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Nonparametric Item
Response Theory Models

Klaas Sijtsma
Tilburg University, Tilburg, The Netherlands

Glossary

invariant item ordering An ordering of items that is the
same for each value of the latent trait scale.

monotone homogeneity model A benchmark model within
nonparametric item response theory that assumes that all
items in a test measure the same latent trait, that the
relationship between the item score and the latent trait is
monotone, and that the test procedure is free of influences
on test performance other than the latent trait.

nonparametric item response theory (NIRT) A version of
item response theory that assumes that the relationship
between the item score and the latent trait is limited only
by order restrictions but is otherwise free.

parametric item response theory (PIRT) A version of item
response theory that assumes that the relationship between
the item score and the latent trait is defined by a parametric
function, such as the logistic or the normal ogive.

stochastic person ordering An ordering of individuals by
means of a simple sum score that reflects in a probabilistic
way the person ordering on the latent trait scale.

Nonparametric item response theory is a family of item
response models for ordinal person and item measure-
ment. The distinctive feature that makes an item response
model nonparametric is that in a test either each item
response function or the set of all item response functions
is restricted by some monotonicity condition, without
specifying a parametric family of monotone functions
such as the logistic. Instead, item response functions
are estimated from the test data and the hypothesized
monotonicity condition is evaluated. Several models
have been proposed and several methods and software
packages are available to evaluate the fit of a model to the
data. Nonparametric models are primarily data-oriented
in that they study features of the data necessary to obtain
ordinal scales for people and sometimes, items as well.

Ordinal scales are useful in applications such as selecting
the best applicants for a job or identifying the worst-
performing students for remedial teaching.

Measurement Using
Nonparametric Item Response
Theory Models

Tests consist of well-chosen collections of items—
exercises, tasks, questions, and statements—that are
used to measure different aspects of a hypothetical con-
struct, for example, arithmetic ability, spatial orientation,
knowledge of national history, and introversion.
A hypothetical construct is a theoretical structure that
explains the relationships among a particular set of behav-
iors.Nonparametric item response theory (NIRT)models
are statistical methods that are used to analyze the item
response data collected in a sample of individuals to find
out whether the items can be considered to be indicators
of the same hypothetical construct. If the answer is affir-
mative, NIRT models provide an ordinal scale for the
theoretical construct of interest. This scale is called the
latent trait scale. A rank ordering of individuals allows for
statements such as ‘‘For this expensive follow-up course,
we will admit only the 10 students having the highest
arithmetic scores’’ and ‘‘For this job, we will hire the can-
didatewith the highest scale score on general knowledge.’’

In addition to a person scale, a successful NIRT anal-
ysis also provides information on the quality of the indi-
vidual items and the whole test as a measurement
instrument for a particular theoretical construct. Infor-
mation on individual items may reveal two things:
(1) Whether the item sharply distinguishes people with
relatively low latent trait values from others with relat-
ively high latent trait values, and (2) whether the item
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measures the same latent trait as the other items in the
test. These issues relate to the well-known issues of reli-
ability and validity, respectively. In the phase of test con-
struction, an item that does not distinguish people well or
clearly measures a latent trait other than the other items
may be removed from the test and replaced by a better
one, in order to improve the overall measurement quality
of the test.

Assumptions of Nonparametric
Item Response Theory Models

Common Assumptions

Methodologically, the latent trait represents an opera-
tionalization of the hypothetical construct by means of
the collection of items in the test. Semantically, the
term latent trait is used to summarize the psychological
influences that drive the responses of individuals to each
of the items in a test. NIRT assumes that during testing
a person’s latent trait value is not affected by practice
effects, such as those due to learning and development,
or flaws in item construction that produce structural de-
pendencies between items. Also, items are related to the
latent trait in away that is specified by the particularNIRT
model. This is the common context of most NIRTmodels.
Some models alternatively assume a more complex un-
derlying latent trait structure or formalize practice or
training effects during testing that affect test perfor-
mance. Although potentially interesting and important,
these models are not the core of NIRT.

Let Xj be the random variable for the score on item j,
and let this score be xj¼ 0, 1, . . . , m. The assumption of
unidimensionality (UD) means that the relationships
between J items in the test can be explained by one com-
mon latent trait, that is denoted y. The assumption of local
independence (LI) means that given the latent trait value
the probability of a score xj on item j, P(Xj¼ xj j y), is
independent of the scores on the other J�1 items in
the test. That is, given y for a vector of J item score random
variables, X, and its realization, x, we have:

P X ¼ x j yð Þ ¼
YJ

j¼1

P Xj ¼ xj j y
� �

: ð1Þ

An implication of LI is that for any pair of items, say j
and k, their conditional covariance equals 0; that is,
Cov(Xj, Xk j y)¼ 0.

The third assumption defines the relationship between
the item score, Xj, and the latent trait, y, known as the
response function; this is the conditional probability,
P(Xj¼ xj j y). NIRT models typically specify order restric-
tions on this relationship but no other restrictions. For
simplicity, we assume that items are scored dichoto-

mously, with Xj¼ 0, 1. These scores may, for example,
indicate that the answer was incorrect (score 0) or correct
(score 1). Later on, we return to the general case ofmþ 1
ordered item scores. The probability Pj(y)¼ P(Xj¼ 1 j y)
is known as the item response function (IRF). A simple
assumption that specifies an order relation on the IRF
assumes that it is a monotone nondecreasing function.
That is, for item j and two fixed arbitrary values of y,
denoted ya and yb:

Pj yað Þ� Pj ybð Þ whenever ya 5yb, and for all j: ð2Þ

This is the monotonicity (M) assumption. Examples of
IRFs that satisfy the assumption M are given in Fig. 1A.
The assumptions of UD, LI, and M together define the
NIRT model, known as the monotone homogeneity
model and introduced in 1971 by Mokken. This model
can be seen as a benchmark within NIRT.

Typical of NIRT is the research into relaxations of
the assumptions of UD, LI, and, M that seek to restrict
the data as little as possible while maintaining important
measurement properties such as the ordinal scale for
individuals. For example, in 1990 Stout introduced the
relaxation of strict unidimensionality to essential unidi-
mensionality, which assumes one dominant latent trait
and several nuisance traits whose influence on all statis-
tical properties of the test vanishes for large J (in fact, J!
1). Another relaxation is that of LI to essential indepen-
dence, which allows some conditional interitem covari-
ances to be positive or negative while in the long run
(J!1) the mean across all absolute item pair covari-
ances equals 0. A third example is weak monotonicity,
which says that the mean of J IRFs is an increasing func-
tion in y. This mean represents the average response to
the test and is known as the test response function. Weak
monotonicity does not restrict the individual IRFs as long
as their mean is increasing; this means that assumptionM
is dropped at the individual item level. See Fig. 1B for an
example of weak monotonicity. Junker showed in 1993
that none of the three assumptions,UD,LI, andM, can be
dropped entirely and still leave enough structure in the
data for ordering individuals consistently on a dominant
latent trait.

Additional Assumptions

Whereas this and other work are aimed at ordinal person
measurement under weak (or the weakest possible) as-
sumptions, models that have more restrictions have been
defined for studying item properties. For example, it may
be assumed that the J IRFs do not intersect; that is, if for
some y0 we know for items j and k thatPj(y0)5 Pk(y), then

PjðyÞ� PkðyÞ for all y and all j, k; j 6¼ k: ð3Þ

This is the assumption of invariant item ordering (IIO),
which says that the J items have the same ordering by
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response probability for all ys, with the possible
exception of some ys for which ties may exist; see Fig.
1C for examples of nonintersecting IRFs that also satisfy
assumption M. An interesting NIRT model that is
defined by UD, LI, M, and IIO is the double mono-
tonicity model, which was introduced by Mokken in
1971.

Models that have even more restrictions have been
proposed by Sijtsma and Hemker in 1998 for items
that have polytomous scoring (m� 2), and that imply
that for J items an ordering,

E X1 j yð Þ�E X2 j yð Þ� � � � �E XJ j y
� �

for all y ð4Þ

exists after the appropriate renumbering of the items.
For polytomous items, this ordering of expected
conditional item scores defines the concept IIO.
Because for dichotomous items E(Xj j y)¼ Pj(y), the
item ordering for polytomous items captures IIO for
dichotomous items as a special case.

Finally, local homogeneity is an example of an assump-
tion that is neededwhen it is assumed that anNIRTmodel
holds in each subgroup from the population of interest.
Ellis and Van den Wollenberg showed in 1993 that it is
necessary to distinguish between latent trait values y and
individuals when it is assumed that the response proba-
bility Pj(y) is a within-person expectation of a propensity
distribution of the item score for that person. Then dif-
ferent individuals with the same y value must have the
same Pj(y) and no other person differences can influence
this probability. This is important, for example, in differ-
ential item functioning research.

Parametric Item Response
Theory Models

Parametric item response theory (PIRT) models are dif-
ferent from NIRT models in that they assume a specific
parametric IRF, such as a normal ogive or a logistic func-
tion. An example is the three-parameter logistic model,
defined as:

Pj yð Þ ¼ gj þ ð1� gjÞ
exp½ajðy� djÞ�

1þ exp½ajðy� djÞ�
: ð5Þ
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Figure 1 (A) Five IRFs satisfying assumption M. (B) Two
IRFs (solid curves) that satisfy assumption M, three IRFs that
are not monotone increasing, and the test response function that
ismonotone increasing (dashed curve). (C) Five nonintersecting
IRFs that satisfy assumption M. (D) Five IRFs under the three-
parameter logistic model (parameter values: g1¼ 0.33,
g2¼ 0.10, g3¼ 0.25, g4¼ 0.20, g5¼ 0.10; d1¼�0.10,
d2¼ 0.00, d3¼ 0.50, d4¼ 1.00, d5¼ 1.60; a1¼ 2.00, a2¼ 1.00,
a3¼ 2.00, a4¼ 3.00, a5¼ 3.00).
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Here, gj is the lower asymptote for y!�1, aj is a slope
parameter, and dj is a location parameter; see Fig. 1D for
examples of three-parameter logistic IRFs. For a data
matrix produced by N individuals who responded to J
items, the likelihood may be solved for each of these item
parameters and the latent trait parameter. The resulting
estimates give information on the probability (gj) that
someone with a low scale value correctly solves item j (or
gives an affirmative response); the item’s location on the
scale (dj) sometimes called its difficulty; the item’s
potential to distinguish between people with low and
high scale values (aj, called the discrimination power) to
the left and the right of location dj; and the individuals’
scale values (y). Because NIRT models impose order
restrictions on the IRFs but do not impose a logistic or
another parametric restriction, they do not have like-
lihood functions from which these parameters can be
solved. Nevertheless, they also provide information on
the latent trait and the itemparameters; however, they use
other statistics and parameters, to be discussed shortly.

Measurement Properties of
Nonparametric Item Response
Theory Models

Person Measurement

The monotone homogeneity model is a measurement
model for individuals. It implies an ordinal person scale
in a stochastic ordering sense. Let test performance be
summarized in a total score:

Xþ ¼
XJ

j¼1

Xj ð6Þ

and let xþa and xþb be an arbitrarily chosen pair of
realizations of Xþ such that xþa5 xþb. Further, let t
be an arbitrary value of y. Then, the monotone
homogeneity model for dichotomous items implies that:

Pðy> jXþ ¼ xþaÞ� Pðyt jXþ ¼ xþbÞ: ð7Þ

An implication of this stochastic ordering property is
E(y jXþ¼ xþa) � E(y jXþ¼ xþb). Thus, the higher the
total score Xþ, the higher the y value. In an NIRT
context, Grayson showed in 1988 that the observable
total score Xþ replaces latent trait y for ordinally
measuring individuals.

For polytomous items, Hemker, Sijtsma, Molenaar,
and Junker showed in 1997 that the monotone homo-
geneity model, defined by UD, LI, and a monotonicity
assumption on response function P(Xj� xj j y) for
xj¼ 1, . . . ,m (for xj¼ 0, this probability trivially
equals 1) does not imply the stochastic ordering property.
Van der Ark showed in 2002 that for most realistic tests

and distributions of y an ordering of individuals on Xþ
reflects an ordering on y, but sometimes with reversals for
adjacent Xþ values. Reversals of scores this close are un-
important for the practical use of tests because they rep-
resent only small differences with respect to the latent
trait. For the polytomous NIRT model based on UD, LI,
and M, and for NIRT approaches to polytomous items
(anddichotomous items as a special case) based onweaker
assumptions, Xþ is a consistent estimator of y. This means
that for infinitely many polytomous items the ordering of
individuals using Xþ gives the exact ordering on y, and
Junker showed in 1991 that this result is true for several
versions of polytomous NIRT models.

Item Measurement

The double monotonicity model is a measurement model
for both individuals and items. Because it is a special case
of the monotone homogeneity model, it has the same
stochastic ordering and consistency properties for person
measurement as thatmodel. In addition, it implies an IIO,
discussed, for example, by Sijtsma and Molenaar in 2002;
see Eq. (4). An IIO implies that for expected item scores
in the whole group:

E X1ð Þ�E X2ð Þ� � � � �EðXJÞ: ð8Þ

These expectations can be estimated from sample data
using the mean item score:

�XXj ¼ J� 1
XN

i¼1

Xij, j ¼ 1, . . . , J: ð9Þ

If the double monotonicity model fits the data, these
sample means are then used to estimate the ordering
of the expected conditional item scores, E(Xj j y),
j¼ 1, . . . , J.

The IIO property can be used in several kinds of test
applications in which it is important that individuals or
subgroups have the same item ordering. For example,
person-fit analysis and differential item functioning anal-
ysis of real data are better understood if an IIO can be
hypothesized for the population, and results that deviate
at the level of individuals or subgroups can be interpreted
relative to this ordering. Also, in other research an IIO can
be the null hypothesis when it is assumed that, for exam-
ple, the items reflect ascending developmental stages and
the equality of this ordering can be tested between age
groups. Intelligence tests such as the Wechsler Intelli-
gence Scale for Children use starting and stopping
rules that assume an IIO—children of a particular age
group start at an item that is easy for them (assuming that
the previous items are of trivial difficulty), then are ad-
ministered items in ascending difficulty ordering, and
stop when they fail on several consecutive items (assum-
ing that they would fail also on the next items that are
even more difficult).
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Fitting Nonparametric Item
Response Theory Models to
Test Data

If the monotone homogeneity model or a more relaxed
version of it fits the test data, an ordinal person scale based
on Xþ ordering is implied. If the double monotonicity
model fits, not only is an ordinal person scale implied
but also an IIO. The question is how to investigate the
fit of these models to the test data. NIRT implies two
properties of observable variables that are the basis of
a variety of methods for investigating model-data fit.

Conditional Association

Thefirstproperty, introducedbyHollandandRosenbaum
in 1986, is conditional association. In principle, if
a subgroup of individuals is selected from the population
of interest on the basis of their performance on a subset of
the items from the test, then within this subgroup the
covariance between two sum scores based on another
item subset must be nonnegative. The item scores may
be dichotomous, polytomous, or continuous. A simple
example to start with is that all individuals are selected,
thus ignoring a subgroup structure altogether. Then all
covariances between two items j and k must be non-
negative [Cov(Xj, Xk)� 0] and negative covariances give
evidence of model-data misfit.

A procedure for selecting one or more unidimensional
item subsets from a larger item pool uses item scalability
coefficients, denoted Hj, based on this nonnegative co-
variance property. The outcome of this procedure (im-
plemented in the computer program MSP5 introduced
in 2000 by Molenaar and Sijtsma) is one or more subsets
of items that each measure another latent trait with items
that have discrimination power with a lower bound de-
fined by the researcher. Discrimination power is ex-
pressed for items by the scalability coefficients Hj and
for the total test by the scalability coefficient H.

A more complex example is the following. J�2 items,
not including items j and k, are used to define a sum score
Rð� j,� kÞ ¼

P
h 6¼ j, k Xh. Then within subgroups of individ-

uals based on values r of R(�j,�k), conditional association
means that Cov(Xj, Xk jR(�j,�k)¼ r)� 0, for all values r.
This is the basis of other procedures (implemented in the
computer programs DETECT and HCA/CCPROX, and
discussed by Stout et al. in 1996) that try to find a subset
structure for the whole test that approximates local inde-
pendence as good as possible. The optimal solution best
represents the latent trait structure of the test data.

Manifest Monotonicity

The second property, introduced in 1993 by Junker, is
manifest monotonicity. This property can be used to

investigate whether an IRF, Pj(y), is monotone nonde-
creasing, as assumption M requires. To estimate the
IRF for item j, first a sum score on J�1 items excluding
item j, Rð� jÞ ¼

P
k 6¼j Xk, is used as an estimate of y and

then the conditional probability P[Xj¼ 1 jR(�j)¼ r] is cal-
culated for all values r of R(�j). Given the mono-
tone homogeneity model, the conditional probability
P[Xj¼ 1 jR(�j)] must be nondecreasing in R(�j); this is
manifest monotonicity. For real test data, manifest mono-
tonicity is investigated for each item in the test, and vio-
lations are tested for significance; see Fig. 2A for an
example of a discrete estimate of the IRF that violates
assumption M. The program MSP5 can be used for esti-
mating such discrete response functions and testing vio-
lations of monotonicity for significance. The program
TestGraf98 made available by Ramsay in 2000, estimates
continuous response functions using kernel smoothing
and provides many graphics. The theory underlying
this program was discussed by Ramsay in 1991.

Manifest monotonicity is also basic to the investigation
whether the IRFs of different items are nonintersecting,
as the assumption of IIO requires. To investigate IIO
for the items j and k, the sign of the difference of
the conditional probabilities P[Xj¼ 1 jR(�j,�k)] and
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Figure 2 (A)Discrete estimate of an IRF that violates assump-
tionM. (B) Two discrete estimates of IRFs that are intersecting.
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P[Xk¼ 1 jR(�j,�k)] can be determined for each value r of
the sum score R(�j,�k) and compared with the sign of the
difference of the sample item means (�XXj and �XXk) for the
whole group. Opposite signs for some value r of R(�j,�k)
indicate intersection of the IRFs and are tested against the
null hypothesis that P[Xj¼ 1 jR(�j,�k)¼ r]¼ P[Xk¼
1 jR(�j,�k)¼ r] in the population (which means that
these probabilities are the same but that their ordering
is not opposite to the overall ordering). See Fig. 2B for an
example of two observed IRFs that give evidence of
intersecting IRFs in the population. This and other
methods for investigating an IIO have been discussed
and compared by Sijtsma and Molenaar in 2002. The
program MSP5 can be used for investigating IIO.

For evaluating the monotonicity assumption of the
response functions of a polytomous item, P(Xj� xj j y)
for xj¼ 1, . . . ,m, and the nonintersection of the response
functions of different polytomous items, P(Xj� xj j y) and
P(Xk� xk j y), several of these methods are also available
in MSP5. Theoretical research to further support the
underpinnings of these methods is in progress.

Nonparametric Item Response
Theory Models for Nonmonotone
Response Functions

For some latent traits and particular item types, a mono-
tone nondecreasing response function cannot adequately
describe the probability of an affirmative response. For
example, as part of a questionnaire that measures the at-
titude toward the government’s crime-fighting policy peo-
ple may be asked to indicate whether they think that a
6-month prison term is an adequate sentence for burglary.
Both opponents and proponents of long prison sentences
mayhavea lowprobability of givinganaffirmative response
to this item, but for opposite reasons, and people having
a moderate attitude may have higher probabilities. An
NIRT model that successfully describes item scores pro-
duced this way thus has to assume that the relationship
between the item score and the latent trait first increases
and then decreases after a certain latent trait value or in-
terval. In anNIRT context, such a response function could
look like the irregular (solid) curve in Fig. 3. The NIRT
monotonicity assumption now could be something like:
First the IRF increases monotonically, then for some
value y0 it reaches a maximum value Pj(y0) or a y range
in which it has a constant value, and then it decreases
monotonically. Such anorder restrictionmay be compared
with a smooth parametric response function (dashed curve
in Fig. 3) from a hypothetical parametric model, defined as:

PðXj ¼ 1 j yÞ ¼
ljexp½qðy� djÞ�
1þ exp½qðy� djÞ�

ð10Þ

with q¼ 1 if y�dj5 0, and otherwise q¼�1; and
05lj5 2. Itmay be noted that the nonparametricmodel
encompasses the parametric model as a special case.

In 1992, Post studied the theoretical foundation of
NIRT models for nonmonotone response functions and
also derived methods for investigating model-data fit.
Van Schuur proposed in 1984 a scaling procedure
for selecting the best fitting items. Due both to their
mathematical complexity and to the scarceness of real
data that require nonmonotone response functions,
NIRT models for nonmonotone response functions
have not gained the popularity of the other NIRT models
discussed here.

Practical Applications of
Nonparametric Item Response
Theory Models

NIRT models are particularly useful for the construction
of ordinal scales for person and item measurement. They
have proven their usefulness in many fields of applied
research, such as psychology (nonverbal intelligence, in-
duction reasoning, and tiredness from workload), socio-
logy (attitudes toward abortion and machiavellism),
political science (trustworthiness of inhabitants of foreign
countries and political efficacy), marketing research (re-
cency, frequency, andmonetary value of purchase applied
to market segmentation), and health-related quality-of-
life research (quality of life for cancer patients and genital
sensations and body image after surgery). Each of the
scales for these properties allows the ordering of individ-
uals and groups of individuals and, if the double mono-
tonicity model fits, the ordering of items. What are the
typical contributions of NIRT to the analysis of test data?

–4 –2 0 2 4
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0.5

1.0

P
j(θ

)

θ

Figure 3 Irregular nonparametric IRF (solid curve) and
smooth parametric IRF (dashed curve; lj¼ 1.7; dj¼ 0.0) for
preference data.
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Item Quality

Compare the monotone homogeneity model with the
three-parameter logistic model. An item analysis using
the monotone homogeneity model investigates the
IRFs by means of discrete estimates P[Xj¼1 jR(�j)] (in
MSP5) or continuous estimates (in TestGraf98), and
these estimates provide information on how IRFs may
deviate from assumption M. For example, estimated
curves may show zero or negative discrimination for
parts of the distribution of y (Fig. 2A) or even suggest
that the IRF is bell-shaped (Fig. 3). When the item
discriminates weakly for the lower and the middle part
of the y distribution and also has a low Pj (y) for those ys,
this may suggest that the item would be more appropriate
in a test for a higher y group. Bell-shaped IRFs suggest
a nonmonotoneNIRTmodel. An analysis using the three-
parameter logisticmodel fits the S-shaped curve (Fig. 1D)
to such items, which has the effect of driving the slope
parameter aj to 0 instead of giving diagnostic information
about themisfit. Thus, instead of stretching a grid over the
data that bends only in some directions but fails to detect
other deviations, as is typical of aPIRTapproach, anNIRT
approach is more data-oriented in that it catches most of
the peculiarities of the IRFs. When assumption M is sat-
isfied, NIRTmodels use the itemmeanE(Xj) and the item
scalability coefficientHj to replace location dj and slope aj
from PIRT, respectively. Items with empirical IRFs that
do not have the typical logistic S-shape but that satisfy
assumption M and have item scalability coefficients Hj

that are reasonably highmay be included in a test because
they contribute to reliable person measurement.

Dimensionality

PIRT models usually fit a unidimensional model to the
data, and multidimensional PIRT models may be used
when the data are suspected to be driven by multiple
latent traits. Fitting models yield useful parameter
estimates that can be the basis for building item banks,
equating scales, and adaptive testing. Within NIRT, algo-
rithms have been produced that explore the data for the
optimal dimensionality structure using assumption LI
(e.g., program DETECT) or assumption M (program
MSP5). Thus, NIRT explores the data more than
PIRT, which is typically more oriented toward fitting
an a priori chosen model. NIRT also imposes restrictions
on the data, but compared to PIRT these restrictions are
weaker, which renders NIRT more data-oriented and
exploratory than PIRT.

NIRT models may be used because often little is
known about the hypothetical construct, and a model
that forces little structure onto the data, whilemaintaining
ordinal measurement scales, may be a wise choice to start
with. Given its exploratory orientation, NIRT could then

be used as a precursor to PIRT by exploring the dimen-
sionality structure of the data before a more restrictive
hypothesis is tested bymeans of a PIRTmodel. Also, when
starting with a PIRT model, instead, that does not fit the
test data, an NIRT model can then be an alternative to fit
to the data. The result of a fittingNIRTmodel is an ordinal
scale for individuals (and items). Depending on the pur-
pose of the test, such a scale is useful for selecting the best
applicants for a job, the best students for a follow-up
course, or the lowest-scoring pupils for remedial teaching
or, in scientific research, for establishing relationships of
the test score to other variables of interest.

See Also the Following Articles

Item Response Models for Nonmonotone Items � Item
Response Theory
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