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Goals of Nonparametric Item Response
Theory

Nonparametric item response theory (NIRT) models
are used for analyzing the data collected by means
of tests and questionnaires consisting of J items.
The goals are to construct a scale for the ordering
of persons and — depending on the application of
this scale — for the items. To attain these goals, test
constructors and other researchers primarily want (o
know whether their items measure the same or dif-
ferent traits, and whether the items are of sufficient
quality to distinguish people with relatively low and
high standings on these fraits. These questions relate
to the classical issues of validity {(see Validity The-
ory and Applications) and reliability, respectively.
Other issues of interest are differential item func-
tioning, person-fit analysis, and skill identification
and cognitive modeling.

NIRT models are most often used in small-scale
(esting applications. Typical examples are mtelligence
and personality testing. Most intelligence tests and
personality inventories are applied to individuals only
once, each individual 1s administered the same test,
and testing often but not necessarily is individual.
Another example is the measurement of attitudes,
typical of sociological or political science research.
Attitude questionnaires typically consist of, say, 5
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to 15 items, and the same questionnaire 1s adminis-
tered to each respondent in the sample. NIRT is also
apphed in educational testing, preference measure-
ment in marketing, and health-related quality-of-hife
measurement 1n a medical context. See [16] for a list
of apphlications.

NIRT 1s mteresting for at least two reasons. First,

because 1t provides a less demanding framework for

test and questionnaire data analysis than parametric
item response theory, NIRT is more data-oriented,
more exploratory and thus more flexible than para-
metric IRT; see |7]. Second, because it i1s based on
weaker assumptions than parametric IRT, NIRT can
be used as a framework for the theoretical explo-
ration of the possibilities and the boundaries of IRT
in general; see, for example, [4] and [6].

Assumptions of Nonparametric IRT
Models

The assumptions typical of NIRT models, and
often shared with parametric IRT models, are
the following:

e Unidimensionality (UD). A umidimensional IRT
model contains one latent variable, usually
denoted by €, that explains the variation between
tested 1individuals. From a fitting unidimensional
IRT model, 1t 18 inferred that performance on
the test or questionnaire 1s driven by one ability,
achievement, personality trait, or attitude. Multi-
dimensional IRT models exist that assume several
latent vanables to account for the data.

e Local independence (LI). Let X; be the random
variable for the score on ttem j(j = 1,...,J);
et x; be a realization of X;; and let X and x
be the vectors containing J item score variables
and J realizations, respectively. Also, let P(X; =
x;10) be the conditional probability of a score
of x; on #em j. Then, a latent variable 6,
possibly muludimensional, exists such that the
joimnt conditional probability of J item responses
can be written as

S
o) =|]PX;=x16). (D)

j=1

P{X =x

An imphication of LI is that for any pair of items,
say j and k, their conditional covariance equals
0; that 15, Cov(X;, X;|6) = 0.

e Monoionicity (M). For binary item scores, X; €
{0, 1}, with score zero for an incorrect answer
and score one for a correct answer, we define
Pi8) = P(X; = 118). This is the item response
function (IRF). Assumption M says that the IRF is
monotone nondecreasing in 6. For ordered rating
scale scores, X; € {0, ..., m}, a similar mono-
tonicity assumption can be made with respect 1o
response probability, P(X; > x;|0).

Parametric IRT models typically restrict the IRF,
P;(6), by means of a parametric function, such as
the logistic. A well-known example is the three-
parameter logistic IRF. Let y; denote the lower
asymptote of the logistic IRF for item J, interpreted
as the pseudochance probabilily; let §; denote the
location of 1tem j on the & scale, interpreted as the
difficulty: and let «;(>0) correspond to the steepest
slope of the logistic function, which is located at
parameter ¢; and interpreted as the discrimination,
Then the IRF of the three-parameter logistic model is

PiO) = vy + (1 -y — PO =01
I +expla;j (@ —6;)]

Many other parametric IRT models have been
proposed; see {20] for an overview.

NIRT models only impose order restrictions on the
IRF, but refrain from a parametric definition. Thus,
assumption M may be the only restriction, so that for
any two fixed values 6, < 6,,, we have that

Pi(8,) < P; (). (3)

The NIRT model based on assumptions UD, LI,
and M 1s the monotone homogeneity model [8].
Assumption M may be further relaxed by assuming
that the mean of the J IRFs is increasing, but not
each of the individual IRFs {17]. This mean is the test
response function, denoted by 7(#) and defined as

J
TEy = J! Z Pi(6), increasing in 6. (4)
j=1

Another relaxation of assumptions is that of strict
unidimensionality, defined as assumption UD, (o
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essential umidimensionality [17]. Here, the idea is
that one dominant trait drives test performance in
particular, but that there are also nuisance traits
active, whose influence 1s minor.

In general, one could say that NIRT strives for
defining models that are based on relatively weak
assumptions while maintaining desirable measure-
ment properties. For example, 1t has been shown {2]
that the assumptions of UD, LI, and M imply that
the total score X = Z};, X ; stochastically orders
latent variable 6, that 1s, for two values of X, say
Xpa < Xgp, and any value r of 6, assumptions UD,
LI, and M imply that

POz 11Xy =upy) = PO 21X =x4p). (5)

Reference [3] calls (2) a stochastic ordering 1n
the latent trait (SOL). SOL mmplies that for higher
X values the &s are expected to be higher on
average. Thus, (5) defines an ordinal scale for person
measurement: if the monotone homogeneity model
fits the data, total score X can be used for ordering
persons with respect to latent variable 6, which by
iself 1s not estimated.

The three-parameter logistic model 1S a special
case of the monotone homogeneity model, because 1t
has monotone increasing logistic IRFs and assumes
UD and L1 Thus, SOL also holds for this model. The
item parameters, y, é, and «, and the latent variable
£ can be solved from the hkelihood of this model.
These estimates can be used to calibrate a metric
scale that is convenient for equating, item banking,
and adaptive testing in large-scale testing {20]. NIRT
models are candidates for test construction, in partici-
lar, when an ordinal scale for respondents is sufficient
for the application envisaged.

Another class of NIRT models is based on stronger
assumptions. For example, to have an ordering of
items which 1s the same for all values of 8, with the
possible exception of ties for some 8s, it 1s necessary
to assume that the J items have [RFs that do not
intersect. This is called an invariant item ordering
(110, [15}]). Formally, J nems have an {10, when they
can be ordered and numbered such that

P{6) < P8y <. < P;@). forall b (6)

A set of items that 1s characterized by an 11O factl-
itates the interpretation of results from differental

item functiomng and person-fit analysis, and provides
the underpinnings of the use of individual starting
and stopping rules in intelligence testing and the
hypothesis testing of item orderings that reflect, for
exampile, ordered developmental stages. The NIRT
mode! based on the assumptions of UD, LI, M, and
11O 15 the double monotonicity model [8].

The generalization of the SOL and 1O properties
from dichotomous-item IRT models to polytomous-
iem IRT models i1s not straightforward. Within the
class of known polytomous IRT models, SOL can
only be generalized to the parametric partial credit
model [20} but not to any other model. Refer-
ence [19] demonstrated that although SOL is not
imphied by most models, it is a robust property for
most fests in most populations, as simulated in a
robustness study. For J polytomously scored items,
an 11O 1s defined as

E(X110) < E(X310) < -.. < E(X,19), for all 6.

(7)

Thus, the ordering of the mean item scores 1s the
same, except for possible ties, for each value of
6. 1O can only be generalized 1o the parametric
rating scale model {20} and similarly restrictive IRT
models. See [13] and [14] for nonparametric models
that 1mply an HO.

Because SOL and IO are not straightforwardly
generalized to polytomous-item IRT models, and
because these models are relatively complicated,
we restrict further attenuion mostly to dichotomous-
item IRT models. More work on the foundations
of IRT through studying NIRT has been done, for
example, by {1, 3,4, 6, and 17]. See [8] and [106] for
monographs on NIRT.

Evaluating Model-data Fit

Several methods exist for investigating fit of NIRT
models to test and questionnaire data. These meth-
ods are based mostly on one of two properties of
observable variables implied by the NIRT models.

Conditional-association Based Merhods

The first observable property is conditional associa-
tion {4]. Split item score vector X into two disjoint
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part vectors, X = (Y, Z). Define fy and f; to be non-
decreasing functions in the item scores from Y, and
¢ 1o be some function of the item scores in Z. Then
UD, LI, and M imply conditional association 1n terms
of the covariance, denoted by Cov, as

Cov| /1Y), L(Y)glZ) =212 0, forall z. (8)

Two special cases of (8) constitute the basis of
model-data fit methods:

Unconditional inter-irem covariances. If function
2{Z) selects the whole group, and fi(Y) = X; and
(Y)Y = Xy, then a special case of (8) 18

Cov(X;, Xy) =0, all pairs j k;j < k. (9)
Negative inter-item covariances give evidence of
model-data mishit.

Let Cov(X,, Xr)max be the maximum covari-
ance possible given the marginals of the cross table
for the bivariate frequencies on these iems. Refer-
ence [8] defined coefficient Hj; as

COV(XJ', X))

- : (10)
Cov(X;, XpImax

ij

Equation 9 implies that 0 < A < 1. Thus, pos-
itive values of Hj;; found in real data support the
monotone homogeneity model, while negative values
reject the model. Coefficient Hj; has been general-
ized to (1) an item coefficient, H;, which expresses
the degree to which item j belongs with the other
J — 1 in one scale; and (2) a scalability coefficient,
H, which expresses the degree (o which persons
can be reliably ordered on the 8 scale using total
score X 4.

An item selection algorithm has been proposed {8,
16] and implemented 1 the computer program
MSP5 [9], which selects items from a larger set into
clusters that contain items having relatively high H;
values with respect to one another — say, H; > ¢,
often with ¢ > 0.3 (¢ user-specified) — while unse-
lected items have H; values smaller than c¢. Because,
for a set of J items, H = mun(H;) [8], item selection
produces scales for which H > ¢. If ¢ > 0.3, person
ordering 1s at least weakly rehiable [16]. Such scaies
can be used 1n practice for person measurement, while
each scale identifies another latent vanable.

Conditional inter-item covariances. First, define a
total score — here, called a rest score and denoted R —
based on X as,

Ricjmty = ) Xu. (1)

Second, define function g(£) = R—; -1, and let
NHY)=X; and fo(Y) = X;. Equation 8 implies

that,

CoviX;, XplRij—ty =r1 =0, all j.kj <k
all P =0,1,...,J =2 (12)

That 1s, 1n the subgroup of respondents that have
the same rest score r, the covariance between Hems
J and & must be nonnegative. Equation 12 15 the
basis of procedures that try to find an item subset
structure for the whole test that approximates local
independence as good as possible. The optimal solu-
tion best represents the latent variable structure of
the test data. See the computer programs DETECT
and HCA/CCPROX [18] for exploratory item selec-
tion, and DIMTEST [17] for confirmatory hypothesis
testing with respect to test composition.

Manifest-monotonicity Based Methods

The second observable property is manifest mono-
tonicity [6]. It can be used to investigate assumption
M. To estimate the IRF for item j, P;(8), first a sum
score on J — | items excluding item J,

R-jy =Y X (13)
k#j

1s used as an estimate of 6, and then the conditional
probability P{X; = H{R_;; = r]1s calculated for all
values r of R(.;;. Given the assumptions of UD, LI,
and M, the conditional probability PlX; = IR }]
must be nondecreasing in R._;y; this is manifest
monotonicity.

[nvestigating assumption M. The computer pro-
gram MSPS can be used for estimating probabili-
tes, P{X; = 1{R(-;,], plotting the discrete response
functions for Ri_;; =0...., J — 1. and tesung vio-
lations of manifest monotonicity for significance.
The program TestGraf98 [i1, 12] estimates contin-
uous response functions using kernel smoothing, and
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provides many graphics. These response functions
include, for example, the option response functions
for each of the response options of a multiple-
choice item.

Investigating assumption HO. To 1nvestigate
whether the items j and k have intersecting IRFSs,
the conditional probabilities PIX; = 1|R-; -] and
P1 Xy = 1R -} can be compared for each value
R—j.—r; = r, and the sign of the difference can be
compared with the sign of the difference of the
sample item means, X and AL, for the whole
group. Opposite signs 5"01 some r values indicate
intersection of the IRFs and are tested agamnst the null
hypothesis that PlX; = HR_;xy=r]= PlX; =
HR(~j -ty = r] — meaning that the IRFs coincide
locally — in the population. This method and other
methods for investigating an 11O have been discussed
and compared by [15] and [16]. MSP5 [9] can be
used for mvestigating HO.

Many of the methods mentioned have been gener-
alized to polytomous items, but research in this area
is still going on. Finally, we mention that methods
for estimating the reliability of total score X have
been developed under the assumptions of UD, LI,
M, and O, both for dichotomous and polytomous
items [ 16].

Developments, Alternative Models

NIRT developed later than parametric IRT. It 1s an
expanding area, both theoretically and pracucally.
New developments are in adaptive testing, differen-
tial item functioning, person-fit analysis, and cogni-
tive modeling. The analysis of the dimensionality of
test and questionnaire data has received much atten-
tion, using procedures implemented in the programs
DETECT, HCA/CCPROX, DIMTEST, and MSPs.
Latent class analysis has been used to formulate NIRT
models as discrete, ordered latent class models and to
define fit statistics for these models. Modern estima-
tion methods such as Markov Chain Monte Carlo
have been used to estimate and ht NIRT models.
Many other developments are ongoing.

The theory discussed so far was developed for
analyzing data generated by means of monotone
IRFs, that is, data that conform to the assumption that
a higher # value corresponds with a higher expected
item score, both for dichotomous and polytomous
items. Some item response data reflect a choice

process governed by personal preferences for some
but not all tems or stimuh, and assumption M is not
adequate. For example, a marketing researcher may
present subjects with J brands of beer, and ask them
to pick any number of brands that they prefer in terms
of bitterness; or a political scientist may present a
sample of voters with candidates for the presidency
and ask them to order them with respect to perceived
trustworthiness. The data re*‘sultirm from such tasks
require IRT models with single-peaked IRFs. The
maximum of such an [RF identifies the item location
or an mterval on the scale — degree of b;u.;.ﬁ_i-_;}e.sm or
trustworthiness — at which the maximum pr(}l'j_'ability
of picking that stimulus is obtained. See [10] and {5]
for the theoretical foundation of NIRT models for
single-peaked IRFs and methods for investigating
model-data fit.
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