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Summary. In this paper two-person zero-sum stochastic
games are considered with the average payoff as criterion.
[t is assumed that in each state one of the players gov-
erns the transitions. We will establish an algorithm,
which yields in a finite number of iterations the solution
of the game i.e. the value of the game and optimal sta-
tionary strategies for both players. An essential part of
our algorithm is formed by the linear programming prob-
lem which solves a one player control stochastic game.
Furthermore, our algorithm provides a constructive proof
of the existence of the value and of optimal stationary
strategies for both players. In addition, the finiteness of
our algorithm proves also the ordered field property of
the switching control stochastic game.

Zusammenfassung. Wir betrachten stochastische Zwei-
personen-Nullsummenspiele mit der durchschnittlichen
Auszahlung als Kriterium. Wir nehmen an, daf} in jedem
Zustand einer der Spieler das Ubergangsgesetz kontrol-
liert und entwickeln einen Algorithmus, der nach end-
lichen vielen Iterationsschritten die Losung des Spiels —
d. h. den Spielwert und optimale stationdre Strategien
fir beide Spieler — liefert. Ein wesentlicher Teil unseres
Algorithmus besteht aus dem linearen Programm, das
ein stochastisches Spiel 10st, bei dem ein Spieler das
Ubergangsgesetz bestimmt. Dartiber hinaus geben wir mit
unserem Algorithmus einen konstruktiven Beweis der
Existenz des Spielwertes und optimaler stationarer Stra-
tegien fiir beide Spieler. Weiter zeigt die Endlichkeit un-
seres Algorithmus die “‘ordered field property” stochasti-
scher Spiele mit wechselnder Kontrolle des Ubergangsge-
setzes.

1. Introduction

In 1975 Parthasarathy and Raghavan began studying the
class of two-person zero-sum stochastic games, where
one of the players controls the transitions in all states.
Their interest was in finding suitable algorithms for this
class of games. Their first result was the fact that for dis-
counted games of this type, there exists an LP-algorithm
and that the value of such a game lies in the same ordered
field as the other game parameters.

Stern [13] also in 1975 established the existence of
the value for such games in the undiscounted case. This
result was also obtained by Bewley and Kohlberg [1]in
1976.

In 1976 Parthasarathy and Raghavan proved, that for
the undiscounted case the orderfield property also holds
and they gave an algorithm for the irreducible case. They
presented these results at the Dynamic Programming
Conference in Vancouver in 1976. The results appeared
recently in [11].

In 1979 Filar and Raghavan [6] found an algorithm
for the undiscounted one player control games and pres-
ented their results at the Oberwolfach Conference on
Game Theory in 1980. However, that algorithm was
not very efficient.

An efficient LP-algorithm was found in 1980 inde-
pendently by Vrieze [14] and Hordijk and Kallenberg
[9], based on minimal harmonic functions.

In his Ph.D. dissertation, Filar [4] also proved that
for discounted and undiscounted stochastic games, with
switching controls, the ordered field property holds [5].
This indicated that for the switching control case, a
finite algorithm should also exist and a first attempt to
find such an algorithm was made in [ 7].

The purpose of this paper is to provide an efficient
algorithm for the undiscounted game.
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2. Definitions and Notations

A switching control stochastic game (notation I') is char-
acterized by a seven-tuple

<S, Sl*SQ* {AlklkES}, {Azk;kES}.r, p>

Here § :=

)
des o

11, 25 ... N | (the state space) and 4.+ = {1,
.., My } (the set of pure actions for player # in state
k). §; and §, are subsets of § such that S; NS, =0
and §; US, =8. (§,, is the subset of states were player
n <€ {1, 2 tcontrols the transitions). 7 is a realvalued func-
tion (the payotf function) on the set T := {(k, i, j); kK € S,
[ €Ayi,] €EA, t. [In this paper the variable i will always
refer to a pure action of player 1 and j to a pure action
of player 2.] The realvalued function p:U' UU* = R
(the transition law), where

V= {(lk, 0); IES KkES,,i€A; )
¢ = {1k, 7);lES, kES,, jEAs )

has the properties

p(llk, ) =0forallkE€S,,i €A, and
"2 p(llk, i)=1,

€S

p(llk,j)=0forallk€S,,j €45, and

2 p(llk,j)=1.

S

The interpretation of these parameters is as follows: if in
state £ €5, the players take pure actions 7 and j respec-
tively, then player 1 obtains an immediate payoff r(k,
[, j) from player 2 and the system moves with probabili-
ty p(llk, i) to state /€S if kK €S, and with probability
p(llk,j)if k €S5.

A strategy for player 1 (player 2) in the infinite stage
game is denoted by m,; (m,). A stationary strategy for
player 1 (player 2) is denoted by o (p). Then o= (0,
03, ..., Oy), where o, =(0x(1), 04(2), ..., 0x(my,)) is
a mixed action for player 1 in state A, choosing pure ac-
tion 1 € A, with probability o.(7).

By car(o,) we mean the set {i€A4,;; 0.(i) > 0}.
Car(py ) has an analogous meaning.

For a pair of stationary strategies (o, p) we introduce
N x N-matrices P;, and Q,, and the N-vector r,,. Here
Fyp 18 the N x N-transition matrix, with in the (k, /)-th
entry the number

p(llk, 0) := p(llk, 1)ox(7)
ICA K

i KE Sy - “and
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p(llk, p) := p(llk, ))pr(f)
JEA2k

ifkES,.

Qgp is the Cesaro-limit of £y, i.e.

,
O = lim ALt 1) ).2 Pess

0

[—>©c© n

where PO is the identity matrix and P” = Pop ng_l
forn =2 1 7op is the vector in R™, with k th coordmate

r(k; 0, Pp) = 2 2

A1k JEA2k

r(k, 4, 7) ox (1) pi (7).

The meaning of 7 (k, 0y, j)and r(k, i, p; ) will be obvious.
Note that the following property holds:

ch,a =Pcrp ' chp = Qap ' Pc:rp-

|For detailed information we refer to Derman [2].]

V(m,, m,) will stand for the limit expected average
payoff for a pair of strategies (w7, m,). V(m,, m,) is an
N-vector, where the k-th coordinate corresponds to the
particular stochastic game with state kA as starting state.
Note that if 7, and m, are both stationary strategies, say
o and p, then (o, p) = Qsptop-

The game is said to have a value, if coordinatewise

sup inf V(m, m,)=inf sup V(m, m,).

my T2 2 0

A strategy m; (m5) for player 1 (player 2) is called opti-
mal if the value (say V) exists and if

i:f V(ni, my) 2V (Sl;rlp Vim, m3) < V).
2 l

Further notation, which will be used is [f(7, /) |5« ¢, Which
denotes a matrix game with entries f(7, 7), (i, j) €B x C.

The value such a game will be denoted by Val [f(i, /)]
BxC

By an extreme optimal action for player € {1,2}ina
matrix game, we mean an extreme point of the convex
set of optimal mixed actions of player /. From Shapley
and Snow [12], we know that the set of optimal mixed
actions of a player in a matrix game is a polytope, so
there are only a finite number of extreme optimal ac-
tions.

It v W& ]RN, by v > w we shall mean: v, =2 wy for
all k€ {1, ..., N} and v, > w; for at least one / € {1,

., N}
By Oy we denote an N-vector with each component

equal to O and by Onpn (N x N)-matrix is meant where
each element equals O.
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3. Preliminaries

In this section some well-known facts will be recalled.
Furthermore, two LP-problems and their duals will be
stated, which form the body of our algorithm.

Lemma 3.1. For stationary strategies o and p we have

inf V(5, m,) =min V(6, p) = min V (6, p?),
m9 P pp

sup V('rrl p) max V(U p) max V(Up P)
T oP

[Here of and p” are pure stationary strategies, i.e.
gk(;) € {0. 1 } andp (]) € 10..1 } torall £k €5, 1€ 4y,
J €Ay ]

A proof of this lemma, which runs along the same
lines as the proof of Theorem 1, p. 91 in Derman [2],
can be found in Hordijk et al. [10].

We will now state the linear programming problem,
which corresponds to a player 2 control stochastic game

(S, {A,,:k €S}, {Ay:k €S}, r, p)(where S, = 0,5, =5).

LP1. Variables: g=(g, ..
= {xx(i); kES, i€EA i}

& gN)., U= ('Ul, e 'UN),X —

Max 2 gx subject to

kEeS

(i) gx — Z p(llk, )g; <0 forallk €S, jE Ay,

(SN)
i) g tvoe— 2 Hk i,j)xe(i)— Z p(llk, j)y <O
I€A 1 (Sh)

fOfﬂ.UkES,jEAzk

(iii) 2 xx()=1 foralk€Ss,
ICA |k

(iv) x, (i) =20 forallk E€S,i€A4,,.

DLP1. Dual variables: d = (d,, ...

JEAw}, z=1{zx(j); KES,jEA, i 1.

Min 2 dj subject to

kES
G) £ Z (Sri—pUlkD)yie() +
KES jJEAy
+ 2 Zij)=1 . forall €S,
JEAY
G) 2 2 (86 —p(lk, j)z(j)=0 forall/€Ss,

kES jEAk

,dn),y = {vi(j); kK €S,
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Gi) = = 1k i, /)2, (7)) +dx =0

JEA
for all & ES, I'EA”,C,
Gv) (), zx(j) =0

|[Here 64; :=11if Kk =/and 04, := 0 otherwise. |

Note that with an x = (xy, ..., x) obeying (iii) and
(iv), one can associate a stationary strategy oy =(0yq, ...
o, n) for player 1 in an obvious way.

As shown in Vrieze [14], solving LP1 and DLPI cor-
responds to solving the player 2 control stochastic game,
with respect to the average payoff criterion. If g, v, X is a
solution of LP1, then gis the value of the stochastic game
and o¢ is an optimal strategy for player 1. Optimal sta-
tionary strategies for player 2 correspond to solutions of
DLPI.

In the following, for a player 2 control stochastic game
[, R(I") will denote the sets of states k, for wich player 2
has an optimal stationary strategy p, such that state K is
recurrent for P(p).

forall kKES, jE Ay

Lemma 3.2. Let g=(g,y, &>, ..., &n) be the value for a
player 2 control stochastic game. Then

g =min 2 p(llk,j)g forallk €S.

jEAH IES

Let O := €Ay 8= 2 p(llk, 7)gr}). Let vERY
IES

be such that

gk+vk--‘€ val [?'(k, ‘;;j)+ 2 p(”krf)vll
Ax O IS0

forall k €8S. (%)

Then the equality sign in () holds for each k € R(I').

Proof. The value g = (g, &5, ..., &§v) satisfies condition

(i) of LP1. So gx < min 2 p(/lk, j)g; foreach k €S.
jEAy IES

However in Vrieze [14], Lemma 2.9 it is shown that the
equality sign holds for each & € S, when g is part of an
optimal solution to LP1.
Concerning the second assertion, take k €R(I")and let
p* be an optimal stationary strategy for player 2 such that
state k is recurrent with respect to P(p*). Let £(p*) be the
ergodic set towhich k belongs. By the first part of this the-
orem we have g < P(p*) - g. By multiplying both sides of
this vector inequality with Q(p*) and remembering that
Q- P = Q, it follows that the equality sign holds at least
in the components corresponding to the states belonging
to £(p*). We denote the parts of)g P. 0, r and v corre-
sponding to the set £(p*) by g, 13 O, r and D respectively.
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Then g = ﬁ(p*) - & hence £ = ﬁ’(p*) - g for each t € N
and then §= Q(p*) - &

Now suppose that the inequality sign in () is strict for
state k. Then there exists a stationary strategy o for play-
er 1 such that

g+ <Pop+ +ﬁ(_p*) . .

Multiplying this vector inequality by é(p*) yields:
2=0(0*) 8 <0(p*)- Fop* -

Hence p* cannot be optimal, which is a contradiction.

This shows that for each £ € R(I') the equality sign
holds in (*).

With a player 2 control stochastic game we associate
also another linear programming problem LP2. Because
we will use this program for games, with payoffs of the
type Ak, I, J) — &, it is convenient to incorporate this
special form already at this place. So gy, ..., gy in LP2
are not variables like in LP1 but constants.

LP2. Variables: u =(u,, u,, ..
€A, ).

*9 llf\f)? X = {If{(‘r): k E Sr

Max 2 u, subject to
kES

(1) up — 2 (r(k, i, ]) — 8i)xx(i)

I€A 1
— 2 p(llk,ju; <0 forallkEeSandjE€A4,,,
I=S
i) 2 xx()=1 and x.(i)=0
€A 1k

foral k€Sandi€ 4.

DLP2. Dual variables: b=(b,, ..
JE Ay ).

Min 2 by subject to
kKES

G 2 2 Gg—prUlKk)y()=1
kel jeA 2k
forall / €S,

G))— 2 (r(k,i,]) —g)yi(J) + b =0

JEA 2
forall k€S, i€A4,,,
(jjj) vi(j)=Z0foralkE€S,j€E Aqyye.

Hordijk and Kallenberg [8] have shown that for the tran-
sient case (i.e. for the case where lim P (p?P) = Oy for

t— oo

*3 bIV): ,1! = {..Pk(j); k E S!

all pure stationary strategies p”) LP2 is feasible and has
a solution, which correspond to a solution of the game.
We will need an extension of their results to what we call
a semi-transient player 2 control stochastic game. That is

a game with average payoff value Op, such that 2
IS

p(llk,j) <1 for all j € A, and all kK €, and such that

player 2 has a stationary strategy p, such that correspond-
ing to P(p) all states are transient.

Lemma 3.3. For a semi-transient player 2 control sto-
chastic game with payoffs of the formr(k, i,j) — g, and
average payoff value Oy the corresponding linear pro-
gram LPZ2 is feasible and has a solution u*, for which

u, = Val [r(k, i,j) — g + 2 p(llk, juj]
A 1k x Az b
forallk €S.

Proof. Add a state NV + 1, where both players have one
action 1 and such that p(N+ 1IN+ 1, 1)=1,r(N+1,

1, )=0and p(N+ 11k, j)=1—- 2 p(llk, j) for all
IES

k € S. Then we obtain a stochastic game with non-stop-
ping transition probabilities and which obviously has also
average payoff value Op. But this means (cf. Federgruen
(3], theorem 7.4.1) that there exists a vector v € R "
such that

>

O = Val
A xA 2k

forall k € {1, 2, .

[r(k, 1,j) — 8k t 2 p(l1k, j)v)

IESUN+1}
wauV+ 15

Let xj =(x;(1), xx(2), ..., xp(m,,)) be an optimal mixed
action for the above matrix game. Then it can be easily
checked that the pair («, x) satisfies conditions (i) and
(ii) of LP2 where u; = v;, — vn4, foreach K €S. So LP2
is feasible. Next take an arbitrary feasible pair («, x) for
LP2. Let p be such that, corresponding to P(p), all states
are transient. Then condition (i) implies

uSrq ,—8+P(p)u

and by iterating this inequality we obtain as a conse-
quence of the transiency of all states:

s ZF '(©) (oo —8) <sup Z P'(p) (rop —8).
I‘:

O =0

Since P(p) corresponds to a transient Markov chain, we
may conclude that for the feasible solutions (u, x) of
LP2, 2 u, is uniformly bounded. Now let («*, x*) be an
optimal solution of LP2 and suppose that there is a state
k such that
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uy < val o [r(k, i) —g + Z p(lk, u)).
‘4lkx"42k {Sh)

Let x, be an optimal action for player 1 for the matrix
game in the right side of the above inequality. Then for
e > 0, small enough, it follows that

uf + € émin | 2 (r(k, i,7) — gx)xi (1) +
j o iEA 1k

+ 2
1I=S\{k }

p([|k,j)u;k +p(klk, j) (uj + e€).
But then the pair (¢, x) with u,; = u;k, x,(1)= x;k(i) if | #k
and u, = u, + €, X;(1) = x,(7) is feasible for LP2. More-

over X u; > 2 u;.Thisleads to a contradiction since
IES IES

we have assumed, that («*, x*) is an optimal solution of
LP2. Hence the equality in the lemma holds.

4. The Algorithm

In this section we will state a finite algorithm, which gives
in a finite number of steps the solution for the switching
control proplem I' = (S, S|, S,, {A1x: K €S}, {Ay;
kESEr p)

The part of a stationary strategy o of player 1, which
refers to the set S;, is denoted by ¢°. If we fix a particular

¢, then the remaining game is a player 2 control stochas-
tic game, denoted by ['(0°). Hence T'(0€) = (S, {4:
k€ S}, {Ay:kESY,F P where S=S=S, US,,where

for k ESI Alh_ {1} A2A_A2A f(;\. ] ])_ 2 f'(k,
IEAlk

i, ))og (i), p(llk,j)= 2 p(llk, i)o,(i), and for kK €5;:
I€A

Ay = Ay, Ay = A, 7k, 0, ) = 1k, 4, ), P, ) =
= p(llk, j). The corresponding LP1-linear program for
this game will be denoted by LP1 (I'(¢c9)).

Now fix for a moment a subset Sy C S, vectors g,
w E IRN, a particular o and foreach £k €S, a non-empty
subset O,; of A5;. Then corresponding to I" and the five
parameters Sy, g W, 0° and {Oy; k €S, j we introduc:e

the player 2 control stochastic game I (S, g w, 0°
{Oy; kK €ESp}) = (S, {AH\:}\ ES} {A?A:AES} 7, P>

where S=S,,and where for & ESNS A= {1}, A,y =
= Oy, Fk, i, ]) = =g+ 2 (r(k, i, j)+ 2 p(llk,
€A [ I=S\S)

wpoe(i), p(llk, j)= 2 p(llk, i)o, (i) for /€Sy, and
IEAlk

= —g ¥k L )T & p(”k. j)w and p(/1k, j) =
I=5\S(

=p(llk,j) forIE S, = S.
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The corresponding LP2-program of this game will be
denoted be LP2(I'(Sy, g w, 0, {O,; k €5y 1)).
Now we have enough tools to establish our algorithm.

Algorithm

Step 1. Take t = 0 and choose g(0) = (—M, ..., —M)

(where M = me 1¥(k, 1, 7)), choose w(0) = 0y, S(0) =
LJ

= (@, 0°(0) such that for each & €, the action 0,(0) is
an extreme optimal action for player 1 in the matrix

game [r(K, i, j)]a, xa,

Step 2. Take general ¢ and the associated current values
of the entities g(7), w(t), S(t), 0°(¢). Determine for each
k€S,

Ot t 1) = {1 € Ayg; FFE p(llk, i)g (1) =
=

= max 2 p(llk, i)g;(t)}
f-EAlk (=H)

and for each k €5,

Oy (t+1):= {JEAy; 2 pUlk,j)g (1) =gu(t)}.

IES
Proceed to step 3.

Step 3. Choose o°(t+ 1) such that for each k €85,
o,(f + 1) is an extreme optimal action for player 1 in
the matrix game

Ay() = [r(k, i, 7) + IEZZS‘ p(l1k, *’)“"U)WOI;{(HI)xAM

However, if Car(o, (7)) C Oy, (2 + 1) and it

Val(A, () = min r(k, 0, (1),])
/

gr(t) + wi(t) =

+ 2 p(llk, o, (t))w(t)

(SN
then put oy (z + 1) := 0, (7).

Step 4. Obtain g(¢+ 1), v(¢ + 1) by solving LP1 (D(oC(t +
1))

Step S. If g(¢t + 1) #g(¢), then put w(t + 1) :=v(z + 1),
S(t+ 1) =0 and return to step 2, taking 7 := 7+ 1.

If g(r+1)=g(¢), then go to step 6.

Step 6. Put O, (t+1) := A, fork €85,.
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Let G, (t+1) := {k €Sy ;g1(2) + wi(2) < Val(Ax(2))}
G,(t+1):={k€S,;gx(2) + wi(2) < Val(Ayx(2))}

where AZI{([) = [r(.kp f: ;)+ ? p(”k’ j)‘w'l(f)]AlkXOQk(r+l)'

Put G(t+1):=G{(t+1) UG, (2 +1).

It G(z+1)=0,then go to step 9. Else put
S(t+1):=G(r+1) US(¢) and go to step 7.

Step 7. Put Oy (2t + 1):= A, fork€eS(t+1)NS,. Find
u,(t+1)foreach kK €S(z+ 1) by solving for a semi-tran-
sient player 2 control stochastic game the LP problem
LP2 (D (S(t + 1), g(z + 1), w(t), 0°(¢ + 1), {09 (2 + 1):
kES(t+1)]))

Step 8. Put wi(t+1) :=wy(t)if k €S(t+ 1) and
Wit + 1) =up(t + 1) it €S+ 1).

Return to step 2 with ¢ := ¢ + 1.

Step 9. The vector g(z) is now the value vector for the
original game. Further o* and p* are optimal stationary
strategies, if they are chosen as follows: for & € §;, O‘r
and p% must be optimal in the matrix game A.(?), and
for Kk €S,, of and p; must be optimal in the matrix
came /\,; (7).

In proving that in step 9 we indeed obtain a solution
of the game we will show that ineachstage r=0,1, 2, ...
the following eight properties are valid. Here g(—1) is
chosen, such that g(—-1) < g(0) = (=M, -M, ..., —M).
We recall that R(I'), where I' is a player 2 control sto-
chastic game is defined as the set of states & for which

player 2 has an optimal stationary strategy such that
state k is recurrent with respect to P(p).

Ay(t): gi(t)< 2 p(llk, o.(t))g)(t) foreach k €S,
€S

Ay(1): gr()< Z p(llk, j)g,(t) foreach k €S,,j € Ay
&S

Bi(t): gr(t) + wi(t) <r(k, 0,(1),j) +

+ 2 p(llk, o (1) w(t)
(SN

for each K €S, andj € Ay
By(1): gr(t) + wi(t) < Val(Ayx(t)) foreach k€S,
C(r): g(t)=g(t—1)

D(t): Ifg(r)=g(t — 1), then R(I(0°(1))
C R(I(6°(¢t — 1)), and 0.(t)=0,(t —1)
for each k € R(f‘(oc(r)))

E(t):  S(t) NR(T(c°(t)) =0

F(t): Iftg(t)=g(t—1) and G(r)#Q
then w(?t) > w(t — 1).

Since g(—1) <g(0), it follows that A4,(0), A4,(0),
B1(0), B,(0), C(0), D(0), £(0) and F(0) hold. By induc-
tion on ¢t we want to prove that 4,(¢), ..., F(f) hold for

each t € {0, 1, ...}. To this purpose, we need a string of
lemmas.

Lemma 4.1. Suppose gi(t)= max 2 p(llk, i)g,;(t) for
A 1 IES

k€S,. Then Car(o. (1)) C Oyx(t +1).

If, furthermore, property Bi(t) holds, then for all
JE Ak

gk(_f) : Wk(_f) < r(k, GE(ZL ¥ 1).7)+

+ 2 p(llk, ap(t+ 1))w(2).
=S

Proof. Condition (i) of LP1(I'(0°(r))) yields: g.(f) <

< 2 p(llk, 0,(t))g;(t), which in combination with the
=S

assumption in the lemma can only be true if gx(7) = 2
=S

p(llk, i)g(t) for each i € Car(0S(t)). Hence Car(og(t) C
C Oqx(t + 1). This fact in combination with B;(#) implies

k(1) + wi(?) Smin (r(k, 0,(2),7) +
J

+ 2 p(llk, o ()w; (1)) < Val A1) =
1

=min (r(k, o,(t +1),7)+ 2 p(llk, o (¢t + 1)w;(1)).
J =S

Lemma 4.2. Properties A{(t + 1) and A,(t + 1) hold.

Proof. This is an immediate consequence of condition (i)
of ERI(T(o"(z + 1)).

Lemma 4.3. Suppose that A,(t), A,(t), B,(t) and B,(t)
hold. Then ((t + 1) holds.

Proof. Choose the stationary strategy ¢ = (dy, ..., Oy) as
follows. If £ €§,,thentake 6= 0,(f+ 1), and if k €S,,

then let 0x be an optimal action in the matrix game

Ai(t). Let pP be an arbitrary pure stationary strategy.
[t is sufficient to show that V(&, pP) = g(t). By 4,(?),

A,(?) and step 2 of the algorithm, we have

g() <P, , g(t). (1)



O. J. Vrieze et al.: A Finite Algorithm for the Switching Control Stochastic Game 21

which & belongs, p is also optimal in I{0(¢)), and clearly
the state k is recurrent, which shows that R( D(o“(t+1)))C
C.R(INao"(D)).

A consequence of (1) is that the equality sign holds for
the coordinates corresponding to the recurrent states of
Fs,p. We denote this set of states by R(&, p”). For
k€ R(0, pP) N S, this yields:

g(t)= 2 p(llk, o, (¢t +1))g(t) = Lemma 4.5. Suppose A,(t), By(t), B,(t) and E(t) hold.

I=S Then E(t + 1) holds.
=max 2 p(llk, i)g;(¢).
i IES Proof. 1t g(t+1) >g(t), then S(t+1)=0 , and then

E(z + 1) is true. Hence, suppose g(z + 1) = g(z). From

E(t) and R(T"(0(t + l)ﬁ)) C R(T'(0°(¢))) (Lemma 4.4) it

follows that S(z) N R(T( UC(__z‘ +1)))=0. It now suffices

gi(t) + wi(t) <r(k, 6, p%) + 2 p(llk, G) wi(r). (2) to show that G(zr + 1) N R(I'(c°(t + 1))) = 0. Using Lem-
=S ma 4.1 and Lemma 3.2 we obtain:

So we may apply Lemma 4.1, obtaining

For kK € R(6, pP) N S, we have by B,(f) and by the choice

g.(1) + wi(2) = Val(Ax(2))  for k € R(T(0°(t + 1)) NS,
of G, noting that Car(p%) C Oy(t + 1):

and
gi(t) + wi(t) <r(k, 6, p5)+ 2 p(llk, p)wi(t). (3) _ | R
IES gi(t) + wi(t) = Val(Ayr(?)) for k € R(T(a°(t + 1)) N S,.
The inequalities (1), (2) and (3) imply: g(7) < Qﬁpp”ﬁpp ~  Hence it follows from the definition of G(7 + 1) in step 6

= V(q, p”). Hence g(z + 1) = g(1). that G(¢ + 1) N R(T(oC(z + 1))) = 0.

Lemma 4.4. Suppose A(t), B,(t) and B,(t) hold. Then

D(t + 1) holds. Lemma 4.6. Suppose A(t), By(t), B,(t) and E(t) hold.

Then F(t + 1) holds.

Proof. Suppose g(t+1)=g(t).Observe that in [(¢°(t + 1))
player 2 has in the states belonging to $; no intluence on

the transitions. Then by Lemma 3.2 we have gy (f) =

= 2 p(llk, og(t+1) - g(t) for each kE€S;. Since
=S

Car(o;(f + 1)) C Oqx(t + 1) this implies gx(#) = max gi(t) + wi(t) <min (r(k, o (t+1),7)+
€A 1k ]

2 p(llk, i) - g(r)forall k €S,. Hence, by Lemma 4.1 + 2 p(llk, of(t + 1)) w(r) (6)

IES =S
for each k € 5;:

Proof. Suppose g(¢ + 1) = g(¢) and G(t + 1) # 0. From
A,(t), B;(t) and Lemma 4.1 we obtain that for £ € 5(¢ +
+ 1) (M Sl i

| and for k€ S(r+1) NS, we see from B,(f):
gr(t) + wi(t) Smin r(k, o, (¢ +1),7) +
}.

+ 2 p(llk, o (t + 1))w(1). (4)
IES

gk(t) +1’Vk(f) éVal(Agk(ﬂ) (7)

As G(t + 1) # @, the strict inequality holds in (6) and (7)
at least in one component.

Since the value of lr‘(a"(r + 1)) equals g(z + 1) = g(7)
and since S(r + 1) N R(T(0°(t + 1))) = @ (Lemma 4.5) it
can be verified that the game f(S(t + 1), 2(¢ + 1), w(t),
o°(t + 1), {O4(t +1); k € S(t +1)})is a semi-transient
player 2 control stochastic game. Namely

(a) Obviously 2 p(llk,7)<1forkES(t+ 1),
I=S(t+1)

Since g(t + 1) =g(t) equals the value of [(o¢(t+1)), Lem-
ma 3.2 can be applied to (4) and B,(?), implying that for
k € R(I'(¢°(t + 1))) the equality sign holdsin the respec-
tive inequalities, which shows that for k €ER( f‘( a“(t + 1)))
the action o(#) is optimal in the matrix game A,x(). So
by step 3 of the algorithm

ol(t+1)=08(t) forallk €R(I(o(t +1))NS;. (5)
(b) the part corresponding to S(¢ + 1) of an optimal sta-

Fix kK €R (I'(¢°(¢ + 1))) and let p be optimal for player 2 tionary strategy of player 2 in the game Lot + 1)),

in [(¢°(¢ + 1)) and such that k is a recurrent state with
respect to p. Then (5) implies, that in the ergodic set to

gives when applied in I'(., ., ., ., .) a transient stochastic
matrix and
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(c) the average reward value equals Op. By (b) it follows
that the value is at most Op. If a stationary strategy p
for player 2 in f(., .. .. ., .) is such that some states of
S(t + 1) are recurrent, then p is bad tor player 2 in view
of St +.1) £ R(T(o°(t + 1))) = (. Hence the best player
2 can do in [ is playing a transient stationary strategy,
resulting in value Oy .

Let for k€ S(t+1)NS,, X, be an optimal action for
player 1 in A,x(f). Then, putting ¥;(1) = 1 if k € S(r +
+1) NS, it can be seen that the pair ({wy(7);kES(r+1) },
(Ri(i); k €S(t+ 1), i€A!}) satisfies conditions (i) and
(ii) of LPE(ﬁ(., .. .. ...)). Butin (6) and (7) at least one
strict inequality sign holds. Hence we obtain for the so-
lution {ug; k€ S(t + 1) }of this LP2 problem: w 2 wy(7)
for all k € S(¢ + 1) with the inequality sign holding for at
least one coordinate (ct. Lemma 3.3).

Lemma 4.7. Suppose A,(t), B,(t), Bo(t) and E(t) holds.
Then By(t + 1) and B,(t + 1) hold.

Proof. If g(t +1)# g(t),then By(f + 1) and B,(r + 1) fol-
low from the condition (ii) of LP1(I0(z + 1))). Suppose
now g(t + 1) = g(f). From F(¢ + 1) (Lemma 4.6) we get
wi(t + 1) 2 wy(t) for each & € S(¢ + 1). By definition
we(t+ 1) =wg(t) for each kES\S(f + 1). So using B;(?),
B,(f) and Lemma 4.1 we then have that B;(f + 1) and
B,(t + 1) hold for k € S\S(z + 1). However by condition
(i) of LP2(T(S(£+ 1), g(t+ 1), w(t). o°(t+1), {0 (1 +1);
ke S(t+ 1)})) it follows, that By(f + 1) and B,(7 + 1)
also hold fork € S(r + 1).

Now, combining the Lemmas 4.1—4.7, we may con-
clude that the assumption “A4,(7), A,(¢), By(7), B,(1),
C(t), D(t), E(t) and F(¢) hold” follows that “A4,(f + 1),
As(t+ 1), Bi(t+ 1), B5(t + 1), CC£+ 1), DAL+ 1),E(1 +1)
and F(7 + 1) hold”. Hence we have

Theorem 4.8. For each t € {0, 1, 2, ...} the properties
Aq(t), A,(t), B{(t), B,(t), ((t), D(t), E(t) and F(t) hold.

Important is the following

Theorem 4.9. The algorithm stops after a finite number
of iterations.

Proof. Parthasarathy and Raghavan [11 | have shown that
an extreme optimal action for player 1 in a matrix game
of payoff type |f(i, 7) + h(i)]4 x5 1s also an extreme op-
timal action for player 1 in some subgame [f(7, J)|axB
with « C A4 (ct. [11], Lemma 4.1,p.381). Applied to step
3 of our algorithm, this means that for each state k£ € 5,
an extreme optimal action will be chosen of some matrix
game (7(K, 1, J) |aqk(t)xA 2k Where o (1) C Ay

O. J. Vrieze et al.: A Finite Algorithm for the Switching Control Stochastic Game

Shapley and Snow have shown that a matrix game has
only a finite number of extreme optimal actions. Further-
more, a matrix game has a finite number of submatrices
and there are a finite number of states, which ensures for
each 7 that

the set from which ¢“(¢) is chosen is a finite one. ()

[t remains to show, that no cycles can occur, i.e. that no
strategy repeats infinitely often.

By the properties C(¢) and F(f) we can see that for
each t exactly one of the following events occurs:

Hl: g(t)>g(t—1),

H2: g(t)=g(t—1),0% ) #F o (t = 1), G(t) # O,
w(t) > w(t —1),

H3: g(t)=g(t—1),0%t)=0(t — 1),G(t) 0,
w(t) >w(t —1),
H4: g(t)=g(t-1),0%t)=0(t -1),G(¢)=0.

Since ['(0°(¢)) only depends on ¢(7) we have in view of
C(1):

if H1 occurs on ¢, then “(m) # 0“(n), (9)

me{tt+1,...}andne {r—-1,t-2,...,0}

Now suppose that from stage 7, H2 repeats itself infinite-
ly often. Since |S(7) | <z — 1 we may assume without
loss of generality that S(z) =S(z+1)=5(r +2)= ... But
then observe that the optimal value of

LP2(I(S(t — 1 +n), g(t — 1 +n),w(t — 2 +n), ot —
—1+n), {Op(t—1+n);k€S(t —-1+n)}))in step 7
of the algorithm only depends on {o,(f— 1+ n);
kES(t-—1+n)=8()}, for each n=1,2,... for the
other parameters do not change.

But since w(t — 1 + 1) > w(t — 2 +1) weget 0“(m +
+n)# o°(m), forn=1,2,...andm=t—-1,t,t+1,...
But then in view of (9) we see:

H2 can not repeat itself infinitely often (10)

Let n be the first time H2 does not occur. Then either
S(n) = @ in which case H1 occurs, or it happens that H4
occurs, or possibly H3 occurs.

[f H3 occurs on ¢, then by the construction of Gy(?)

and G,(t) and by the equality in Lemma 3.3 we see that
G(t) N S(t — 1) = (. Hence:
[f H3 occurs then S(?) strictly includes S(# — 1) (1.1)

As last statement we have:
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I[f H4 occurs then the algorithm stops (12)

Now observe that from (10) and (11) we may conclude
that a sequence in which only the events H2 and H3 oc-
cur can not happen. But then in view of (9) it lasts a fi-
nite number of iterations before H4 occurs, which by
(12) proves the theorem.

Theorem 4.10. Step 9 of the algorithm is reached after a
finite number of iterations and provides a solution to the
game, 1.e. g(t) equals the value of the game and p* and
o* are optimal stationary Strategies for player 1 and
player 2 respectively.

Proof. By Theorem 4.9 step 9 is reached in a finite num-

ber of iterations. From g(f + 1) = g(¢) it follows (cf. the
proof of Lemma 4.4):

gk(f)= max 2 p(”k, 1) g;(t) for eacthSl (13)
ISAq IES

Next observe from Lemma 3.2 that

2,.(¢) = min 2 p(llk,j)-g(t) foreachk€S,.(14)

JEA9 IES

From the definitions of o* and p™ we know:

Car(0;) CO,(t+1), k€S; and

Car(p;) COx(t+1), kES,. (15)
From Lemma 4.1, property B,(¢) and G(z + 1) = Q) we

derive

gr(t) + wi(t) = Val(A (7)), k€S, (16)
and
gr(t) + wi(t) = Val(Ay (1)), kES;. (17)

Let p” be an arbitrary pure stationary strategy of player
2. Then from (13)—17) and the definition of o™ we in-

fer:

g(1) < Pg*ppg(ﬂ

ge(t) + wi(t) <r(k, of, p2)+ X p(llk, o)wA1),
(SN

kES,

gr(t) + wi(t) Sr(k, o, pR) + Z p(llk, p2)w, (1),

es
kES,.

(18)

(19)

(20)

Similarly for an arbitrary pure stationary strategy o” of
player 1 we derive from (13)—(17):

g(t) =P, g(1) (21)
gi(D) +wi(t) = r(k, o}, p) + Z p(llk, pR)wy(1),

IS
kES,) (22)

gr(t) + wi(t) Zr(k, of, pi) + Z p(llk, pi)wi(t),

1=S
Now (18)—(23) imply
Qosop Torpp = &(1) 2 Qopp* Topp - (24)

Since 0 and p? are arbitrary, application of Lemma 3.1
to (24) results in

min V(o*, m,y) 2g(t) 2 max V(m, p*),

Ub, 4

which shows the theorem. ]

We conclude this paper with the remark, that our al-
gorithm provides a constructive proof of the existence of
the value and of optimal stationary strategies for both
players for the switching control stochastic game. Also
the fact, proved by Filar [4], |5 ], that player 1 (2) has an
optimal stationary strategy o* (p*), such that for k € §;
(k €8,) o (py) is an optimal action in a matrix game of

the form [r(k, i, 7))oy ixdqp (PR, 1 1) 14 1 xaqy)> Where
a1 C Ay (asx C Asx)), can be derived from our algo-
rithm. Furthermore the finiteness of the algorithm proves

the ordered field property (ct. [5]).
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