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A DYNAMICAL CHARACTERIZATION OF EVOLUTIONARILY STABLE
STATES
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4-1010 Wien, Austria
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Abstract

Evolutionary stability, the central solution concept in evolutionary game theory, is
closely related to local asymptotic stability in a certain nonlinear dynamical system
operating on the state space, the so-called "replicator dynamics”. However, a purely
dynamical characterization of evolutionary stability is not available in an elementary
manner. This characterization can be achieved by investigating so-called "derived games"
which consist of mixed strategies corresponding to succesful states in the original game.
Using well-known facts, several characterization results are obtained within this context.
These also may shed light on the extremality properties of evolutionary stability.

Keywords: Asymptotic stability; evolutionary games; mixed strategies; polymorphisms;
replicator dynamics; stable sets.

L. Introduction

Evolutionary stability, the central solution concept in evolutionary game theory,
is closely related to local asymptotic stability in a certain nonlinear dynamical
system operating on the state space, the so-called "replicator dynamics". However,
a purely dynamical characterization of evolutionary stability is not available in an
¢lementary manner. This characterization can be achieved by investigating so-
called "derived games" which consist of mixed strategies corresponding to succesful
states in the original game. The purpose of this article is to provide a unified
representation of both notation and terminology in order to maintain a coherent
biological interpretation of mathematical results, the majority of which appear to
be scattered in a broad spectrum of literature with similar methods of proof (for
the readers’ convenience, we shall present suitable variants of these arguments
here), but mostly of the form "evolutionary stability implies dynamical stability”.

J.C, Baltzer AG, Scientific Publishing Company
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An implication of the reverse form is theorem 2 in [16]. Very recently, an equivalence
theorem [4, theorem 1] has been stated explicitly without proof., Apart from being
self-contained, this paper stresses the necessity to interpret monomorphic and
polymorphic models—which in some instances seem to be confused with each
other— in a different way, and presents a detailed discussion of (strong) asymptotic
stability versus (weak) Lyapunov stability which also may shed some light on the
extremality of evolutionary stability.

The prototypical examples in the seminal papers of Maynard Smith and Price
[9,7] dealt with stability of population states with the aim to explain polymorphism
of behaviour (a state where different individuals may behave differently; cf. also
the forerunning article [12]). Also, the concept of evolutionary stability seems—at
least from the point of view of frequency-dependent selection—to be more stringent
in the context of polymorphic states than in models under a monomorphic interpretation,
featuring evolutionary stable strategies (played by everyone in the population) instead
of evolutionary stable population states. So we start in the present article with the
basic, polymorphic model, but the results obtained below may to some extent
support the monomorphistic approach, which plays a prominent role in recent literature
(see, e.g. [4], focussing also on the dynamical aspects in this context). To be more
precise, the paper is organized as follows: section 1 deals with (possibly) polymorphic
populations consisting of individuals that display pure strategies only, while the
subsequent sections treat derived games where the original states now play the role
of a single (mixed) strategy, and where the dynamical outcomes (i.c. the stable
equilibria) are monomorphisms centered at that strategy. In section 2, the concurring
states are dimorphisms throughout (only two types of behaviour present), while
section 3 deals with k-morphism setup for the derived games. Section 4 is devoted
to weak (Lyapunov) stability, and section 5 characterizes evolutionary stability in
terms of stable sets, focusing on the convergence of the average strategy played
within the k-morphic population in the derived game.

To begin with, let us shortly recapitulate the simplest formal setting of an
evolutionary game I': assume that, in a certain contest-like situation, individuals are
capable to display r different types of behaviour which we for short call strategies
in the sequel. With respect to this contest, the state of the population in question
is then fully described by the state space

n
S*={[x,.... %5, e R" :x;20,1<i<n Y x =1},
i=1
where x; represents the relative frequency of individuals displaying strategy i (for
short called i-individuals in the sequel) within the population (the symbol * denotes
transposition).

There are monomorphic populations (e.g. in state ¢ = [1,0, ..., 0]’ € §") where
all individuals display one strategy (e.g. strategy 1), but more interesting are of
course polymorphic states (e.g. (1/n, ..., 1/n]’ € §"), where more than one type of
behaviour is present (e.g., all with equal frequency). It should be noted that in the
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setting, every individual can only display one strategy throughout its lifetime,
irrespective of whether the population is monomorphic or polymorphic.

In this article, we assume that the mean payoff (incremental fitness) to an
i-individual contesting with individuals belonging to a population in state x € §",
depends linearly upon the state x. As shown in [3, pp. 61-64], this assumption
essentially means that the conflict is pairwise, i.e. there are always exactly two
individuals participating in a contest. Therefore, if we denote by a;; the payoff of
an i-individual in a confrontation with a j-individual, then

A= [aij ]ISESn,1$j£n

forms the n X n payoff matrix which fully characterizes the game. Indeed, the mean

payoff to an i-individual contesting with individuals belonging to a population in
state x = (X, . . . » X,)" € 8%, amounts to

n
(Ax); = D, a;%;
j=1

and hence the average mean payoff witin a (sub-)population in state y
=[y, ...,y € S" against a population in state x is given by

n n
yAx =3,y (Ax); = X, yiayx;
i=1 j=1

Now we are in a position to formulate the notion of evolutionary stability introduced
in[9] and [7]:

DEFINITION 1

A state p € S” is said to be "evolutionarily stable” in a game T, if for all
different states ¢ € S, g #p,

either g’Ap < p’Ap or ¢’Ap =p’Ap and p’Aq> q'Aq
holds.
In other words, a state p is evolutionarily stable if

¢ the average mean payoff for a population in a different state ¢ against p does
not exceed the average mean payoff within the population in state p (equilibrium
condition), and

« if, in case of equality in the equilibrium condition, the state ¢ has a lower
average mean payoff within itself than p has against g (stability condition).

Following Taylor and Jonker [13], we introduce the replicator dynamics
IT') corresponding to the game T', which operates on the state space S" (a dot - denotes
differentiation with respect to time f):

¥ = x,[(Ax), -x'Ax], 1<isn
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This dynamical system is one of the simplest models describing the evolution
of the population over time: indeed, the amount (Ax);—x’Ax by which the mean
payoff for i-individuals exceeds—or is exceeded by—the average mean payoff, is
considered to be equal to the relative growth—or shrinking—rate X;/x; of i-individuals.
By means of the replicator dynamics we can now introduce a second stability notion
as follows:

DEFINITION 2

A state p € §" is said to be "dynamically stable" in a game T, if and only if
p constitutes a locally asymptotically stable fixed point for the replicator dynamics
(T),

In other words, a state p is dynamically stable in T" if every trajectory x(z) that
describes the evolution according to D(I") tends to p (i.e., x(¥) = p as t — +oo),
whenever it started in a state sufficiently close to p (i.e., if the distance from x(0)
to p is small enough).

Taylor and Jonker showed for general n X n-games that every evolutionarily
stable state p is dynamically stable [13]. The converse is true for 2 X 2-games: here
evolutionary and dynamical stability coincide (see, e.g. [2, theorem 30] or [17, p.
226]). On the other hand, some 3 x 3-games have dymamically stable equilibria that
are not evolutionarily stable, as the following example due to Zeeman [19] shows:

EXAMPLE

For the game T" given by

0 11 1/3
A=|-10 3|, p=|1/3
110 1/3

is dynamically stable, but not evolutionarily stable, since for g = [6/9,1/9,2/9]) we
have p’Aq =10/27 < 32/81 = ¢’Aq.

Remark

A notion stronger than dynamical stability is that of global (dynamical) stability:
a state p € §” is called "globally stable”, if every trajectory x(r) starting in the
relative interior of S” tends to p as r— +o. One readily sees that global and
evolutionary stability are incompatible with each other: indeed, since there are
games I with more than one evolutionarily stable state, these cannot be globally

stable for D(T"). On the other hand, the state p in the above example is even globally
stable though not evolutionarily stable,
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2.  Mixed strategies; derived 2 x 2-games

As the remarks at the end of the previous section show, a purely dynamical
characterization of evolutionary stability is not available in a straightforward manner.
Nevertheless, such a characterization seems to be desirable, and this is the main
objective of the present paper. To achieve this, we shall pass from pure strategists’
models to mixed strategists’ models (see, e.g. [5, 14-16, 11], and {3, pp. 7-15]).
Now it is important to distinguish between

+ polymorphic (population) states describing the distribution of behaviour within
a population, and

 mixed (individual) strategies, which include probabilities x; for an individual
to display behaviour pattern i.

Hence, (polymorphic or monomorphic) states describe a statistical aspect while
(mixed or pure) strategies refer to an individualistic aspect of behaviour. The term
"probability x;" may have different interpretaions, e.g. &; may correspond to relative
frequencies in sequential contests, or to a change in behaviour with relative duration
m; over lifetime.

A first step towards our goal is done by the following theorem, in which we
use the notion of a derived 2 x 2-game which is a special case of an evolutionary
mixed strategy game investigated by Sigmund [11] (following his lines, we shall
treat the general case of derived k X k-games below). The rationale for this concept
is the idea that individuals belonging to a population in an evolutionarily stable
state p, might adopt a mixed strategy in displaying behaviour pattern i with a
probability z; that equals the frequency p; of i-individuals in state p.

Suppose there is a second state g # p that is adopted as a mixed strategy by
some other individuals (putting x; = ¢;) in the same way, perhaps because ¢q is also
evolutionarily stable. Recall there are games that have several evolutionarily stable
states (e.g. n in the game with payoff matrix A =/, the n X n-identity matrix), cf.
[3, pp. 76—81]. Furthermore assume that in this new situation, every individual
adopts either p or g as a mixed strategy. Hence, all population states considered here
are dimorphic: there are only two types of individuals, confrontations between them
would best be described in a game T, , which we call "derived game", and which
has the 2 x 2-payoff matrix

p'Ap p’Aq} [p’}
A=\, o 1=1, 1Al qT;
P [qu gAq] g

indeed, the first row of A, is constituted by the payoffs for p, while the second

represent the payoffs for 4. With respect to I, ,, a state of the population is of
course fully described by a vector

X
I: ]eSz(i.c. 0<x<),
1—x
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where x is the relative frequency of p-individuals and 1 — x is the relative frequency
of g-individuals. If 0 < x < 1, then the state is genuinely dimorphic, while a monomorphic
population of p-individuals is given by the state [} ]. The next theorem now shows
that a population state p (which may be a polymorphism w.r.t. the original game)
is evolutionarily stable, if and only if the corresponding monomorphism, based on
p played as a mixed strategy, beats any dimorphism based on both p and another
mixed strategy arising from a ¢ # p in the original game, provided enough individuals
play p. This means that the p-monomorphism [}] is dynamically stable w.r.t. the
replicator dynamics I', , (see also the remark after theorem 4 below). The result is
stated in verbal form by Maynard Smith in [8, app. D]; it can be derived from
arguments occurring in [18], and has been written down explicitly in {6, p. 125].

THEOREM 1

A state p € §" is evolutionarily stable for T if and only if p corresponds to
a dynamically stable equilibrium state [} ] in any derived 2 x 2-game I, , of dimorphic

populations playing p and g as mixed strategies, where ¢ # p is a different state
ge S".

Proof

Assume that T is represented by the payoff matrix A. Then the payoff
matrix A, of the 2 x 2-game T, , equals

a b| |pAp p'Aq

c d|” qgAp q'Aq |
The corresponding replicator dynamics nT,,) on §?2 = {[,*x]1: 0< x <1} is then
given by

X=x(1-x)(a-c)x+(b-d)(1-x)].
Since g # p, evolutionary stability of p yields

a-c=p'Ap—q'Ap 20
and

b—d=p'Aq—q’Ag <0 whenever a-c¢=0.

Thus, for x sufficiently close to 1, x has to be strictly positive. This implies that
the state [1%,] evolves towards [})] as time goes on, if the initial state is sufficiently
close to [ §]. Therefore, the monomorphic state where every individual displays p
will be fixed. Assume, conversely, that p is dynamically stable in any game | B
with ¢ # p. Since there are only two possible behavioural patterns, p and ¢, (local)
fixation of p in tum yields x > 0 if x is close to 1, which entails, by reversion of the
above arguments, evolutionary stability of the state p in the original game I', O
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EXAMPLE

Let us investigate the example from section 1 in the light of the above results:
the derived game I, , has payoff matrix

A = 2/3 10/27
P4 1073 32/81)
The corresponding replicator dynamics reads

%= 821x(1 x)2 <0, 0<x<l,

so that x() 1 0, i.e.

x(1) R 0
1—x(1) 1 as t — oo,

Hence, the state [ ] corresponding to p is not dynamically stable in the derived
game, although p is dynamically stable in the original game.

3. Characterization in terms of derived k x k-games

Since the original game can have more than two evolutionarily stable states,
it is tempting to consider derived games of k-morphic populations. Here individuals
can adopt k£ = 2 mixed strategies corresponding, say, to py, . ..., p;, where p, € §"
describe (possibly) polymorphic states of the "old” population. The state of the

"new", k-morphic population compnsmg these p-individuals is then fully described
by avectorx=[x,,....,x] € S* where x; is the relative frequency of individuals
adopting a mixed strategy adapted to the state p;. For instance, a monomorphic
population consisting exclusively of p;-individuals is described by the state
e=1{1,0,. 0] € S*. The derived game T, ,, of k-morphisms has the k X k-
payoff mamx

P
Apron = | © | AlP1re o pl = C°AC,
Pi
where C is an n X k-matrix consisting of the columns py, . ..., p,.
Remark
To emphasize that x describes the population state with respect to I', | 5,
one could write {x,py, .. .., p,) instead of x. Formally, x corresponds to a statistical

distribution (i.e. a probability measure) on S of the form
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k
2 xj SPj ’
J=1

where 6, denotes Dirac measure (unit point mass) located at p. Models involving
states that correspond to more general distributions on $” are treated in [3). To avoid
lengthy notations, we however shall denote a state simply by x, if it is clear from

the context that this is the description of a population with respect to the game

Fplv' o PR

It is useful to introduce the notation of the "population strategy" m, which
denotes the average strategy adopted within a population in state x:

k
m, = Exjpj = CX.
j=1
In terms of the population strategy, the replicator dynamics (T, . . ,,) onthe new
state space S* takes the simple form

X = x;\plAm, —m Am,], 1<i<k.

Indeed, we have (C’ACx); = p/ACx = p{Am, and x'C’'ACx= m Am,. Of course the
dynamics D(I') and (T, .. ) are strongly interrelated. For instance, in [11] it
is shown that if D(T") is a certain type of gradient system, then so is D(T,, ... 5)-

The results presented in this and the subsequent section deal with dynamical
stability properties of an evolutionarily stable state p in the original game, with
respect to the derived k-morphism game I', | ,,, where p, = p while P 25 j<k,
are different states of the original population. At first let us generalize theorem 1
(note that the converse of theorem 2 below follows by theorem 1; cf. also [4] and

[18]):

THEOREM 2
Consider k different states p, ..., p, in S". If p, is evolutionarily stable for
T, and if p, is no convex combination of p,...,p,, then p, corresponds to a

dynamically stable state e in T, .

Proof

(1) Let e=[1,0,...,07 € S* denote the monomorphic state of the mixed
strategists’ population, where every individual displays strategy p,. We at first show
that, under the assumption of the theorem, the population strategy m, determines
the state e uniquely. Indeed, suppose that for some x € §, x # ¢,

k
zxjpj =my =my = py
1
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holds. Putting A4 ;= x;/(1 -x)) 20, 2<j<k, this implies
k
p= 24D
j=2

which by assumption is absurd. Hence, m,# m, = p, if x # e.
(2) Now we prove (p, —m,)Am, >0 whenever x # ¢ is close enough to e.
Indeed, since this map x - m, is continuous, m, is close to m, = p; provided that

the distance between x and e is sufficiently small. Evolutionary stability of p, in the
original game T now yields

(p1—q) Aq >0 whenever ¢ # p; isclose enoughto p, (%)

([10]; this result essentially depends upon the fact that an evolutionarily stable state
in a pairwise conflict with finitely many pure strategies is uninvadable, cf. [3, p.
951). Thus the claimed assertion follows, putting ¢ = m,.

(3) Finally consider the first equation of the replicator dynamics (I, ... 5.):

x = x%(p—m,) Am, >0,

whenever x # e is close enough to e. Hence, x,(¢) increases towards unity if £ — oo,

implying x(f) — e as t — +e Thus e constitutes a dynamically stable state for the
dynamics (T, . ,.). O

Remark
In (1) and (2) above, we in fact proved that

(e=x) C’ACx =(p; —m, ) Am, >0 whenever x # eiscloseto e,

which amounts to evolutionary stability of the state ¢ in the derived game I, ... p,-
Thus, invoking the result of [13] implying dynamical stability, we obtain an altemnative
proof of theorem 2. However, the above proof has the advantage that it admits an
immediate generalization adapted to games with nonlinear payoff; see [3, pp. 104
and 109]. Remark further that the condition on p, in theorem 2 above to be no
convex combination of the remaining states p,, . . ., p,, is equivalent to extremality
of p, in the convex hull of all the states p, ..., p,.

4, Weak dynamical stability

This section deals with the case where the extremality assumption of theorem
2 is violated. Putting p, = p, one immediately sees that one cannot hope for dynamical
stability of p, in the derived game under these circumstances; moreover, we have
the following general negative result:
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THEOREM 3

Consider k statesp,, . .., p, in S", where p, is a convex combinationofp,, ..., p.
Then the state ¢in T, ,, corresponding to p, cannot be dynamically stable, even
if p, were evolutionarily stable for the original game T

Proof

Assume that p, = X_, A.p for some 4,20, 25j<k, with £'_, 4, = 1. Put
={x€ §*:x, >0} and Considér the function

x> V(x) =;C11—Hx}-“", x e,
j=2

which is continuous on § and vanishes at e = [1,0, . .., 0]’ € S. If e were dynamically
stable, every trajectory x(f) starting in the neighbourhood of e would fulfill x(¢f) — e
and hence, by continuity, V(x(f)) = V(e) =0 as t = +oo. If x(0) =[x}, - . ., xk]’ e s
with x,> 0, all i, 1 £ i <k, then V(x(0)) > 0. Therefore we would obtain the relation

V(x()) < V(x(0)), tlarge enough,

which is absurd since V is a constant of motion for the dynamics (I, . . ,.):

indeed, taking logarithms and differentiating with respect to time ¢, we get

x;(t)
x; ()

C_ K@) & _
[log V (x(t)] = P (t)+j}=jzxj

k
= (Myy = P1Y Ay + 2, A (pj — mygy) Amyg,
j=2

k ’ k
= (Myy) — 1) Amy, +( Y Ap; ] Amy gy — %A'jmx(t)’Amx(t)
j=2 j=

= (mx(!) _pl)’Amx(l) + P Any gy — My Ay = 0.

Hence e cannot be dynamically stable. O

Remark

One could relate the above result to the proof of theorem 2 in that the
population strategy m, now does not determine the state x uniquely: more precisely,
in any neighbourhood of e there are states x # e with m, = m,=p, and therefore
%= x{p— p)’Ap, = 0. Hence e cannot be dynamically stable. The proof above is a
variant of an argument of Sigmund [11] who showed that there is a one-dimensional
foliation of $* under the dynamics DTy, ... p.) provided { p, ..., p} are linearly
dependent. However, as theorem 2 shows, this foliation need not be incompatible
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with dynamical stability of e. On the other hand, the existence of such a foliation
might suggest that ¢ is weakly dynamically stable in Lyapunov’s sense:

DEFINITION 3

A state p € §" is said to be "weakly dynamically stable" in a game I" if and
only if p constitutes a Lyapunov-stable fixed point for the replicator dynamics
D(T). This means that, given any (small) neighbourhood U of p in §", every
trajectory starting in S”, and closely enough to p, will not leave U.

In other words, a state p is weakly dynamically stable in T, if for any prescribed
(small) barrier £> 0, every state x(f) will remain within a distance from p smaller
than g, provided that ¢ 2 0 and that the distance from x(0) € S" to p is small enough.

Again, the trajectory x(¢), t 2 0, describes the evolution of the population according
to D(T).

THECREM 4

Let p,...,p, be k states in S”. If p, is evolutionarily stable for I", then p,
corresponds to a weakly dynamically stable equilibrium in I, .

Proof

Similarly to the proof of theorem 2, we derive from evolutionary stability of
p that X,(f) 2 0 holds in the dynamics D(T',, .., ), Whenever x(?) is close to e, e.g.
if x(¢) € U,, where we put

Ua=[xE Sk:x1>1‘-"5},

£> 0 being sufficiently small. Since this means that x,(f) cannot decrease as time
t 2 0 increases, provided that x(0) € U,, we conclude x(f) € U, forall = 0. Because
U, constitutes a neighbourhood of e in S* which shrinks to e as € 4 0, weak dynamical
stability of e is thus established. O

EXAMPLE

Consider the meanwhile classical hawk ~dove game introduced in [9]. If we
rescale payoffs to reduce calculational effort, the payoff matrix for this 2 X 2- game

reads
01
A= )

The unique evolutionarily stable state in T" then is p=| ﬂ%] Indeed, we have
XAp = 1/2 = p’Ap and p’Ax=1/2>2x;(1 —x,)=x'Ax for all x € §%, x # p. Taking
pi=p.p2=[4], ps=[1], we get
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N _'1/2 10
2z 01
and hence )
1/2 1/2 172
C/AC; =12 0 1 |,
12 1 0

yielding a dynamics 2(I7,,,.,,,) on S® where e #2[1, 0, 0]’ is Lyapunov-stable, but
not locally asymptotically stable. By contrast, if we form C, stacking p, 1], and

[3/4], together, then the resulting payoff matrix
/2 1/2 172
CLAC, =12 0 14|,
172 1/4 3/8

induces a dynamics where e is even globally asymptotically stable (see fig. 1).

1/21

1/2

Ue

=T ]
I
12
- O
T

[ > [;*;:1

Fig. 1. Dynamics of two games derived from A = ?(1) .
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5. Characterization in terms of stable sets

This last section deals with a more general characterization result along lines
similar to that followed by Thomas in [15,16]. If one is interested only in the time
evolution of observable charateristics like the population strategy m,, rather than
in the evolution of the states themselves, then the following question becomes
important: suppose that 7 € S" is an evolutionarily stable state with respect to a
game I', and consider the derived game T’ o» Where P is a convex combination
of the states py, . . . , p,; if x(£) denotes a trajectory subject to the dynamics (T, .. ,,),
will the population strategy m,, converge to p or not? In other words, we ask
whether or not the states x(f) will approach the set

Ry ={xeS*:m, =p)

as tlme goes on (observe that the map x = m, =3k j=1%p; is uniformly continuous
on S so that both formulations of the question are indeed equivalent). Using a
notion from the theory of dynamical systems, this question amounts to asking
whether or not the set R; is stable in the following sense:

DEFINITION 4

Consider a dynamics D operatmg on S* a set R < S¥is said to be "(dynamically)
stable", if there is a set U < $* which is open in $* and which contains R, such that
every trajectory starting in U approaches R.

In other words, R is dynamically stable if every trajectory x(#) subject to the
dynamics D(T, ) with x(0) e U fulﬁlls d(x(r), Rz) — 0 as t — +eo, where
UDR;is a sultably chosen open set in S* and

d(x,Rz) = inf{llx~r|l: r € Rz}

is the minimum Euclidean distance from x to Rp (Jz| = Vz’z denotes the usual
Euclidean norm of a vector z € R’).

The following result shows that the question formulated above can be answered
positively, and moreover provides a general dynamical characterization of evolutionary
stability that covers all cases discussed in sections 2 and 3. For the reader’s convenience,

we specify a proof which is a slight modification of Thomas's arguments [16]; see
also [4, theorem 1].

THEOREM 5
Let p € §” be a state in the game I". Then the following assertions are equivalent:

(1) P is evolutionary stable (with respect to T');

(2) for all derived games [, ,,,such that p is a convex combination of the

states py, . . . , P, the set Ry is dynamically stable with respect to the dynamics
I)(rm
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Proof

(1) = (2): consider an arbitrary state X € R- i.e. fulfilling my = p; we first
construct an open neighbourhood Uy of X in Sk that is positively invariant under
(L, ... p)s 1€ fulfills

x(t) € Uy forall t=0 whenever x(0) € Uy
(similar to the proof of theorem 4, where X=e¢ and U; =U,). To this end
we employ evolutionary stability of 7 which guarantees the existence of an £> 0
such that

(P-g)YAq>0 whenever 0<|lg— Pl <&,

see (*) in proof of theorem 2. By continuity of the map x> m,, there is a p>0
fulfilling

fm,~pll=lm — mz]|<€& whenever [x~X|<p.
Putting these two conditions together, we obtain
either x€ Ry or (p —-m)'Am, >0 if |x-X[<p.

Now consider the function
L k
Vi(x) = ij"f, x e S
j=1

this function is continuous and strictly positive in a neighbourhood of X in §*

Since x = ¥ is the only maximizer of V. on S* there is an o> 0 such that

Ix— X[|<p whenever Vi (x) > V(%) - o
We claim that

Ug = {x€ §: V(1) > Vy(X) - 2}

is positively invariant (for simplicity of proof, we choose o smaller than V;(X) so

that Vz(x) = Vg (X) > 0O for all x € Uy ): indeed, the considerations above ensure the
relation

(p—m)YAm, =20 for all x € Ug;

furthermore, the function Vi (x(f)) increases with time ¢ along any trajectory x(f)
starting in Uy, because we obtain — similarly to the proof of theorem 3 —
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x;(e)
x;(¢)

k
= 2, %;(pj =) Amy,

= (mz =My ) Amy g
= (P — mx(f))’Amx([) =20 if x(¢) e Uy,

and hence x(0) € U, entails x(t) € U; for all t>0. Moreover, by continuity any

accumulation point X = lim,_,, x(¢t,) of the trajectory x(f) (where t, T +oo as V — o0)
fulfills

Ve(%) = lim Vz(x(1,)) 2+ Ve(X) >0
V—r00
as well as

(P ~msz) Amg = lim (F —myy) Amyy = lim [log Ve (x(2,))) = 0.
V—30a V3o

By construction of Uy, this equality can prevail only if mz = P, i.e. if ¥ € R5. Hence
we have shown d(x(¢),R5) — 0 as t — +eo, whenever x(0) € U;. Now observe that
the set

U= |Jus cs*

IERi,-

is open in $* and contains P. The reasoning above proves d(x(t),Rz) = 0 as t = +ee
whenever x(0) € U.

(2) = (1) follows from theorem 1, taking p; = P,, p, = q (an arbitrary state
different from P), and observing that in this case Rz = {[}]} holds, so that the
stability of R is the same as asymptotic stability of [} ] O

The proof of (2) = (1) above already indicates why theorem 5 is a generalization
of theorems 1 and 2: just take p = p,;, and observe that the extremality condition
on py is exactly the relation Ry = {e}. Theorem 4 is no direct consequence of
theorem 5, since the latter cannot exclude the case that a trajectory approaches Ry
in an “almost cycling manner", coming eventually arbitrarily close to different
states X € R;. However, the proof of theorem 5 also proves theorem 4, since a

trajectory starting in Uy never leaves it, and because the neighbourhoods Uy shrink
towards X as a decreases to zero.

Remark

An alternative approach to theorem 5 would consist in proceeding similarly
as Zeeman in [20], namely considering the dynamics for the population strategies:

[y T = [CX(D)] = Ci(1) = D,yAmyyyy.
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where D, = Z}‘x 1 X; p; p; — m, m’ is the n X n-dispersion matrix of the state x, i.e. the
variance/covariance-matrix of the distribution Zj-‘zlxjdpj (cf. the first remark in
section 3). The proof in [20, lemma 7], however, seems to work only under additional
regularity assumptions both on p in the original game and on the dispersion matrices
D,y along trajectories x(#) near R;. These assumptions are not used in the proof
presented above. For instance, Zeeman'’s method does not apply without modifications
to the setting of theorem 3, if k£ < n; more generally, if the rank of C is less than
n, then the rank of D, is necessarily less than n~ 1. Similarly, we need to assume
neither fullness nor interiority, as done in [1, theorem 3.9] for a much more general
setup.
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