

Tilburg University

Wrapped progressive sampling search for optimizing learning algorithm parameters

van den Bosch, A.

Published in:
Proceedings of the Belgium-Netherlands Conference on Artificial Intelligence, BNAIC'04, 21-22 oktober, 2004

Publication date:
2004

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van den Bosch, A. (2004). Wrapped progressive sampling search for optimizing learning algorithm parameters.
In R. Verbrugge, N. Taatgen, & L. Schomaker (Eds.), Proceedings of the Belgium-Netherlands Conference on
Artificial Intelligence, BNAIC'04, 21-22 oktober, 2004 (pp. 219-226). Unknown Publisher.
http://www.ai.rug.nl/conf/bnaic2004/ap/a9.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/c6c64f98-2422-4db6-bad7-bf81bb892323
http://www.ai.rug.nl/conf/bnaic2004/ap/a9.pdf

Wrapped Progressive Sampling Search for

Optimizing Learning Algorithm Parameters

Antal van den Bosch

ILK / Computational Linguistics and AI, Tilburg University
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

Abstract

We present a heuristic meta-learning search method for finding a set
of optimized algorithmic parameters for a range of machine learning algo-
rithms. The method, wrapped progressive sampling, is a combination of
classifier wrapping and progressive sampling of training data. A series of
experiments on UCI benchmark data sets with nominal features, and five
machine learning algorithms to which simple wrapping and wrapped progres-
sive sampling is applied, yields results that show little improvement for the
algorithm which offers few parameter variations, but marked improvements
for the algorithms offering many possible testable parameter combinations,
yielding up to 32.2% error reduction with the winnow learning algorithm.

1 Introduction

It is common knowledge that large changes can be observed in the generalisation
accuracy of a machine learning algorithm on some task when instead of its default
algorithmic parameter settings, one or more parameters are given a non-default
value. The fundamental problem in algorithmic parameter selection (or model
selection) is that it is hard to estimate which parameter setting would lead to
optimal generalization performance on new data. One can estimate it on the
labeled data available for training purposes, but optimizing parameters on that
easily leads to overfitting. A remedy for overfitting is to use classifier wrapping
[7], which partitions the available labeled training material in internal training and
test data, and which performs cross-validation experiments to estimate a training-
set-internal generalization accuracy. Using this method, competitions can be held
among parameter settings, to determine the average best-performing setting to be
used later in the experiment on the real test data.

For many tasks and algorithms it is not feasible to test all possible combinations
of parameter settings and feature selections exhaustively. By opening up a vast
search space, exhaustive wrapping moves the burden of the optimization process
to raw computing power. On the other hand, search methods can offer heuristic
solutions to finding sufficiently good solutions in a large search space. This pa-
per describes a method for optimizing algorithmic parameters based on wrapped
progressive sampling, a heuristic search method we describe in detail in the next
section. The method is based on classifier wrapping, but it does not venture into

searching among all possible combinations of parameter settings exhaustively on
all training data available. Rather, it borrows a heuristic from progressive sam-
pling [10]. The goal of progressive sampling is to iteratively seek a data set size
at which generalization performance on test material converges. The method is to
start at a small sample size training set, and progressively increase the training set
while monitoring the convergence – and halting the process at some training set
size when the error on test material has converged. In this study we do not actively
monitor convergence, but we do adopt the progressive sampling method in which
we test decreasing amounts of settings combinations with increasing amounts of
training data.

2 Wrapped progressive sampling

The wrapped progressive sampling (henceforth wps) algorithm takes as input a
data set of labeled examples D. An example is represented by a vector of feature
values, and labeled with one out of a set of possible output labels. This data set
is used as the basis for sampling smaller training and test sets. In the following
subsections we detail this process. We start by describing how the sizes of the
progressively-sampled training and test sets are computed in Subsection 2.1. We
then describe the wps process in Subsection 2.2.

2.1 Determining progressive sample sizes

The first action of the wps method is to determine the progressive sizes of the
wrapping data set samples that will be needed. Both training sets and test sets will
be needed; a single cut is made of the original data (after being suffled randomly) in
80% of the examples for internal training data, and 20% for internal test data. We
generate a frequency-clipped pseudo-quadratic series, according to the following
three-step procedure:

First, let n be the number of labeled examples in the 80% part of the data set
designated to extract internal training material from. A quadratic sequence of d
data set sizes is created by using a factor f = d

√
n. In all experiments, d = 20.

Starting with a seed data set of one example, a sequence of i = {1 . . . d} data sets
with sizes sizei is created by letting size1 = 1 and for every i, sizei = sizei−1 ∗ f .
We then limit the generated list of 20 sizes down to a list containing only the data
sets with more than 500 examples. We also include the 500-example data set itself
as the first set. This leaves a clipped pseudo-quadratic series. For each of the
training sets, an accompanying test set is created by taking, from the tail of the
20% compartment of the full data set designated for test material, a set that has
20% of the size of its corresponding training set.

2.2 The wrapped progressive sampling procedure

The wps procedure is an iterative procedure over the clipped list of data set sizes.
The procedure operates on a pool of settings, S, where one setting is a unique

combination of algorithmic parameter values of the chosen machine-learning algo-
rithm A (next to data set D, A is given as input to the wps procedure). On the
outset, S contains all possible combinations of values of algorithm A’s parameters.
We refer to them as s1 . . . sc, c being the total number of possible combinations.

The first step of wps is to perform experiments with all settings in s1 . . . sc.
Each of these experiments involves training algorithm A on the first training set
(500 examples) and testing the learned model on the first test set (100 examples),
and measuring A’s test accuracy, viz. the percentage of correctly classified test ex-
amples. This produces a list of accuracies, acc(s1) . . . acc(sc). As the second step,
badly-performing settings from the current set are removed on grounds of their low
score. Any such selection should be performed with some care, since it is unknown
whether a currently badly performing setting would perform relatively better as
compared to other settings when trained on more examples. Wps, therefore, does
not simply sort the list of accuracies and cuts away the lower-performing half or
some other predefined fraction. Rather, it attempts to estimate at each step the
subset of accuracies that stands out as the best performing group, whichever por-
tion of the total set of accuracies that is. To this end, a simple linear histogram is
computed on all accuracies, dividing them in ten equally-sized bins, b1 . . . b10 (the
notation for the size of a bin, the number of accuracies in the bin, is |bi|).

Without assuming any distribution over the bins, wps enacts the following
procedure to determine which settings are to be selected for the next step. This
procedure produces a selection of bins, which in turn represents a set of settings
represented by the selected bins. First, the bin with the highest accuracies is
taken as the first selected bin. Subsequently, every preceding bin is also selected
that represents an equal number of settings or more than its subsequent bin,
|bi| ≥ |bi+1|. This is determined in a loop that halts as soon as |bi| < |bi+1|.

Next, all non-selected settings are deleted from S, and the next step is initiated.
This involves discarding the current training set and test set, and replacing them
by their next-step progressively sampled versions. On this bigger-sized training
and test set combo, all settings in S are tested through experiments, a histogram
is computed on the outcomes, etcetera. The process is iterated until either one of
these stop conditions is met: (1) After the most recent setting selection, only one
setting is left. Even if more training set sizes are available, these are not used,
and search halts, returning the one selected setting. Or, (2) after the last setting
selection on the basis of experiments with the largest training and test set sizes,
several settings are still selected. First, it is checked whether A’s default setting is
among them (we discuss default settings in the next Section). If it is, this default
setting is returned. If not, a random selection is made among the selected settings,
and the randomly chosen setting is returned.

3 Customizing wrapped progressive sampling to

classifiers

The wps procedure can operate on any supervised machine learning algorithm
(classifier) that learns from labeled examples and is able to label new data after

Algorithm Parameters varied Combinations
ripper -F (1, 2, 5, 10, 20, 50); -a (-freq, +freq); -n (-n, -!n), -S

(0.5, 1.0, 2.0); -O (0, 1, 2); -L (0.5, 1.0, 2.0)
648

c4.5 -m (1, 2, 5, 10, 20, 50, 100, 200, 500); -c (5, 10, 15, 20, 25,
. . ., 90, 95, 100); -g (not set, -g)

360

maxent --gis or –lb-fgs, -g (0.0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, only
with --lb-fgs)

11

ib1 -k (1, 3, 5, 7, 9, 11, 13, 15, 19, 25, 35); -w (0, 1, 2, 3, 4); -m

(O, M, J); -d (Z, IL, ID, ED1, only with k > 1); -L (1, 2, only
with -mM or -mJ)

925

winnow promotion (1.1, 1.2, 1.3, 1.5); demotion (0.5, 0.7, 0.8, 0.9);
threshold (1.0, 2.0, 3.0, 4.0, 5.0); -r (2, 3, 5); -S (0.0, 0.1,
0.2, 0.3, 0.4)

1200

Table 1: Varied parameters (as they appear on the command line) with their
tested values and constraints between parentheses. Default values are printed in
bold. The right column lists the total number of combinations of these parameter
values, for the five tested algorithms.

learning. The procedure is only effective, naturally, to those algorithms which have
algorithmic parameters that change some significant bias aspect of the learning
algorithm.

Provided that the chosen algorithm has one or more parameters which can
all take two or more values, the wps method can be applied to all possible set-
tings, each representing one particular combination of possible parameter values.
However, this simple procedure may not be applied blindly. Some algorithmic
parameters may be mutually exclusive; some parameters may only be selected in
combination with another parameter or some other parameter’s value. This im-
plies that the method has to be customized for each classifier, using background
knowledge about the algorithm’s mutual parameter constraints (which are usu-
ally known and specified by the algorithm’s developers) and about the algorithms’
parameter value constraints (which may only be known as rules of thumb).

We customized wps to the following five well-known machine-learning algo-
rithms. (1) Ripper [4] is a rule-induction algorithm that compresses a data set
of labeled examples into an ordered rule list. We employed implementation V1

Release 2.5 patch 1. (2) C4.5 [11] is an algorithm for the top-down induction of
decision trees. It compresses a data set of labeled examples into a decision tree
that has class labels at its nodes, and tests on feature values on its branches. We
employed implementation Release 8. (3) Maxent [6] is a probabilistic learner
in which the central probability matrix between feature values and class labels
is smoothed towards a state of maximum entropy. We used the implementation
by [8], version 20040315. (4) Ib1 [1] is an instance-based classifier based on the
k-nearest neighbor (k-NN) classification rule. We used an implementation that
supports a range of k-NN kernel plugins, TiMBL [5], version 5.0.0 patch 3. (5)
Winnow [9] is a linear-threshold classifier which learns weights on the model pa-
rameters (features) in a learning phase through an error-based weight update rule,
which at the side removes weights that end up below a threshold. We employed
SNoW [3], a sparse implementation of Winnow classifiers, version 3.1.3. Table 1
lists the parameters with their values that were varied, and the total number of
combinations of parameter settings tested in the first pseudo-exhaustive round of

Number of Class
Task examples features classes entropy
audiology 228 69 24 3.41
bridges 110 7 8 2.50
soybean 685 35 19 3.84
tic-tac-toe 960 9 2 0.93
votes 437 16 2 0.96
car 1,730 6 4 1.21
connect4 67,559 42 3 1.22
kr-vs-kp 3,197 36 2 1.00
splice 3,192 60 3 1.48
nursery 12,961 8 5 1.72

Table 2: Basic statistics of the six UCI repository data sets. On the top five tasks
normal wrapping is performed rather than wps.

wps.

4 Experimental setup

For our experiments we used ten benchmark data sets from the UCI repository [2].
Table 2 lists some data set statistics for the ten selected data sets, which all have
nominal attributes. Note that “soybean” is short for “soybean-large”, and “car”
is short for “car evaluation”. As the table illustrates, the selection displays a wide
variance in numbers of examples, features, classes, and entropy of the classes.

The top five data sets in Table 2 have less than 1000 examples. We apply
straightforward wrapping to these five, and apply wps to the bottom five tasks,
to allow for some comparison between the two approaches. The rationale for
this split is twofold; (1) it is feasible to run pseudo-exhaustive wrapping 10-fold
cross-validation experiments on the smaller datasets, while this is gradually more
infeasible with 10 or 100 times as much instances, as in the bottom five tasks; (2)
little progressive sampling is possible with under 500 or just over 500 instances,
which is the fixed size of the initial training set of wps.

All data sets were concatenated into one full set (if there were originally disjoint
training and test sets provided in the UCI repository), shuffled randomly, and
subsequently partitioned into ten 10% partitions. On these partitions 10-fold cross-
validation (CV) experiments were performed. All experiments had two variants: in
one variant, the default setting of the particular implementation was used for the
10-fold CV experiment. In the other variant, wps was performed. The difference
between the two variants was subject to a one-tailed unpaired t-test.

5 Results

Table 3 displays the effects of normal wrapping and wps on generalization accuracy
on the ten UCI benchmark data sets by ripper, c4.5, maxent, ib1, and winnow,
respectively. All tables give an average and the standard deviation for both the
default setting and the settings found by normal wrapping on the top five tasks,
and wps on the bottom five tasks, measured in 10-fold CV experiments. For

% Correct test instances % Error One-tailed
Task default wrapping / wps reduction t-test

ripper

audiology 75.4 ± 8.1 76.3 ± 9.0 3.6 t = 0.233
bridges 58.2 ± 14.8 55.5 ± 12.5 -6.5 t = 0.445
soybean 91.8 ± 2.5 91.5 ± 2.5 -3.5 t = 0.258
tic-tac-toe 97.5 ± 1.3 99.8 ± 0.3 93.2 p < 0.001 t = 5.330
votes 95.4 ± 2.5 95.2 ± 2.8 -4.8 t = 0.187
car 87.8 ± 3.2 98.0 ± 0.6 84.0 p < 0.001 t = 10.122
connect4 75.4 ± 0.8 77.0 ± 1.3 6.6 p < 0.01 t = 3.373
kr-vs-kp 99.2 ± 0.4 98.9 ± 0.8 -30.9 t = 0.884
splice 93.4 ± 1.6 94.3 ± 1.0 13.3 t = 1.447
nursery 96.6 ± 0.7 98.9 ± 0.5 66.4 p < 0.001 t = 7.732

c4.5

audiology 78.0 ± 8.0 82.4 ± 7.0 19.9 t = 1.302
bridges 49.1 ± 6.0 52.7 ± 7.9 7.1 t = 1.156
soybean 91.2 ± 2.9 92.4 ± 2.5 13.4 t = 0.892
tic-tac-toe 84.7 ± 4.8 85.9 ± 3.1 8.1 t = 0.689
votes 95.9 ± 2.6 95.4 ± 2.5 -11.5 t = 0.410
car 91.9 ± 2.2 93.2 ± 1.9 16.3 t = 1.450
connect4 80.9 ± 0.4 79.4 ± 1.7 -7.8 p < 0.01 t = 2.750
kr-vs-kp 99.5 ± 0.3 99.6 ± 0.2 20.0 t = 0.799
splice 94.0 ± 1.6 93.7 ± 1.7 -5.5 t = 0.442
nursery 97.0 ± 0.4 97.5 ± 0.7 15.3 p < 0.05 t = 1.889

maxent

audiology 82.8 ± 9.3 81.5 ± 8.3 -7.6 t = 0.332
bridges 56.5 ± 16.7 57.3 ± 15.2 2.1 t = 0.126
soybean 92.6 ± 2.3 92.3 ± 2.3 -3.8 t = 0.269
tic-tac-toe 98.1 ± 1.0 98.2 ± 0.9 5.4 t = 0.228
votes 96.1 ± 2.3 96.3 ± 3.0 5.6 t = 0.186
car 93.5 ± 1.7 93.2 ± 1.7 -5.4 t = 0.463
connect4 75.7 ± 1.4 74.7 ± 1.7 -4.1 t = 1.437
kr-vs-kp 97.8 ± 0.9 97.1 ± 1.0 -29.3 t = 1.545
splice 90.7 ± 2.2 94.5 ± 2.8 41.3 p < 0.01 t = 3.437
nursery 92.5 ± 0.5 92.5 ± 0.4 -0.7 t = 0.296

ib1

audiology 79.3 ± 9.7 79.8 ± 8.7 2.4 t = 0.119
bridges 54.6 ± 8.1 50.9 ± 13.6 -8.0 t = 0.726
soybean 91.8 ± 3.1 94.6 ± 2.9 34.0 p < 0.05 t = 2.053
tic-tac-toe 89.5 ± 2.6 99.2 ± 0.6 92.1 p < 0.001 t = 11.423
votes 93.8 ± 3.7 95.9 ± 3.2 33.7 t = 1.346
car 94.0 ± 0.9 96.6 ± 1.2 43.3 p < 0.001 t = 5.569
connect4 71.0 ± 0.3 77.9 ± 2.1 24.7 p < 0.001 t = 10.171
kr-vs-kp 97.7 ± 0.5 96.8 ± 0.7 -42.5 p < 0.001 t = 3.649
splice 91.9 ± 2.0 95.4 ± 1.0 43.7 p < 0.001 t = 4.932
nursery 94.7 ± 0.5 99.3 ± 0.2 86.9 p < 0.001 t = 28.407

winnow

audiology 71.3 ± 14.7 77.0 ± 11.8 19.9 t = 0.959
bridges 58.2 ± 15.9 56.0 ± 13.2 -5.3 t = 0.340
soybean 84.3 ± 5.9 88.2 ± 6.1 24.9 t = 1.457
tic-tac-toe 90.7 ± 3.0 94.3 ± 2.1 38.2 p < 0.01 t = 3.057
votes 95.0 ± 2.7 95.4 ± 2.9 9.2 t = 0.372
car 94.3 ± 2.1 96.4 ± 1.7 36.4 p < 0.05 t = 2.396
connect4 47.2 ± 5.8 69.5 ± 2.5 42.2 p < 0.001 t = 11.087
kr-vs-kp 97.2 ± 0.9 97.0 ± 1.0 -5.3 t = 0.360
splice 92.1 ± 2.0 94.7 ± 1.6 33.2 p < 0.01 t = 3.272
nursery 96.4 ± 0.7 98.4 ± 0.4 54.6 p < 0.001 t = 7.653

Table 3: Parameter optimization effects on learning ten UCI benchmark tasks by
the five tested learning algorithms.

convenience, each table displays an error reduction, measured as the percentage
of error that was saved by wrapping or wps – this quantity may be negative if
the wrapping method yields worse results. The t value of the one-tailed unpaired
t-test is reported, as well as the p level if it is smaller than 0.05. Accuracies in
bold mark the significantly better accuracies in a pair of outcomes for one data
set.

Two algorithms, ib1 and winnow, display marked improvements due to wps

on four or the five UCI tasks. Ripper is able to gain significant improvements
compared to the default settings on three of the five datasets. C4.5 performs
significantly better with wps on two tasks, and maxent shows the least effect;
only one task is significantly improved due to wps. Error reduction levels vary
widely; they are negative in 17 out of the total of 50 experiments, but only in
two cases the negative effect of wps is significant. On the positive side, of the 33
measured positive effects across the 50 experiments run with all five algorithms,
17 are significant.

To gain more insight into the effects of the two wrapping methods, Table 4 lists
the average error reductions for all five algorithms for each of the two wrapping
methods tested (i.e. each average is taken over the error reductions measured in five

Normal wrapping wps

Algorithm Error reduct. Reduct./combin. Error reduct. Reduct./combin

ripper 16.4 0.025 27.9 0.043
c4.5 7.4 0.021 7.7 0.021
maxent 5.9 0.536 0.4 0.036
ib1 30.8 0.033 31.2 0.034
winnow 17.4 0.015 32.2 0.027

Table 4: Average error reduction levels yielded through normal wrapping and wps

and “gain per tested combination” statistic, for each of the five learning algorithms.

experimental outcomes). Apart from these averages, which range between 0.4%
for maxent with wps to 32.2% for winnow with wps, the table also displays
the relative contribution of each tested combination of parameter settings. For
example, the 32.2% error reduction of winnow is due to a search by wps among
1200 combinations; the average contribution from each combination is 32.2/1200 =
0.027%. Interestingly, this average contribution per setting is a fairly constant
number ranging between about 0.02 and 0.04. The single outlier is the high average
relative contribution of each of the 11 combinations of settings of maxent, which
can be considered accidental and unreliable as an average.

6 Discussion

In this paper we demonstrated the use of wrapped progressive sampling for al-
gorithmic parameter optimization. We customized wps to five machine learning
algorithms, and ran experiments on UCI benchmark data sets comparing the al-
gorithms’ default settings as provided by the employed implementations to the
settings found by wps for each fold of a 10-fold CV experiment. Furthermore, we
ran the same five algorithms and applied normal (pseudo-exhaustive) wrapping
to five smaller UCI tasks, which would not be feasible for the larger datasets on
which wps is applied.

The wps procedure appears to have the desired function. It tends to reduce
average error over the investigated UCI data sets at rates ranging from a negligible
0.4% with maxent to a considerable 27.2% (ripper), 31.2% (ib1), and 32.2%
(winnow). In 13 out of the 25 wps experiments, wps performs significantly better
than the default setting. As a computationally feasible alternative to normal
wrapping, which is tested on the smaller five datasets, wps offers at least as
promising results. There even appears to be a constant gain in error reduction
per tested combination of parameter settings, leading to higher gains when larger
parameter spaces can be explored – in our experiments, about 0.02–0.04% per
tested combination.

The fact that wps sometimes produces a lower generalization accuracy than
obtained with the default setting of an algorithm can partly be explained by the
general fact that wrapped estimations on training data may not carry over to test
data – simple wrapping also produces negative results. On the other hand, the
wps procedure is susceptible to discarding settings that would perform well on

test data, but perform badly on small amounts of training data and are therefore
deleted early on in the process. More comparative experiments and deeper analyses
are necessary to investigate this potential cause of negative end results.

To conclude, wrapped progressive sampling is a meta-learning approach to algo-
rithmic parameter optimization that does not produce much effect, unsuprisingly,
with algorithms that offer little variation in their parameters, such as maxent. It
is, however, able to make more improvements when more possible combinations
are available to search through.

Acknowledgements

This research is funded by the Netherlands Organisation for Scientific Research
(NWO). The author wishes to thank William Cohen, Robert Stockton, Iris Hen-
drickx, Walter Daelemans, Zhang Le, and Dan Roth for comments, suggestions,
and discussions.

References

[1] D. W. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine

Learning, 6:37–66, 1991.

[2] C. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/ mlearn/MLRepository.html.

[3] A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth. SNoW user guide. Techni-
cal Report UIUCDCS-R-99-2101, Cognitive Computation Group, Computer Science
Department, University of Illinois, Urbana, Illinois, 1999.

[4] W. Cohen. Fast effective rule induction. In Proceedings 12th International Confer-

ence on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[5] W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. TiMBL: Tilburg
memory based learner, version 5.0, reference guide. ILK Technical Report 03-10,
Tilburg University, 2003.

[6] S. Guiasu and A. Shenitzer. The principle of maximum entropy. The Mathematical

Intelligencer, 7(1), 1985.

[7] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence

Journal, 97(1–2):273–324, 1997.

[8] Zhang Le. Maximum Entropy Modeling Toolkit for Python and C++.
Natural Language Processing Lab, Northeastern University, China, 2004.
http://www.nlplab.cn/zhangle/software/maxent/manual/.

[9] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[10] F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In Proceedings

of the Fifth International Conference on Knowledge Discovery and Data Mining,
pages 23–32, 1999.

[11] J.R. Quinlan. c4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

