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TOTALLY BALANCED MULTI-COMMODITY GAMES AND FLOW GAMES

Jean J.M. DERKS and Stef. H. TIJS, Nijmegen, The Netherlands

ABSTRACT

Game situations are considered, where each coalition, by cooperating,

can obtain and distribute commodity bundles from a prescribed suitable
subset of the commodity space. Examples of such commodity games are
multi-commodity flow games arising from controlled multi-commodity
flow situations. In this paper conditions are given,guaranteeing that
a commodity game can be represented by a controlled multi-commodity
flow situation. The results can be seen as extensions of a result of
Kalai and Zemel for one-commodity flow games.

1. INTRODUCTION

[In a recent paper Kalai and Zemel [7] studied one-commodity f1ow
situations where the arcs in the network are possessed by different
owners. They proved that the corresponding side payment game (SP-game)
1s totally balanced using the well-known max-flow-min-cut theorem of
Ford and Fulkerson [4]. In [7] they also showed that a totally balanced
SP-game may be seen as a flow game by proving that each non-negative
totally balanced SP-game can be expressed as a minimum of a finite
collection of additive SP-games.

Totally balanced SP-games occur in many other optimization problems
with a control system. Examples are market games (Shapley and Shubik
[10]), linear production games (Owen [9]) and permutation games (Tijs
et al. [11]). In Dubey and Shapley [3] and in Kalai and Zemel [6]
sufficient conditions are given to quarantee the total balancedness

of SP-games arising from a controlled optimization problem.
In this paper we consider multi-commodity games (MC-games). Con-
trary to SP-games, the pay-offs to coalitions in an MC-game consist of

commodity bundles. In Derks and Tijs [2] multi-commodity flow situations,
in which arcs are controlled by owners, are considered. Such flow
situations give rise to MC-games which are totally balanced. In [2] it

1s proved that for such games there exists a stable outcome, i.e. a
distribution over the owners of a Pareto optimal commodity bundle,

attainable for the grand coalition, in such a way that no subcoalition

has an incentive to split off. This extends the result of Kalai and
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Zemel [7] that one-commodity flow games have a non-empty core. We note
here that by adapting the proof of theorem 4.1 in [2] it is possible
to show that all balanced multi-commodity games have a stable out-

come.

In section 3 we start elaborating the question raised in [2]:

Can totally balanced MC-games be represented by controlled multi-
commodity flow situations? For totally balanced one-commodity games the
answer is yes as was shown by Kalai and Zemel [7]. It turns out that
the answer of the above question is yes if we consider totally

balanced polyhedral MC-games or if we allow infinite networks.

In section 4 we introduce strictly balanced MC-games and prove
that balanced polyhedral MC-games and two-commodity flow games are
strictly balanced. It is shown that the strict balancedness property for
two-commodity flow games asserts that not all totally balanced MC-
games are MC-flow games if we exclude the use of infinite networks.

We conclude with an open problem and summarize the obtained

results in section 5.

2. PRELIMINARIES

In the following we consider a network D (directed graph) with
node-get: Pl.i=-{1:25....5} and ave set L = {1.25...5t). Insaddition,
N := {1,2,...,n} denotes the set of owners (player set) of arcs and
G := {1,2,...,m} the set of commodities, which are involved in con-
trolled transportations from the source 1 € P to the sink s € P.
The ownership function 0 : L - N assigns to each arc & € L, 1ts con-
troller or owner 0(2) € N. Finally, c : L > ]ﬂf is the capacity
correspondence, which assigns to each arc £ the non-empty subset c(g)
of the commodity space Iﬂf. For the arc 2 the capacity set c(2) con-
sists of the commodity bundles which can be transported through arc 2
in one unit of time. In this paper it is assumed that the capacity sets
are suitable, i.e. are compact, convex and comprehensive. (A subset C
of ]ﬁf is called comprehensive if y € C for any element y of Iﬂ?, when-
ever there is an x € C such that y < x). For an interpretation we
refer to [2]. Summarizing, a controlled multi—-commodity flow situation
(CMCF-situation) is described by the four-tuple T = < D,c,N,0>.

We now give a sequence of definitions together with some comments



337

and elementary results.
(i) A flow in T (from source 1 to sink s) is amap f : L » Pﬂ} with
the following properties:

(F.1) f(2) € c(2) for each 2 € L (Feastbility property).

(F.2) z{f(2) : 2 starts in node p} = £{f(2) : ¢ ends in node p}

for each p € P-{1,s} (Conservation property).

(F.3) ©{f(2) : 2 ends in the source 1} = 0 (Source property ).

(F.4) <z{f(2) : & starts in the sink s} = 0 (Sznk property).
(1) The value v(f) of a flow f in T is the amount of commodity,
leaving the source 1. Hence, v(f) := z{f(2¢) : 2 starts in the source 1}.
(i11) For any subset A of the arc set L the flow value set FA(F) cor—
responding to A 1S the set of all possible values of flows in T which
only use the arcs in A. Hence,

FA(P) = {yEDfn:y=v(f) for some flow f in I with f(2)=0 for all 2€L-A}.

The set F(r) := FL(F) 1s called the flow value set of T.

For each A < L the set FA(F) 1s suitable. The proof is straight-
forward and therefore omitted.
For one-commodity flow situations one may use the already mentioned
max-flow-min-cut theorem for characterizing the flow value set (CFf.[3]),
[2]). If more commodities are involved a similar theorem is not avail-
able anymore. However, some generalizations to multi-commodity networks
have been obtained. For a survey of these results and of algoritmic
approaches we refer to Assad [1], Hu [5] and Kennington [8].
(iv) Let S < N be a coalition of owners. Then L(S) is the set of arcs
controlled by S. Hence, L(S) = {2 € L : 0(2) € S}.

(v) The correspondence V_ : o Iﬂf, which assigns to each coalition

S € ZN the flow value sei FL(S)(P),is called the multi-commodity flow
game (MC-flow game) arising from I'. It is a game, where the pay-off
set VF(S) of a coalition S consists of all those commodity bundles,
which can be sent by the coalition S per unit of time from source 1 to
sink s, without using arcs in the original network which are owned by
agents outside the coalition.

(vi) A correspondence V : 2N

- Dﬂf, which assigns to each coalition
S € 2N a suitable subset of the commodity space Hﬂf, 1s called a multi-
commodity game (MC-game) if also V(@) = {0} is satisfied.

For each S € ZN, V(S) describes the possible commodity bundles
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which can be obtained by S if the players in S cooperate. Examples of

MC-games are MC-flow games. Note that one-commodity games can be 1den-

tified with non-negative SP-games.

(vii) Let V1

V1 N VZ’ the intersection of V1Nand VZ’ is the correspondence which

assigns to each coalition S € 2~ the suitable set V1(S) N V2(S).
Note that V1 n v

Lemma 2.1. A finite intersection of MC-flow games with the same player

and V2 be two MC-games with the same player set N. Then

) 1S an MC-game.

set is an MC-flow game.
Proof. It is sufficient to show that the intersection of two MC-f1ow

games Vr and Vr is an MC-flow game. Consider the CMCF-situation T
1 2
obtained by combining ¥ and I, as shown in figure 1, where the sink

of [y and the source of Iy have been melted together. It is easily
verified that the MC-flow game Vr corresponding to I' 1s the inter-

section of V and V_ . @
¥ &

source r2

sink T
¢ 1

¢ .
source rl sink r2
= source T sink T

figure 1. figure 2.

(viii) An MC-game V with player set N is called additive 1f there
exists a correspondence o : N » Dﬂf, assigning to each player J the
suitable set «(j) of the commodity space I{E, such that

V{S) = zjesm(j) for all non-empty coalitions S € 2N.

The sum on the right hand side is an algebraic sum of subsets of RT.

We often identify the correspondence o« with the game V and write

&) Anetead ofllS) Sor ol Sie 2%

Lemma 2.2. Additive MC-games are MC-flow games.

m
e
Consider the CMCF-situation r, as shown in figure 2, with node set

Proof. Let V be an additive MC-game corresponding to « : N - R

P = {1,2}, arcset N, capacity correspondence « and where arc j belongs
to player j for each j € N. Of course, the MC-flow game Vr equals V. =
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3. TOTAL BALANCEDNESS FOR MC-GAMES

In this section we consider the family of totally balanced MC-
games and show that the set of MC-flow games 1s a subset of this family.
Furthermore, we give in theorem 3.3 a characterization of total
balancedness in terms of additive MC-games. This characterization
enables us to show that all totally balanced MC-games can be identi-
fied with an MC-flow game if we allow infinite networks. For poly-
hedral MC-games finite networks turn out to be sufficient.
Definition 3.1. An MC-game V, with player set N, 1s called balanced

if for each map A : 2N +~ R_, with the balancedness property

A (S) = 1 for all j € N, (3.1)

1 3ES

SEZ

we have

Es N A(S)V(S) < V(N) . (3.2)
€

V is called totally balanced 1f each subgame of V 1s balanced, 1.e.
for each coalition S « N the restriction of V to the family of subsets
of S, which is an MC-game with player set 5,is balanced.

Examples of totally balanced MC-games are additive MC-games. Also
an intersection of totally balanced MC-games i1s totally balanced.
Moreover,

Theorem 3.2. An MC-flow game 1s totally balanced.

Proof. Let VF be an MC-flow game corresponding to the CMCF-situation T.
Any subgame of Vr 1S, again, an MC-flow game. The;efore, YE: T8
sufficient to show that Vr 1s balanced. Let A : 2"+ R, be a map with
the balancedness property (3.1). We prove that V.. satisfies (302 FOF
each S € 2N, consider an element yS of VT(S).The setV_ (S) equals the flow
value set FL(S)(F) which 1implies that for each S EZN. there ex1sts a

flow fS with value y~ and

F2() =0 for'all 2 €L - L(S). (3.3)

Consider the map f : L - R, with f(¢) = & A(S)fs(i) forall: g, € L.
4 sz’

Trivially, f satisfies the flow conditions (F.2), (F.3) and (F.4). The
only flow condition to check is the feasibility condition. Using (3.3),

we obtain

F) =y \ A(S)fs(ﬂ) for all & € L.
Se2,0(2)€ES
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Since & N A(S) = 1 and fs(i) € c(g) for all S € 2N with

Se2 ,0(%)€ES
0(2) € S, we conclude that f(2) is a convex combination of elements of

c(2) for each arc 2 € L. The convexity of c(z) yields f(2) € c(2).
Hence, f is a flow in I'. Of course, the value of f equals

) A(S)yS implying that & ,‘«(S)yS is an element of V_(N). =
Glip sl :
Theorem 3.3. An MC-game is totally balanced 1f and only 1f 1t 15 a

countable intersection of additive MC-games.

Proof. The "if" statement is trivial. Therefore, we confine ourselves
to the proof of the "only if" statement. Let V be a totally balanced
MC-game with player set N and commodity set {1,2,...,m}. Let M be a
real number such that

VES) & B v= [y € H{E DX, < M for all 1 € {15256 s0sm}s.  (328)

M
Consider for each z € QT the non-negative SP-game 2 defined by

N

v_(S) = max z-x for all S € 2.

Z X€EV(S)
For each S € 2N the comprehensiveness and closedness of V(S) yield
V(S) = nzeoT QLeR 1 2 £ (8]} (3.5)
: is totally balanced (cf.[2]) for each z € QT and,
therefore, 1t can be expressed as a minimum of a finite collection,

The SP-game v

say {vz = 1 € IZ}, of additive SP-games (see Kalai and Zemel [7]).
Hence,

oflg LE . N

VZ(S) = rnmielZ vz,i(s) = m1n1€12 EjES Vzaj({J}) for all S € 2.

(3.6)
Consider for each z € QT and 1 € Iz the additive MC-game

: m -
A, g N - IR+ defined by

Y m . .
az,i(J) = (€ R, 32X 5-Vz,1({3})} n B, for all j € N. (37)

(The set BM assures the boundedness of ., 1-(j) vhenever z has zero
components. The boundedness property 1S needed to state that . 1S
an additive MC-game.)

From (3.5) and (3.6) we have

4 m . _ |
V(S) o” ﬂzeom {x € R+ s X im}nielzszSvZ,i({J})}
+
m _ \
= () : : : ] . |
g TEDy  TgEsthY DSBS v, ;{3 for all se2
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Using (3.4) and (3.7) we obtain

702 S e ST Wl il
z 9

Now the set U - IZ 1s countable. Therefore, the theorem is proved.

Z€®+ g

Definition 3.4. An MC-game V is called polyhedral 1f for each S € ZN
the set V(S) is polyhedral.
Let V be a totally balanced polyhedra MC-game. For each S € ?2

N

there 1s a finite subset ZS of’]ﬂf and scalars bZ of IR+ for all
Z € ZS, such that

V(s) = [x € R} & 2:x < b.J.

anZS — 2

By adapting the proof of theorem 3.3 such that the role of QT 1S now
taken over by the finite set U coN ZS’ one shows that V is a finite
intersection of additive MC-games. Using the lemmas 2.1 and 2.2, this
implies

Theorem 3.5. Totally balanced polyhedral MC-games are MC-flow games.

Not each totally balanced MC-game can be expressed as a finite
intersection of additive MC-games as the following example shows.
Example 3.6. Let V be the two-commodity game with 3 players where
V({j}) = {(0,0)} for each j € N = {1,2,3},

(1,2})=((x1.%;) € B : 0 < x, < 1, x, = 0},

) = {(x1,x2) € Iﬁi ;

) o=l fxq9%5) € 1R X3 + X, < 1} and

VIN) = 2(V({1,23) + V({1,3})+ V((2,3))) (see Figure 3).
)

3 % =l s0ug iR 8N,

A(1,0)

PP B ol Y

One can easily verify that V is totally balanced.
Claim. V is not the intersection of a finite number of additive two-

commodity games.
.i

Proof. Suppose {a : i € I} is a finite collection of additive two-

commodity games with

) s N
V(S) = nyep (255 @'(3)) forall s e 2",
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We note first that if for an 1 € I the set ui(N) coqtains an element
(1+6,0), with § > 0, then from {(1+6,0)} U V(N) Cﬁa1(N) and the con-
vexity of ui(N) it follows that o (N) contains an element (1,%+€) with
- > 0. This implies that there is a k € 1 such that

KN N (x € RE: x, > 1, x5 > 0} = {x € R%: x,=1, 0<xpy<p) (3.8)

because V(N) =N Y(N) and I is finite. From (3.8) and

el

((1.0)) + oK(3) < V({1,2}) + o«X(3) c a"(N) it follows that
K(3) e x € B¢ xp = 0,0 <% <7l (3.9)
Similarly, from {(1,0)} + uk(Z) c V({1,3}) + uk(Z) c:ak(N) we con-
clude that
K(2) e tx € B i x; =0, 0 <x <) (3.10)
From (3.9), (3.10) and V({2,3}) c:uk(Z) + uk(3) & {x€ Héz; gt 05
0 < x, < 1} = V({2,3}) we obtain K (2) =B (3) = Ix € RO 0z, =0
0 < x, j_%}. Since (1,0) € V(N) c af(N) = I ER R R® : x, =0,
0 < x5, &iflidhe: iset ak(1) contains (1,0) and, therefore, uk(N) con-
tains (1,0) + (0,1) = (1,1) which is in contradiction with (3.8).
Hence, we have proved the claim. —

If we allow an infinite number of nodes anq arcs in a network,
the intersection of the countable collection (a' : 1 €N} of
additive MC-games with player set N can be seen as an MC-flow game
as follows. Consider the CMCF-situation I with node set IN and arc
set L = {ﬁij .1 € N, j € N}, where Eij starts at nqde i and ends
at i+1, its owner is j and its capacity set equals a1(j). In T no
sink is specified. Without proof we state

: R
FLis)(T) = Nien Zjes @ L)
Theorem 3.3 now implies

Theorem 3.7. Each totally balanced MC-game 1s an MC-flow game 1f

infinite networks are allowed.

4. STRICTLY BALANCED MC-GAMES
In this section we introduce a new property for balanced MC-
games. We show that this property holds for balanced polyhedral MC-

games. It is interesting that all two-commodity flow games also turn

out to have this property. From this we conclude that not all totally
balanced two-commodity games are two-commodity flow games.
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Definition 4.1. Let V be a balanced MC-game with player set N and vy

an element of V(N). V is called strictly balanced in y if for each

map A : 5 R, with the balancedness property (3.1) and elements

yS of N (S} ifor alliSie 2N, such that y equals & NA(S)yS, the

following holds: €
for each T € ZN with A(T) > 0, there exists an € > 0 such that for
3l ] %<€ V(T) with ||x—yTi[ < £, we have

y + X - yT € V(N).

V. 1s called strictly balanced if it is strictly balanced in each
element of V(N).

It follows directly from the definition that a balanced MC-game
V- 1s strictly balanced in each element of the interior of V(N). The
palanced two-commodity game V in example 3.6 doesn't possess the strict

balancedness property. To show this consider y = (1,3) € V({1,2,3}).

Consider also the map x» with x(S) = % if [S|=2and 2(S) =0 otherwise,

and y{1’2} = y{1’3} = (150, y{2’3} = (0,1) and yS = 0 otherwise. Of

course, y = LcoN A(S)ys. Let T = {1,3} and x° := (Vﬁ-(éc)21éz) € V(T)
ut := 5((1,0) + (Vqtz§25) 605107 = £3. & 5V4t2?25+£5) € V(N) with

c € (0,11 . For all e € (0,1] we have ||x5-y'|| < e and

y+ x5 -y = (- (36)2, 3 + 3e) > uF (4.1)

anda

Fiom i(431) s ¥ % %% & yT Z u- and the Pareto optimality of u” in V(N)
we conclude that y + x~ - yT ¢ V(N) for all € € (0,1]. Hence, V is
not strictly balanced in (1,3%).

Theorem 4.2. A balanced polyhedral MC-game is strictly balanced.

Proof. Let V be a balanced polyhedral MC-game and y, ), yS with S € 2N,

and coalition T as in definition 4.1. Thus A(T) > 0 and it is
immediate from (3.1) that A(T) < 1. Now we use the following property
for a polyhedral set U. For each u € U there exists a ¢ > 0 such that
the e-neighbourhoods of u in U, with 0 < ¢ < &, have similar shape.

This implies that for each u € (0,1] and x € U with ||x-ul| < ué there

exists an X € U, with |[X - ul] < 8, such that x = uX + {1-u}u.
Applying this property to the polyhedral set V(T) and yT € V(T) we

obtain that there exists an ¢ > 0 such that for all x € V(T), with
|x-y'|| < e, there is an ¥ € V(T) such that x = A(T)X + (1-2(T))y .
Hence,

y + x - yT =y + A(T)X - A(T)yT = ES€2N_{T}A(S)yS+ AT )%e (4.2)
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From (4.2), the balancedness of V and x € V(T) we conclude that
y + X - yT € V(N). &
Theorem 4.3. Each two-commodity flow game is strictly balanced.

Proof. Let VF be a two-commodity flow game corresponding to the CMCF-
situation I with player set N and commodity set G = {1,2} and suppose
that VF is not strictly balanced in an element y of VF(N). Then there

exist a map X : oN +~ R_, satisfying (3.1) and elements yS of VF(S)

N S

for each S € 2, such that y = ZoeoN A(S)y~ and there is a coalition

n T
Yy

T with A(T) > 0 and a sequence x1,x%,... in V_(T) with lim__x
and
y +x" - y' ¢V (N) for all n € N. (4.3)

Let f1, fz, ... be a sequence of flows in I such that v(fn) - x" and

f0) = 0 for all 2 € L-L(T) and n € N. Without loss of generality
we suppose that there i1s a flow fT such that

Fl(2) = Vim___ £"(2) for all 2 € L. (4.4)
Of course, (4.4) implies v(f') = y' and £'(2) = 0 for all 2 € L-L(T).
N S

cor each S € 2M-(T1 let > be a flow in T with value y° and f2(2) = 0

for all ¢ € L-L(S). Then f := ooy A(S)F> is a flow with value
y = ZSeZN I\(S)yS (see the proof of theorem 3.2).
T

For each n € N the map gn .= f+f '-f  on the arc set L is not a flow
T
)

in T since otherwise v(gn) = v(f) + v(f") - v(f') =y + x" - yT € F(r)s=

VT(N) which is in contradiction with (4.3). However, g satisfies the
flow conditions (F.2), (F.3) and (F.4) and it also satisfies the
feasibility property (F.1) for all ¢ € L-L(T) since for these arcs
gn(ﬁ) — f(£)+fn(£)-fT(£) = f(2)+0-0 € c(2). Therefore, for each n € N
there is an arc, say Rn, in L(T) such that gn(ﬁn) ¢ c (M)

arc set L(T) is finite, there is an arc, say 2*, in L(T) such that

. Because the

gn(ﬁ*) ¢ c(2*) infinitely often. Again, without loss of generality, we
suppose that

gﬂ(ﬂ*) ¢ c(e*) for all n € IN. (4..5)
In the sequel of the proof we need the existerce of an M€ IN such that
9" (2*) > 0 for all n > M. (4.6)

To prove (4.6) we distinguish two cases.
(1) Suppose (f(a*))r >0 foranr € G = {1,2}. Choose Mr € IN such

that (F1(2%)) -(f"(2%)) < (F(2*))_ for all n > M_. This is
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possible since 1imn+mfn(£*) = fT(ﬁ*). Hence, (gn(ﬂ*)) > 0 for
all n > M.

(i11) Suppose (f(f.*))r = 0 for an r €G. Then EeeoN M (S)(f (%)) 2.0,
yilelding (fs(ﬂ,))r = 0 for all S € ZN with 2 (S) > 0. Especially,

(£1(2%)) = 0. Hence, (g"(2*)), = (f"(2%)_ > 0.

Choosing M > min {Mr P G (f(ﬂ*))r > 0} we obtain (4.6).

Now we proceed with the proof in such a way that we will derive two

different elements u and w from c(2*) with the property that, for n

S

sufficiently large, gn(ﬁ*) 1S majorized by a convex combination of u
and w. Applying now (4.6) and the convexity and comprehensiveness of
c(2*) we obtain a contradiction with (4.5).

From (4.5), (4.6) and Vi, g"(¢*) = f(2*) € c(2*) we conclude that
f(2*) is weak Pareto optimal in the set c(2*). Because c(2*) is com-
pact and convex, there exists a z E:IRE, | [zl = 1, suéh that

z-f(2*) = max ZoX (4.7)

xec(g*)
Moreover, it 1s possible to express f(2*) as a strict convex combination

of two weak Pareto optimal elements, say u and w, of c(2*). To prove

this let u := f (2*) and w := (=0T 2 oN_ 12 (S)F2(2%). Now w is

properly defined because if A(T) = 1 then y+x '-yT = ZSEZN-{T}A(S)YS +

A(T)anEVF(N), using the balancedness of Vr and x" € VF(T) for all

n € IN. This is in contradiction with (4.3). Therefore, A(T) # 1. The
T

balancedness property (3.1) asserts 0 < A( ) < 1. Hence,
0 < alT) < 1. (4.8)

Of course, f(e*) = X(T)u+(1-A(T))w and u € c(2*). Also w € c(2*)
because w is a convex combination of elements of the convex set c(g*)
sinceN(1-A(T))_1ES€2N_{T}A(S) = 1 and f2(1*) € c(2*) for all

S € 2 -(T}.

Now u # f(2*) because otherwise g"(g*) = u+f (2%)-u = fl(ex) €c(e*)

for all n € IN, contradicting (4.5).

Using U # f(e*), f(e*) = A(T)u+(1-1(T))w and (4.8) we obtain w # f(2*).
MT)z-u+(1-x(T))z-w < z.f(2*), using (4.7)

and u,w € c(2*). Hence, z-f(2*) = z.u = z.w which implies the weak

Furthermore, we have z-f(¢*)

Pareto optimality of u and w in c(2*).

Consider a' := q"(g*) + (z-f(e*)-z-q"(2*))z for each n € IN. Since

||z]| = 1, we have z-a" = z.f(5*). Moreover,

gn(ﬁ*) j_an for all n € N, (4.9)
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since z € ]RE (2
QSing zou = Z+F(2%); fl(g*) € c(2*) and (4.7)

o"(1*) = f(i*) we obtain lim a" = f(2*). Because

O

and z-f(ﬁ*)-z-gn(ﬂ*) = z.fT 0 %)=z (2*) = zeu-z-F(2%)>0,

From 11m
n

—C0

u,w,f(2*) and a', for all n € N, are elements of the line

{x € IRZ: z.x = f(2*)} and f(¢™) is a strict convex combination of u
and w we conclude that a" is a convex combination of u and w for
sufficiently large n. The convexity of c(2*) and u,w € c(2*) now imply
a" € c(o*) for n sufficiently large. Combining this with (4:9); (44:6)
and the comprehensiveness of c(¢*), we conclude that gn(ﬁ*) € c(a*)

for n sufficiently large which is in contradiction with (4.5).

Therefore, the correctness of (4.3) cannot be maintained which
finishes the proof. o
The totally balanced two-commodity game in example 3.6 1s not
strictly balanced as we saw earlier. So for that MC-game there doesn't

exist a CMCF-situation corresponding to that MC-game. Hence
Corollary 4.4. The family of totally balanced MC-games properly con-

tains the set of MC-flow games.

5. CONCLUSION

We have proved that multi-commodity flow games are totally
balanced and that totally balanced MC-games can be seen as an inter-
section of countable many additive MC-games which implies that such
games can be represented as MC-flow games if we allow infinite net-
works.
To summarize our other results let TBMC denote the family of totally
balanced MC-games, FMC the family of MC-flow games on finite networks,
FIA the family of MC-games which are a finite intersection of additive

MC-games and PMC the family of totally balanced polyhedral MC-games.
Then we have

PMC <« FIA <« FMC < TBMC.
7 7

Open 1S
Problem 5.1. Coincides FIA with FMC?

Or: Is it possible to express each multi-commodity flow game as a

finite intersection of additive multi-commodity games?
If the answer is yes, this will imply that the strict balancedness 1s
not a sufficient condition for an MC-game to assure that such a game

is an MC-flow game. To see this, consider the two-commodity game V'
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with V'(S) = V(S) for S # {1,3}, where V is defined in 3.6, and

-

2

VI({1,3}) ={x € R™ : 0 <Xy =1, x, =0}. The MC-game V' is strict-
ly balanced but in a similar way as in 3.6 one shows that V' ¢ FIA.
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