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SOLUTIONS OF A FINITE ARBITRATION GAME:

STRUCTURE AND COMPUTATION

M.J.M. Jansen and S5.H. Tijs

ABSTRACT

In this paper, it is shown that for a finite arbitration game with a-
regular arbitration function, the optimal (thréat) strategy spaces of
the players are polytopes. Furthermore a multifunction 1s introduced
which is useful to find good approximations of the value and aptimal

styrategies for the players.

1. INTRODUCTION AND PRELIMINARIES

In the (non-cooperative) bimatrix game T corresponding to the
ordered pair (A,B) of two mxn-matrices A and B, the players 1 and 2
choose, independently of each other, a mixed strategy .

xe8™ = {pe R5p20, )

1

m
i=1Py

n n
=1} and ye 8" := {ge R ; g20, Zj=1qj 1},

respéctively. In that case, the expected payoff to player 1 (2} is
m n
t t
E i= = 1= .
1(x,y) : Zi=1 Zj=1 xiaijyj XAy (Ez(x,y) xBy )
If one allows the players to cooperate, then they have the possibi-

lity of jointly choosing so-called correlated strategies

mxn mn m n
ze$ = {r= (rll,...,rmn) ¢eR ; rz0, zi=1 Zj:i rJ._j =1}. Now, the
expected payoff to player 1 (2) is

n

m
Az =], Zj=1 2,424 (<B,z>) .



Acting cooperatively all payoff pairs in the payoff region
2, .
R() := conv{(aij 'bij) eR"; ie No,de Nn} are attainable, where conv(S),
2

for S R, denotes the convex hull of S and where Nk :={1,...,k}, for

ke N. It is clear that the Pareto set
P(T) :={p e R(T); for each re R(T) with r2p, we have r=p}

of undominated elements in R(T') contains the most attractive payoff pairs
for the players. In this paper, we only consider games with more than one
Pareto point. Then the problem for the players is which Pareto point to
choose, or better, which correlated strategy.

We suppose, in this paper, that the players solve their problem
with the aid c;f an arbitrator, who, in turn, makes use of a so-called
arbitration funetion ¢ : R(I') + P(T). Then the situation proceeds as
follows.

Step 1. Independently of each other, the players assign an xc¢ s™ and a
ye 5™ and deliver these threat strategies to the arbitrator.

Step 2.. The arbitrator calculates the payoff cb(xAyt,xByt) and chooses a
correlated strategy =z« Smxn such that (<A,z>,<B,z>) = ¢(xAyt,xByt) .
Step 3. The players are obliged to use the correlated strategy z.

From a strategic point of view, for the players, this situation
corresponds, essentially, to the non-cooperative game in normal form
I‘¢ = <sm'sn'¢1E,¢2E>, where ¢iE(x,y) is the >i-th coordinate c_;f
$(B, (x,¥) ,E,(%x,y)) . This gdme is called the arbitration game correspon-

ding to the game ' and the arbitration function ¢.

For I',, the expressions v,(l',) := sup inf ¢,E(x,y) and
4 174 m 1
XeS yes
VZ(Pcb) = ;1:;S>n ixjgm ¢2E(x,y) are called the security levels for player 1
1~

and player 2, respectively. We say that I‘¢ is strictly determined if

v(l') := (vl(I‘ Y,v, (T, )} e P(T)., In that case, vi(I‘ } is called the

¢ T2 e ¢
{arbitration) value for player i and v(I‘¢) the value of the arbitration

game .



*
Let €> 0, If I‘¢ is strictly determined, then x ¢ s™ is called an &-

optimal strategy for player 1, if

¢1E(x*,y) 2v1(1‘ )-€, for all yve st

¢
In a similar way, one defines e-optimal strategies for player 2. A stra-
tegy is called optimal if it is e-optimal, for all £> 0.

The set of g-optimal strategies for player i in a strictly determined
game I‘¢ will be denoted by OE(I‘(b) and the set of optimal strategies for
player i by Oi(l' Y.

¢

Note that E(I')) = 01(I' ) ><02(I‘ }, where E(I‘¢) denotes the set of equi-

¢ t ¢

Librium points of the game P¢.
We need some notation. For a bimatrix game T = (A,B), let the upper
point p(l') of P(I') be the unique point of P(I') with maximal second cooxr—'
dinate and let the lower point p(I') of P(T) be the unique point of P(T)
with maximal first coordinate. Let ;(I‘) := P(ONB(T) (N} and let
W(r) := {we R(I'); for each re¢ R(I') with r2w, we have ¥,=W, or r2=w2]'
be the weak Pareto set of R(T). Finally, let
W(r) s= (weW(M); wy=p,y (I} and W(T) :={wel(); wy=p, (P)]}.
In this paper, we only consider arbitration functions ¢ : R(T) =+ P(T),
that are regular, i.e.
(R.1) ¢(x) 2xr, for each reR([),
(R.2) '¢ is continuous,

(R.3) ¢_1(p) = {reR{l;: ¢(r) = p} is a convex subset of R(T), for each

pe P(T).

Such arbitration functions were studied for the first time by Raiffa [5].
Using the fixed point theorem of Kakutani, he proved the following result.
THEOREM 1.1. For a bimatrixz game T = (A,B) and a regular arbitration

funetion ¢, the arvbitration game T, is8 strictly determined and both

¢
players have optimal strategies.



In [6], the authors, ihspired by a paper of Owen [4], introduced a
new technique for proving the existence of value and g¢-optimal strate-~
gies of arbitration games. This new approach exploits in a suitable way
the zerco-sum-like character of arbitration games. Baslic for the theory
is the following observation proved in [6].

LEMMA 1.2, Let I‘¢ be a finite arbitration game. If pe ;’(I‘) and
re ¢~1(p) \ {p}, then ¢(s) = p, for any s in R(T') of the form

s = p+7\(r:p) , where \e[0,%).

This property leads to the next definition.

DEFINITION 1.3. For a finite arbitration game T , we call an element

$

o
de A := {xe 1R2; x<0, x1+x2=—1} a suttable dirvection for pe P(T') if
¢ (ptad) = p, for each a> 0 with p+ad e R(T).
2 v
For xe R, X := (-xz,xl) .

Some properties of D(p), the set of suitable directions for p, are
gathered in

LEMMA 1.4, ([6] , lemma 3.3). Let T, be a finite arbitration game and

é
-

let pe P(T). Then

(1) D(p) 18 a non-empty, compact and convex subset of A,

(2) the multifunction p — D(p) on }%(F) 18 upper semicontinuous.

o
Rgain, let T = (A,B) be an mXn-bimatrix game., For each pe P(T} and
”

each de D(p), we introduce the dwmmy zero—sum game

rp,d = <5 ,8 ’Ep,d' Ep'd>,‘where
v m, 2
EP d(x,y) := <d,E(x,y)~p>, for all (x,y) eSS x§ .
t
Note that, in fact, I‘P a is the mixed extension of the m¥n-matrix game
I
v
Moq = -d,A+d,B - <d,p>J,

where J is the mxn-matrix with all coefficients equal to 1.

Essential in the theory is



LEMMA 1.5. ([6], lemma 5.1). Zet I‘¢ be a finite arbitration game and

let pe P(T'), deD{(p). Then
(1) Ep,d(x,y) <0 implies $,E(x,¥) 2 p,,
(2) Ep,d(x,y) 20 implies $,B(x,y) 2p,.

o
The reason why the family {I‘P peP(l), deD(p)} of dummy zero-

,a i

sum games plays a crucial role in the derivation of existence theorems
for arbitration games, is revealed in

THEOREM 1.6, ([6], lemma 5.2). Let T be a finite arbitratton game. Let

$

o
pe P(T), de D(p) and suppose that v.al(r‘p d) = 0, Then

(1) p = v(I ).

9
(2) oi(rp,d) coi(r¢), for ie{1,2}.

2. THE OPTIMAL STRATEGY SPACES OF A FINITE ARBITRATION GAME

Unless otherwise stated, in this section, T is a fixed m¥n-bimatrix

game (A,B), ¢ is a fixed regular arbitration function and v := v(I ).

b
We will show that the optimal strateqgy spaces of players 1 and 2 in the

arbitration game T o are polytopes in s™ and Sn, respectively.

Suppose, for the present, that ve 7‘3(1") . Then dummy games may be
helpful to characterize the optimal strategy spaces. First we note that
theorem 1.6 implies that optimal strategies of dummy games I‘V" a with
val(I'v,d) = 0 and deD(v), are also optimal strategies in the arbitration
ga.me.. But the converse statement is not necessarily true, in general, as

the following example shows,

0 0 0 0 3 0
EXAMPLE 2.1. Let T = (a,B), where A := 3 2 0 and B := [0 2 ol

Let ¢ be the Nash arbitration function [2], [3] (see alsoc example 4.4).
Then v(T,) = (2,2) and D(v) = {(8,-1-8) ¢ 4; -2<55-13.

: po-t
) = if | - Consequently, all dummy
~2-4§ 8>-%

Now, val(I‘vl (§,-1-8)



' .
games Fv, (8,~1~8) with 6S-E h;\ve a value equal to zero. However, .

02(1‘4)) = conv{ez,e ,(%,0,%—)} and

fe,} 5"";‘
%20, 18,-1-8) T is3 gm0y T gall
‘ 9 2

For the description of the optimal strategy spaces for the arbitra-
o
tion game F¢, for the case ve P(I'), we introduce the notion of extreme

direction. As observed in lemma 1.4(1), D(v} is a non-empty,compact subi-

set of A. 'i‘herefore, there -exist d+,d—€ D(v) such that d+ = max d, an.t
- N B den(v) ©
d, = min d,. We call d' and d the extreme directions for wv.
deD (v)

THEOREM 2.2. Let T ® be a finite arbitration game for which the under-
lying bimatriz game T has sise wen. If, furthermore, v := (T ¢) e B(IY,
tﬁen " o « . n

i 01(T¢) ={x eg ;Ev'd+(x ¥) 20, for all yes'}
and ’

! 02(I'¢) = {y*es™; Ev’d_(x,y*) o, for all xe s™}.

PROQF. (a) If B .4(x",y) 20, for all ye &, then, by lemma 1.5(2),
: ,

).

¢

) we have, by definition,

Lok
¢1E(x ' y) 2v1, for all ye s". so x*eol(l‘
| :

(b) For x" €0, (L

¢

¢1E(x*,y) zvy, for all yesn.v (2.1)
Subpose that thereexists a ;e st wit.ﬁ'
Ev,d+(x*,;) <0, (2.2)

Then lemma 1.5(1) implies that «plE (xf,;) Svl.

So, in view of (2.1), $,E(x",§) = v,. tote that E(x",y) # v by(2.2).

1°

: ® ~ -1 % o~

lPut 4 := ||BE(x ’Y)_VHJ. (E{x ,y)-v). Then d ¢ D{v}. Furthermore, it followz i @
. :

(2.2) that —d;d1+d1&2 <0; so d,> ar which contradicts the definition

2772
of a.
* n
Consequently, Ev d+(x ,y) 20, for all ye§ .
'

(c) In a similar way, one proves the other eguality in the theorem. []



COROLLARY 2.3. Let T p be a finite arbitration game with v=v(T ) e P(T)

¢
and a* = @~ . Then, for ie (1,2},

0 (ry) =0 (I o).

In the remainder of this section, we consider finite arbitration

games Ty with v(I,) = p(T). Games with v(T,) = p(T) can be handled in a

¢ ¢

similar way.

LEMMA 2.4. Let T s be a finite arbitration game where the underlying
bimatriz game T = (A,B) has size wmxn. If ¢—1(§(I‘)) cW(Tr), then

(1) v(r,) = p(T) iff val(-B) = -max{b, .},

(2) if v(T,) =p(I), then

P - = m = —
ol(r)—ol(a) s and 0,(Ty) = 0,(-B}.

¢ ¢

PROOF. {(a) Suppose that v(I',) = p(I'). If 17602(1'4;), then

¢
-t -t = m .

d>2(xAy ,%xBy 7} 292(1") , for all xe 8 . This implies that

¢ (xa7%,xB95) = B(I), for all xe S%. Since ¢ *(B(M) cW(T), we obtain

that xB§t = 52(1‘) = max{bij}, for all xe¢ 8™. Consequently,

val(-B) = -max{bij} and y € 0,(-B).

(b). If val(-B) = —max{bij}, then it is easy to show that for a

§c0,(-B), ¢, (xAy",xBFT) 25, (1), for all xes™. Hence, v(r,) = B(r) and

yeo, (I‘¢) .

(c) Combining (a) and (b), we have proved (1) and the second statement

in (2). In order to complete the proof, we note that

¢ (xAyt,xByt) zp (I = v, (), for all (x,y) e s®xg". Therefore,
1 1 1

¢

U
0,(T,) = s =0,(-B). |

$

The sets

L(Q) := {reR(I); r = p(I+od, for some a>0} (deA)

play an important role in the following two results.



LEMMA 2.3, Let T, be a finite arbitration game satisfying

¢
(1} viTy) = p(M),
(1) 1) c¢™ L (B(T)), for all de A with L(d) ne (BTN # 4.
Then 01(F¢) = 5 and there exists a A" €A such that
02(1"¢) = {yes™; Eﬁ(r),d*(x,y) <0, for all xe¢ s"}.

PROOF. (a) Let D{(p(T)) := {deA; ¢ # L(d) c¢'1(§(r))}. As in the proof
of lemma 3.3 in [6], one can show that D(p{(l)) is compact. Therefore,
there exists a d* e A such that d; = min {dz; deD(p(I)}.

(b) Now we want to show that
-1 - Ve o -
¢ (p(M) = {reR(T); < ,r-p(I)>=<0}. (2.3

First suppose that <\é*,r—§(I‘)>S 0 for an re R(I\{p(I}. We distinguish

two cases.

If <d*,r-p(I)> = 0, then reL(d") and $(r) = B(T) by the definition of
D(B(T)).

If <3*,r—§(l’)><0 and 6(r) = p # p(I), then [r,p] nLn@®) # 4. However,

for an x¢ [r,pl nL(d*) , B([‘) = ${x) =p # 5(1‘), which is impossible. So

red (B,

Now suppose that re tb_l(f:(l‘)) and that <2,1*,r-1—>(1‘)> > 0. Then r # p(I') and

d := Hr—E(I‘) H;l (r-p(T)) € D(p(l')), in view of (ii). As in the proof of
theorem 2.2, one can show that d2 < d;, which contradicts the definition of d*.

(c) The fact that 01(1" ) = s™ can be proved as in {c) of the proof of

¢

lemma 2.4. The remainder of the theorem is an easy consequence of (2.3). [l

Now suppose that I‘¢ is a finite arbitration game with v(l."¢) = p(T)
while (ii) of lemma 2.5 is not satisfied. Then there exist de¢ A and
r,seL(d) with ¢(s) = p(I) and ¢(x) # p(I).

We want to show that, in this case, tb—l(ﬁ(.[')) c1(d) u{p("}. Since

¢-1(§(I‘)) is closed, there exists an s*eL(d) with s* = min t,. Now
teL(d)



suppose there is a ts¢"1<§<r)), t # p(I') with t ¢ L(d). Note that

t, < s;. So <§,t—§(I‘)> # 0. We distinguish two cases.

2
v o = k B .

If <d,t-p(l)> < 0, then choose, for each ke N, a p € P(T) with

p§> ¢2(r) and HE(I')—pk”m < k'l. In view of the connectedness of the
line segment [r,s*] and the continuity of ¢, there exists, for each

k * : k k

ke N, an x e[r,s 1 with ¢(x") = p . For large k, the line through
pk and x5 intersects with the line segment [r,tl. Let yk be the inter-
section point. Then, by lemma 1.2, ¢(yk) = pk, for all ke N, Since

lim yk = r, we obtain,
k@

B(M) = lim ¢ (x5 = lin 6 (45) = ¢(x) # (D).
k+oo ey

This is impossible,
v oo

If <d,t-p(l)> > 0, then we can choose an e [r,s*] such that
[r*,q)(r*)]n [p(I),t] # 4. However, for an Xe [r*,¢(r*)] n[p(r),tl,
DM = ¢(x) = ¢{r’) # D(T). This, also, is impossible.
Summarizing,

-1 - v - *

& (p(l)) = {reR(T); <d,x-p()> = 0O, rzzsz}.

Now the following result is immediate.

LEMMA 2.6. Let T, be a finite arbitration game with v(T',) = p(T) such

¢
that (¢2) of lemma 2.5 is not satisfied. Then 0 (T

$

o = 8P and “there are

adeh and ce R such‘ that

0,(ry) =lye s?; forall xes™, B (%,y) =0 and E,(x,y) 2c}.

p(r),d

From theorem 2.2, lemma 2.5 and lemma 2,6, we infer ’

THEOREM 2,7. For a finite arbitration game 1‘¢, 0,(I,) and 0,(T,) are

b ¢

polytopes.

3. THE DUMMY-VALUE MULTIFUNCTION

For a finite arbitration game T Y we construct a multifunction i on
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o
P(I') for which the point where the sign changes (if this exists) is
definitive for the position of the arbitration value.

o
DEFINITION 3.1. The multifunction m : P(I) + R defined by
o
mip) := {val(I‘P d),— deD(p)}, for pe P(T),
I

is called the dummy—value multifunction corresponding to the arbitration

game I‘¢.

LEMMA 3.2. Let T, be a finite arbitration game. Then

¢
(1) m(p) Zs a non-empty, compact, convex subset of R, for all pe P(I),

(2) m i a elosed multifunction.

o

PROOF. (a) Take a pe P(T'). Since, by lemma 1.4(1), D(p) is a non-empty,

compact, convex subset of A, the continuity of the function dt» val(l‘P d)
’

on D{p) implies (1).

1 2 2 g
(b) Let p ,p°,... be a sequence in P(I') converging to pe P(T). Suppose
that for each ke N, o € m(pk) and that lim ¢ = ¢. We must prove that

k-

cemi{p). Since c ¢ m(pk) , there exists, for all ke N, a dke D(pk) such

k
that ¢, = val(Tl ). In view of the compactness of A, we may suppose
k pk,dk
that the sequence dl,dz,. .. converges, say, to de¢ A, The upper semi-

continuity of the multifunction D implies that de D(p). Since

c = lim val(l X dk

o s ) = val(I‘p'd), cem(p). 0O

We use the following notation:
. o
m(p) >0 if >0, for all tem(p); m>0 if m(p) >0, for all pe P(T).

The next two lemmas imply that the multifunction m has at most one

»

o
zero, e.g. there is at most one point pe P(I'}) with Oem(p).

LEMMA 3.3. Let T be a finite arbitration game with v(l,) ¢ P(T). Then

¢

(1) v(I’¢) 78 the only sero of m: Oecmip) Zff p = v(I,),

¢

(2) m(p) >0 Zff Py <V (T,

¢

(3) mip) <0 2ff p1>v1(l"¢).
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PROOF. (a) By theorem 1.6, p = v(I')) if Oem(p). As in the proof of

¢
theorem 5.2 of [6], one can show that val(T 4) 20 and
(T, d
4 -
val(Pv(r¢) ,d") < 0. Let for Se [dl’dlj’ £(8) := val(Fv(r¢) ,(6,-1-6))'

Then f is a continuous function with f(d;) =20 and f(dI) < 0. As a con-

sequence, there is a de D(v(T, )} with val(l } = 0, that is

[ v(I‘¢),d
Oem(v(l )).

¢
(b) If O¢m{p), then in view of (a), p # v(I‘¢) . Now suppose that

Q
pe P(M), py <V (T ) and that val(l"p g <0, for some deD(p). Then, for
’

¢

xe 0, (T and ye€ OZ(Fp,d)'Ep,d(x'y) <0, so that by lemma 1.5(1),

fb)

p, 24, ,E(x,y) 2v,(T ) >p,, which is impossible. So val(T }>0, for all
1% 1 1 p,d

b
d e D(p). Consequently, m(p) > 0. Analogously, Py > vi(l"¢) implies m(p)< O. h

The other assertions in the theorem follow easily. [

LEMMA 3.4. Let T s be a finite arbitration game where the underlying bi-

matrix game T = (A,B) has size mxn. Then
(1) m<0 iff vir,) = s,

(2) m>0 Zff v(T))

6 p(D).

3
PROOF. We only prove (1). Suppose that m< 0. Then, for pe P(T) and

deD(p), val(l } < 0. This implies that for a y*eo (T ), B (x,y*) <0,
' p,d 2 p,d

.4
for all xe¢ ST Using lemma 5.1(1), we obtain that ¢2E(x,y*) 2Py, for all

xese. Consequently,

: . *
v2(F¢) = sup_ J.nfm $,E(x,y) ZJ.nfm ¢2E(x,y )292.
yeS" xeS XS

o
Since pe P(I') was arbitrarily chosen, this means that vz(l" ) zp,, for all

b

peP(l). So v(I‘¢) =ph.

Now suppose that v(T,) = p(T).

4 .
Then,similarly, one can show that it is impossible that m> 0. Therefore,
if not m< 0, the connectedness of the set

o
{t € R; there exists a pe P(T) with tem(p)} implies the existence of a



12

o
pe P(T) with Oem(p). But then theorem 1.6 implies that v(I’¢) = p, which

is also impossible. Hence, m<0. 0

0 0 O 0 3 0
EXBMPLE 3.5. Let I' = (A,B), where A=1}3 2 0O and B=|0 2 0O and
0 0 0 0 0 0

let ¢ be the Nagh arbitration function. Then
2 .
{2-3p,} if O<p, <2
22
mip) = Eég,il if py = 2.

4 .
{2-391} if 2<p, <3

4. THE DETERMINATION OF A ZERO OF THE DUMMY-VALUE MULTIFUNCTION

In this section, a method is given to determine a possible

zero of the dummy-value multifunction corresponding to a finite arbi-

tration game I‘q), where T = (A,B) is an mXn-bimatrix game.

The first problem to be solved is the determination of the Pareto

set P{I') of I'. Since R(I') is a polytope, it is sufficient to give a

method‘for finding those Pareto optimal points that are also extreme

points of R(I'}. Let P(T) next R(I) = {p(1),p(2},...,p{V)}, where

p(D) 1 =P, <p(2) < ... <plv}; = p(l, Now we can base an algorithm on

the following scheme.

{1) p(v) is the lexicographic maximum of C, := {(aij'bij); ie :Nm, je Nn} ’
while S(l) = {p(1) 2,p,(l) 4} is the lexicographic maximum of
51 = {(bij,aij); iem , jeN }.

(2) Let C2 be the collection of those points (aij'bij) that lie abowve the
line through p(1) and p(v). Then p(v-1) is the lexicographic maximum
of C, and 5(2) is the lexicographic maximum of
c, = by oay 407 (ay40by ) €Ol

~

C. and p(k).

(3) It is clear how to define, for suitable k's, ck’ k
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(4) We are finished if, for some k, Ck = @ or plk) = plk+l).

Secondly, one must be able to determine one or more elements of the
direction set of a Pareto optimal point. In general, however, it is ndt
possible to give a method for finding a de D(p), for pe f’(l‘), because
this problem depends heavily upon the arbitration function under con-
sideration. In the examples 4.3 and 4.4, we will show how one deals the
cases where the arbitration functions are those of Nash and Kalai /
Rosenthal.

Next, we describe an algorithm for finding the possible zero of the
multifunction m, Let € >0 be the desired precision. '
(0) Choose B(e) and p(e) in P(I) in such a way that || -ple)|l_ < e
and [lp(m-pte)]|,, < €.

If m(p(e)) 20, then take p(e) as an estimate for v(T ).

¢
¢

1f, however, m(p(e)) > 0 and m(p(e)) < 0, then we proceed: as ‘follows,

If m{p(e)) £0, then take p(e) as an estimate for v(T, ).

(la) take p := 3:(5(5)+2(e)) (here and in what follows, we tacitiy iden=
tify p with pl) and compute an element m(p) of m(p), using some of
the well-known methods for determing the value of a matrix game.

(1b) if m{p) > 0, replace p(e) by p. If m(p) < 0, replace p(e) by p.
Repeat (la) if [{p(e)-p(e) ”m = e, .

(le) 4if ”_E'(e)—p_(e) Huﬂ < g, then stop and take p{e) as an estimate for
v(l’¢) . .

Obviously, the algorithm terminates aftgr a finite number of steps
and produces a sequence p{1),p(2),...,p(N) of successive apéroximations

of the value v(I‘¢) . We distinguish two cases: v(I‘¢) € ;’(1") and v(I‘¢) g’%(l‘) .

o
(i) If w(I,) e P(I'), then, without loss of generality, wemay suppose that

$
mi{p(N-1)) 20, m(p()) <0 and ||p(M) ~p(N-1) || <. Then, by lemma 3.2,

vi(I‘ Ye (p(N-l)l,p(N)l) and v2(F¢) € (p(N)z,p(N-—l)z) . (4.1)

$
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The following lemma describes how to find, with the help op p(N-1) and
p(N}, good approximations of the value and optimal strategies for both
players in the arbitration game.

THEOREM 4.1. Let T ¢ be a finite avbitration game, where the underlying

bimatrix game T has size mxn. Suppose that v(I‘¢) € 73(1‘) and let

p(N~1), p(N} and e be as before. Then
(1) pn) is a good approximation for v(I‘¢) e ~v(r'¢) Il <e.

€
[¢] °1(Pp(n-1),c1’ € 0, (I‘¢), for any deD(p(N~1)}).

e
(3) 02(Pp(N),d) < 02(F¢), for any deD(p(N)).

PROOF. (1) is an immediate consequence of (4.1). We only prove (2). Let

*
X Eol(rp(N—l),d) and de¢ D(p(N~1)). Then

(x*,y) z val(l ) 20, for all ye gn.

Ep(N-l) 4 p{N-1) ,d

Then, by lemma 1.5(2), for all ye¢ 5",

)=(p(N) ;~pN-1) ;) = v((F,)-€.

3

¢1E(x*,y) 2 pN-1)y 2 v (T,

So X*Eoi(rtb)' o
ypM |l < e

(£8) If v(T) ¢ P(T), say, v(Fy) = p(l), then N = 2 and {|ver

b ¢

Furthermore, one can show, as in the proof of theorem 4.1, that if the

underlying bimatrix game has size mXn, then

0,¢ ) € 0f(I,), for any de D(p(N))

Tom,a &

' and

n_ £
s Coz(I‘ ).

b

In the following example we show that, in general, it is not possible
the use the method of Newton-Raphson for finding a zero of the multi-

function M.
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EXBMPLE 4.2. Let T = (A,B) be the bimatrix game introduced in example 3.5

and let ¢ be the Nash arbitration function. If one starts with p(1) = .(1%,2%),-
(3,0 even

then p(n) = ifn > 1 is , where p(n) is determined with the help °
p(l) odd :

of the Newton-Raphson method.

Finally, we give two examples in which we consider, successively, the
situations in which ¢ represents the arbitration function of Kalai/Rosenthal

and of Nash, respectively.

EXAMPLE 4.3. Let I' = (A,B) be an m¥n-bimatrix game. In this example, we
consider the arbitration function ¢ that assigns to re R(l")’ the unique
element in [r,u(I)]1nP(T), where u(l) := (max {aij}’ max {bij}.) is the
utopia point of T (cf. Kalai and Rosenthal [1]1). Now let for each pe P(T),
8¢ [0,n/2] be the angle that the line through p and u{T) makes with the hori-
zontal axis through W(I'). Then the mappi‘ng‘p'-f 8 (pe P(T)) is a one-to-one
correspondence between P(T) and [0,n/2]. Furthermore, if pe ?n’(l’) and

8 e (0,m/2) corresponds to p, then D(p) = {ae(—cos 8, -sin 8)}, whéx:e

0 = (sin 6 + cos G)-l. Therefore, we denote the dummy zero-sum game

o
corresponding to pe P(T) with I‘e. Using the fact that

tan B = [uz(l")-pzj/l.‘ul(r') -p,], we obtain that

I‘9 = ae[A sine—Bcose-Jmax‘{aij-} sin 0 + Jmax {bi-j} cos 6],

for 6¢ (0,7/2). Hence,
-1
g M (8) = val[Asin® -~ Bcos 8] - max{aij}sine + max{bij}cos 6.

As we know, the arbitration value can be found by solving the equa-
tion m(8) = 0, 6¢€ (0,n/2), or, equivalently, since cos § # 0, by solving

1

moe) = (ay cos )7 m(e) = 0, 8e (0,1/2).
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One can prove that M is a differentiable monotonically decreasing function

of 6. This simplifies the computational procedure.

EXAMPLE 4.4, Let I = (A,B) be an m¥n~bimatrix game. Consider the arbitra-
tion function ¢ which assigns to an r e R(T') the unigue element ¢(x) of

P(T') with the property that

(¢i(r)~r1)(¢2(r)—r2) = max (pl-ri)(pz-rz)
peP(T)

(c£. Nash [2]). For each pe P(T), let
0{p) := {6€ (0,r/2); there exists a line through p and supporting to
R which makes the angle 8 with a horizon-
tal axisl.

i -1
Then D{p) = {ae(~cos 6, -sin 8); 8¢ 0(p)}, where a, = (sin g +cos 8) .

o
Writing FP 8 for the dummy zero-sum game corresponding to pe P(I') and
1
ae(—cos 0,-sin 6) € D(p), we have to solve_val(FP e) =0, 8 € O(p), or
14
equivaleatly,

vallAsin 8 -~ Bcos 6] -p, sin b +p, cos 6 = 0 (BeO(p)),

in order to find the arbitration value v(F¢) (cf. Owen [4]).
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