l_’__l
TILBURG & %}?ﬁ ¢ UNIVERSITY
l\;’fl

Tilburg University

On the existence of values of arbitration games
Tijs, S.H.; Jansen, M.J.M.

Published in:
International Journal of Game Theory

Publication date:
1982

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Tijs, S. H., & Jansen, M. J. M. (1982). On the existence of values of arbitration games. International Journal of
Game Theory, 11(2), 87-104.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/da09ab18-3256-4e0c-ad35-bd5276bbda92

(’7}/&

International Journal of Game Theory, Vol. 11, Issue 2, page 87— 104.

On the Existence of Values for Arbitration Games

By S.H. Tijs, and M.J.M. Jansen, Nijmegen")

Abstract: Two-person games in normal form are considered, where the players may use correlated
strategies and where the problem arises, which Pareto optimal point in the payoff region to choose.
We suppose that the players solve this problem with the aid of an arbitration function, which is
continuous and profitable, and for which the inverse image of each Pareto point is a convex set.
Then the existence of values and defensive e-optimal strategies is discussed. Existence theorems are
derived, using families of suitable dummy zero-sum games. The derived existence theorems contain
all known existence results as special cases.

1. Introduction

LetI'=(X, Y, K,, K,) be a two-person game in normal form, where X is a non-
empty set (the strategy space of player 1), Y is a non-empty set (the strategy space of
player 2), and K.: X XY —>Ris, fori € {1,2}, a real-valued function on the Cartesian
product of the strategy spaces (the payoff function for player i). The set X X Y is
called the outcome space and

Ro =K (x,y)=(K; (x, ), K, (x, }’))ERZ;(X: PIEXK Y}

the (non-cooperative) payoff space. If no form of cooperation is allowed, such a game
s played as follows: independently of each other, the players choose an x € X and a
y €Y, then player i obtains a payoff K; (x, »).
In this paper, we assume that the players may cooperate by mixing the outcomes in
the following way: before the game is played, they are allowed to take a finite number?)

of outcomes (x¢, ¥1), . . ., (xk, yk) and real non-negative numbers py, . . ., p, with

k
2 p = 1 and let a lottery choose one of these outcomes, where (x ¥ ) is chosen with

probablllty p.- If (x, ¥ ) is chosen, then the players 1 and 2 are obhged to play x_ and

k
Y in the game. In such a situation the expected payoff for playeriis X p [\ (x ys).
S._.

1) Drs. S.H. Tijs and M.J.M. Jansen, Department of Mathematics, Catholic University Nijymegen,
Toernooiveld, NL-6525 ED Nijmegen.

%) It is no restriction in the following, to look only at finite mixtures of the outcomes.
0020-7276/82/020087-10452.50 © 1982 Physica-Verlag, Vienna.
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The lotteries can be identified with probability measures on X X Y with finite support
and we call them correlated strategies in the following. The expected payoff for player
i, corresponding to such a probability measure , is denoted by K (u). By using

correlated strategies, the payoff space R, is extended to R; = conv (R, ), the convex
hull of Rg ;

For mathematical convenience, we will concentrate our attention not on R; but
on the closed, convex set R (I') = ¢l (R;). R (I") is called the cooperative payoff space
or the payoff region of the game. Instead of R (I"), we will often write R. The set

{p € R; for each g € R with g = p, we have ¢ = p}

of undominated elements in R is called the Pareto set of R, and is denoted by
P (I") or by P. We will say that R is a simple region, if P= () or if Pconsists of one
point; in that case, we also say that the cooperative game I is simple. Let, for
i € {1,2}, u, = sup {r;; r €R}. The point u = (U, U2) € (— >, ]? is called the
ideal point or utopia point of K.

The problem of the players is which correlated strategy to choose. If R is simple,
then this problem is easily solved, because for each claim ¢, < u; of player

I € {1,2}, there exists a correlated strategy u such that K :(u) = c; [ct. Tijs/Jansen,
1979, p. 5]. In this case w is called the value of the cooperative game.

In the following, we mainly look at games I" with a non-simple cooperative payoftt
space. For such a non-simple cooperative game I', a bargaining problem arises. We will
suppose [cf. Mash, 1953; Raiffa] that, in this case, the players decide to solve their
problem with the aid of an arbitrator, who helps the players with the aid of a so-called
arbitration function ¢: R = P, as follows. A new game is played consisting of four
steps.

Step 1: Independently of each other, the players assign an x, € X and a y, € Y and
deliver it to the arbitrator. (x, and y, are called threat strategies and K (x, Yo ) 1S
called the arbitration starting point or also the threat point.)

Step 2: The arbitrator calculates the payoft ¢ (Ky (xo, Vo), K2 (Xo, Vo)) and chooses
a correlated strategy u, such that K (u) = ¢ (K (xo0, ¥0), K2 (X0, ¥0)), if that is

possible; otherwise u is chosen, such that K (u) is as close to ¢K (xq, Vo) as both
players want.

Step 3: With the lottery, corresponding to u, an outcome (x;, y; ) is determined.

Step 4: Player i (i € {1,2})obtains a payoft K (x, ).

From a strategic point of view, for the players, this new game is, essentially, the
following non-cooperative game I’ b (X, Y, o:K, ¢,K), where ¢. K (x, y) is the i-th

coordinate of ¢ (K; (x, »), K, (x, ¥)) €ER?. This game I’ 5 is called the arbitration
game, corresponding to the non-simple game I" and the arbitration function ¢.
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Definition 1.1: Let e 2 0. A point (x*, y*) € X X Y will be called a defensive e-
equilibrium point of the arbitration game I’ 5’ if the following four conditions hold.

0, K (x, yH) <, K (x* y*)+ e foreachx €X (E.1)
0, K (x* )<, K (x*, y*)+ e, foreachy €Y (E.2)
0. K (x* )20, K(x* y*)—e,foreachy €Y (D:1)
0, K (x, y*) =2, K (x*, y*) — ¢, tor each x € X. (D.2)

Defensive 0-equilibrium points are also called defensive equilibrium points.

Note that a point (x ¥, y¥*), satisfying only E.1 and E.2, is an e-equilibrium point
in the Nash sense. D.1 implies that for player 1 strategy x* is e-defensive in the sense
that player 1 can guarantee himself with the aid of this strategy a payoff of at least
¢, K (x*, y*)-€, whatever player 2 does. D.2 can be interpretated similarly for player
2. Note, that the notions defensive e-equilibrium point and e-equilibrium point
coincide, in the case that € = 0.

The central problem in this paper is that of the existence of defensive e-equilibrium
points for each € > 0, or, more generally, the problem of the existence of a value
(see section 4). We will give a number of existence theorems in section 5. These
include all known existence results, obtained by Nash [1953], Raiffa [1953], Burger
[1956], Owen [1971], Kalai/Rosenthal [1978], Tijs/Jansen [1980]. Most of these
older theorems are obtained by using fixed point theorems, which implies that in
these theorems strong conditions are laid upon the strategy spaces and payoff func-
tions. With the aid of our proof technique, in which families of suitable dummy zero-
sum games play a role, it appears that we need only very mild conditions on the game
parameters, to guarantee the existence of a value. The price is some technical work,
done in the sections 2 and 3.

2. Pareto Points of Closed Convex Subsets of R*

Some well-known properties of non-simple regions, which we need in the following,
are gathered in the next lemma. The proof of this lemma is left to the reader.

Lemma 2.1: [Cf. Owen, p. 4]. Let R be a non-simple region of R*, with Pareto set F.
Let I = {x €R; 3,eR (x, ) € P}. For each x €1, denote by g (x) the unique element

y €R with (x, y) € P. Then the following holds:

(1) [1isaconvex subset of R.

(2) The functions g: I > R and g~ ': g(I)—> R are monotonically decreasing, concave,
continuous functions, which are left and right differentiable in the interior
points of the domains.

(3) P={(x,g(x));x E€Itand P is closed.
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Definition 2.1: Let R, Pand / be as in lemma 2.1.
Let « = inf (/) and 3 = sup (1).
If « €7, then define g (&) = lim g (x).

X o

If B €1, then define g (8) = lim g (x).
x1p

Then the point p = (o, g (o)) will be called the left upper point of P and p = (B, g (§))

the right lower point of P. The function g: [a, B] = R will be called the Pareto function

corresponding to K.
Note that the first coordinate of the ideal point w equals the first coordinate of p

and the second_coord;l.pate of u equals p,. In the following we will denote the set
PU{p,p} CR*by Pand P — {p, p} by P. For a compact region R we have

P = P. Finally, we note that

@ufﬂcﬁ: Whglland 132{(3‘5,8(3"))33‘56[131331]}-

3. Regular Functions on Non-Simple Regions of R?

Let R be a non-simple region of R*, and let P be the Pareto set of R. We will call
a function ¢: R = P aregular function if the following three conditions hold.

R.1: ¢ is continuous,
R.2: ¢ isprofitable ie. ¢ (r)=r, forallr € R,
R3: ¢7' (p)={r€R;¢(r)=p}isaconvex subset of R, for each p € P,

Regular functions were introduced by Raiffa [1953, p. 372].
The following lemma says that, for a regular function ¢, property R.3 is equivalent
with the property that ¢, and ¢, are quasi-affine (i.e. quasi-concave and quasi-convex).

Lemma 3.1: Let R be a non-simple region with Pareto set P. Let ¢: R = P be a func-
tion, satisfying the properties R.1 and R.2. Then R.3 is satisfied, if and only if

{rek;¢,(r)=ctand {r e R; ¢ (r)<c}
are convex sets, forallc €ERand i € {1,2}.

Froof: The implication to the right is proved by Burger [1956, p. 154]. For the other
implication, we observe that, for eachp € P, ¢~ (p) is the intersection of the convex
sets r €R;¢; () =pytand r€R; ¢, (r)=p, 1. |

The next lemma plays an important role in the following.

Lemma 3.2: Let ¢: R = P be regular. Let p € P

Letx € R, x #p, ¢ (x) =pand N € [0, =). Then, fory =p + X\ (x —p), we have:
ify €R, then ¢ (y) =p.
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Proof: It A€ [0,1],theny € [x, p] C R and ¢ () =p by R.3. Suppose A € (1, =) and
y € R and put ¢ (y) = q. Suppose g # p. Then, without loss of generality, g, <p;.
Since p # p, we can take anr € P withp; <r;.

Let s be the point, where the line through ¢ and x intersects the line through y and
r. Since ¢ is continuous, there is an element z € R, lying on [y, s], such that z # y and

¢, (z) > p,. The line through z and x intersects the Pareto set P in a point u with
Uy > p,.Putc=min {u,, ¢, (z)}. Then ¢, (z) =c, ¢, () =u, 2¢,
¢, (x) =p, <c,and x is a convex combination of z and «. This is in contradiction with

lemma 3.1. Hence g = p. L]
LetS={x ER?*;x<0,x; +x, =— 1} and let, for each x = (x,, x,) €ER?, x be the
element (—x,, x;)inR?* and || x |l; = |x; |+ | x, |.

Definition 3.1: For a non-simple region R in R? and a regular function ¢: R = P, we
call an element d € S a suitable direction for p € P, if the following holds: for each
a > 0 withp +ad € R, we have ¢ (p +ad) =p.

In the following the set of suitable directions for p is denoted by D (p).

Lemma 3.3: Let R, P and ¢ be as above and let p € P . Then
(1) D (p)isanon-empty, compact, convex subset of S.

() The multifunctionp = D (p) (p € P ) is upper semicontinuous [ct. Berge, 1959].

Proof:

a) If int(R)=0,then P =R and D (p) =S, forallp € P, and S is non-empty,
compact and convex. Also (2) holds in that case. In the following, we suppose that
there is an interior point ;i € K.

b) Take q, r € P withq; <p; <r;.Then K = [q, i]U [i, r] is a connected subset of
R and ¢, : K = R is a continuous function. Hence,p; € [qy, r1 ] =
= [¢1 (@), &1 (r)] C ¢; (K). So there is a k € K with ¢ (k) = p. Then
Nk—pll;)" (k—p)ED(P)+#0, by lemma 3.2.

c) We show that, for each d € D (p), there is an a > O such that p + ad €K.
Consider the function f: K = R with f (x) = d, x —p). (., .) is the usual inner
product in R*). Since f(g) <0, f(r) > 0 and f is continuous on the connected set
K, there is an x € K such that f (x) = 0. This implies that x —p = ad, for some
a€ER.SincepeP,p#x,x=p+ad €R and d <0, we have a > 0.

d) Now we prove that D (p) is a convex set. Letd', d* €D (p) and t €(0,1). In view
of ¢), there are positive numbers a; and a5, such that x' =p + a;d’ €K and
x* =p + a,d* €K. Suppose, without loss of generality, that a; <a,. Then

y=p+a;d*€ERand ¢ () =p by R.3. Hence, tx' + (1 —¢) y €R and
¢ (tx' + (1 —1t)y)=p by R.3,because ¢ (x')=p and ¢ (») = p. Since
tx' +(1—1t)y=p+a; (td" + (1 —1t)d?*), we conclude that
td' + (1 —1)d* €D (p), by using lemma 3.2.
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e) Now we prove that D is upper semicontinuous inp € P. For each k €N, let
pk cP,d*eD (pk) and suppose that lim D = p and lim d* =d. We have to prove
K — oo

K— oo

that d € D (p). It follows from c), that, for each k €N, there exists an o, > 0 such
that yk =pk + a;, d* €K. Since K is compact, there is a limit point y € K ot the
sequenceyl,yz, ... Since ¢ (yk) =pk, for each kK €N, we have ¢ (y) =p, by R.1.
Now ay, = Il e d* [l = 1 y¥ —pF IIy, @* = 1% —p¥IT* 0* %)

Sod=|ly—pl{'!  —p)ES.Hence,y =p+|ly—pl;, dand ¢ (v) = p imply,
in view of lemma 3.2, thatd €D (p).
f) It follows immediately from the upper semicontinuity of D that D (p) is a closed

subset of the compact set S, for each p € P. Hence, D (p) is compact.

Lemma 3.4: Let ¢: R = P beregular and let p € P, d €D (p) and € > 0. Then there
exists a & > 0 such that

(1) foreachr e R with (5, r—p)>—0,wehave ¢; (r) Zp; — €,
(2) foreachre€ Rwith{d, r —p)<b, we have ¢, (r) <p; + €.

Proof: We only show that there isa 6 > 0, such that (1) holds. Take g € P with

P —€<qg; <p;.Inview of lemma 3.3, thereisau €D (q) withu; = max d,.
Let deD(q)

L={reR,r=q+ au, for some a € [0, ) }.
Let £: R* = R be the affine function with € () = (J, r —p). If we can show that

sup & (r) =sup (R (r);r €1’ (—°q1]} <0 (3.1)

relL

then we can take 6 = —sup {R (r);r €E¢7' (— 2 ¢, ]} and then (J, r—p)=2(@)>—
— & impliesr € ¢! (—oo, g, ]o0r¢; (r)>q; >p,; — €, and then the proof is complete.

a) We want to show that for each y € ¢;7' (— oo, g, ], there isan s €L N [y, p]. First

we prove that (y —q, u) <O forally €¢;' (— e, q,]. For y =g, there is nothing
to prove. If ¢ () =qg #y,thenw= |y —qlli'  —q)ED (g) and then w; <u,,

by definition of u,, which implies that (w, u) <0, and so {(y — g, u) < 0. Now, let
01 (v) <gq; and suppose that (y —gq, u) > 0. Since (¢ (y) —q, w) <0, there is a
z€ [y, » )] C Rwith{(z —q, u)=0. Then ¢ (z) = q, because u €D (g). On the
other hand, by R.3, ¢ (z) = ¢ (). Hence ¢ (¥) = g, which is impossible. So

¢ () <gq, implies (y —q, u) < 0. Hence, forally € ¢;! (— s, q,],

(y —q, u) <0.Now {p —q, u)>0. So there is an s € [p, y] with (s — g, &) = 0.
Thens € L.

b) Now we prove (3.1). We distinguish two cases.
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Case 1. (u, d) <0. Then, forall @ >0, £ (g + au) <2 (q).
Sosup £ (r) =92(q) <0.Takey €E¢;' (— =, q;]. In view of part a) of the proof, we
rel

can find ans €L N [y, p]. Then £ (s) < (g) <0 =L (p). Since ¢ is affine, s € [y, p]
and 2 (s) <2 (p), we may conclude that € () < (s). Then £ (y) <2 (g) and we have
proved (3.1) for this case.

Case 2. (u, d) > 0. We show that there is a b € R such that L = [b, ¢] and
Q (b) =sup L (r). Note that € (9) <O and lim £ (g + au) = . First we note that,

rel e

for all a € [0, =) with ¢ + au € L, we have £ (¢ + au) <O0;if L (@ + oyu) =0 and
g + a,u € L, then there is a, € [0, a; ] with € (g + a,u) = 0. Theretore, there is a
3= 0 with g + a,u =p + Bd and, consequently,q = ¢ (@ + a,u) = ¢ (p + pfd) =p,
which is a contradiction. Let o = sup {& = 0;q + au € L} €R and take
b=q+aou€L.ThenQ (r) <L (b),forallr EL. Fory €¢;' (—, q,]and
sE[y,p]lN[b, q] we have

0 (5) <2 (h)<0=2(p)and then ¢ () <L (5) < (b).

Hence, (3.1) also holds in this case. &

The following corollary is immediate.

Corollary 3.1: Let ¢: R = P beregular and let p € P, d €D (p). Then

(1) foreachr € R with (c} r —p)=0,we have ¢ (r) =2p; .
(2) foreachr € Rwith{d,r —p)<0,we have ¢, (r)<p;.

4. Values for Arbitration Games

For a non-cooperative two-person game in normal form I' = (X, Y, K, K,), we
denote the security levels sup inf K, (x, y) and sup inf K, (x, y) of player 1

xcX iye¥ ye¥ xeX
and 2 by v; and v,, respectively.
We suppose, for the moment, that I" is a zero-sum game (i.e. K, = — K ). Then
v, <—v,.If v, =—v,, then we say that the game has a value v, , which is denoted

by val (I'). For a zero-sum game I" and an arbitration function ¢, satistying R.2, we
have P = R=cl conv {(K; (x,y),— K; (%, y)); (x, V) EX X Y} and Ly = i
Furthermore, the following three assertions are equivalent.

(1) I possesses a real value (val (I') € R),
(2) (vi,v2)EP,

(3) T possesses, for each € > 0, an e-equilibrium point.

(The equivalence of the assertions (1) and (2) is trivial; the equivalence of (1) and (3)
is proved in 7ijs [1977, p. 756].)
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Also equivalent are the following two assertions:

(1) T possesses a value (val (I') € [— oo, 0]),
(2). (Wi V5.)EP.

Now, we consider, for an arbitration game F{b =X, Y, 0, K, ¢,K), the expressions

v; =sup inf ¢;K (x, ) and v, = sup inf ¢, K (x, »).
X Y ) 4 X =
In (1) and (2) of the following lemma, the position of v = (v,,v,) € R* is described.

Lemma 4.1: Let I' 5 be an arbitration game with Pareto set P. Then,

(l) Vi }ﬁlav'Z}E'Z&
(2) v, <g(vy),

(3) ifve& P, then thereisap € P withp > v.

Proof: The inequalities in (1) follow immediately from the definitions of v, and v,.
For the proof of (2), suppose that v, > g (v; ). Then there exists a b € R with
v, >b >g (vy). Now v, > b implies that there is an y € Y such that

$,K (x, )> b, forallx EX.
Likewise, b > g (v, ) implies the existence of an X € X such that
0. K (x,y)>g" "' (b),forally €Y.

Hence, ¢K (X, ) > (b, g~ (b)) € P, which is a contradiction. Consequently,

v, < g (vy). Now suppose that v & P. Then, in view of (2) and the last remark in

section 2, v, <g(vy). So thereisac €ER withv, <ec<g(vy). Takep =

=(g~ "' (¢),c). Thenp € P,becauseg™! (¢)E(vy, 27" (v4))C By, p,), and
P>, -

Inspired by the foregoing remarks about zero-sum games, we now give the follow-
ing definition.

Definition 4.1: We say that Fcp has arbitration value (v{, v,), if (v;,v,) € P. In that
case, v, is called the arbitration value for player i (i € {1,2}).

Theorem 4.1: Let (X, Y, ¢, K, ¢,K) be an arbitration game. Then the following two
assertions are equivalent:

(1) (vyi,v2)EP.

(2) Foreach € > 0, there exists a defensive e-equilibrium point.

(Note, that we put no conditions on ¢.)
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Proof:

a) Suppose that (v;,v,) € P. Let € > 0. By lemma 2.2, the Pareto function g and
its inverse g~' are continuous in v, and v,, respectively. Hence, there is a

6 €(0, (1/2) €] such that

g (t)E(—oo,vy +(1/2) €], foreach t E[v, —8,) Ng~ (] (4.1)

g(8)E(—oo, v, +(1/2) €], foreachs €E[vy; —§,0) N[ (4.2)
Choose x* € X such that
0, K (x*, y)=v, —6,forally €Y, (4.3)
and y* € Y such that
P, K (x, y¥)=2v, — 0, for all x EX. (4.4)
Then (4.2) and (4.3) imply
¢, K (x*, y)<v, +(1/2) ¢, foreach y €Y, (4.5)
and (4.1) and (4.4) imply
61K (x, y*)<vy; +(1/2) ¢, for each x € X. (4.6)
Then it tollows from (4.6) and (4.3) that, foreach x € X,
1K (x, y*)svi +(1/2)es<p K (x*,y*)+(1/2) e+ 6 <, K (x* y*) + €
and from (4.4) and (4.5) that
Q2K (X, y¥)2vy =6 2, K (x*, y*)—86 —(1/2) e = ¢, K (x* y*)—e.

Hence, E.1 and D.2 are proved.
Similarly, E.2 and D.1 can be proved. Consequently, (x*, y*) is a defensive
e-equilibrium point. We have proved that assertion (1) implies (2).

b) Now suppose that (2) holds. Let € > 0 and take (x*, y*) € X X Y such that E.1,
E.2, D.1 and D.2 hold. It follows with the aid of E.1 that

vi Sinf sup 0, K (x, y) Ssup 0K (x, y*) <, K (x* y*) + ¢
y X X
and it follows from D.1 that

vy =supinf ¢, K (x,y)=2inf ¢; K (x* )= ¢, K (x* y*) —e.
L H
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S0 [ vy — ¢, K (x* y*) [ <e. Analogously, E.2 and D.2 imply that

[V, — . K (x* y*) | <e. Since ¢ (K (x* y*)) € P, the distance between v and P
1s at most €. Because € > 0 was arbitrary and P is closed (lemma 2.1(3)), we may
conclude that v € P. Hence, (2) implies (1).

The proof of the following theorem is left to the reader.

Theorem 4.2: For an arbitration game (X, Y, $, K, $,K) the following two assertions
are equivalent:

(1) (vi,v2) € P and max inf ¢, K (x, y) and max inf ¢,K (x, y) exist.
X y y X

(2)  The arbitration game possesses a defensive equilibrium point.

The next theorem can be useful for the calculation of the arbitration value and
detensive equilibrium points.

Theorem 4.3: Suppose that the arbitration game T = (X, Y, 0K, ¢, K) possesses an
arbitration value v. Then the zero-sum games I'y =X, Y, $, K, — ¢, K) and

[, =X, Y, — ¢,K, ¢0,K) possess a value. Furthermore, vy =val (I'y),
— v, =val (I'y) and the sets of saddle points S (I'y)and S (I'y) of T'y and
['; coincide with the set E (T ¢>) of defensive equilibrium points of T "

S (T'y1)={(x*y*HEX X Y;f;‘;%( 01K (x, y*) =, K (x*, y*) =

=inf ¢, K (x*, y)}].
yeY

Proof:
a) Suppose, firstly, that vE P. Let € > 0. In view of theorem 4.1, there is a

defensive e-equilibrium point (x*, y*), satisfying E.1, E.2, D.1, D.2. From E.1
it follows that inf sup ¢, K (x, y) <sup ¢, K (x, YY) <o, K (x* y*)+ € and
X X

¥
from D.1 it follows that sup inf ¢, K (x, y) = inf 01K (x*y)=2¢, K (x* y*)—e.
> S B
But then O < inf sup ¢, K (x, y) — sup inf ¢, K (x, y) <2 ¢, for each e > 0, which
y X Xy

implies that val (I"; ) exists and is equal to v, .

b) Suppose, now, that v=p5 & P. Then v, = sup inf ¢,K (x, y) implies that, for each
y X
¢ €(p2,P2), there is an J € Y such that ¢,K (x, ) > c, for all x € X. Then

01K (x, ¥)<g! (c), for all x EX. Hence. vy =sup inf ¢, K (x, y) <

Sint sup ¢, K (x, y) <sup ¢, K (x, ) <g~! (c),Jtior J;u o = (EQ , D2 ). Since
lir;) gj =g ' P,) iﬁl = Vi, we may conclude that val (I'; ) = v, in this
Z;spez, as well.

L
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¢) Suppose that v = p & P. Since ¢; K (x, y) < p1,forall (x, ) EX X Y, we have

inf E’ ¢, K (x V) < <p1=V;. Hence val (Fl) = v, in this case, also.
yeY xe&

d) Now we have proved that, in all cases, val (I'; ) = v, . By interchanging the roles

of the players one obtains val (I',) =—v,.
e) The proof of S (I';)=S (I',)=FE (F )1s straightforward and is left to the

reader.

The next result is an immediate consequence of the foregoing theorem.

T'heorem 4.4: [Cf. Kalai/Rosenthal, p. 67; Rauhut/Schmitz /Zachow, p. 234.] Let
FtIJ
(1) if(x',y )EE(I‘ Yand (x*, y )EE(T‘ ), then (x', y*), (x?, y )EE(F )
((a’efenszve) equzlzbrm are mterchangeable)
(2) oK',y )=0,K(x? y*)=v, fori€{1,2}
(the payoffs are equal for all defensive equilibrium points).

Remark: Suppose I' | has a value v € P and let € > 0. Let us call a point

x*€X (¥*€Y)an eoptimal strategy for player 1 (player 2) in the zero-sum game

[y if inf ;K (x* y)=v; —€e(sup ¢:K (x, y*)<v,; + €). Let us call an
14 X
x*E€X (v*€Y) an eoptimal strategy in the arbitration game I _, if

int ¢;K (x*, ) =v; —eand sup ¢,K (x* y)<v, + € (inf ¢,K (X, y*)=v, — €
¥ y X
and sup ¢, K (x, y*) <v; + €). Then we have

X

(1) a pair of O-optimal strategies in Fcp 1s a defensive O-equilibrium point, and also
the converse statement is true.

(2) An e-optimal strategy for player 1 in the game I'; is a 0-optimal strategy for
player 1 in [‘ , where 6 = max {e, — €D g (v,)} and

Qg(vl)_hmoh v th)—g(vy)) (6 <o lfVEP—{p} Orlfv-—__
and D g (p) # — ).

5. Existence Theorems

Let I'=(X, Y, K, K,) be a game in normal form with non-simple payoff region
R and Pareto set P. Let ¢: R = P be a regular arbitration function. For each

p € P and eachd €D (p), we introduce the dummy zero-sum game
Fp,d =(X, Y, Kp,d’ _Kp,d>’ where

K, 4 (x,¥)=(d, K (x,y)—p), forall (x, ) EX X Y.

For these dummy games, we derive two lemmas.

97

=X, Y, 0, K, ¢,K) be an arbitration game with arbitration value v. Then we have
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Lemma 5.1: Let p € P, d €D (p). Then:

(1) K d (x, ) <Oimplies p,K (x, y) =2 p,,
(2) Kpd(x y) = 0 implies $, K (x, y) =p;.

Proof: The lemma follows immediately from the definition of Kp ;4 and corollary
% |

Lemma 5.2: Let p € P,d €D (p) and suppose that val (F d) = 0. Then p is the
arbitration value of the arbitration game 1'y. If, moreover, F 4 possesses optimal

strategies x* and y* for player 1 and player 2, respectively, z‘hen (X" ™) isa
defensive equilibrium point of I’ "

Proof:
a) Take e € (0, py —p;). By lemma 3.4, there is a § > 0, such that

d,r—p)>—25,reRimply ¢, (") >p, — e,
(é,r—p)<6,rERimply ¢, r)sSp, te.

Since val (Fp'd)= 0, we can take x (€) € X, such that
(é,K(x (), y)—p)>—o,forallyeyY

and y (€) € Y, such that
(5, K(x,y(€)—pr<é,forallxeX.

Consequently, ¢, K (x (€), ) =2p; —¢€,forally €Y. Hence,v, =p, — €, for
each e € (0, p; —p;),0rvy; 2p,. Similarly, ¢, K (x, y (€)) <p,; + ¢, for all

N = Then_(,bgK (x,y (€)) =g (p; + €), for each x € X. This implies, that
v, =g (py t+€), foreach e€ (0, p; —p;). Hence v, =g (p;) by lemma 2.2.

Since, by lemma 4.1(2), g (v;) ,,.>-f_vg ,we have g (v{) =g (p,)and v; = p,. This
implies that g (v;) =v, and v=p. Hence v € P, so p = v is the arbitration value
of [‘

b) Now suppose that (x*, y*) is an optimal pair for the game F 4+ From
¢ (K (x* y*)) =p and

p,d (x,y*)éKp’d (x* y¥*) = 0"“<“'Kp,d (x%, ) torallx €X, yEY

we obtain, by lemma 5.1:
02K (X, y*)2py = 0 K (x*, %), 0, K (x*, ) =p;, = 9, K (x*, y*)

forallxe X, yeY.
Then (x*, y*) is a defensive equilibrium point of I" e O]
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The next three theorems play a crucial role in the derivation of existence theorems
for arbitration games.

Theorem 5.1: Let Fd) be an arbitration game, where I' =(X, Y, K, K;) and ¢
satisfy the following conditions:
(1) ¢: R— P isregular,

(2) for each a €[0,1], the zero-sum game (X, Y, aK; — (1 —a) K;)
possesses a value.

Then the arbitration game possesses an arbitration value.

Proof: We have to show that v € P. Suppose that v & P. Then, by (3) of lemma

4.1, there exists ap € Pwith p > v. Choose d €D (p). Since sup inf ¢, K (x, y) =
Yo | 4

=v, <p,,foreachy € Y, there is an X, € X such that ¢, K (xy, y)<p,.Then (1)
of lemma 5.1 implies that, for eachy €Y, Kp 7 (xy, y) > 0. Condition (2) ot this
theorem implies that I’ g has a value. However,
= 1 >3 = 0.
val (Fp,d) 1;1f sgp Kp,d (x, ¥) 1;1f Kp,d (xy,y) 0
Similarly, the inequality v; <p; implies that val (F d) < 0. Consequently,
val (F d) = (0 and, by lemma 5.1, p is the arbltratlon value of F Hencev=p >v,

whlch is a contradiction. So v € P. Thus, we have proved that F pOSSesses an
arbitration value. ]

Theorem 5.2: Let Fcb be an arbitration game, where I' =(X, Y, K,, K,) and ¢ satisfy

the following conditions:

(1) ¢: R~ P isregular,

(2) for each a € [0,1] the zero-sum game (X, Y, aK; — (1 —a) K,) possesses a
value and optimal strategies for both players,

(3) K, + K, isa bounded functionon X X Y,
(4) the arbitration value v of T 5 IS unequal to p and p.

Then I » POsSsesses a defensive equilibrium point.

Proof: Since v € P, by lemma 3.3 (1) there exist a, b ER with — 1 <a < b <0,
suchthat D (v)={(§,— 1 —§)ES;as<ESDY.

a) Firstly, we show that val (I, i 1.0y =0
Suppose that y = val (I', , ; ;) <0. Then there is, by (2), an ¥ such that

(1 +a,a),K(x, )—v)<7y,forallx €X.

letL={r€R;{((1+aa),r—vV=v}tand T={r€ER;{(1 +a,a),r—Vv)S7}

Then condition (3) implies that L is a compact set. In view of the definition of a,

we have 0 = mafc ¢, (r) <@, (v) = v,. Furthermore, it is not difficult to prove that
re




100 S.H. Tijs and M.J.M. Jansen

sup ¢, (r) = mﬂix by (7).

reT
Hence, ¢, K (x, ) <§, for each x € X. Consequently, v, =sup inf ¢,K (x, y) >
yeY xeX
> inf ¢,K (x, ¥)=g (6)>g (v;) =v,, which is a contradiction. So
xcA

val (I ) =0
v,(a,-1-a)
b) Similarly, as in a), one can prove that val § (b.-1 b))

c) Letf:[a, b] = R be the map with f (§) = val b g ). Then, tor &, n € [a, b],

s(E:'l'E)
we have
=TI @IS &= vy kNl E— | sup |K1(X,.V)+K2(X,}’)\
(x,y)EXXY

Then, however, condition (3) implies, that f is a continuous function on the connec-
ted set [g, b]. By a) and b), we have f () > 0, f (b) < 0. Consequently, there is a
p € la, b], with f (p) = 0. Take an optimal pair (x*, y*) of strategies in the game
. By Lemma 5.2, (x*, y¥) is a defensive equilibrium point of Fqb.

vi(ﬁ 1'1')0)

Theorem 5.3: Let I p be an arbitration game, where I' =(X, Y, K, K,)and ¢ satisfy
the following conditions:

(1) ¢: R—> P isregular,

(2) Xand Y are compact sets and K, and K, continuous functions,

(3) foreach a €0, 1], the zero-sum game (X, Y, aK; — (1 — o) K,) possesses
a value.

Then I » Possesses a defensive equilibrium point.

Proof: By theorem 5.1, 1" possesses an arbitration value v. Now, v E R? by (2). The
sets O; and O5 of e- 0pt1mal strategies in F tor the players 1 and 2, respectively, are,

by (1) and (2), closed subsets of the compact sets X and Y, respectively. Then

O,= N Of#0Pand O, = ﬂo O; #0,and O; X O, is the set of defensive equili-
e>0 e>

brium points of Fe' [

Now we are able to derive, with the aid of theorems 5.1 — 5.3 a string of existence
theorems. We start with reproving some old results. In Nash [1950], a map ¢o was in-
trcduced which assigns to a compact convex set R and a point » € R, the (unique)
point ¢ (r) of the Pareto set P of R, satisfying

(‘ﬁv (”)"‘"1)(@5]2\[ (r) —r2)= max (p; —ry) (P2 —1ry).
peP
[t is well known that ¢* is an example of a regular function. The next theorem was
tirst proved by Nash [1953], using the fixed point theorem of Kakutani for multi-
functions.

Another proof was given by Owen [1971], who, for each point p € P. constructed
a suitable family of zero-sum games. F or this special case, it appears that these zero-

sum games coincide, for the points p € P with our dummy games.
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Theorem 5.4: Let T =(X, Y, 1?1 : [?2) be the mixed extension of the game
['=<(X, Y, K, K,)with finite strategy spaces X and Y. If I is nonsimple, then the

arbitration game ﬁf‘@ N Dossesses a value and a defensive equilibrium point.

Proof: For each a € [0, 1], the game 5N affl =il =) ffz) is the mixed extension
of the finite zero-sum game (X, Y, aK; — (1 —«a) K,), and possesses, therefore, a
value and optimal strategies, in view of the minimax theorem of J. von Neumann.

Then, however, Fo:: » satisfies all conditions in theorem 5.3.

Similarly, the following extension of Raiffa [1953] of the Nash theorem can be
proved with the aid of theorem 5.3. We note that Raiffa used the Kakutani fixed point

theorem in his proof and that Burger [1956] gave a proof, in which the fixed point
theorem of Brouwer plays a role.

Theorem 5.5: Let T = (X, Y, El : Eﬁ be the mixed extension of the finite game
['=<(X, Y, K, K,), and suppose that the region R of I' is non-simple. Then, for each

regular ¢: R = P, the arbitration game I , Dossesses a value and a defensive equilibrium
point.

In Kalai/Rosenthal [1978] and in Rauhut/Schmitz/Zachow [1979], special atten-
tion is paid to the monotone arbitration function #M: R — P, which assigns to a point
r of a non-simple region R with Pareto set P, the unique point of P lying on [r, u],
where (is the ideal point of R. Obviously, ¢" is regular. Hence, it follows immedia-
tely from theorem 5.3, that for the mixed extension [" of a finite game [, the arbitra-
tion game Fqb a7 possesses a defensive equilibrium point, a result which was also obtained

in the two papers, mentioned above, with the aid of fixed point theorems. Kalai/
Rosenthal [1978] also considered arbitration games F@’ where I' is the mixed exten-
sion of a finite game and where ¢, and ¢, are quasi-concave functions and ¢ satisfies
the properties R.1, R.2. They proved the existence of equilibria for such games. In
view of lemma 3.1, this result coincides with the existence result in theorem 5.5.
Now we can obtain new results, with the aid of our crucial theorems 5.1 — 5.3.
The policy, which we follow, is to look at well-known minimax theorems for zero-
sum games (for a survey, see chapter S of Parthasarathy /Raghavan [1971] or
Yanovskaya [1974]) and to formulate conditions for arbitration games I“Qb, where
['=(X, Y, K, K,), in such a way that these conditions imply, for each game
aK; — (1 —a)K,,a€ [0, 1], the conditions in the minimax theorems. We start
with a theorem, which can be derived from the minimax theorem of Nikaido
[1954] and theorem 5.3, and also includes the foregoing theorems 5.4 and 5.5.

Theorem 5.6. Let Fah be an arbitration game, where I' =<(X, Y, K, K,) and ¢ satisfy
the following conditions:

(1) ¢: R—> P isregular,
(2) Xand Y are compact and convex subsets of linear topological spaces,
(3) K, and K, are continuous functions,
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(4) Foreach a €0, 1], the function aK; — (1 — «) K, is quasi-concave in the first
coordinate, and quasi-convex in the second coordinate.
Then I , POSSesses a defensive equilibrium point.
A direct consequence of theorem 5.6 is

Theorem 5.7: Let I' =(X, Y, K, K,) be a game in normal jorm, where X and Y are
compact Hausdorff spaces and where the payoff functions K, and K, are continuous

T T

functions. Let T =X, Y, K., K,) be the mixed extension of T, where X (Y) is the
family of probability measures on the Borel sets of X (Y) and

E:‘ (m,v)=[[ K. (x,y)du(x)dv (y), for (4, p) € X X ¥

Then, for each regular function ¢: R (f‘) — P (D), the arbitration game r o POSSESSes
a defensive equilibrium point.

Now we present some existence theorems for arbitration games, where both strategy
spaces are not necessarily compact. See also Tijs/Jansen [1980].

Theorem 5.8: Let T 5 be an arbitration game with regular ¢ and where [ is a mixed

extensions of a semi-infinite game (X, Y, K, K,), where X is a finite ser and Y a
countably infinite set. Then I’ » POSSesses an arbitration value.

Proof: The theorem follows from theorem 5.1 and the fact that all mixed extensions
of the semi-infinite zero-sum games (X, Y, aK; — (1 —a) K,) possess a value [cf. Tijs,
1975, 29-31]. ]
The minimax theorem of Fan [1953] and theorem 5.1 imply

Theorem 5.9: Let Fqb be an arbitration game, where I' =(X, Y, K, K,) and ¢ satisfy
the following conditions:

(1) oisregular,

(2) X isacompact Hausdorff space,

(3) K, and — K, are semicontinuous (i.e. upper semicontinuous in the first coordina-
te and lower semicontinuous in the second coordinate),

(4) K, and — K, form a concave-convex-like pair i.e. for each x', x* € X and
t €(0, 1), there is an x° € X, such that

Kl(xory);’*‘fK1 (xlrJ’)"' (1 ==K (xzry):—KQ (xory)?"'_ﬂ(z (xlsy)_
—(1—1t)K, (x*, »), foreachy €Y,

and for each y', y* €Yand t €(0, 1), there isa y° € Y such that
Ky (x, ") <K, e,y )+ —K; (x,»*),— K, (&, Y)Y S=1Ky @y )~

—(1—1)K, (x, %), for each x € X.

Then I » POSsesses an arbitration value.
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The next theorem follows from theorem 5.1 and the minimax theorem of Sion
[1958].

Theorem 5.10: Let " 5 be an arbitration game, where I' =(X, Y, K, K,) and ¢ satisfy
the following conditions:

(1) o isregular,

(2) X isacompact and convex subset of a linear topological space,

(3) Yisaconvex set,

(4) K, and — K, are semicontinuous,

(5) for each a €0, 1], the function aK, — (1 — «) K, is quasi-concave in the
first coordinate, and quasi-convex in the second coordinate.

Then I’ » POSSesses an arbitration value.

Also with the aid of theorem 5.1 and the minimax theorems of Kénig [1968] and
Terkelsen [1972], interesting existence theorems for arbitration games can be derived,
but we will not state them here, explicitly.

Now we extend a result of Wald [1950] for zero-sum games to arbitration games.

Theorem 5.11. Let ' =(X, Y, K, K,) be a two-person game in normal form, where

(1) K, and K, are bounded Borel measurable functions (with respect to the Borel
sets corresponding with the intrinsic metrics d, and d, corresponding to K, and
K,, resp. [cf. Wald, 1950, p. 33],

(2) (X, d;)isa conditionally compact metric space.

Let T be the mixed extension of I'and let ¢: R (F) =P (f‘) be a regular function.

Then the arbitration game [ » POSsesses an arbitration value.

In an obvious way, the extensions of Teh-Tjoe Tie [1963] and Parthasarathy
[1965] of Wald’s result also imply existence theorems for arbitration games.

6. Some Final Remarks

I. In Tijs/Jansen [1979] and Jansen [1981] examples are given to show that an arbit-
ration game I', does not necessarily have an arbitration value or a defensive equili-
brium point if ¢ is not regular or if I" does not satisfy one of the conditions in
theorem 5.2.

2. InJansen/Tijs [1981] the dummy game approach is used to show that for an arbit-
ration game, where the underlying non-cooperative game is a bimatrix game, the
optimal threat strategy spaces for the players are polytopes. Furthermore an
algorithm is introduced for the approximation of the arbitration value and optimal
threat strategies of such arbitration games.
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3. In Tijs/Jansen [1982], the authors have studied the effect on the arbitration value
and the e-defensive equilibrium points of perturbations of game parameters such as

payoff functions and arbitration functions.
4. An extension of Theorem 2 in Kalai/Rosenthal [1978] concerning arbitration games

with incomplete information for the arbitrator, can be extended to infinite games
as can be seen in 7ijs/Jansen [1979].
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