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Abstract: We examine stochastic games with finite state and action spaces.
For the B-discounted case, as well as for the irreducible limiting average

case, we show the existence of (trembling hand) perfect equilibria and give
characterizations of those equilibria. In the final section we give an example

which illustrates that the existence of stationary limiting average equilib-
ria in a non-irreducible stochastic game, does not imply the existence of a
perfect limiting average equilibrium.
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1 Introduction

To keep notations simple we restrict to 2-person stochastic games; the
results can easily be extended to N-person games with N > 2.

A 2-person stochastic game is a finite set of matrices {M;, Ms,...,M,}
corresponding with the set of states S = {1,2,...,2}. The matrix M, has
size m, X n, and the entry (z,7) of M, is given as

plsis, 1)

Here p(s,t,7) = (p(lls,£,3), p(2]s, %, 3);. . 50(2]8,8,3)) € A®,
ri(s,s,7),r%(s,i,j) ER and A*={geR*:¢>0,X{, ¢ = 1}.

The interpretation is as follows: Play can start in any state of S, and
 transitions occur at stages n € N. If play is in state s at stage n, then
independently and simultaneously player 1 chooses ¢ € {1,2,...,m,} and
player 2 chooses 7 € {1,2,...,n,}. The triple (s,?,7) determines a direct
payoff r*(s, 1, j) to player k € {1,2} as well as a probability vector p(s,,7),
which meaning is that at stage n + 1 play will be in state ¢t € S with
probability p(t|s,7,7). In this way the play proceeds from stage to stage
and from state to state.

We allow the players to randomize over their ‘pure’ actions, which means
that in state s player 1 (2) uses some ‘mixed’ action z, € A™(y, € A™).
Now player 1 (2) will choose action 7 (j) with probability z,(z) (v.(7))-

Each player’s interest is to maximize his total income, without making
binding agreements. To achieve this goal each player uses some strategy:
a plan that, at any stage of play, given the current state as well as the
history, tells the player what mixed action to use. The history of play at
stage n is the sequence ((s1,%1,71),(52,%2572)s- -5 (Sn—1,%n-1,Jn—1)) Of past
triples of states and actions that occurred.

A stationary strategy is a strategy for which only the current state

decides what mixed action is to be used, and neither stage nor history play
a role. Hence a stationary strategy for player 1 is simply some z € X :=
* 1 A™; for player 2 it issome y €Y := [[,-; A™.



Each player wants to maximize his own ‘expected total income’. In this
paper we deal with two interpretations of ‘expected total income’: The (-
discounted reward and the limiting average (or undiscounted) reward. Let
R be the random variable denoting the direct payoff to player k at stage
n and let F,,, denote expectation with respect to starting in s and players
using (o, 7). Then:

’75(33037) = Eur((1 —0) i 6" 'R;)

with g € |0,1), is the 3-discounted reward for player k, and

lsso,7) = B (liminfr ok 32— B°)

is the limiting average (or undiscounted) reward for player k.

For B € [0,1] we write 75(0,7) for (5 (1,0, 7)s75(2,0,7)5- . . ,qg(z,a, T)).
In any stochastic game either both players want to maximize their (-
discoun-ted rewards, or they both want to maximize their limiting average
rewards.

Clearly, in general a pair of strategies need not exist which maximizes
" both player 1’s and player 2’s income at the same time. However, if the
players have independently selected their strategies to play the game, then
each of them will be satisfied if his strategy is a best reply to the strategy of
his opponent; for otherwise a better strategy could be chosen. Hence a pair
of strategies which are best replies to one another seems to be a reasonable
and stable solution for the game; stable since no player has an incentive to

deviate unilaterally.

Definition 1.1

A pair of strategies (0*,7*) 1s a [-discounted equilibrium (f < 1) or a
limiting average equilibrium (B = 1) if for all strategies o and 7:
ggle 7)) ='q5l0", 7" ) and 5 (', 1) < 95(0" 7).

In this paper we are mainly concerned with stationary equilibria, i.e. equi-
libria consisting of stationary strategies. The set of stationary equilibria
of a stochastic game I' will be denoted by E(I's) for the f-discounted case
(B < 1) as well as for the limiting average case (3 = 1). Here the em-
phasis is on stationary strategies because such strategies have attractive
properties. If one uses a stationary strategy, then one can disregard stage
numbers as well as the full history of play at all stages. For any fixed pair

of stationary strategies play will take place as a Markov process on the set
of states, which implies that the course of play is well-structured. This



Markov structure simplifies computation of rewards a great deal. For non-
stationary strategies computation of rewards will often be very hard, even
if the number of states is small. Another, more specific reason for focussing
on stationary strategies is given in the concluding remarks (Section 4).
For bimatrix games, stochastic games with just one state and only one

stage to play, the following theorem is well-known (see Nash, Ref. 1).

Theorem 1.1
For every bimatriz game there 1s at least one equilibrium.

For bimatrix games Selten (Ref. 2) introduced the perfectness concept.
The idea is as follows: Suppose you are playing an equilibrium, but your
opponent has a trembling hand and might make small mistakes. Then your
strategy should not only be a best reply to his equilibrium strategy, but to
certain small perturbations of his strategy as well.

Selten (Ref. 2) introduced the notion of ‘perturbed game’ to investigate
« such perfect equilibria. We will now extend Selten’s definitions to stochastic
games.

Definition 1.2

Let T' = {M,,M,,...,M,} be a stochastic game, with mized action space
A™s (A™) for player 1 (2) sn state 5. For each s € S, let e, € R™
(2 € R™ ) such that €}(i) > 0 for all 1+ and X% €l(t) < 1 (2(5) > 0 for

all 7 and 372 €%(5) < 1). Such a pair (¢',€*) 1s called a mistake pair.

The (€', €?)-perturbed game 1s defined as the stochastic game I'(e', &%) given
by {M;,M,,...,M,}, but where, for all s player 1 (2) is restricted to mized
actions - ALY = {x, € A™ : z,(1) = e;(3) for all 1} (resp. A3 with
sitmilar definition).

Let X, (Y,2) be the set of stationary strategies of player 1 (2) in I'(e',€?).

Definition 1.3

A pair of stationary strategies (z,y) € X X Y 1s called perfect if there
exists a sequence of mistake pairs {(e'",&*") : n € N} converging to 0, and
a sequence {(z",y") € E(I's(e',e*")) : n € N} converging to (z,y).

Thus, for B < 1 we speak of perfect B-discounted pairs and for f = 1 we
speak of perfect limiting average pairs. The set of perfect equilibria, 1.e.
perfect pairs which are equilibria, of a stochastic game 'y, f € [0,1], will
be denoted by PE(Ip).



Theorem 1.2
For every bimatriz game there is at least one perfect equilibrium.

This theorem has been proved by Selten (Ref. 2).
In Section 3 we show the existence of perfect equilibria for #-discounted
stochastic games as well as for irreducible limiting average stochastic games;
we also give characterizations of perfect equilibria for these cases. A stochas-
tic game is called irreducible if for all pairs of stationary strategies the re-
lated stochastic process on the set of states is an irreducible process. Recall
that the idea behind the trembling hand perfect equilibrium is that players
not only want to play a best reply to each other’s strategy , but want to
play a best reply to small perturbations thereof as well. Implicitly this
means that the rewards function, 3-discounted or limiting average, should
be continuous on the set of stationary strategies. The -discounted rewards
function is continuous for any stochastic game while the limiting average
. rewards function certainly is not. To have continuity of the limiting average
rewards function one needs the irreducibility property (or at least that for
any pair of stationary strategies there is precisely one ergodic set).

In Section 4 we give an example to illustrate phenomena that may occur
in non-irreducible stochastic games.

First however,we state some useful facts about stationary strategies in
Section 2.

2 Preliminaries

For (z,y) € X xY and k € {1, 2} the following notations, facts and lemma’s

will be used in the sequel: For Remarks 2.1 and 2.2 we refer to Kemeny and
Snell (Ref. 3), for Lemma 2.1 we refer to Shapley (Ref. 4) and for Lemmas
2.2 and 2.3 we refer to Blackwell (Ref. 5).

Notation 2.1

ro(zy) = (r"(l,ml,yl),r"(2,$2,y2),...,r"(z,:z,,yz)), where r*(s, z,,¥.) =
B E?;l ms(i)r"(s, 1, ]-)ya (7)-

Notation 2.2
P(z,y) s the z X z-matriz of which entry (s,t) s p(t|s,Zs,ys), which 1s

M,

given by p(t|s, z,,¥s) 1= L1ty X721 Ta(2)P(E]s,2,7)ys (1)



Notation 2.3

Remark 2.1
P(z,y) and Q(z,y) are stochastic matrices, s.e. all entries are nonnegative

and all row sums are 1.

Remark 2.2
Q(z,y)P(z,y) = Q(z,y) = P(z,y)Q(z,y).

Lemma 2.1
v5(z,y) ts the unique solution v*(z,y) € R? of the equation

v¥(z,y) = (1 — B)r*(=z,y) + BP(z,y)v:(z,y).

Lemma 2.2
,-),i: == Q(:J:,y)r"(:c, y) T limﬁ—d ’Tg(ma y)

Lemma 2.3
There exists a unique w*(z,y) such that:

Q(z,y)w*(z,y) =0 and v¥(z,y) + w*(z,y) = rk(z,y) + P(z,y)w"(z,y).

Remark 2.3

If the stochastic game is irreducible, then all entries of Q(z,y) are strictly
positive and all rows of Q(z,y) are equal to the unique stationary distribu-
tion of the stochastic process with transition matriz P(z,y).

From lemma 2.2 and remark 2.3 one directly obtains:

Remark 2.4
For an irreducible stochastic game v¥(s,z,y) = v{(¢,z,y) for all s,t € S.

We also introduce the following notations (cf. Lemmas 2.1 and 2.3) which
will enable us to relate best strategy choices in the multiple states and
infinite horizon problem to best action choices in single state and single
stage problems:

Notation 2.4
Let (z,y) € X X ¥Y,8€5,a € A™ and b€ A",



() Forf <1,
(,OE(G,S,Z,Q) = (1 = ,6)7‘1(8,&, yﬂ) =1 IBE:;I p(tlsﬁa’i y,)'yé(t,:c, y)’
pi(b,a;2,9) =1 =P)ri(s,2.,0) + 83— p(t]s, zs,0)75(tZ, 1),
and

oi(a,s,z,y) :=rl(s,a,y,) + Ti, p(t]s, ¢, v.)w (¢, z,9),
3 (bys,zsy)e=rt(5,%,0) 4 21y p(tls, z,,b)w*(¢, z, ).
(11) For B € [0,1],
Bj(s,z,y) := {a € A™ : p;(a, s, z,y) = max, sf’ﬁ(a,s,w,y)},
Bi(s,z,y) :={b€ A™ : pj(b,s,7,y) = max, pg(b, s,z,y)}.
(11i) For B € [0,1], z* € X and y* €Y,
pL(z*,z,y) = (ph(z1, 1, 7,9), 05(23, 2, 2, ¥), - - - , 5 (235 2, T, U)),
03(y*, T, y) == (Pi(v1,1,2,9), 05(v2,2, T, Y), - - ., 5 (U35 25 2, ).

Observe that Lemma 2.1 and Notation 2.4 directly imply the following
remark.

Remark 2.5
05 (Ts, 8,7, y) = 73(8, 2, y) and ©5(ys, 8, z,y) = V5(s,z,y) for all B € [0,1).

The importance of these definitions becomes clear in the following lemma’s:

Lemma 2.4
For a stochastic game ' let z,z* € X ,y€ Y and f < 1.

(i) If vslz’, 2,9) < %5(z.y)., then q5(2,9) < (7 y)-
(32) If pj(z*,z,y) £ v5(z,y) , then v5(z",y) £ v5(z,y)-
(35) If p5(z*,z,y) = v5(z,y) , then v5(z*,y) > v5(Z, y).
(iv) If o3(z*,z,y) 2 15(z,v) , then v5(z*,y) Z v5(z,v)-

The discerned cases in the above lemma can be proved using an iteration
argument.

Lemma 2.5
For an irreducible stochastic game let z,z* € X andy € Y :

(3) If pi(z*,z,y) < 4i(z,y) + w'(z,y) , then vi(z*,y) < (=, y).
(1) If pi(z*,z,y) £ 7i(z,y) + w'(z,y) , then 71(z*,y) £ 1z, y).
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(is1) If pi(e", 2,y) 2 n(z,0)+ w'(z,y) , then 1 (2% 1) 2 1tz v):
(iv) If pilz’,2,9) Z Nilz,y) + w'(z,y) , then vz, 9) Z ni(z,¥).

Each of the cases in the above lemma can be proved by mutiplying both
sides of the inequality with Q(z*,y) and using Lemmas 2.2, 2.3, Remarks
2.3, 2.4 and Notation 2.4.

The next lemma follows directly from Lemmas 2.4, 2.5 and Definition 1.1. It
uses the functions tpg to characterize stationary equilibria in the stochastic

game.

Lemma 2.6

Let again (z,y) € X X Y. For f <1 as well as for T irreducible and = 1:
(z,y) ts an equilibrium if and only if for all s € S

©5(Zs, 8, T,y) = max, py(a,s,z,y) and

W%(ys: Sy L, y) — IIladXxp (p?i(ba Sy L, y)-

~ In the following lemma we characterize stationary equilibria in a perturbed
stochastic game I'5(e?, €*), using the sets Bg. Verbally the lemma says that
if a pair of stationary strategies is an equilibrium, then there can only be
surplus weight on actions that are among the best; conversely, if for a pair
of stationary strategies all actions that have surplus weight are among the
best, then this pair of strategies is an equilibrium. We use e; (f;) to denote
the ‘degenerate’ mixed action: choose action i (j) with probability 1.

Lemma 2.7
Let T' be a stochastic game, let (¢',e*) be a mistake pair and let (z,y) €

Xe1 X Ye2. For B < 1 as well as for T srreducible and 8 = 1, the following
statement holds:

(z,y) € E(Tp(e’,€*)) if and only if for all 5,7 and 3:
[z,(1) > e}(d) = ¢; € Bg(s,z,y)] and [y,(5) > €2(J) = f; € Bf,(s,:z:,y)].

Proof:
The proof is analogous for the two discerned cases, so let 8 € [0, 1].

(i) The ‘only if’ part.
Suppose (z,y) € E(I's(e', %)) and for some s* and 1*: z,.(3*) >el(7*)
and e;- € Bj(s*,z,y). Take ¢' € By(s*,z,y) and define ' € X,1 by:
T, =z, for s £ 8" and zl.(3) := z,+(s) for v & {s°,3'},

8




. (¢') := z,.(¢') + z,-(¢*) — €1.(4*) and z.(¢*) := €,.(s*).

Using the linearity of pg( ,s,z,y) we derive that: .
ph(z)., 8", 2,y) > pg(zee, 8"z, )

(and (=), s, z,y) = ©p(zs,8,2,y) for all s # 82

which contradicts (z,y) € E(Ts(e',€?)) (cf. Lemma 2.6).

(ii) The ‘if’ part.
Suppose for all s,2 and »:
(z,(3) > €l(¢) = &; € Bj(s,z,y)] and [y.(5) > €5(5) = f; € Bs(s,z,y)]-
Then, using that pg(a,s,z,y) = 315 a;pp (e;;'8, =, y) forall @ € A™,
we derive that pj5(a, s, z,y) < pp(zs,8,z,y) forall a € Afi'. Similarly
one can show that (,of,(b,s,:z,y) < goz(y,,s,z:, y) for all b € A:‘g In
view of Lemma 2.6 this implies that (z,y) € E(Ts(e!,€?)). C

3 Perfect Equilibria in Stochastic Games

In this section we will treat #-discounted stochastic games and irreducible
limiting average stochastic games simultaneously. Therefore I's should be
interpreted as a general 3-discounted stochastic game for # < 1 and as an
irreducible limiting average stochastic game for § = 1.

Theorem 3.1
For each stochastic game I' and for every B € [0,1]|: E(T'g) # 0.

The proof of Theorem 3.1 is based on the facts that 'yg Is a continuous
function on X x Y, for each k and 3, and that X and Y are closed convex
polyhedra (see Fink (Ref. 6) and Rogers (Ref. 7)). Because for any mistake
pair (¢!, €?) the sets X,: and Y,z are also closed convex polyhedra, the next

lemma immediately follows.

Lemma 3.1

Let T'(e',€?) be a perturbed stochastic game.
Then E(Ts(e',€?)) # 0 for all g € [0,1].

Lemma 3.2
If (z,y) € X x Y is a perfect pair for Tg, B € |0,1], then (z,y) € PE(Tp).



Proof:
There exist a sequence of mistake pairs {(¢'",&e*") : n € N} converging to
0 and a sequence {(z",y") € E('s(e'",€?")) : n € N} converging to (z,y).
We have to show that for all (z*,y*) € X X Y :

v5(z*,y) < v5(z,y) and v3(z,y*) < 75(z,v).

So let z* € X and take a sequence {z"* € X,» : n € N} converging to z".
Then ~5(z™,y") < v5(z",y") for all n € N. Using the continuity of Y5 We
get v5(z*,y) < v5(z,y). Similarly one can show that el y2) < 95(2u)
for all y* €Y. [

Lemma 3.3
PE(Tg) # 0 for all B € |0,1].

Proot:
Let B € [0,1]. Take a sequence of mistake pairs {(¢'*,e*") : n € N} converg-

In

~ing to 0. By Lemma 3.1 there exists a sequence {(z",y") € E(T's(e'",€")) :
- n € N}. Because (z*,y") € X xY foralln € N and X XY is a compact set,
we may assume, without loss of generality, that the sequence {(z",y") €

E(Ts(e'",e*)) : n € N} converges in X x Y. Then lim,_,(z",y") is 2
perfect equilibrium in I's by Lemma 3.2. - ]

In Theorem 3.2 we give two characterizations of perfect equilibria. First we
need some definitions. We define ‘completely mixed strategies’ as station-
ary strategies that use all actions with positive probablility. We also define
‘e-perfect pairs’: pairs of completely mixed strategies where for a specific

mistake pair (constant € for all actions) any surplus weight of the strategies
is on best actions (see Lemma 2.7).

Definition 3.1
A stationary strategy £ € X (y € Y ) s called completely mized if for all

8,8 and 3::3,(3) >0 (y,13) >0)

Definition 3.2

Let € > 0 and § € [0,1]. A pair of completely mized strategies (z,y) 1s
called e-perfect sn 'z if for all s,1 and j3:

[z,(¢) > € = ¢; € Bj(s,z,y)] and [y,(5) > € = f; € Bj(s, z,y)].



Notice from Lemma 2.7 that a pair of stationary strategies is an e-perfect
pair if and only if it is an equilibrium in the specific perturbed game where
all weights are perturbed by the same € > 0.

The next lemma tells us that in order to decide whether or not a pair
of stationary strategies is a perfect equilibrium, it is sufficient to consider
equilibria of such ‘constant e-perturbed’ games, where € tends to zero.
Hence one can restrict to a relatively small class of perturbed games in
order to investigate perfectness for a given pair of stationary strategies.

Theorem 3.2
Let (z,y) € X XY and let § € |0,1].
The following three statements are equivalent:

(1) (z,y) ts a perfect equilibrium in L'p.

(11) There is a sequence {e" € (0,1) : n € N} converging to 0 and a
sequence {(z",y") € X x Y : n € N} converging to (z,y) such that
(z",y") 18 e"-perfect in I'g for all n € N.

(11t) There is a sequence of completely mized pairs {(z",y") € X XY :n €
N} converging to (z,y) such that for all s,1 and j:
[z,(7) > 0 = ¢; € Bg(s,z",y")] and [y,(5) > 0= f; € Ba(s, 2", y")]-

Proof:

We succesively show: (i) — (ii), (ii) — (iii), (iii) — (i).

(i) — (ii): Suppose that (z,y) € PE(Ilp), then there is a sequence of
mistake pairs {(¢1",€?") : n € N} converging to 0 as well as a sequence
{(z",y") € E(Ts(e'™,e*")) : n € N} converging to (z,y). Let " :=
max,; ;{e1"(2),e?"*(5)} for each n € N. Then by Lemma 2.7 and by
Definition 3.2 each pair (z",y") is e"-perfect.

(i) — (iii): Suppose €" and (z",y"), n € N, are as in (ii). Then by defi-
nition (z",y") is completely mixed for all n. Since lim, (2", y") =
(z,y), it holds that: if z,(z) > O then z}(1) > " for large n. Thus,
by Definition 3.2, e; € Bj(s,z",y") for large n.

(iii) — (i): Let {(z",y") : n € N} and (z,y) be as in (iii). For all n € N,
for all s,?2 and 5 define:

10



gln(y) :=n~1if z,(¢) > 0, and &,"(s) := z}(+) otherwise.

8

eln(5) :==n7tif y,(j) > 0, and 2*(j) := y7(s) otherwise.
Then Pﬁ( In ¢2") is a well-defined perturbed game for large n. For
large n, for s € S and 1 such that z,(7) > 0, we have z7(i) > n™' =

el"(7) and for s and i such that z,(¢) = 0, we have z}(¢) = &;"(¢).

Hence z" € X,i. for large n, and by (iii) we have that: zj(z) >
el"(7) > 0 implies e; € Bj(s,z",y"). Using the same argument for

3
player 2 and using Lemma 2.7 we have shown (i). B

4 Concluding Remarks

One of our reasons to consider this notion of (trembling hand) perfect
equilibrium for stochastic games was to be able to work with particular
sequences of stationary [-discounted equilibria, for § tending to 1. In
_ Vrieze and Thuijsman (Ref. 8) and more generally in Thuijsman (Ref. 9) it
is shown that for certain classes of stochastic games one can derive limiting
average (e-)equilibria by examining arbitrary sequences of stationary [-
discounted equilibria. However the existence of limiting average e-equilibria

in general stochastic games is still an open problem. Now being able to use
sequences of perfect stationary (-discounted equilibria may bring us closer

to a solution for this challenging problem.
To illustrate that trembling hand perfectness does not make much sense

in non-irreducible limiting average stochastic games we examine the follow-
ing example.

2,2 !
Here the notation for state 3, for example, means a payoff 0 (1) to player 1

(2) and a transition to state 3 with probability 1. For this game a station-
ary strategy is completely determined by the mixed action for state 1.

‘EL

v
o
|t [ e

state 1 state 2 state 3 state 4

11



If we let £ = e; and let y = f;, then (z,y) € E(I';). So there is at least
one stationary limiting average equilibrium for this game, but is there also
a perfect one?
Let (¢,€?) be a mistake pair for state 1 and let that (z',y') € E(T'1(¢',€%)).
Then y'(2) = 1 — €2(1) — €*(3), because player 2’s limiting average reward
is maximal if column two gets maximal weight, as to maximize the prob-
ability of absorption in state 3. So if (z*,y") is a perfect limiting average
equilibrium, then y* = f,. This however would imply that z* = e; in case
(z*,y*) is an equilibrium. But then the only best answer to z* for player 2
is f3 # y*, which contradicts the assumption that (z*,y*) is an equilibrium.
Hence there are no perfect limiting average equilibria in this stochastic
game, even though a stationary limiting average equilibrium exists.
One can also check that (z,y) is a perfect f-discounted equilibrium for all
g .,

It should be observed that any stationary equilibrium in a #-discounted
" or irreducible limiting average stochastic game is necessarily a subgame-
perfect equilibrium.

Characterizations in this paper for perfect equilibria in stochastic games,
are similar to characterizations for perfect equilibria in bimatrix games (see

Ref. 10).
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