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T o Ereis RAGHAVANI, Sl TIJS2 and O0.J. VRIEZE

Abstract. In this paper we introduce a new class of two-person stochastic

’ games with nice properties. For games in this class the payoffs as well

as the transitions in each state consist of a part which depends only on
the action of the first player and a part dependent only on the action of
the second player.

For the zero-sum games in this class we prove that the orderfield

property holds in the infinite horizon case, and that there exist optimal
pure stationary strategies for the discounted as well as the undiscounted
payoff criterion. For both criteria also finite algorithms are given to
solve the game. An example shows that for non-zero sum games in this class,

* there are not necessarily pure stationary equilibria. But if such a game

possesses a stationary equilibrium point, then there also exists a stationary
l equilibrium point which uses in each state at most two pure actions for

each player.

Key Words. Game Theory, Stochastic Game, Pure Stationary Optimal Strategy,

Additive Stochastic Game.
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1. Introduction

We consider stochastic games of the form F=={S,{As;ses},{Bs;ses},r,p}.

Here S := {1,2,...,2} is the state space and the finite sets A_ and Es

are the action spaces, available to the players I and II respectively,

in state s. Further r = (rl,rz) is a vector valued function with domain
. : 2
T = dilsL, 3 €S, ieA_, JEBE} and range R, where r, and r, are the

reward functions of players I and II, respectively. Finally,

p = {p(tls,i,j); teS, (s,i,j)eT} prescribes the law of motion, where

p(tls,i,j) denotes the probability that the state moves from s to t when

i and j are the actions of the players in state s. Of course, for the

transition probabilities we have p(t|s,i,j) 20 and Ppltls;i;3) = 1 for
t

all “(s,15,3) €Ts

We say that the game I possesses additive rewards if for all

(s,1,]) €T

rl(SrlrJ) r11(5,1)+r12(5,j)

rztsrlrj) r21(5,1)+r22(s;3)

for some functions Liq1T901T9g and r,, on the appropriate domain.

The game I' is said to be controlled by one player, say player II, if
p(t|s,i,j) = p(tls,i',j) for all i,i'azAS and all s,t €S and je:Bs. We
write p(tis,i,j) = p(tls,j) if no confusion is possible. Thus in such
games the transition probabilities are not influenced by player I.

The game I' is said to be a switching control game if the states can be

partitioned into two sets S, and S

p(t‘s,i) and for s<:52, p(tls,i,j) - p(tls,j). That is, the law of

motion from states of S1 is independent of the action of player II and

similarly the law of motion from states of S, is independent of the

2

actions of player 1I.



The game I is said to possess additive transitions if, for all (s,i,j) €T,
p(t]s,i,j) = pl(tls,i)+pz(t|s,j), where Py is a function of the state
-and the action of player I and P, a function of the state and the action
of player II.

The game is called a zero-sum game 1if r,+r, = O on T. Otherwise the

game is called a nonzero—-swum game. In the following we suppose that the
players have an infinite horizon. A play proceeds as usual in stochastic
games (cf. Ref.l). We will be concerned with both discounted and un-
discounted payoffs. The state and actions on the T-th day will be denoted
by sT, iT and jT.

A stationary strategy £ for player I consists of a z-tuple
f =(f1,f2,...,fz), where fs is a probability distribution on AS. Intuitively

this means that when the game is in s, player I, when adopting f as

strategy, chooses an action according to f_. A behavioural strategy u is

a sequence Mg = (uo,ul,...) where on the t-th day UT(SO,lO,JO,Sl,ll,jl,...,

i ,sT) is a probability distribution on AS , which depends on the
T

history hT = (50,10,]0,51,...,jT_l,sT) up to the t-th day. A stationary

t-1'71-1

strateqgy £ for player I is called pure 1if fS is degenerate for each s €8S,
p B - fS selects a particular action with probability 1. Let g and v be
similarly defined as stationary and behavioural strategy, respectively,

for player II.

Let VB(u,v)(s) denote the pair of expected B-discounted rewards when u

and v are the strategies of players I and II, s is the starting state

and the discount factor equals B € Lo, 1). Thus

o

- oot o - T Ly 5
VB(u,v)(s) = (Equ(TiOB rl(sr'lT'JT))'Euus(TiOB r2(ST,lT;]T))).

Here Euus denotes the expectation with respect to u,v and initial state s.

The second important evaluation rule in vogue is the so called undiscounted

(or average) payoff defined by



T T
1 1
Vi (usv)(s) = (liminf 'E Cole=—=i 3Rl poisL e s )) slimsuptE (==——-FL r. 8. ;% ;3.9
1 Hvs T+1 20 RS, ity i HVS A1 D P IR SR S
Here again S5 8 is the starting state. When r,tr, = O we denote by VB,

vl, etc., the payoff corresponding to player I.

In this paper special attention is paid to the class of stochastic
games with additive rewards and additive transitions (ARAT-games). Zero-
sum ARAT-games turn out to have nice optimal strategies and there are
simple algorithms to solve such games as we will see in section 2. In the

last section 3 some results for non-zero sum ARAT-games are derived.

2. The zero-sum case

A zero-sum stochastic game is said to possess a value if for each
S E€S:

inf sup UB(u,v) (s) = sup inf V
v W U v

(n,v) (s) =: V_(s) (1)

B B

Here equation (1) corresponds to the undiscounted case if B = 1.
* i
Strategies ¢ and v for players I and II, respectively, are called

optimal strategies if for each s €S:

(M, ) (s) = V. (s) (2)

inf V (u*,u)(s) = V_(s), sup VB q

v P ; W

Shapley introduced stochastic games and showed in his fundamental
paper (Ref.1l) that B-discounted stochastic games have a value and that
both players possess stationary strategies which are optimal for each
starting state. That is inf and sup can be replaced by min and max in the
above equations (1) for B e€[0,1). However, for undiscounted stochastic
games the existence of a value was unknown till recently (cf. Mertens
& Neyman, Ref.2). In general, however optimal strategies even in the
class of behavioural strategies may not exist for this evaluation rule.
Thus, without further restrictions on the rewards or the law of motion

one cannot hope for stationary optimals.



If stochastic games have to be solved in finite steps one has to hope
for the orderfield property. A zero-sum stochastic game is said to have
‘the orderfield property if the coordinates VB(S) of the value of the
game and the coordinates of suitable optimal strategies lie in the same
ordered subfield of the reals as the data of the stochastic game.

Stern (Ref.3) in his Php thesis first proved the existence of a
value in stationary strategies for undiscounted stochastic games controlled
by one player. Parthasarathy‘and Raghavan (Ref.4) showed, that for this
class for both discounted and undiscounted payoffs the orderfield property
holds. Also they gave a linear programming algorithm for solving these
games, when the payoffs are discounted. Vrieze (Ref.5) and independently
Hordijk and Kallenberg (Ref.6) gave a linear programming algorithm for
solving these games with undiscounted payoffs. Filar (Ref.7) proved the
existence of a value in stationary strategies for switching control
stochastic games and he proved that also for this class the orderfield
property holds. Vrieze et al (Ref.8) have given a finite step algorithm
to solve these switching control games.

In looking for stochastic games with the orderfield property and
optimal stationary strategies one needs conditions on the immediate pay-
offs or on the transition probabilities or on both. We note that one
player control games and switching control games can be considered as
subclasses of games with additive transition functions. For such games:
p(tls,i,j) - pl(tls,i)+p2(tls,j), and if P, = 0, then such a game reduces
to a player II controlling stochastic game , and if for each s €S,
pl(t‘s,i) = 0 for all (t,i)fzSKAS or pz(tls,j) = 0 for all (t,j)fESst,
then the game corresponds to a switching control stochastic game . Thus
a natural question to ask is whether games with additive transition
functions admit stationary optimals and whether the orderfield property

holds for this more general class.



Shapley's theorem implies the existence of stationary optimals in the
discounted case. For the undiscounted case we have good indications
that optimal stationary strategies exist. However we have not yet been
able to prove this. The following example shows that the orderfield

property does not hold.

Example o

0 -1 = | 0 -1 <> 1
-1 2 »> 2 -1 1 -+ 2
L i .
s v + v
1 2 1 2
state 1 state 2

In both states the player controlling the transitions is determined

by the toss of an unbiased coin, after the players have chosen their
action. The arrows associated with the pure actions indicate the state
to which the game moves when that player controls the transitions.
Trivially, the transition function is additive.

This game can also be written as

state 1 state 2

where a box corresponds to an immediate payoff € and a

jump with probability y to state 1 and probability 1-y to state 2.

For B €[0,1) the B-discounted value (V_.(1),V_.(2)) is given by the

B B

unique solution of



O+Bv1 —1+%ﬂvi+é6v2
v, = Val 1 ' and v. = Val
—1+§ﬁvi+§8v2 2+Bv2

=

Both matrix games are completely mixed, resulting in

| 1
v, = —{Bv1(2+8v2)-(—1+aﬁv

1 2
1% 2 +5PV,5) )

1
=3 1 i
Vi = E{Bvl(1+Bv2)—(—1+§ﬁv1+38v2) )

Combining (3a) and (3b) yields

4v1*8v1(2+8v2) = 3v2-8v1(1+5v2) or

1
Yoy, = 3{4—B)v1

Substitution of (4) into (3a) results into
4 =B (2+lﬂ(4-B) )—(-l+lﬁ +lﬁ(4—8)v )
Yy T mMglatg ¥4 I T 1

which leads to

12(12-B)-12v144-248 _ -6
-28° (1-8)

VB(I) = Vl =

O+Bv1

1 1
—L+§Bvi+§ﬁv2

2

(1-B) (12-B+Y144-24P)

Since the value of the undiscounted game with initial state s =

lim (1-B)V

g4+1 F

-1+—fv +—HBv

(3a)

(3b)

(4)

(5)

1 1
2 Xk 2

1+Bv2

1 equals

(1) it follows by (5), that neither for the discounted case

nor for the undiscounted case the orderfield property holds, by noting

that Vl(l) is irrational, while the game parameters all are in the

rational field, and that for the rational discount factor B = =

1
2:

vV,(1)

B

is also irrational. This gives an indication that in order to obtain a

nice solution of the game, one has to look for a further constraint

on the game components. Such a constraint is additivity of the rewards.

When the rewards and the transitions are both additive the problem 1is

manageable as we will show below. Related work on additive games can

be found in Parthasarathy & Raghavan (Ref.9) and Himmelberg, et al.

(Ref.10).

A main result for ARAT-zerosum games is given in the following theorem.

——
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Theorem 2.1. Let the rewards and transitions be additive in a zero-sum
stochastic game I'. Then there are pure optimal stationary strategies

for both players for discounted as well as undiscounted payoffs. Further-
more, the orderfield property holds for both criteria. Also there are
pure stationary strategies for both players which are uniformly optimal
for all discount factors sufficiently near to one.

Proof. The following is well-known (cf. Bewley & Kohlberg Ref.11). For

a zero-sum stochastic game with finite state and action spaces, there

exists a series

k/x
K -1
W(a) = Zk:-m wk(u(l-u] )
: . ={ Z .
in fractional powers of a(l-a) and vectors w, € IR as coefficients,

kK
such that for each Be (0,1), sufficiently near to one, W(B) equals the

value VB of the B-discounted game. Moreover W(a) satisfies for each

s €S the so called limit discount equation:

W (a) val [G_(W(a))], (6)
S S

A XB
S S

where the (i,j)-th cell of the matrix game [GS(W(a)}] has content
g(s,i,j) = r(s,i,j)+ﬂEtp(t|S;i,j)Wt(a). (7)

Here the matrix game [GS(W{u))] is a game in the field of real Puiseux
series (cf. Bewley & Kohlberg, Ref.1l1).

Furthermore it is known that the value of the undiscounted stochastic
game equals (cf. Mertens & Neyman, Ref.2):

w_ = lim (1-a)W(a) (8)
K
atl

In general optimal actions for the matrix game in (6) are quite complex
and belong to the same Puiseux field as to which W(a) belongs. However

for an additive game, GS(W(a)) can be decomposed as follows:



G (W(a)) = G, _(W(a))+G
S S

(W(a) ), where
1 S

2
g,(s,i,3) = r (s,i)+al p, (t[s,i)W (a) and

g,(s,i,3) = r,(s,3)+aZ p,(t]s,3)W _(a).

So GIS(W(Q)) has identical columns and st(W(u)) has identical rows.

But then, when solving GE(W(u)), player I only needs to consider
GIS(W(u)) and player II only needs to look at st(W(u)). This observation
results in the fact that both players have optimal real pure actions in
the limit discount equations. Let f* be a pure stationary strategy for
player I such that f: is an optimal action in [GS(W(a))] for each s €S
and let g* be similar for player II. Then by the theorems 6.1 and 6.2

of Bewley & Kohlberg, Ref.1l1l, it follows that f* and g* are uniformly
discount optimal and optimal for the undiscounted case.

That for each B € [0,1) both players have optimal pure stationary
strategies can be shown in a similar way. Namely when in (6) we replace

@ by a fixed B€[0,1) and W(a) by VB, we obtain Shapley's equation for
the B-discounted game. Again the matrix game [GS(VB)] can be decomposed
into a part independent of player I and a part independent of player II.
Application of Shapley's theorem does the rest. The orderfield property
for the discounted case follows from the fact that for a pair of
stationary strategies the associated discounted payoff is a rational

function of B, and for the undiscounted case then the orderfield property

follows from (8). [Cf. Ref.4]. []

Knowing that the orderfield property holds for ARAT-games, we now have

an indication that there exists a finite algorithm. We do not know whether
for ARAT-games there exists a one-step solution method, like solving one
linear program. But for the discounted and also for the undiscounted
criterion we will indicate now a finite step solution method. For the
discounted ARAT-game the method of Hoffman & Karp (Ref.12) can be used,

which proceeds as follows.



(i) Choose Vel = M(l—B)_llz with M := min ris;1i,9) and
. (S, £,3)eT
1= (1,1,...,1) e IR . Put T := 0.
o ; T T T T
(11) Determine for player I a pure stationary strategy £ = (fl'f2""'fz)'

o
such that f; 1s an optimal action for player I in the matrix game

[Gs(vr}] for each s € S (¢f. (6) and (7)).
(iii) Solve for player II the discounted Markov decision problem which
results when player I fixes £'. This can be done for example by

solving one linear programming problem. Let v be the optimal

T+1

value of this problem.

(iv) If Vg # o put T := T+l and return to (ii); else stop.

It is straightforward to show that ¥ a1 2 V. componentwise and when £l

is not optimal then v # Vs That in step (ii) of the algorithm player

T+1
I possesses optimal pure actions in [GS(UT)] follows again from the fact
that GS(VT) can be decomposed into a part only depending on player I

and a part only depending on player II. Since in each iteration player

I strictly improves his strategy and since there are a finite number of
pure stationary strategies it is clear that the algorithm stops after a
finite number of iterations.

For the undiscounted additive game a finite algorithm can be developed
which resembles the algorithm of Vrieze, et al. (Ref.8). Like the
algorithm above of Hoffman & Karp also this algorithm can be described
by the term "value oriented policy iteration". We will not give this
algorithm in detail here, but indicate how the algorithm of Vrieze,

et al (Ref.8) should be adapted. (The notations in their paper are used.)
Throughout the algorithm we have S1 = S and 82 = @. Further

UC(T] = {UE(T);kesl}, Tt=0,1,2,..., is a pure stationary strategy now,
with as consequence that F(UC(T+1)) 1s a Markov decision problem. This
Markov decision problem can be solved by the same LP1. More changes are

not needed. The proof that also this modified algorithm stops after a

finite number of iterations proceeds in the same way as in Vrieze, et al,
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using the fact that there are a finite number of pure stationary

strategies.

3. The nonzero-sum case

For nonzero-sum games the concept of equilibrium points 1is relevant.
* * o o . . .
A pair of strategies (p ,v ) forms an equilibrium point if for all

strategies Yy and v:

* * * * * *
(ued ) S V.. (4 ,v ) and sztu ' V) (0 ;v ) (9)

VBl 81 s VBZ

Again, in (9) to B = 1 we associate the undiscounted case.

It is well-known for the discounted case that there exist equilibrium
points of stationary strateqgy pairs. (Refs. 13 and 14). For the un-
discounted version in general the existence of equilibria is unknown.
For different subclasses of stochastic games this problem is settled

by Rogers (Ref.14), Federgruen (Ref.l15), Parthasarathy & Raghavan (Ref.
4) and Parthasarathy, Tijs & Vrieze (Ref.16). In view of the results

of the zero-zum case, the question arises whether for nonzero-sum ARAT-
games, there exist equilibrium points of pure stationary strategy pairs.

The following example answers this question in the negative.

Example 3.1. Consider the stochastic game with 4 states given by:

rewards (0,0) (2, 0)
(0,0) o o (0.0.0,4) e
d rVy l'2 (3;3]
}
11 3 4
(1;-6) o I (Z,EFO,D]
4
D0y ikt ey covinsteionn s BEARE 2 . BEate 3 ., State 4
2 8 8 4
state 1

In the more usual notation state 1 is described by
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211
8'4'8'4

——

The states 2,3 and 4 are absorbing.Both players have two pure stationary

strategies corresponding to choosing their first and second action res-

pectively in state 1. Let us denote these strategies by fl,fz,gl and g2
respectively.
1 k 2
Take B = 5 When we compute Vl (£ 3g) forn=1,2, k=1%1,2and &= 1,2,
z
then we obtain
-
2] 2,2 (4%, 22)
F (10)
. 5 2 10 4
Pl Vet Wyt
1 2
g a
1 2 . .
For example VI (£f°,9 ) can be computed as the unique solution v of
E&
1 1 11 1.-1 1 3 1 -1 2
= - -, (1-— —.—(1-= e ' ' = 44—,
v 2-+2 3 v-+2 3 & 2) -+2 4(1 2) 3, resulting in v 3

From (10) it can be seen that there exists no equilibrium point in pure
stationary strategies and that for this example the unique equilibrium
point 1n stationary strategies is completely mixed.

Also for the undiscounted case examples of ARAT games can be constructed
without an equilibrium point in pure stationary strategies. Like in the
general case also for nonzero-sum ARAT stochastic games there may be

several equilibrium points with different payoffs to the players. Further-

more, examples show that for such games the ordered field property fails

to hold. In the following, for x € IR we define Car(x) as the set

Car(x) := {k; xk#O} and for a finite set T, |T| denotes the number of

elements of T.
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For discounted nonzero-sum additive stochastic games we have the next

remarkable theorem.

Theorem 3.1. If for a discounted nonzero-sum ARAT stochastic game the

* *
pair (f ,g ) forms an equilibrium point of stationary strategies, then

L o

(£ ,q) = V.. (f
Bl l’g ) = Bl rg);

* * e ~ ~
= < <
VB2(f ' g ) UBz(f,g) and such that |Car(fs)| < 2 and ]Car(gs]| < 2

there exists an equilibrium point (;,;), such that V

for each state s € S.

N * x %
Proof. Let (f ,g ) be a stationary equilibrium point and let Vl = VBl(f ' g )
% x %
and V2 = VBZ(f ,9 ). This is equivalent to
* x  * *
max(r, (s,i,g )+BIp(t|s,i,g )V,) =V (11)
: 1 A s’ 1 1
1 t
and
% W e ool o oK
méx(rz(s.f5,31+8ip(t‘Safer)Vz? = Vz (12)
J

*
where the maximum in (11) is reached at least for each itzCar(fs) and

*
in (12) the maximum is attained at least for each jeECar(gs).

By the additivity of the game, (11) and (12) are equivalent to

_ R * L S N
méx(rll(s,1)+8£p1(t|s,1)V1)+r12{5,g5)+8292(t|s,gS)V1 = vl (13)
3 t o
and
(s, £ )+BE s, £V,
r,, (s, f_ +R pl(t s, s) -

. _ * *
. -+m?x(r22(s,J)+Bipz(t\s;])V2] =V (14)

2

- x % , %
Put Wl = r12(s,g5)+8ip2(t‘s,g5)vl. Since 9. = r12(5,g5)+8ipz(t‘s,gs)vl
1s a linear function of the weights gs(j) on the pure actions, there

i~ i~ +* e~
exists a g_ with Car(g_ ) < Car(g ) and ICar(gs)| < 2 such that
i~ Pt > -+ P~

W, =r ,(s,g )+BIp,(t|s,g )V,. Hence replacing g by g_ does not disturb

1 2 S . 2 s 1 S S

~ *

equations (13) and (11) and since Car(gs) - Car(gs) the maxima in (14)
and (12) are reached for each je:Car(gs). This procedure can be carried

out for each state s € S and also for player I by considering

* * *
W, = rzl(s,fs)+ﬁip(t|s,fs)vz. This leads to



~ ~ x *
- T L =
max(rl(Srlrgs)+B*P(tlSflrgs)vl) Vl (15)
2 3 E
and
£ ,3)+8Ip(t]s, £ ,9)vo) = v, 6
max(rz(sr S:])'FE'--P tl-‘-‘-’r Srj)vz) = Uz (16)

j t
for each s € S, where in (15) the maximum is attained at least for each
i.eCar(?s) and in (16) the maximum is reached at least for each
thCar(Es). Hence (g,al forms an eguilibrium point and

. e * x * ~ i~ * * *
vBl(f,g) ok vBl(f ,g ) and sztf,g) o N sz(f e P O
Example 3.1 above shows that theorem 3.1 cannot be sharpened. An
analogous statement like theorem 3.1 can be given for the undiscounted
case. However the proof is far more complicated using Markov chain
theory and Markov decision theory. Moreover we do not know whether for
the undiscounted case equilibria of stationary strategies always exist

r

though we have good reasons to believe that this indeed is the case.



