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POOLING: ASSIGNMENT WITH PROPERTY RIGHTS

Jos A.M. Potters and Stef H. Tijs
Nijmegen, The Netherlands

ABSTRACT: Pooling situations and two cooperative games related
to them are considered.

Pooling situations are assignment problems under the presence
of property or option rights. The Owen vectors of the two
cooperative games related to a pooling situation exhibit a
kind of consistency which makes both methods of evaluating

the pooling situation equivalent.

An example shows that this does not hold for the core, the
Shapley value, the nucleolus and the t-value.

1. INTRODUCTION

The subject of this paper is the question what can be
gained by pooling option or property rights and how the joint
profit, earned by this way of cooperation, should be divided
among the pooling partners. A pooling situation occurs, when
owners of mutually replaceakle commodities are willing to
give up, for the time being, their property rights in order
to reach a more profitable reallocation of the commodities.

In this context replaceability includes that it is possible to
ccmpensate a person by means of money for the replacement of

a quantity of one commodity by the same quantity of another
commodity. This places the paper into the domain of transferable
utility. Once, when the optimal allocation has been found, the
joint profit is divided in a way which takes the original
property rights into account. In this paper it does not matter
whether the commodities considered are infinitely divisible or
are only available in indivisible quantities.

Permutation games as studied in [3] and [18] provide good
examples of pooling situations. They describe a situation in
which n persons all have one job to be processed and possess
one machine on which each job can be processed. No machine 1s
allowed to process more than one job. If player 1 processes
his job on the machine of player j, the earnings will be

Eij 3 J_.{_I_ .

The players look for a permutation of the machines
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which maximizes the total earnings and so, in fact, they are
pooling their machines.

Another example is provided by a firm with several divisions,
each of which has its own secretarial staff. By pooling the
secretaries, there can be made a more efficient use of the
services of the secretaries.

Pooling situations give rise to two rather independent
problems. The first problem asks for an optimal allocation of
the commodities involved. This turns out to be a real- or
integer-valued linear programming problem (L.P. problem). Since
real-valued linear programs attain their optimal value also
in extreme points of the set of feasible points, it is
interesting to know these extreme points exactly. In section
2 we shall give a procedure to find, in the case of pooling
situations, all the extreme points of the feasible set. The
second problem, how to divide the joints profit, we attack
with tools provided by cooperative game theory. To each
pooling situation we define a cooperative game (with side
payments) in such a way that the worth of a coalition is the
maximal earnings which the coalition can gain by pooling only
the commodities of its members. The cooperative game, obtained
in this way, turns out to have a non-empty core. Since core
elements are defined by the property that no subcoalition can
strictly gain by dividing the maximal earnings of the coalition
over the members,they provide an answer to the second problem.
But we can do better; after minor changes the cooperative
games related to pooling situations fit perfectly well into
the framework of linear production games as initiated by
Owen in [11] (for more general results see Granot [6] and
Dubey/Shapley [4]). Owen proves the non-emptiness of the core
Oof production games by showing that divisions of the joint
profit according to the value of the resources of the players
under so-called shadow prices are core elements. We shall call
the core elements obtained by the use of shadow prices, the
Owen vectors of the pooling situation and these will have
our special attention. There can also be defined another

cooperative game related to pooling situations. In fact this
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game is a generalization of the assignment game of Shapley/
Shubik [16]. The player set of this game consists of the
pooling partners as well as the pooled commodities.!) The
worth of a coalition S €« N U M is the maximal earnings which
S can obtain by cooperation under complete neglection of the
ownership relations. The second cooperative game related to
a nooling situation can again be seen as a production game
but now core elements (or Owen vectors) attributes the joint
profit to the pooling partners as well as to the pooled
commodities. A main result of this paper states a kind of
consistency between the Owen vectors of the both cooperative
games related to pooling situations. An example in section 3
will show that more familiar solution concepts as core,
Shapley value, nucleolus and t-value do, in general, not
have this property.

The paper is organized as follows. After two examples
of pooling situations, we give in section 2 a formal definition
of a pooling situation and introduce the two cooperative
games, related to it. Further we shall discuss briefly the
extreme points of the set of feasible reallocations. A forth-
coming paper will give a more thorough discussion of this
subject. A direct proof of the non-emptiness of both the cores
is also provided.
In section 3 we recall the results of Owen on production
games, prove the consistency of the Owen vectors of the two
cooperative games related to pooling situations and provide
the counter-example. In section 4 we discuss sOme topics

which are related to our problem.

2. POOLING SITUATIONS AND RELATED COOPERATIVE GAMES

Before giving a formal definition of a pooling situation,

we start with two examples.

ExamEle 2.1. (Hotel Reservation) Before the season travel

1) This approach is less peculiar than it may look at first
glance if we remember that in the second example above the
commodities were (the services of) secretaries.
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agencies Tl""’Tn make reservations for rooms in the hotels
Hl""

rooms in hotel Hj for which travel agency Ti made reservations.

JH of a holidays resort. Let 0ij denote the number of

This means: during whole the season travel agency Ti has the
right to lodge up to Oij of his clients in hotel Hj and hotel

Hj has the obligation to take inup to that number of guests

from Ti' Let s. = X Oi' be the total number of reserved
1EN
rooms in hotel Hj' Further, let Eij € IR be the net earnings

which Ti can achieve by lodging one of his clients in hotel
Hj (for a week e.g.). In order to absorb fluctuations in the
demand for rooms during the season, the travel agencies
decide to pool their reservations i.e. in lodging their
clients the travel agencies need not consider which agency
made reservations in which hotel. They simply lodge their
clients such that the joint earnings are maximal. Suppose
that in some week travel agency Ti has di guests to be lodged.
If for i e N={1,...,n} and j EM = {1,...,m} the number of
guests, which hotel Hi takes in from travel agency Ti, 1s
denoted by Xij’ then the NxM-matrix X has to satisfy the

following constraints to be feasible:

Ry e Frowvigida-and’ - Xia @8y For adlrd. i€ N and
. jem +J T ien *3 —
: all 5 € M;

In this case, moreover Xij € Z+ where Z+ is the set of non-

: : : : M
negative integers. So,we have to find an NxM-matrix X € fo

such that

lNX < s and X 1M < d (2.1)
which maximizes X*E = B X..E.. where 1., is the vector
. . > iy Pl 3 N
N 1EN, JEM
(1,...,1) € IR, s = (sj)jEM and d = (di)iEN'

Example 2.2. (Tea Market) Let us consider the situation in

which traders in tea Tl""'Tn have taken options from tea

producing companies C ...,Cm for the quantities of tea

lf
Oij 3 R, they want to purchase. Let Eij 2 ER+ be the net

profit which trader T, can gain from one unit of tea,
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purchased from company cj'

At the end of the option period each trader knows how much
tea he wants actually to purchase. Let di be this quantity
for each i € N. By pooling their option rights the traders
have the opportunity to raise their joint profit. So, they

look for a real-valued matrix X € IfoM satisfying the con-

straints (2.1) which maximizes the joint profit XxE. The
number Xij denotes, for each i € N and ] € M, the gquantity

of tea purchased by trader Ti from company Cj.

Definition 2.3. A pooling situation is a six-tuple

<N,M,s,d,0,E> where N and M are finite sets with n and m

elements respectively, s € IRT, e ]]RE, E € IFG{TxM and
NxM : 1
O € IR, with 1NO = S.

The set of feasible distributions of a pooling situation
<N,M,s,d,0,E> consists of the NxM-matrices X with the

NX < s, XlM < d.

We denote this set by 0.If we, moreover, ask for integer-

properties X > 0, 1

valued matrices X, this set is denoted g

The first problem, we mentioned in the introduction, 1s to
find a feasible distribution X € © (or 0') which maximizes
X*xE.

To find an optimal solution of this problem we can use what
Kuhn [10] baptized the Hungarian method after rediscovery
of the results of K6nig [9] and Egervary [5]. We can also
describe a procedure which generates all the extreme points
of the set 0 of feasible distributions. This proceeds as
follows: Take a subset K €« N and a subset L €¢ M and arrange
the entries of KxL in a linear order. Put on the entries of
KxL successively, according to the given order, the maximal
number which satisfies the constraints up to that moment.
Put zeroes outside of KxL. In this way we get all extreme
points of 0 by varying the set KxL and the order in which
the matrix is filled up. More details and the proof of this
statement will be the subject of a forthcoming paper. An

example may €lucidate the procedure.
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Example 2.4. Let N = {1,2,3}, M={1,2,3,4}. Further 4 = (3,5,6)

and 8 = (2,2,8,1). Suppoese K = (1,2}, L = {1,2,3} and the

linear order of KxL is

(X)) <7025 2) <2, 2) < “(1;3) < (1,2) < (2;3)-

This generates the matrix

N O O0ON
N ONO
0 O W=
= OO0 O
N U W Q

S
as can easily be verified.

Corollary 245

(1) If 4 € zf and s € ZT (the constraints are integer-valued)
then all extreme points of 0 are integer-valued and 0 is the
convex hull of e*.

(ii) Since every step in the filling-up process which

generates value xij > 0 increases the number of completed

rows or columns, there can be at most n+m-1 entries with a

positive value in X.

To attack the second problem, to find a reasonable
division of the joint profit we introduce a cooperative game
(with side payments). A cooperative game (with side payments)
consists of a player set P and a (characteristic) function

P
Ve 242
we take the player set P = N and the value of v on the
coalition S € 2N

can gain inside their possibilities i.e. v(S) is the maximum

+ IR with v(g) = 0. In the case of a pooling situation,

will be the maximal earnings, the coalition

of X*xE where X € ]:thxM (or ZTKM) with the properties
lsx < 150; XlM < d*ls. (2.2}
Here lS is the vector of IﬁN with (15)i = dafeil evsSland

(ls)i = 0 otherwise and dx1. is the vector in IRN with

S
coordinates (d*ls)i = di(ls)i for all i € N.
We call the set of feasible distributions for coalition S, as

described by (2.2), 0(S) and G(S)* respectively. Since
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XlM < d#ls and X > 0 implies that Xij = (0 for i £ S, we can

describe the set 0(S) also by the constraints

1. X <2100 and XIM < dxl (2.2a)

Ni-= 55 S

The first cooperative game related to a pooling situation
<N,M,s,d,0,E> is given by P = N and v(S) = max{XxE | X €0(S)}

for:all coealitions: S - N.

There is another approach to evaluate a pooling situation.

This time we forget for the time being the property rights (i.e.
the matrix O) and take the set N U M as player set.

The cooperative game v gives to a coalition S €« N U M the
maximal earning XxE which can be obtained by cooperation of

the members of the coalition S, neglecting all property

rights. This game is typically a game with two kinds of

players and can be seen as a generalization of the assignment
game of Shapley/Shubik [16].

The worth v(s) of a coalition S € N U M is the maximum of

X*E where X € IRTKM (or foM) with the properties
lanX < ISHM*S and XlSﬂM i-lan*d (:2..3)

We call the set of feasible distributions, as described by
(2.3), A(S) and = respectively. The inequality

1anx < ISHM*S implies that Xij = 0 if jJ € S N M and the

inequality Xlg,, < lan#d implies that Xij =0 1f 1 £ S 0N,

So A(S) (or A(S)T) 4is jalso given by the inequalities

s and  Xl.. < 1 d (2.3a)

Yool & A M < SﬂN*

*
N — "SNMM

Now we can directly prove that the cores of v and vV are non-

empty.

Theorem 2.6. The cores C(v) and C(v) are non-empty.

Proof: By the criterion of Bondareva [1] and Shapley [15] we

have, to prove that I A.ls = 1. with Az > 0. for all S &N
ScN S5 N S —

v(S) < v(N). And in the same way that

implies that Sénks
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Zaolele = lNUM with ¥g > 0 for all S €« N U M implies that
ScNUM 5

> uSV(S) < V(N U M).
SCNUM
Wie shall prove that I A 1. = 1. with A, > 0 implies

SN S S N

EASG(S) < 0(N) and an analoguous statement for A(S).

Let XS €E 6(S) for all S = N. Then lN( 3 ASXS) = 5 ASlNXS <
ScN ScN

ZAlO=lO=Sand(ZlX)l=ZA(X1)~:: b Tty WP ey ; | —
ScN S S o ScN 5 5" M ScN A ScN =
= 1N*d = d.
The proof of ZuSA(S) < A(N U M) proceeds in the same way.

I vi(S) = X_%E; then X . AV(S8) ' = (.3 X VaE 2 V(N), since

S S SHlES —
ScN ScN
}ZASXSEB(N).

ScN
If the constraints s and d are integer-valued we find

% ASB(S)* < 0(N) and along the same lines of argument we
ScN
find, if v(S)" = max{X+E | % €.0(8)");

IAgV(S)™ < max{X+E'| X € 6(N)} and by Corollary 2.5 (i)

B * X
IAV(S) < max{X*E | X € O(N) } = v(N) .

3. OVWEN VECTORS OF POOLING SITUATIONS

In [11] Owen studied the following situation. In a
linear production process there are o products which can be

produced out of r resources. Given is the nroduction matrix

A = (Aij), where Aij denotes the dquantity of resource
i1 €R =(1,...,r} which is used in the production of one
unit of product j € P = {1,...,p}. Further,there is given a

price vector c € Eﬁi of which the j-th coordinate gives the

market price of one unit of product j € P.

Let Q = {1,...,9} be the set of owners of the resources and for each

R

k € Q the vector bk € IR gives the quantities of the resources

which player k € Q possesses.

The linear production game introduced by Owen has player set

Q and the worth of a coalition S is

v(S) = max{c.x | x > 0, Ax < I b}
kES

i.e. v(S) is the maximal revenue which coalition S can achieve.
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The inequality Ax < 2 bk implies that the coalition S can
keES
only use the resources which it owns.

Proposition 3.1. The cooperative games related to a pooling

situation <N,M,s,d,0,E> are linear production games 1n the

sense of Owen.

Proof: In both games the 'products' are pairs (i,j) with 1 €N

and j €M i.e. P = NxM. The 'resources' are the elements of N
and the elements of N i.e. R = N U M. For the production of
one unit (i,j), one unit of resource i and one unit of
resource j is needed. This defines the production matrix A.
The revenue arising from one unit of the product (i,j) is Eij'
In the first game v,related to the pooling situation

<N ,M,s,d,0,E>,the player set Q = N and for each k € Q the

resource vector 1is

bk= (U,...;dk;O,-.-;OFolkr-'*romk)'

In the second game v the player set Q = N U M and the resource

vectors are

Ei (0 ool ulans Ol uians QN € o €N Bnid

o
|
.
O

-
L]
-
-
O
|
L]
0n

3 et g iniQosiictes j""O) LE ). € M o

In order to find core elements Owen investigates the dual
problem of the linear program belonging to v(Q) i.e. minimize

Y b, .y under the condition yA > C and y > 0.
keQ © 5] £
A solution y of this linear program can be seen as a shadow

price vector for the resources and Owen proves that the

vector x = (X ..xq) with Xy /5 bk.§ for all k€ Q 1s a core

]
element. Note that Xy is the value of the resource vector bk
of player k under the price vector Q.

The core elements, in this way obtained, we shall call the

Owen vectors of the production situation.

Example 3.2. Consider the prroduction situation with

production matrix (i), two players 1 and 2,price vector c >0,
and resource vectors bl = (1,0), b, = (022"

Then the linear production game has the following values
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vi(l) = v(2) =0 and v(1,2) = c.

The dual programm to be considered is: minimize y1+2y2

under the conditions Yy € IR, ., Y, € 77 and y1+y2 > c. There
is only one solution Vit i and Vi 5 0 and this gives the
Owen vector (c,0).

If we interchange the vectors bl and b2 we find the same
cooperative game but now the Owen vector is (0,C). The Owen
vector gives account for the relative scarcity of resource 1
in the first production situation and of resource 2 in the
second production situation.

The cooperative games related to the production situations
make no distinction between both production situations.

We compute now the Owen vectors of the two cooperative games
v and v related to a pooling situation. Notice that

O(N) = A(N U M) and v(N) = v(N U M).

The dual program of the linear program which determines

V(N) = v(N U M) is as follows. Minimize y.d + z.s under the
o N M :
conditions y € IR, , z € IR, and yi+zj > Eij for all pairs

(1,3) € NxM. If (§,E) 1s a solution of the dual program,

this shadow price vector attributes in the first game to

.

player i € N the amount X, = diyi + ngOij zj.
The same shadow price gives in the second game to player

i € N the amount ii = d.§i and to player j € M the amount

xg = Sj'zj' So we find the following consistency relation

between the Owen vectors x of the first game and the Owen

vector (x',x") of the second game under the same price vector

X = X'+0'x"

i
where Oij
i.e. Oij = Oijsj if Sj > 0. So, if Ow is the set of Owen
vectors of v and Ow is the set of Owen vectors of Vv, then

is the fraction of Sj which player i possessess

Theorem 3.3. Ow = (I,0')Ow where I is the identity matrix of

size n. -

Remarks: The way in which inthe second cooperative game v
the component x" attibuted to the commodities, is divided

among the owners of the commodities is a very natural one.
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I1f, for example, in example 2.1, hotel (owner) Hj obtains i;
by the Owen distribution and two travel agencies made
reservations for all the rooms of hotel Hj in the proportion
40:60, it seems natural to divide xg in the same proportion
and to give these amounts to the two travel agencies. This
method is so natural that one may wonder whether other
solution concepts may have the same property. The next example
shows that this is not the case for the core, the Shapley
value, the nucleolus and the rt-value. For the definition and
the most elementary properties of these solution concepts we
refer to [14] for the Shapley value, to [13] for the nucleolus
and to [17] for the r=value.

Example 3.4. Let N = {),2}, M= {ILII} and E = [i i]. Further

s =d= (1,1) and O(= 0') = [lgq 1?&] with q,q € [0,1]. The
cooperative game v, related to this pooling situation has

values
v(1) = 2 min (1,g+q), v(2) = min (1,2-g-q) and v(1,2) =3.

The Shapley value, the nucleolus and the t-value of this 2-

person game coincide and has the first coordinate
€ =%v(1,2)+5v(1)+kv(2) =3 +min(1,g+3) -% min(1,2-g-q) =

{-%-+g(q+§) if g+a > 1

e - -
- 4 = mln(-f + % (g+q) ; 1+g+q) .
1 + (g+q) if g+q < 1
The second coordinate is s = 3-t.
Further, (t,3-t) is an element of the core C(v) iff
t > 2 min(1l,g+q) and

- 2<t<l+g+q if gq+q > 1
t < 3 -min(l,2-g-q) i.e. _
2 (g+q) <t<2 if g+g <1

v(1,I) =v(1,II) =2, v(2,I) =v(2,II) =1 and
v(1,2,T,ITT) =3.

The Shapley value ¢ (v) can be computed to be (%
)

122,
¥ Dr3r3l -
The core of this game is C(v) ={(t+1l,t,1-t,1-t)|t € [

0;11%.

|
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Since the nucleolus n(v) is in the core, we know already
n(v) = (t+l1,t,1-t.1-t) for some t € [0,1]. The excesses of
theiicoalitions 41 ,XT} ;. 11sIE};-42,E}). and {2 ,IL). are. zZero.
-t,

Further we find the excesses: e(l) = -t-1, e(2)
el T) i=elTl) = £t=1.

ei(tl,;2,;1) ="e(l;2,;I1) = =t and 'efl;L.IT) i= a(2,T . .1I1) =€t=11

The largest negative excess is max(-t;t-1) and this excess

is minimal if t = %. Hence n(v) = 5,2,2,2). Computing t(v),

we find M(v) = (2,1,1,1) and m(v) = (1,0,0,0) as upper and
— F4) 21 1} = =

lower bound. So 1 (V) §¢2,2,2) = n(v).

Take q+q = 0.9. Then we find:
(I,0)C(V) ={(1.9+0.1¢t,1.1-0.1t) | t €[0,1] #

Cilv). = {(1:8+0.2€,;1.2-0.:2E€) | £€10,;11)

(1,0)4(9) =(33,38) # (1.9:1,1) = & (v)

(I,0)n(v) = (I,0)1(v) = (1.95;1.05) # (1.9:;1.1) = n(v) = 1(Vv)

4. RELATED TOPICS IN THE LITERATURE

(1) Permutation games: In the introduction we already
mentioned that situations which give rise to permutation games
are examples of pooling situations. To make this remark more
nrecise, we obtain the pooling situation with N = M, E

and O = IN'

The first game related to this pooling situation is just the

the identity matrix. Further s = d = (1l,..:;1).

permutation game of [3] and [18] (where costs are replaced
by earnings).

According to a letter of Shapley, which we mentioned in [18],
permutation games can be considered as assignment games
(Shapley/Shubik [16]) by splitting up each player into a
selling and a buying player. The assignment game we get in
this case, is the second cooperative game v related to the
pooling situation. To find core elements of the permutation
games Shapley essentially proposed to take a core element

(= Owen vector) of the assignment game and to apply

(I,0) = (I,I) to this vector, just as we did in theorem 3.3.
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(2) Assignment games: Assignment situations as in [16] fail
to be pooling situations by the absence of ownership relations.
The second approach of pooling situations, the cooperative
game v, neglects the ownership relations and can therefore be
considered as a generalization of the assignment games of
Shapley/Shubik [16] in the sense that sellers and buyers may
dispose or may want to dispose of more than one item of the
indivisible goods.
In a perhaps artificial way we can reform a generalized
assignment situation into a pooling situations by taking N
and M equal to the union of the set of sellers and the set
of buyers.Further we put
@ A e ?
E = and O ;
p ¢ et 'y

|
oF

where A > 0 is the matrix belonging to the assignment game.
In [3] this has been studied for non-generalized assignment

games.

(3) Job matching: This problem studied in Crawford/Knoer [2]
is a kind of assignment problem and all that has been said

about these problems, can be done here.

(4) In the N.T.U. sphere the papers of Kaneko [7] , [8] and
of Quinzii [12] should be mentioned. In particular, the last
paper can easily be extended as to comprehend pooling
situations. The initial endowment with indivisible goods can
renplace the property right matrix O. The utility functions
should be defined on pairs of money and a commodity bundle
consisting of a non-negative number of items of different
commodities.

In particular, the question under what conditions all core

elements are price equilibria may be very interesting.
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