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The Core and the 7-Value

for Cooperative Games with Coalition Structures

by T.S.H. Driessen’ and S.H. Tijs’

The paper is devoted to solution concepts for cooperative
games with coalition structures. The r-value concept for
such games is introduced as an equitable compromise between
a lower bound and an upper bound for the core. Several
properties for the r-value are presented. The determination
of both the core and the r-value is carried out for convex
and l-convex games with coalition structures.

Keywords: Cooperative game, coalition structure, core,
r—value, convex game.

AMS Subject Classification (1980): 90D12.

1. Introduction

A coalition structure in a cooperative game is defined to be a
partition of the player set. The study of game theoretic solution
concepts with respect to a given coalition structure was started
during the development of the theory concerning the various bargaining
sets (Aumann and Maschler, 1964; Davis and Maschler, 1967). The
research on coalition structures was continued by a systematic study
of six common solution concepts in Aumann and Dréze (1974). Their
paper presented an analysis for the bargaining set, the kernel, the
nucleolus, the core, the Von Neumann-Morgenstern solutions and the
Shapley value with reference to an arbitrary coalition structure. A
subsequent treatment of the nucleolus for cooperative games with
coalition structures can be found in Owen (1977a) and Potters and Tijs

(1989).
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In the second stage of the research on coalition structures, the
focus was on the coalition structure value as introduced in Owen
(1977b) . Axiomatizations and/or extensions of Owen’s value and related
values can be found in Hart and Kurz (1983, 1984), Levy and McLean
(1989), and Winter (1989). An essential feature in the approach of
Owen (1977b) is overall efficiency which requires the division of the
total earnings among all the players. It differs from the approach of
Aumann and Dréze (1974), where the efficiency requirement is applied
to each coalition in the coalition structure. We refer to the paper of
Kurz (1988) for the exposition of these two approaches. Nowadays one
can perceive a growing interest in the topic on solution concepts for
cooperative games with coalition structures.

The main purpose of this paper is the introduction and the study
of the r-value for cooperative games with coalition structures. The
value developed can be regarded as an extension of the classical
r—value concept with respect to the all-player coalition structure.
The classical r-value was introduced and axiomatized in Tijs (1981,
1987) and further, an overview of the classical r-value was given in
Tijs and Driessen (1987) and Driessen (1988). The development of the
theory concerning the extended r-value leads to the introduction of
two interesting types of games (the so-called convex and l-convex
games with reference to a given coalition structure). The second
purpose of this paper is to characterize these two types of games by
means of the determination of the core for such games.

The organization of the paper is as follows. In Section 2 we
recall the notion of a cooperative game with a coalition structure, or
simply a c.s. game, and pay attention to the core of c.s. games. The
main result of Section 2 provides the generalized balancedness
conditions that are necessary and sufficient for the non-emptiness of
the core of a c.s. game. Section 3 is devoted to the introduction of
the r-value concept for c.s. games as an equitable compromise between
a lower bound and an upper bound for the core. An axiomatization of
the r—value on the class of quasibalanced c.s. games is included. In
Section 4 it is established that the r-value for l-convex c.s. games
occupies a central position within the core and moreover, it coincides
with the nucleolus. As a matter of fact, another main result of

Section 4 provides that the l-convexity of a c.s. game is fully



characterized by a specific structure of the core of the c.s. game.
Section 5 deals with the generalized convexity notion for c.s. games.
The class of convex c.s. games is characterized as the class of c.s.
games for which the core is fully generated by the so-called marginal
worth vectors. The r—value concept on the class of convex c.s. games
is determined by considering the enlarged class of semiconvex c.s.

games.

2. Balancedness and bounds for the core

A cooperative game in characteristic function form, or simply a

game, is an ordered pair (N,v), where N represents the finite player
set and where the so-called characteristic function v is a real-valued
function on the family of subsets of N. Any non-empty subset of the
player set is called a coalition and let |S| denote the cardinality of
the coalition S ¢ N. The worth v(S) of coalition S is interpreted as
the earnings obtainable from the cooperation between the members of S
excluding the non-members of S. We always suppose v(@) = O.

A coalition structure is a partition of the player set. Formally,

a coalition structure B on N is a sequence (B;,B,,...,B,) of

coalitions such that B; N B, =@ for j =k and UlBj = N. The

J

classical coalition structure on N is given by B = (N).

A cooperative game with a coalition structure, or simply a ¢.s.

game, is an ordered triple (N,v,B) which is composed of the game (N,v)
and the coalition structure B on N. Throughout the paper it 1is
supposed that the player set N is fixed. A payoff vector is formally
defined as a real-valued function x on N, but it is usually identified
with the vector whose coordinates are indexed by the players. The set
of all payoff vectors is denoted by RY. For the sake of notation,
write x(S) = ) x(i) for all x € R" and all S c N. Note that
ies

In accordance with the approach of Aumann and Dréze (1974), it is
supposed that the coalitions in the given coalition structure will be
formed and that each one of these coalitions gets what it can assure
itself in the game. Thus, payoff vectors are meant to describe
possible divisions of the earnings obtainable from the cooperation

between the members of each separate coalition in the coalition



structure. Hence, it is always required that payoff vectors belong to
the pre-imputation set I*(V,g) which is given by

I'(v,B) = (x €R" | x(By) = v(B;) for all 1 < j < m}.
Generally speaking, the determination of one or more specific pre-
imputations can be based on the opportunities that the players have
outside their own coalition in the coalition structure. A pre-
imputation is said to be a core-element if it can not be improved upon
by any coalition. So, the core C(v,B) of a c.s. game (N,v,B) is
defined by

C(v,B) := (x € T (v,B) | x(S) = v(S) for all S C N, S = &}.
In the classical case B = (N), the class of games with a non-empty
core 1is characterized in Bondareva (1963) and Shapley (1967) as the
class of balanced games—games that satisfy certain balancedness
conditions. The purpose is to provide the generalized balancedness
conditions that determine whether or mnot the game possesses a
non-empty core with respect to an arbitrary coalition structure B on
N. The next theorem expresses that the generalized balancedness
conditions differ only from the classical balancedness conditions in
that the term v(N) is replaced by the sum E v(Bj). For any S ¢ N we

j=1 .
define the indicator function eg: N > (0,1} by eg(i) :=1 for all

i €S and eg(i) := 0 otherwise.

Definition 2.1

The c.s. game (N,v,B) is said to be B-balanced if

As = 0 for all S C N, ) 2Xges = ey implies
ScN
m
Y oAgv(S) = ) v(B;). (2.1)
SCN j=1 .

Theorem 2.2. The c.s. game (N,v,B) is B-balanced if and only if
C(v,B) = &.



Proof. Let (N,v,B) be a c.s. game. Consider the following linear

programming problem LP and its dual problem DLP.

m
(LP) Minimize } vy, subject to y € R”, x e R",
j=1
x(S) = v(S) for all S C N, S = &,
i - x(Bj) > —V(Bj) for all 1 < j < m.
m
(DLP) Maximize ) Agv(S) - ) v(B;) subject to XAy = 0 for all S C N,
SCN j=1

Y Ases = ey.

SN
Evidently, the core C(v,B) = @ iff the value of the problem LP equals
zero. This equivalence and the duality theorem for linear programs
yield that C(v,B) # @ if and only if the wvalue of the problem DLP
equals zero. From this we conclude that the non-emptiness of the core

is equivalent to the B-balancedness of the c.s. game. a

It turns out that an upper bound for the core is deducible from
the marginal contributions of any player with respect to the formation
of the corresponding coalition in the coalition structure. The upper
bound involved induces a lower bound for the core by taking into
account the differences of the earnings of any available coalition and

the coalition’s total payoff according to the upper bound involved.

Definition 2.3

The marginal vector M(v,B) € R and the minimal right vector

m(v,B) € RY of a c.s. game (N,v,B) are given by

M; (v,B) := V(Bj) - v(Bj—{i}) for all i € By, all 1=<j =m,
m (v,B) :=M;(v,B) - min[ } M (v,B) - Vv(S) | SCN, ie€5s]
keSs
= max[v(S) - ) M (v,B) | ScN, ies] for all i € N.
keS-{1)

Proposition 2.4. Let (N,v,B) be a c.s. game. Then
m; (v,B) = x; <M (v,B) for all i € N and all x € C(v,B).

Proof. Let x € C(v,B) and i € N, say i € B;. From the definitions of
both the core and the marginal vector, we derive that

x; = v(B;) - x(B;—(1}) = v(By) - v(B;—{i}) = M;(v,B).

1




From the first part, it follows that for any coalition S containing

player i
v(S) - Y M (v,B) = v(S) - x(S-{i}) = x,
keS—-{1i}
and so, m (v,B) < x; as was to be shown. O

A detailed explanation of the marginal vector and the minimal right
vector for c.s. games 1s similar to the one presented in Tijs (1987)
for games with respect to the classical coalition structure. In fact,
both vectors were already considered in Tijs and Lipperts (1982).

Consider a c.s. game (N,v,B) with a non-empty core. In view of
Proposition 2.4, the payoff to each player i € N according to a core-
element 1is bounded below by the minimal right m; (v,B) as well as
bounded above by the marginal contribution M; (v,B). Roughly speaking,
the minimal rights m; (v,B), i € N, are surely insufficient to meet the
earnings V(Bj), 1 < j = m, because of the inequalities z m, (v,B) <
v(B;), 1 =j =<m, whereas the marginal contributions Miéfié), ieN,
are more than sufficient to meet these earnings. This observation
gives rise to the treatment of a specific class of c.s. games in

Section 3.

3. The r-value of a quasibalanced c.s. game

Definition 3.1
The class QB(N,B) of B-quasibalanced c¢.s. games is given by
QB(N,B) := ((N,v,B) | m;(v,B) <M, (v,B) for all i € N and
Y m(v,B) <v(By) < ) M (v,B) for all 1 <j <m).
ieB; ieB;
Due to Theorem 2.2 and Proposition 2.4, the class of B-quasibalanced
c.s. games includes the class of B-balanced c.s. games. On the class
of quasibalanced c.s. games, we aim to introduce a solution concept
which prescribes somehow an equitable compromise between the minimal
rights on the one hand and the marginal contributions on the other

hand.



Definition 3.2
The r—value 7(v,B) € I*(V,E) of a B-quasibalanced c.s. game (N,v,B) is
given by

r; (v,B) := oym; (v,B) + (l—aj)Mi(v,g) (3.1

for all i € B;, all 1<j=<n,
where the real numbers o; € [0,1], 1 =j =<m are (uniquely)
determined by the equations ) r,(v,B) = v(B;), 1 < j <m.
ieB;
From the geometric viewpoint, the restriction of the r-value vector to

any coalition B; in the coalition structure B may be regarded as the

unique efficient vector lying on the straight line segment with end
points the restrictions of the minimal right vector and the marginal
vector to the coalition B;. The next proposition expresses that the
r—value concept possesses several interesting standard properties for

one-point solution concepts.

Proposition 3.3. The r-value r: QB(N,B) -» R" possesses the next five

properties.

(1) B-efficiency: r(v,B) € I*(v,ﬁ) for all (N,v,B) € QB(N,B).

(ii) Individual rationality: r;(v,B) = v({i}) for all i € N and all
(N,v,B) € QB(N,B).

(iii) Dummy player property: 7; (v,B) = v({i})) for all (N,v,B) € QB(N,B)
and any dummy player i € N in the game (N,v).
Here player i is called a dummy in the game (N,v) if
v(S U {i}) = v(8) = v({i}) for all S ¢ N-{i}.

(iv) Relative invariance under S-equivalence: 7(Bv+c,B) = Br(v,B) + ¢
for all (N,v,B) € QB(N,B), all g € (0,») and all c € R".
Here the game (N,Bv+c) is defined by (Bv+c)(S) := pv(S) + Z c(i)
for all S c N. 1es

(v) Substitution property: r;(v,B) = 7 (v,B) for all (N,v,B) €
QB(N,B) and any substitutes i,k € N, i »# k, in the c.s. game
(N,v,B).
Here players i and k are called substitutes in the c.s. game
(N,v,B) if {i,k} C B; for a certain 1 < j < m and

v(S U {i}) = v(S U {(k}) for all S ¢ N-{i,k}.



Proof. Let (N,v,B) € QB(N,B). Due to its construction, the r-value
7(v,B) 1is a pre-imputation satisfying m; (v,B) = 7r;(v,B) =M, (v,B) for
all 1 € N.

(ii) The r—value is individually rational since 7; (v,B) =2 m (v,B) =
v({i}) for all i € N where the last inequality follows from Definition
2.3.

(1ii1) Let i € N be a dummy player in the game (N,v). In particular,
M; (v,B) = v(B;) - v(B;—{i}) = v({i)) whenever i € B;. Now it follows
that r;(v,B) < M;(v,B) = v({i}), while 7;(v,B) =2 v({i}) by applying
part (ii). Hence, 7;(v,B) = v({i}) and so, the r-value possesses the
dummy player property.

(iv) Let B € (0,o) and c € RY. By straightforward calculations, we
deduce from Definition 2.3 that M(Bv+c,B) = BM(v,B) + ¢ as well as
m(Bv+c,B) = fm(v,B) + c. From this and Definition 3.1 we conclude that
(N,pBv+c,B) € QB(N,B) iff (N,v,B) € QB(N,B). Further, r1(Bv+c,B) =
pr(v,B) + ¢ by using formula (3.1). So, the r-value 1is relatively
invariant under S-—-equivalence.

(v) Let i,k €N be substitutes in the c.s. game (N,v,B), say.

{i,k} C Bj. In particular, V(Bj—{i}) = v(Bj—{k}) and thus,
M; (v,B) = M (v,B). By straightforward calculations, we also obtain
m; (v,B) = m (v,B). Now it 1is evident from formula (3.1) that
7;(v,B) = 1, (v,B) and so, the r-value possesses the substitution
property. |

It is obvious from formula (3.1) that the r-value vector of a
quasibalanced c.s. game is sectionally proportional to the marginal
vector of the c.s. game whenever the minimal right vector vanishes.
The next theorem states that this property together with the
efficiency and the relative invariance under S-equivalence fully
characterize the r—value concept on the class of quasibalanced c.s.

games.

Theorem 3.4. The r-value r: QB(N,B) > RN is the wunique value
P: QB(N,B) > R with the following three properties.
(i) B-efficiency,

(ii) Relative invariance under S-equivalence, and



(1ii) Restricted proportionality:
for any (N,v,B) € QB(N,B) satisfying m(v,B) = 0 € RN, the wvalue
vector ¥(v,B) is sectionally proportional to the marginal vector
M(v,B), i.e., there exist real numbers B; € [0,1], 1 =3 =m,

such that ¥; (v,B) = BsM; (v,B) for all i € B, , all 1 <= j < m.

Proof. It remains to establish the wuniqueness part. Suppose that
P: QB(N,B) - RY is a value with the three mentioned properties. We
show that ¥ = r on QB(N,B). Let (N,v,B) € QB(N,B). Define the game
(N,w) by w := v -~ m(v,B). Since both wvalues are relatively invariant
under S-equivalence, we obtain ¥(w,B) = ¥(v,B) - m(v,B) as well as
r(w,B) = 7(v,B) - m(v,B). In order to show the equality
Y(v,B) = r(v,B), it suffices to prove ¥(w,B) = r(w,B). Clearly, we
have M(w,B) = M(v,B) - m(v,B), m(w,B) =0 € RY and thus,
(N,v,B) € QB(N,B) implies (N,w,B) € QB(N,B). 1t follows from
m(w,B) = 0 that the two wvalue vectors ¥(w,B) and r(w,B) are
sectionally proportional to the marginal vector M(w,B). Together with
the B-efficiency property for % and 7, this yields directly that the
equality ¥(w,B) = r(w,B) holds. This completes the proof. O

Finally, we remark that the content of this section generalizes the
main topiecs in Tijs (1981, 1987). 1In Section 4 we treat a

generalization of the topics in Driessen and Tijs (1983).

4, The core, the r—value and the nucleolus of a l-convex c.s. game

From Definition 2.3 we observe that each coordinate of the
so-called concession vector A(v,B) := M(v,B) - m(v,B) is determined by
the gap which is minimal among the gaps of coalitions containing the
corresponding player. Here the notion of the gap refers to the
difference of the earnings and the total payoff according to the
marginal vector, on the understanding that the notion of the gap is

considered for any coalition.

Definition 4.1
The gap function gv@: P(N) > R of a c.s. game (N,v,B) is given by

g3(s) == ¥ M, (v,B) - v(S) for all S c N.
ies



Note that gv@(ﬁ) = 0. In view of Proposition 2.4, the non-negativity
of the gap function (i.e., gV@(S) = 0 for all S c N) is a necessary
condition for the non-emptiness of the core. Generally speaking, the
non-negativity of the corresponding gap function is not a sufficient
condition for the balancedness of the c.s. game. This section is
devoted to the study of a specific type of c.s. games for which the
gap of any coalition in the coalition structure is minimal among the
gaps of coalitions intersecting the coalition involved. For any
coalition structure B on N and any coalition S C N, we define the

index set I5(S) = (j | 1<j=<m, B; nS = @&).

Definition 4.2
The class Cl(N,ﬁ) of (B,1)-convex c.s. games is given by
c'(N,B) := ((N,v,B) | g"%(B;) =0 for all 1 < j <m and

g7%(s) = T g"(B;) for all SC N, S ~g).
JeI-(8s)

Theorem 4.3. Let (N,v,B) € G'(N,B).
(i) Let x € I (v,B). Then x € C(v,B) iff x, < M, (v,B) for all i € N.
(ii) 7, (v,B) =M, (v,B) — |B;| '8 %(B,) for all i € B;, all 1 < j < m.

(iii) In particular, r(v,B) € C(v,B).

Proof. Fix k € N, say k € B;, and let S C N be such that k € S. From
je I§(S) and the (B,l)-convexity of the c.s. game (N,v,B), we deduce
that gmg(S) = gv@(Bj) for all S ¢ N with k € S. This yields that
Mk(v,g) - m (v,B) = gv@(Bj) whenever k € Bj. Now we conclude from
formula (3.1) that the r-value is given by r;(v,B) = M;(v,B) -
ajgv@(Bj) for all i € By, all 1 < j < m, where a; = ]le--1 because of
the B-efficiency property for the r-value. This proves part (ii),
while part (iii) is a direct consequence of the parts (1)-(ii). So, it
remains to establish part (i). By Proposition 2.4, the "only if part"
holds for all c.s. games. In order to prove the "if part", suppose
that x e I'(v,B) satisfies =x, <M, (v,B) for all ieN. Put

y := M(v,B). We obtain that for all Sc N, S = ¢&

-10-



x(8) = ¥, x(B; n8) = F o [v(By) - x(B; n (N-5))]
JjE€I-(S) JEI-(S)
- T, [-87R;) + y(B; N S) + (y-x)(B; N (N-5))]
jeri(s)
>y(s) - L. 878y = v(s)

JeI-(s)
where the first inequality follows from y; — x; = 0 for all i € N and

the second inequality from the (B,l)-convexity of the c.s. game

(N,v,B). Therefore, x € C(v,B) which completes the proof of part (i).
O

According to the r-value payoff for a (B,l)-convex c.s. game, the
members of any coalition B; in the coalition structure B contribute
equally to the so-called joint concession amount gv'g(Bj) (with
respect to the inefficient marginal vector). In the remainder of the
section we elucidate that the r-value of a (B,l)-convex c.s. game

occupies a central position within the core.

Definition 4.4

Let (N,v,B) be a c.s. game. For any l<j=<nm, let
conv{fi(v,_B_) | i € By} denote the convex hull of the set consisting of
the vectors fi(v,_}i) € [RBJ', i € B;. Here the vector fi(v,§) is given by

£y (V,B) = My (v,B) for all k € B;-(1),

£5(v,B) =M, (v,B) - g '°(B;).

The next theorem states that the Cartesian product of the above
convex hulls is a core catcher. As a matter of fact, the core catcher
in question coincides with the core merely for (B,l)-convex c.s.

games.

Theorem 4.5
m .

(i) C(v,B) ¢ [] conv{f (v,B) | i€ B,) for any c.s. game (N,v,B).
j=1

m Iy
(ii) C(v,B) = [| conv(f (v,B) | i € B;) iff (N,v,B) € C'(N,B).
j=1

-11-



Proof. (i) Let (N,v,B) be a c.s. game and suppose x € C(v,B). Recall
that both x; <M;(v,B) for all i€N and g'2(B;) 20 for all
l1<j=m because of Proposition 2.4. Fix 1=<3j <m. In case
gv'g(Bj) = 0, then x, = M (v,B) = fli (v,B) for all i,k € B;, and hence,
the restriction of the core to RSS equals conv{fi(v,ﬁ) ] ieB;}. It

. . ,B .
remains to consider the case gv -(B;) > 0. Define the real numbers g,

ie By, by B; := [gV‘I—S(BJ.)]-l[Mi (v,B) - x;]. Obviously, B; = 0 for all
ieB; as well as ) f; = 1. Further, it is straightforward to
ieB,
J :
verify that the equality %, = ) ;£ (v,B) holds for all ke B; .
ieB.

Hence, the restriction of the core-element x to RS belongs to

conv{fi(v,g) | ie B;}. This completes the proof of the inclusion

mentioned in (i).

(ii) To prove the inverse inclusion for any (N,v,B) € Cl(N,_li), suppose
m : :

z€ [| conv(f(v,B) | i €B;). Since £(v,B) <M, (v,B) for all

j=1
i,k € By, all 1 < j <= m, we also have that z, < M, (v,B) for all k € N.

Now it follows from Theorem 4.3(i) that z € C(v,B) which completes the
proof of the "if part" in (ii).

To prove the "only if part" in (ii), suppose that the relevant
equality holds. Fix S c N, S=#¢g. For any 1 < j <m, choose an
arbitrary 1(j) € B; satisfying 1i(j) € B; NS whenever j € I3(S).
Define the vector y € R" by y, = fli(j)(v,_li) for all k e By, all
1 <j =<m. Then we have y € C(v,B) as well as y(S) = ) M (v,B) -

kes
X 5 gv'l—a(Bj). From this we observe that the core constraint
jeI’(s)
y(S) = v(S) yields the inequality gv’}-B(S) > z gv'g(Bj) as was to

2B
JEI-(S)
be shown. Finally, we obtain that gv'g(Bj) =0 for all 1 <j=<m by

applying Proposition 2.4 to y € G(v,B). This proves the
(B,1)-convexity of the c¢.s. game (N,v,B) whenever the relevant

equality in (ii) holds. a

Consider a (B,l)-convex c.s. game (N,v,B) and let 1 < j < m. By
Theorem 4.3(ii), the restriction of the r-value vector r(v,B) to the

coalition B; is equal to the weighted sum vector |B; |-1 Y £ (v,B).
ieB.
From this and Theorem 4.5(ii), we conclude that the r-value of a

(B,1)~convex c.s. game coincides with the centre of gravity of the

extreme points of the core regarded as a Cartesian product. Due to
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these extreme points of the core of a (B,l)-convex c.s. game, we say
the marginal vector and the minimal right vector are sharp bounds for
the core involved. We remark that the prefix 1- is used because each
vector fi(v,ﬁ), i €B;, can be obtained from the restriction of the
marginal vector to RS by letting merely one coordinate decrease in
such a way that the efficiency property on B; is met. The term
convexity will be discussed in the next section. The remainder of this
section deals with the determination of the nucleolus for a

(B,1)-convex c.s. game.

Let (N,v,B) be a c.s. game. For any payoff vector x € lRN, let
6(x) be the 2|N —tuple whose components are the excesses eV(S,x) =

v(S) - x(S), S Cc N, arranged in non-increasing order. Now the lexico-

[x]

graphic -order =< on R? is used to order the "complaint" vectors
6(x) induced by any imputation x. Here the imputation set I(v,B) is
given by

I(v,B) := {x € T (v,B) | x, = v({i)) for all i € N).
Definition 4.6
The nucleolus N(v,B) of a c.s. game (N,v,B) with I(v,B) = @ is given
by

N(v,B) := {x € I(v,B) | 6(x) = 6(y) for all y € I(v,B)).

It is known that the nucleolus N(v,B) consists of a unique point
(Aumann and Dréze, 1974). The unique element of the nucleolus is
denoted by n(v,B). According to the next theorem, the nucleolus of a

(B,1)-convex c.s. game coincides with the r—value.
Theorem 4.7. n(v,B) = 7(v,B) for all (N,v,B) € Cl(N,g).

Proof. Let (N,v,B) € C'(N,B). In case |B;| =1 for all 1 < j <m, then
the imputation set I(v,B) reduces to a singleton and so,
n(v,B) = r(v,B) because the r-value is individually rational. It
remains to consider the case for which there exists at least one
coalition B; with |Bj| > 2. Put x := r(v,B) and fix an arbitrary

y € I(v,B), y #x. In order to prove x = n(v,B), we establish

0(x) =, 6(y).

—13-
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Define the index set J := (j | 1<j =m, y; =x; for all i € By}.
Notice that y »= x implies the existence of an index j & J. Further,
let the set W of coalitions be given by

W := (S C N | there exists j & J such that B; n S = &,B;).
We may ignore the excesses of all S € P(N)-W in the lexicographic
comparison between 4(x) and 4(y) since ev(S,x) = ev(S,y) for all
S € P(N)-W. Firstly, we have that for all i € B;, all j ¢ J

e’(By-(1},%) = v(B;~(1}) - x(B;~(i)) = x; - M; (v,B) = —|B,| g"2

2(B;)
where the last equality follows from Theorem 4.3(ii). Secondly, we

obtain that for any S € W satisfying BT N S ¢,B¢ for a certain j ¢ J

(8,1 = v(8) - x(s) = —g"HS) + T |By] 7By 0 os|g"RE))
jeIi(s)
< L, IB170IBy ns| - |B; 1872 = -|B. g %(B,)
JEI-(8) 3

where the inequalities follow from the (B,l)-convexity of the c.s.
game (N,v,ﬁ); Choose k & J such that ]Bki - vg(Bk) |B; | i VB(B )
for all j &€ J. The above reasonings yield that the maximal excess at x
among the excesses of S € W is given by 6,(x) = e (B, —{i}),x) = -—|Bk|_1
gv@(Bk) for any i € B,. From k ¢ J and y(B,) = x(By ), we derive that
there exists 1 € B, with y; > ¥;. Now it follows that

e (B=(1),y) = y; - M. (v,B) > x. - M. (v,B) = —|B|] e R(B,) = 0, (x).
From this we conclude that 01(y) > #,(x) and hence, 0(x) =< 4(y) as

was to be shown. O

5. The core and the r—value of a convex c.s. game

Shapley (1971) introduced the convexity notion for a game (N,v)
and described the structure of the classical core C(v,(N)) for a
convex game (N,v) by means of the so-called marginai worth vectors.
Ichiishi (1981) established that all the marginal worth vectors belong
to the core merely for convex games. The purpose is to provide the
generalized convexity notion for a c.s. game -in such a way that the
core of a convex c.s. game is generated by the adapted marginal worth
vectors. For any coalition By, 1 <j =<m, in a coalition structure B
on N, let 0% denote the set of all one-to—one mappings from B; onto

{1,2,
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Definition 5.1
Let (N,v,B) be a c.s. game. For any 1 < 3j <m and 4 € @Bj, the
marginal worth vector xg(v,ﬁ) e R% is given by

v,y = vl o)) - ved) for all i € B,

where Pf = {k € B; I (k) < §(i))} represents the set of players in B;

who precede player i with respect to the mapping 6.

Fix 1 < j <m. Although the marginal worth vectors xa(v,ﬁ),
§ € @Qj, are associated with the c.s. game (N,v,B), they may also be
interpreted as the marginal worth vectors obtainable from the subgame
(Bj,VlBj) with respect to the classical coalition structure on B;.
Here the function VIBj denotes the restriction of the function v to
the family of subsets of B;. The first part of the next result is due
to Weber (1988, page 117) and the second part is due to Shapley (1971)
and Ichiishi (1981).

Proposition 5.2. Let (N,v,B) be a c.s. game. Then
C(V|Bj,(Bj)) c conv{xe(v,g) | 6 € 933) for all 1 < j < m.
In particular, the inclusion is an equality iff the subgame (Bj,v|Bj)

is a convex game.

The next theorem states that the Cartesian product of the above
convex hulls is a core catcher. In fact, the core catcher involved
coincides with the core merely for B-convex c¢.s. games. The
B-convexity of a c.s. game is defined in terms of the classical

convexity of some subgames and an additional requirement.

Definition 5.3
The class C(N,B) of B-convex c.s. games is given by
C(N,B) := {(N,v,B) | (B;,v|B;) is a convex game for all 1 < j <m

and v(S) < ZB v(B; n 8) for all S C N, S = &}. (5.1)
JEI-(8)

Theorem 5.4
_ o y
(i) C(v,B) cC ﬂ conv{x (v,B) [ e 955} for any c.s. game (N,v,B).
j=1
z 6 B, .
(ii) C(v,B) = [| conv{x (v,B) | § € 83} iff (N,v,B) € C(N,B).
j=1
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Proof. Let (N,v,B) be a c.s. game. The statement in (i) is derived

from the following chain of inclusions:
m m
C(v,B) c | C(V[Bj,(Bj)) c ] conv{xe(v,ﬁ) | 6 0% )
j=1 j=1
where the first inclusion is trivial and the second inclusion is valid

because of Proposition 5.2. This proves part (i).
Concerning the statement in (ii), we first recall that the second
inclusion in the above chain is an equality if and only if the
subgames (B;,v|B;), 1 < j < m, are convex games.
To prove the "if part" in (ii), suppose (N,v,B) € C(N,B). For any
m
X € ﬂ C(v[Bj,(Bj)) and any S C N, S = @, we obtain
j=1
x(8) = ), x(B;ns)=z= J - v(B; nS) = v(8) (5.2)

jeI-(s) JjeI-(8)
where the last inequality follows from the B-convexity of the c.s.

game (N,v,B). Therefore, x € C(v,B) which completes the proof of the

"if part" in (ii).

To prove the "only if part" in (ii), suppose that the relevant

equality holds. It remains to show that (5.1) holds. Fix S C N, S = @.

For any 1 < j < m, choose an  arbitrary 9’ e 6% satisfying

Hj(Bj ns) = {l,2,...,lBj N S|) whenever j € I§(S) and consequently,

we  have Y ng(v,g) = v(B; N S). Define the vector y € RY by
keB; NS

Ve = ng(v,L) for all k € B;, all 1 = j <m. Then we have y € C(v,B)

v

and the core constraint y(S) = v(S) yields the inequality

z 5 v(Bj N S) =2v(S) as was to be shown. This proves the
eI (s)

B-convexity of the c.s. game (N,v,B) whenever the relevant equality in
(ii) holds. o

The partial B-convexity condition (5.1) for a c.s. game (N,v,B)
is weaker than the decomposition condition presented in Aumann and

Dréze (1974). The game (N,v) is called decomposable with respect to

the coalition structure B on N if v(S) = Z 5 v(B; n 8) for all
Jje€I-(8)
S c N, S »= @. Note that each of the two conditions is sufficient for

the decomposition property of the core, i.e.,

m
C(v,B) = [] C(v|B;,(B;)) (see (5.2)).
j=1
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Moreover, Aumann and Dréze (1974) treated an axiomatic
generalization of the classical Shapley value and their main Theorem 3
states that the generalized Shapley value for c.s. games possesses the
"restriction property". To be exact, the restriction of the
generalized Shapley value for a c.s. game (N,v,B) to any coalition B,
is the classical Shapley wvalue for the subgame (Bj,lej). Without
going into details, we conclude from the restriction property involved
and Theorem 5.4(ii) that the Shapley value of a B-convex c.s. game
coincides with the centre of gravity of the extreme points of the core
regarded as a Cartesian product.

We end up by determining the r-value of a B-convex c.s. game. For
that purpose, we first show that the class of B-convex c.s. games is
included in a specific class of games for which the gap of any single
player is minimal among the gaps of coalitions containing the player
involved. As wusual, the gap function 1is also required to be

non-negative.

Definition 5.5
The class SC(N,B) of B-semiconvex c.s. games is given by

SC(N,B) := {(N,v,B) | g"3(T) = g"2((i)) = 0 whenever i € T c B,

and g"%(s) = L g"%(B; nS) for all SCN, S = g).
jeI-(s)

Proposition 5.6. C(N,B) c SC(N,B).
Proof. Let (N,v,B) € C(N,B). Put y := M(v,B). We obtain that for all

S cN, S =g,
g72(8) = y(8) - v(8) 2 y(8) =L V(B nS)

JEI-(S)
-3, Iy 08 -v@E; a8l = L g ns)
JEI-(S) JEI-(S)

where the inequality follows from the B-convexity of the c.s. game
(N,v,B). Fix 1 = j =m and let k € T C B;. The convexity of the game
(B;,v|B;) implies  Vv(T) - v(T-{k)) =< v(B;) - v(Bj-{k)) = y or

B

equivalently, gv%(T-{k}) < g=(T). In other words, the gap function

gv'l-3 is monotonic on the family of subsets of B; and as such,
0 = gvé(ﬁ) < gvé((i}) < gV%(T) whenever i1 € T C B;. So, (N,v,B) €

SC(N,B). a)
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Theorem 5.7. Let (N,v,B) € SC(N,B). Then
(1) m; (v,B) = v({i)) for all i € N.
(ii) (N,v,B) € QB(N,B) iff v(B;) 2 ) v({i)) for all 1 < j < m.
(iii) If v({{i}) = 0 for all i € N and ;fi?) 20 for all 1 < j <m,
then (N,v,B) € QB(N,B) and 7, (v,B) = v(B;)[ T M (v,B)] M, (v,B)
keB;
for all i € By, all 1 <j < m.
Proof. (i) Let 1 € N, say i & B; . The B-semiconvexity of the c.s. game
(N,v,B) yields that g"2(S) = g"2(B; n 8) = g"2({i)) for all S c N
with i € S. From this it follows immediately that m; (v,B) = M; (v,B) -
g2 (1) = v((i)).
(ii) Evidently, M, (v,B) — m, (v,B) = g"2({i}) 2 0 for all i € N and
further, .Z M; (v,B) - V(Bj) = gv@(Bj) > 0 for all 1 < j < m. Hence,
the §rqua;f§21ancedness condition for the c.s. game (N,v,B) reduces to

v(B;) = ) m(v,B) = ) v({i)) for all 1 = j <m. The statement in
ieB; . 1ieB;

(iii) is a direct consequence of the parts (i)-(ii) and formula (3.1).

[}

Theorem 5.7(i) expresses that the minimal right vector of a semiconvex
c.s. game is determined by the worths of the single players. Roughly
speaking, the r—value of a zero-normalized semiconvex c.s. game 1is
sectionally proportional to the marginal vector. A detailed study of
the r-value on the class SC(N,(N)) can be found in Driessen and Tijs
(1985).

Consider a B-convex c.s. game (N,v,B). For any mapping 6 € %3
satisfying (i) = 1 and 6(k) = |B;|, the corresponding coordinates of
the marginal worth vector xe(v,g) e R% are given by xf(v,ﬁ) = v({i})
=m; (v,B) and xg(v,g) = v(B;) - v(Bj—{k}) = M (v,B). Since the extreme
points of the core of a convex c.s. game are composed of the marginal
worth vectors, we say the minimal right vector and the marginal vector
are sharp bounds for the core involved. Although the r-value is
constructed as an efficient compromise between these two sharp core
bounds, the r-value of a convex c.s. game may fall outside the core.

The terms convexity and l-convexity are related to each other
because Theorem 5.4 concerning convex c.s. games can be seen as the
analogue to Theorem 4.5 concerning l-convex c.s. games. For a detailed
elucidation of the relationship between the notions of convexity and

l-convexity, we refer to Driessen (1988, Chapter VII).
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