approximation for the Pi and c~j parameters and m}: ) denote 
the tth approximation for the expected frequencies. The numerator g in Equations (5) and (6) is 
the first partial derivative of the log-likelihood function with respect to the parameter concerned 
(an element of the gradient vector) and [he denominator H is the second partial derivative (a 
diagonal element of the Hessian matrix). 
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As can be seen, each iteration cycle consists, besides the standard IPF adjustments for the 
log-linear parameters, of two steps: one in which the Pi are updated, treating the c~j as fixed, 
and one in which the ~j  are updated, treating the Pi as fixed. It is important to note that the Pi 
parameters are updated independently of one another. The same applies to the c~j parameters. 
After updating the Pi parameters, they are centered (see the condition given in Formula (4)) 

.~ (t)' 
and the estimated expected frequencies are updated, which yields m i j  . The same procedure is 
followed after updating the c~j parameters. 

The above uni-dimensional Newton method can also be used for estimating row and column 
models. This just involves treating either the column or the row scores as fixed rather than as 
random quantities. 

4. ML Estimation of the Order-Restricted RC Model  

In terms of the model formulation in Equation (3), ordinality is defined as 

Pi < Pi+l, 

and either 

~j < ~ j + l  

or 

~j > ~ j + l ,  

depending on whether there is a positive or negative relationship. Thus, the row scores have to 
be monotonically nondecreasing while the column scores can either be postulated to be mono- 
tonically nondecreasing or nonincreasing. Next, we describe four algorithms to estimate the RC 
model under these constraints. 

4.1. The Ritov-Gilula Algorithm 

Ritov and Gilula (1991) proposed to obtain ML estimates of the order-restricted RC model 
by a pooling adjacent violators algorithm, which is a well-known class of procedures in the field 
of ordered statistical inference (see Robertson, Wright,  & Dykstra, 1988). The amalgamation of 
categories that are out of order is not determined directly on the Pi and ~j parameters but on the 
quantities Ei ((7) and Fj (p), which are defined as 

E i ( a )  = ~ n i j a j  , (7) 
. Yli. J 

Fj(p) = ~ nijPi (8) 

--7 . rt.j 

Note that these are the sufficient statistics for the unrestricted row and column parameters divided 
by the corresponding marginal frequencies. 

Ritov and Gilula (1991) proved that pooling adjacent violators of Ei ((7) and Fj (p) using 
the marginal observed frequencies hi. and n.j as weights yield information on which categories 
scores have to be equated. The necessary conditions for the ML solution of the order-restricted 
RC model are that the pooled Ei ((7) and Fj (p) are monotone and that the l ikelihood equations 
are fulfilled. The l ikelihood equations concern the table in which the equated categories are col- 
lapsed. This implies, for instance, that if rows 3, 4, and 5 are equated, the unrestricted l ikelihood 
equations for these three rows have to be summed. 
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Agresti ,  Chuang, and Kezouh (1987) used the same principle of pooling adjacent violating 
Ei (~) and Fj (p) in the estimation of order-restricted R and C models. There, however, either the 
c~j or the Pi are known quantities, which makes it possible to determine the categories that have 
to be collapsed from the data. Since in RC models both the c~j and the Pi are unknown, the order 
violations in Ei (o-) and Fj (p) are not independent of one another. 

According to Ritov and Gilula (1991), asymptotically, amalgamation can be done indepen- 
dently for rows and columns using the unrestricted ML estimates for ~rj and Pi in the above 
formulas for Ei(~) and Fj(p). This should yield information on which Pi and erj parameters 
must be equated to obtain the order-restricted solution. 

Their procedure, thus, consists of four steps: 

1. estimate the unrestricted RC model, 
2. compute E i (o-) and Fj (p) using the unrestricted estimates for Pi and c~j, 
3. determine which row and column scores should be equated by pooling adjacent violators in 

the Ei(~) and Fj(p), and 
4. estimate the RC model with the necessary equality restrictions. 

The equality restrictions can, for instance, be imposed by estimating an unrestricted RC 
model for the table in which the equated categories are collapsed. 

Despite that Ritov and Gilula show that their method works asymptotically, in practice it of- 
ten fails to find the equality restrictions yielding the global order-restricted ML solution. This is 
caused by the fact that restrictions on rows and columns are not independent of one another. Al-  
though asymptot ica l ly- -which  means that the model holds in the population and that the sample 
size goes to inf in i ty- - i t  does not make a difference whether we determine Ei (~r) using the order- 
restricted or the unrestricted estimates for the column scores, in practice, it makes a difference. 
The same applies for Fj (p). 

4.2. A Naive Algorithm 

As pointed out by Ritov and Gilula (1991), there is no guarantee, in the nonasymptotic case, 
that the global maximum can be found with their algorithm. An alternative naive algorithm can 
be formulated that will always find the global maximum for the order-restricted RC model. It 
consists of estimating independently all possible models that arise from imposing equality con- 
straints between adjacent row and column scores. Given that there are I - 1 possible equalities on 
adjacent row scores and J - 1 possible equalities on adjacent column scores, there are 2 (I+J-2)  
different RC models with the relevant equality constraints. Each of these 2 ( I+J-2)  models has 
to be estimated. As the ordered ML solution it is selected the model that gives the highest log- 
l ikelihood value among the models with correctly ordered row and column scores. 

Because 2 (I+J-2)  different models have to be estimated, this naive algorithm is a very 
t ime-consuming method. However, since it always finds the order-restricted ML solution, it is 
very well suited as a benchmark for alternative procedures. 

4.3. A Pooling Adjacent Violators Algorithm 

Instead of estimating all possible models as is done in the naive method, it is also possible to 
transform the Ri tov-Gi lu la  procedure into a pooling adjacent violators (PAV) algorithm that con- 
verges to the order-restricted ML solution. The proposed modification is to determine Ei (o-) and 
Fj (p) at each iteration cycle rather than from the unrestricted ML solution. In other words, the 
necessary order restrictions on the row scores are determined given the current order-restricted 
estimates for column scores and vice versa. This algorithm fits very well within the framework of 
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the uni-dimensional Newton algorithm, in which row scores are updated given the current values 
of  the column scores, and column scores are updated given the current values of  the row scores. 

In the proposed PAV algorithm, at each iteration cycle the updating of  the row scores con- 
sists of  three steps: (1) determine which rows should be equated given the current estimates of 
the column scores using the method proposed by Ritov and Gilula, (2) perform an unrestricted 
update of  the row scores, and (3) pool the row scores that should be equated using the marginal 
observed frequencies as weights. Equivalent steps are applied to obtain improved estimates for 
the column scores. More details are provided in the Appendix.  

4.4. An Active-Set Algorithm 

An alternative to the above PAV algorithm is to modify the uni-dimensional Newton method 
into an active-set algorithm (Gill & Murray, 1974). Active-set  or activated-constraints algorithms 
are commonly used to solve optimization problems with inequality constraints. In our case, row 
and column scores can be updated using Equation (5) or (6) as long as they are not out of order, 
that is, as long as they belong to the inactive set. If there are order violations, say at iteration t, the 
scores that are out of order have to be equated and are thus moved to the active set. Once scores 
belong to the active set, in subsequent iterations, it must be checked whether an unrestricted 
update would again yield an order violation. If so, they have to remain equal, otherwise they are 
allowed to become unequal again (to be moved to the inactive set). More formally: 

• For row (column) scores belonging to [he inactive set, perform an unrestricted update using 
Equation (5) or (6) and check whether there are order violations (p[ > P~+I)" If  so, equate the 
scores that are out of order (e.g., p[ = pt = c). It is not important which provisional value, i+1 
c, is taken when equating the scores. For instance, c may be the unweighted mean or, as in the 
PAV algorithm, the marginally weighted means of the corresponding unrestricted scores 

• For row (column) scores belonging to the active set, check whether an unrestricted update 
using Equation (5) or (6) again yield an order violation. If  so, they have to remain equal; 
otherwise they are allowed to become unequal. Note that treating parameters as equal implies 
summing the numerators (g) and the denominators (H)  of the unrestricted updates. 

In contrast to the Ri tov-Gi lu la  algorithm, which determines the order violations from the 
unrestricted ML solution, the PAV and the active-set algorithms settle the order violations at 
each iteration. Even though both algorithms make use of  the uni-dimensional Newton updating 
scheme, they use different approaches to find the necessary equality constraints. While  the PAV 
procedure uses  Ei (cr) and Fj (p) to determine which scores should be equated after an unre- 
stricted update, the active-set method equates scores that are out of  order and keeps them equal 
in the next iterations as long as the gradients show that an unrestricted update would yield an 
order violation. As is shown in the Appendix,  for scores that are equal at iteration t - 1 and that 
should remain equal at iteration t, the two updating schemes are equivalent. This means that once 
the set of necessary constraints is found, both algorithms converge to the same order-restricted 
solution. 

4.5. A Simulation Study 

In order to show that the PAV and the active-set algorithms perform better than the Ri tov-  
Gilula algorithm, we carried out a Monte Carlo study. In the evaluation of these procedures, we 
assumed that the naive algorithm always reaches the equalities on the rows and columns that 
produce the order-restricted ML solution, and we used it as reference. Since the PAV and the 
active-set algorithms produce about the same order-restricted estimates, we only used the active- 
set algorithm in the simulation. More specifically, we investigated, under several conditions, 
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whether the active-set algorithm yields the solution obtained with the naive method more often 
than the Ri tov-Gi lu la  algorithm. 

In the simulation study, a 5 x 3 contingency table was taken as starting point, and samples 
were generated from a model  of the form presented in Equation (1). The )v/R and )v c parameters 
were assumed to be equal to zero and the centering and scaling constraints on the I~i and vj 
parameters were as described in Equation (2). The influence of three factors was investigated: 

1. strength of the association between the variables (3 conditions): q5 = 0, q5 = 0.3, or q5 = 3.0; 
2. relative distances between rows and between columns (3 conditions): equal-distant row and 

column scores, two equal row scores (/,1 = /~2), or two equal row and two equal column 

scores (/,1 = 1~2 and v2 = 1~3); 

3. sample size (2 conditions): N = 1000 or N = 100. 

A thousand data sets were drawn under the 14 conditions obtained by crossing the above three 
factors. Note that distances between rows and columns are not varied when q5 = 0. For each data 
set, we estimated the ordered RC model using the naive method, the method proposed by Ritov 
and Gilula (1991), and the active-set method using q5 = 1 and equal-distant row and column 
scores as starting values. In the active-set method, we equated scores that are out of order in 
the PAV manner (see the Appendix),  which makes this method almost equivalent to the PAV 
algorithm. It may be expected that it becomes harder to find the ML solution with a weaker 
association, with less distant scores, and with a smaller sample size, that is, when there is a 
higher probabil i ty of having several order violations. 

Table 1 reports the proportion of samples in which the value of the likelihood-ratio statistic 
(L 2) obtained with the active-set and Ri tov-Gi lu la  methods is larger than the value obtained with 
the naive method (the ML solution). We also report the average difference in L 2 between the last 
two methods across the 1000 replications. L 2, which is taken as a measure of the fit of the model, 
represents the distance between estimated frequencies and the data. This statistic minimizes with 
the parameter values maximizing the log-l ikelihood (more details about L 2 can be found in the 
next section). As can be seen, the Ri tov-Gi lu la  method is reliable only with the largest sample 
size (N = 1000) and the strongest association (q5 = 3). With the small sample size, this method 
performs badly even for the strongest association, which is not surprising given that it is based 

TABLE 1. 

L Value of the Active-Set or Ritov-Gilula Method is Larger than the Proportion of Simulated Data Sets in which the 2 
One of the Naive Method 

N = 1 0 0 0  N = 1 0 0  

Population Active-set Ritov-Gilula Active-set Ritov-Gilula 

~b = 0.0 .0771 .694 (.553) 2 .0841 .658 (.625) 

~b = 0.3, Equal-distance #i and vj .0051 .283 (.123) .0421 .727 (.571) 

/~l = l~2 .0051 .322 (.184) .0631 .756 (.594) 

/~l = l~2, v 2 = v 3 .0011 .387 (.235) .0931 .782 (.720) 

~b = 3, Equal-distance #i and vj .000 .000 (.000) .000 .007 (.046) 

/~1 = / ~ 2  .000 .000 (.000) .000 .036 (.049) 

#1 = #2,  v2 = v3 .000 .000 (.000) .000 .067 (.071) 

1These are results obtained with our default starting values. With three sets of random starting values, we get a perfect 
match, or a value of .000. 
2Between braces we report the average difference in L 2 compared to naive method. 
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on asymptotic properties. The active-set method is more reliable under all conditions. However, 
Table 1 shows that the active-set method may also fail to find the global maximum, especially 
with a small sample and a weak association. In all these cases, the global maximum can be 
found by repeating the estimation using random starting values (three random starts sufficed in 
all cases). Therefore, using the ML criterium, we can conclude that the active-set algorithm will 
always find the best order-restricted solution if various random starting values are used. 

5. Model Selection 

One way of testing the order-restricted RC model is by comparing its log-likelihood value 
to the one of the unrestricted RC model. This test, which will be denoted as L~I, was studied by 

Ritov and Gilula (1991). A second test, denoted as L~2, is the goodness-of-fit test often referred 

to as the G 2 statistic. In our case, it involves comparing the log-likelihood values of the order- 
restricted RC model and the saturated model. 

Let rh°j denote the estimated frequency in cell (i, j )  under the order-restricted RC model, 
n?:j the corresponding estimated frequency under the unrestricted RC model, and rh~j the one 
under the saturated model. The latter is, of course, equal to the observed frequency nij. The two 
likelihood-ratio statistics are defined as follows: 

(</ 
Lo k = 2 .ij  log \ moj : ,  (9) 

where 1 < k < 2. A complication that arises from the use of these test statistics is that their 
asymptotic distribution depends on the number of constraints that needs to be activated, some- 
thing that is not known a priori. Ritov and Gilula (1991) derived the asymptotic distribution of 
L~I as a mixture of chi-squared distributions whose weights equal the probabilities of having a 
certain number of constraints activated. This distribution is called a chi-bar-squared distribution. 

The chi-bar-squared distribution may also be derived, for example, from the work of Shapiro 
(1985) or Bartolucci and Forcina (2002). Under the null hypothesis, the p value corresponding 
to a certain value of  L21 , say c, is expressed as 

Iillax 
P(L~I > c) = ~ P( l )P(x  2 > c), 

I=o 

where )~ denotes a chi-squared random variable with t degrees of freedom. The P(l) are non- 
negative weights summing to one and representing the probabilities that I out of the/max possible 
constraints are activated. Though there is no expression for exact computation of the weights if 
/rna~ > 3, Dardanoni and Forcina (1998, p. 1117) proposed a tractable method for estimating 
their values. The expression for P(L~2 _> c) is obtained by replacing )~l 2 with Xl+dfl,2 where dfl 
is the number of degrees of freedom of the unrestricted RC model. 

Rather than using an asymptotic approach to obtain the p value associated with L21 and 

L~2, it may also be estimated using parametric bootstrap. This is a conceptually simple method 
based on an empirical reconstruction of the sampling distribution of the test statistic. Paramet- 
ric bootstrap has been extensively used in the literature. For example, Ritov and Gilula (1993) 
proposed such a procedure in ML correspondence analysis with ordered category scores, Schoen- 
berg (1997) advocated using bootstrap testing methods in a general class of constrained maxi- 
mum likelihood problems, and Langeheine, Pannekoek, and Van de Pol (1996) proposed the use 
of bootstrap in categorical data analysis for dealing with sparse tables, which is another situa- 
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tion in which we cannot rely on asymptotic distribution functions for the test statistics. Recently, 
Vermunt (1999, 2001) proposed using this procedure to test the goodness-of-fit  of  models with 
inequality constraints on the parameters. 

Suppose we want to perform both the L~I and L~2 test by means of  a parametric bootstrap. 
After estimating the unrestricted and order-restricted RC models with the data set at hand, B 
frequency tables with the same number of  observations as the original data are simulate~ from 
the estimated probabili t ies under the order-restricted RC model. For each of  these tables, we 
estimate both the unrestricted and order-restricted RC model and compute the values of  the L~I 

and L{2 statistics. The corresponding estimated p value is the proportion of  simulated tables in 

which the L~I (L~2) value is at least as large as the one obtained with the original table. The 

standard errors of  the estimated p values equal (p(1 - p)/B)1/2 
To evaluate the proposed bootstrap procedure, we performed a simulation study using the 

same 14 conditions as in the simulation reported in the previous section. Under each of these 
conditions we generated 1000 samples and estimated the p value with the bootstrap procedure 
for L~I and L~2 using B = 400. Given the fact that the estimated model is true, parametric 
bootstrap can be decided to perform well if  the proportion of samples rejected using a particular 
significant level is approximately equal to the correspondent nominal value. Table 2 reports the 
proportion of samples in which the order-restricted RC model is rejected at significance levels 
c~ = .50 and c~ = .05. As can be seen, the rejection proportion obtained with the parametric 
bootstrap is not always in agreement with these nominal levels. 

For data simulated under the independence model, ~b = 0, both tests are somewhat too 
liberal. This means that, at the chosen c~ level, the order-restricted RC model is rejected more 
often than should be expected. 

When the association is strong, parametric bootstrap yields rejection proportions close to the 
nominal c~ level for L~2. However, for L~I, it produces too conservative proportions, especially 
if  the distances between row and column scores are large. A rejection proportion is said to be 
conservative if  it is lower than the nominal value. It can, for example, be seen that with ~b = 3, 
equal-distance scores, and N = 1000, the proportion of samples in which the order-restricted 
RC model is rejected is only .001 instead of .05. What  happens is that the bootstrap probabilities 
are almost always higher than .05 because in most replication samples L ~  will be equal to 

zero. Such a Lo2~ value of  zero indicates that no constraints are activated in the order-restricted 
RC model and that, therefore, the order-restricted and unrestrictexl RC yield the same estimated 
frequencies. The same occurs with the smaller sample size condition. 

If  the association is weak and the sample size large, parametric bootstrap tends to be some- 
what too conservative in both tests. The reason is that bootstrap replications tend to be more in 

TABLE 2. 
Proportion of Simulated Data Sets in which the Order-restricted RC Model Is Rejected at Three Different a Levels 

Population a = 

TI: Ord~-RC vs RC T2: Goodness offit 

N = 1000 N =  100 N =  1000 N =  100 

.50 .05 .50 .05 .50 .05 .50 .05 

~b = 0 .651 
~b = .3, Equal-distance I~i, vj .399 

/~l =/~2 .440 
/~l = /*2, v 2 = v 3 .541 

q~ = 3, Equal-distance/hi, vj .142 
121 = /*2 .484 
/~1 = 1~2, v 2 = v 3 .605 

.071 .656 .072 .576 .060 .583 .064 

.025 .659 .074 .422 .036 .510 .040 

.033 .679 .078 .431 .036 .605 .078 

.047 .707 .102 .500 .060 .542 .044 

.001 .427 .006 .478 .038 .478 .050 

.049 .332 .035 .478 .062 .543 .062 

.061 .441 .043 .538 .058 .502 .063 
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agreement with the established order than the original sample (see Geyer, 1995). For example, if 
/.1 >_/*2 in the population, the probabili ty of  drawing empirical  samples in which the inequality 
induces an activated equality equals 0.5. ttowever, this probabil i ty is smaller for the bootstrap 
samples if the equality is not activated in the empirical  sample, something that happens in 50% 
of  the cases. Under N = 100, the results are more accurate. It seems as if  the extra variability 
caused by the smaller sample size compensates for this effect. 

In conclusion, parametric bootstrap yields more accurate results when testing the goodness- 
of-fit  (L22) than when comparing the two nested RC models (L21). The rejection proportions 

for L22 are close to their nominal values as long as the association between the row and column 

variables is strong enough. The encountered rejection proportions for the L~I statistic, however, 
are lower than their nominal levels, indicating that this test is too conservative. 

6. An Empirical Example 

Table 3 displays the relationship between number of siblings (S) and happiness (H) .  This 
example uses data reported by Clogg (1982, ~Ihble 2) in a paper on ordinal log-linear and log- 
bilinear models. The original three-way cross-classification was collapsed over the variable years 
of schooling. The question of interest is whether the association is of an ordinal nature, or, more 
precisely, whether there is a positive association between number of siblings and happiness. 

The test results for the estimated models are reported in Table 4. As can be seen, the indepen- 
dence model  does not fit the data (L2(1) = 26.27, df = 8, p < .01), which indicates that there 
is an association between H and S. A model that is often used for the analysis of ordinal data 
is the uniform association model (Model 2). Note that in this model, both variables are treated 
as interval level variables. The uniform association model does not fit the data (L2(2) = 20.21, 
df  = 7, p = .01), which indicates that the assumption that the local odds ratios are constant 
is too strong. Nevertheless, the unil~rm association parameter is significant and, as can be seen 
from the parameters reported in Table 5, has the "expected" positive sign. 

Less restrictive are the row and the column association models, which assume column and 
row-independent local-odds ratios, respectively. The row model does not fit the data (L2(3) = 
17.52, d f  = 4, p < .01), which indicates that H may not be treated as an interval level variable. 
In addition, the estimated scores for S are not ordered: The score for row 4 is much higher than 
for row 5. The column model fits (L2(4) = 8.36, df = 6, p = .21), but again some category 
s c o r e s - - H  = 1 and H = 2 - - a r e  out of  order. 

The RC model is less restrictive than the row and colmnn models since it does not assume 
that one of  the variables is an interval level variable. The unrestricted RC model  fits the data quite 
well: L2(5) = 7.33, df = 3, p = .06. A problem is, however, that neither the row or the column 

TABLE 3. 
Cross-Classification of Number of SiNings and Happiness: Observed 
Frequencies 

Number Happiness 

of siblings Not too happy Pretty happy Very happy 

0-1 99 155 19 
2-3 153 238 43 
4-5 115 163 40 
6-7 63 133 32 
8 + 99 118 47 
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TABLE 4. 
Test Results for the Estimated Models 
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Model L 2 value d f  1 p value 2 

1. independence 
2. uniform association 
3. row association 
4. column association 
5. row-column association 
6. ordered row association 
7. ordered column association 
8. ordered row-column association 

26.27 8 .00 
20.21 7 .01 
17.52 4 .00 

8.36 6 .21 
7.33 3 .06 

18.60 4 + 1 .00 
8.84 6 + 1 .22 
8.36 3 + 1 .08 

1The reported number of degrees of freedom for the order-restricted models is the df of the model 
without constraints plus the number of activated constraints. 
2The p values of the models with inequality constraints are estimated on the basis of 1000 bootstrap 
samples. The standard errors of these estimates axe less than .01 for p _< .11 and p > .89, and at 
most .02 for other p values. 

scores  h a v e  the  cor rec t  order  (see M o d e l  5 in Table  5). M o r e  precisely ,  the  order  of  rows  3 and  4 

and  of  c o l u m n s  1 and  2 is incorrect .  This  m a k e s  the  resul ts  diff icult  to in terpret .  

M o d e l s  6 and  7 are the  order - res t r ic ted  row and  c o l u m n  models .  L ike  the  unres t r i c ted  row 

and  c o l u m n  model ,  the  ordinal  row m o d e l  pe r fo rms  b a d l y  (L2(6)  = 18.60, d f  = 4 + 1, p = .00) 

whereas  the  ord ina l  c o l u m n  m o d e l  pe r fo rms  wel l  (L2(7)  = 8.84, d f  = 6 + 1, p = .22). This  

ind ica tes  tha t  the  row var iable ,  n u m b e r  of  s ib l ings  (S), m a y  b e  t rea ted  as in terva l  level  and  the  

c o l u m n  var iable ,  h a p p i n e s s  ( H ) ,  as ordinal .  F r o m  the  pa rame te r s  of  M o d e l s  6 and  7 r epor ted  in 

Table  5, it can  b e  seen that  rows  4 and  5 are equa ted  in the  row model ,  and  co lumns  1 and  2 in 

the  c o l u m n  model .  

In addi t ion,  the  order - res t r ic ted  R C  m o d e l  was  specif ied for the  data  repor ted  in Table  3. This  

mode l  pe r fo rms  qui te  well :  L2 (8 )  = 8.36, d f  = 3 ÷ 1, p = .08. A l t h o u g h  in the  unres t r i c ted  RC 

mode l  (Mode l  4) there  we re  two order  v io la t ions  in the  e s t ima ted  row and  c o l u m n  scores,  the  M L  

solu t ion  for the  ord ina l  R C  mode l  con ta ins  on ly  one  ac t iva ted  inequa l i ty  cons t ra in t :  The  score  

for c o l u m n  1 is equa ted  to the  score  for c o l u m n  2 (see M o d e l  8 in Table  5). This  demons t r a t e s  

tha t  it is dange rous  to spec i fy  ordinal  mode l s  by  pos t  hoc  equa l i ty  cons t ra in t s  b e c a u s e  of  the  

d e p e n d e n c e  b e t w e e n  the  row and  c o l u m n  scores.  Also ,  the  R i t o v - G i l u l a  p r o c e d u r e  yields  a sub-  

op t imal  so lu t ion  wi th  an L 2 va lue  of  8.60. 

To d e m o n s t r a t e  the  s t rength  of  the  act ive-se t  a l g o r i t h m  p r o p o s e d  in this  paper ,  an order-  

res t r ic ted  R C  mode l  is specif ied that  a s sumes  a nega t ive  ra ther  than  a pos i t ive  re la t ionsh ip  be-  

tween  S and  H .  For  this b a d l y  fi t t ing mode l ,  it is m u c h  ha rde r  to d e t e r m i n e  wh ich  row and  

TABLE 5. 
Estimates for the Association Parameters of Models 2-8 

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

~b 0.32 0.41 0.62 0.63 0.37 0.63 0.66 
/~1 - 0 . 5 9  - 0 . 6 7  - 0 . 6 4  -0 .71  
/22 - 0 . 2 5  - 0 . 2 4  - 0 . 2 7  - 0 . 2 4  
/~3 - 0 . 1 0  0.13 -0 .11  0.10 
/~4 0.73 0.10 0.51 0.25 
/~ 5 0.22 0.68 0.51 0.60 
v 1 -0 .33  - 0 . 2 7  -0 .41  -0 .41  
v2 - 0 . 4 8  - 0 . 5 3  -0 .41  -0 .41  
v 3 0.81 0.80 0.82 0.82 
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column scores should be equated in the ordered ML solution because there are many order viola- 
tions. Whereas the Ritov-Gilula procedure equates all column scores yielding an independence 
model, both the active-set method and the naive method yield a lowest L 2 value of 25.31. This 
solution contained four activated equality constraints: The first four row scores and the last two 
column scores were equated. 

7. Discussion 

This paper presents two algorithms for obtaining order-restricted ML estimates of RC asso- 
ciation models: an active-set method and a pooling adjacent violators algorithm. Both algorithms 
are adaptations of the uni-dimensional Newton method proposed by Goodman (1979) to deal 
with inequality restrictions. The reported simulation study shows that the new methods perform 
very well. 

As far as model testing is concerned, we studied the performance of a simple parametric 
bootstrap procedure. For the goodness-of-fit test of the order-restricted model, this procedure 
yields reliable p values as long as the association is strong enough. When the association is 
too weak, the bootstrap p values are too conservative. We, therefore, advise the researcher to 
first test the independence model against the order-restricted RC, that is, to check whether any 
association between variables is present. Wang (1996) showed that parametric bootstrap yields 
reasonable rejection proportions for these types of tests. The conditional test between the order- 
restricted model and the unrestricted RC model is too conservative. Parametric bootstrap will 
yield downward biased rejection proportions when both models fit the data equally well, that 
is, when the association is strong and category scores are far apart and the two models cannot 
be distinguished. The testing procedure proposed by Bartolucci and Forcina (2002) might be 
preferred in such situations. 

Some research has been done into situations in which the parametric bootstrap yields biased 
p values and some adjustment methods have been proposed, such as the adjusted active set 
bootstrap (see Geyer, 1995). These kinds of methods are, however, difficult to implement and 
present certain arbitrariness. Future research may aim at studying whether these methods can 
be used to resolve the encountered deficiencies of the parametric bootstrap in the context of the 
order-restricted RC model. 

As Goodman's uni-dimensional Newton method can be used for all kinds of extensions of 
the simple RC model for bivariate associations, the proposed active-set and PAV methods can 
be used for estimating a much more general class of RC models than discussed in this paper. 
Examples are models for multi-way cross-classifications assuming order-restricted partial and 
conditional associations, as well as models for squared two-way tables containing additional 
log-linear terms like diagonal parameters to correct for the over-representation in the diagonal 
elements. 

Another possible application of the order-restricted RC model is in latent structure analysis. 
It could be used to specify the nature of the relationship between a discrete latent variable and a 
set of ordinal indicators. This yields either a variant of the ordinal latent class model proposed by 
Croon (1990) or a latent trait model in which the underlying latent distribution is approximated 
by means of a limited number of nodes (Vermunt, 2001). Estimation could be performed by im- 
plementing one of the proposed estimation methods in the M step of an EM algorithm (Dempster, 
Laird, & Rubin, 1977). 

Another interesting direction for future research is the use of Bayesian Markov chain Monte 
Carlo methods for estimating parameters and assessing fit of the order-restricted RC model. 
It is well known that the specification of inequality constraints is straightforward within this 
framework (see, for instance, Hoijtink & Molenaar, 1997). 
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Appendix 

In this appendix, we describe the PAV and active-set restricted updates of the scores of row 
i and i + 1, as well as demonstrate the similarity between the two methods. The results also apply 
to the column scores. 

Recall that an unrestricted update of a row score at iteration t is of the form 

t)} t) = l@ t - l )  g (Pi )  (t) 
• H(pi)( t )"  

To simplify notation, we denote g(pi) (t) and H(pi) (t) by gi and Hi. 
In the active-set method, equated scores that should remain equal are updated by  

(t--l~ gi 4- gi+l p(t) 
i,i-I-1 = P + + I  Hi 4- Hi+l" 

With p~i)+l , we denote that p}t) P}~I ~(t) , • = = IJi,i+l . 
In the PAV algorithm, amalgamation of the scores %r rows i and i 4- 1 is as follows: 

ni.p}t) + ni+l.p}~ 1 

hi. 4- ni+l. 

z 

ni + ni+l 

Let us now consider the situation in which the scores for rows i and i ÷ 1 are equal in 
iteration t - 1. In this case, the previous equation simplifies to 

p } i )  1 = p};i;1 ) -- ni ~ 4- /~i+l/'~i+11 

' /~ i  - t -  ni+ l  

H '  gt ~ n i + l  , Using the fact that in this situation Hi+l(t) = ~ J-U-~ it can be shown that the PAV and 
active-set method yield equivalent updates. More precisely, 

t~' gi gi+l 
t Hi 4 -  n i+ l  Hi+l 

ni 4- ni+l 

I~ gi + l 

ni + ni+l 

gi 
- -  Tti 

Hi (h i  4- h i + l )  

gi+l 
4- ni 

Hi (h i  + h i + l )  

gi 4- gi+l g i + g i + l  

Hi (1 + n~+~']n~ / Hi + Hi+l 

This is an important result because it shows that once the necessary equality constraints are 
found, both algorithms converge to the same order-restricted solution. 
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