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LP-GAMES AND COMBINATORIAL
OPTIMIZATION GAMES

Stef H. Tijs
Department of Econometrics Department of Mathematics
Tilburg University and University of Nijmegen
Tilburg, The Netherlands Nijmegen, The Netherlands

ABSTRACT

A survey is given of combinatorial optimization game theory. In more detail flow
games and linear production games are treated.




1. INTRODUCTION

Since the early developments of Operations Research and Game Theory there was
an interesting interaction between the two fields. This is not surprising, because in both
fields decision makers, guided by an objective function, want to act in an optimal way.
The main difference between the fields is that in O.R. there is acting only one decision
maker, while in game theory at least two decision makers are in interaction.

Game theory deals with mathematical models of competition and cooperation.
Roughly speaking the theory is divided into two parts: non-cooperative theory, where
the players (agents, decision makers) cannot make binding agreements and cooperative
theory where binding agreements and often also sidepayments are possible.

Well-known is the interrelation between O.R. and non-cooperative game theory.
We only mention:

(i) Duality results in mathematical programming theory and minimax results in zero-
sum game theory.
(ii) Linear complementarity theory and the theory of bimatrix games.
(iii) Markov decision theory and the theory of stochastic games.
(iv) Optimal control theory and the theory of differential games.

Interrelation between cooperative game theory and O.R. is less known and it is the
purpose of this paper to pay some attention to this interrelation. We will introduce
cooperative games arising from optimization situations, in which many decision makers
are involved, because they own e.g. resources or arcs in a network, or because they
control pieces of networks etc. In working together, the decision makers create extra
gains or save costs and the problem arises: how to share the extra rewards or how to
allocate the costs? One way, to answer this question is to look at TU-games (transferable
utility games) arising from such situations and to use existing solution concepts or to
create new suitable solution concepts to solve the problem.

Since the beginning of the seventies many situations are considered. I mention:

(i) Minimum spanning tree games and spanning network games (Claus and Kleitman
(1973), Bird (1976), Megiddo (1978), Granot and Huberman (1981), Granot and
Maschler (1991), van den Nouweland, Maschler and Tijs (1992)).

(ii) Linear production games, LP-games and mathematical programming games (Owen
(1975), Dubey and Shapley (1984), Granot (1986), Potters (1987), Curiel, Pederzoli
and Tijs (1988)).

(iii) Flow games (Kalai and Zemel (1982), Curiel, Derks and Tijs (1989), Derks and
Tijs (1985, 1986)).

(iv) Traveling salesman games (Potters, Curiel and Tijs (1992), Tamir (1989), Kuipers
(1991)).



(v) Sequencing games, permutation games and assignment games (Shapley and Shubik
(1972), Curiel, Pederzoli and Tijs (1989), Curiel and Tijs (1986), Potters and Tijs
(1987), Hamers, Borm and Tijs (1992)).

For further reading I recommend Curiel (1987, 1988), Driessen (1988), Sharkey
(1992) and Tijs and Driessen (1986).

In the next sections we introduce some of these classes of games, and indicate some
main results.

Section 2 gives a short introduction into cooperative game theory. Especially, at-
tention is paid there to the core and in examples minimum spanning tree games, and
traveling salesman games are introduced.

Section 3 deals mainly with max flow games.

In section 4 linear production situations and their corresponding games are consid-
ered in detail, as well as permutation games.

An extensive list of references will guide the reader through the literature.

2. COOPERATIVE GAME THEORY

Cooperative game theory is concerned primarily with coalitions - groups of players
- who coordinate their actions and pool their winnings. For each set S of players,
v(S) denotes the amount they can gain if they form a coalition, excluding the other
players. One of the problems is how to divide extra earnings (or cost savings) among
the members of the formed coalition.

For N = {1,2,... ,n} denote the collection of subsets of N by 2.

Definition 2.1. A cooperative n-person game in characteristic function form is an
ordered pair < N,v >, where N := {1,2,...,n} (the set of players) and v : 2¥ — R
is a map, assigning to each coalition S € 2V a real number, such that v(@) = 0. The
function v is called the characteristic function of the game, v(S) is called the worth (or
value) of coalition S.

Example 2.2. (Three cooperating communities.) Communities 1, 2 and 3 want to be
connected with a nearby power source. The possible transmission links and their costs
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are shown in figure 2.1.

Figure 2.1.

The cost game < N,c > associated with this situation is given by N = {1, 2, 3} and the
first two lines of the next table.

W@ [e [ o] s ] @] 23
100 90 80 130 110 110 140
o [0 [ 0| o | m | e | 1o

The game < N,v > in the third line of the table is the cost savings game corresponding
to < N, c >, determined by

+

v(S) =) c(i) — c(S) for each S € il
t€S

The cost savings v(S) for coalition S is the difference in costs corresponding to the
situation where all members of S work alone and the situation where all members of S
work together.

Games arising from situations as in example 2.2 for obvious reasons are called

minimum spanning tree games. They are extensively studied. For a survey I refer to
Sharkey (1992).



Example 2.3 (Saving travel costs).

Home city

Figure 2.2.

Three university cities 1, 2 and 3 are interested in inviting a scientist living in
(home) city 0. In figure 2.2 the one way travel costs are given. So going from city 0 to
city 1 and back costs 2 x 50 = 100 units etc. In cooperating the cities can save travel
costs. The problem is: "who pays what to the scientist?”. In the next table you find
the corresponding cost game and cost savings game.

il

S 0 | {1} | {2} | {3} | {1,2}
c(S) | 0o | 100 | 160 | 100 200
w(S) | 0O 0 0 0 60

Games arising from situations as in example 2.3 are called traveling salesman games.
For recent results I refer to Potters and Tijs (1992), Potters (1990), Tamir (1989) and

Kuipers (1991).

Example 2.4. N = {1,2,,3}, v(S) =1if § D {2,3}, v(S) = 0 otherwise. This is an
example of a simple game, where v(S) € {0,1} for all S and v(/N) = 1. Such games
play a role in the description of voting situations, where v(S) =1 <= § is winning.
Also in control situations of an object simple games are useful in the description of those
coalitions who can use the object i.e. those coalitions with worth 1. In the game in this
example coalitions containing players 2 and 3 are powerful. Another simple game is the
dictator game < N, §' >, where §*(S) =1iff i € S.
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For a game < N,v > interesting distributions (z1,2,... ,Zn) of the worth v(N)
of the grand coalition are core elements, satisfying:

(i) f: z; = v(N) (Pareto efficiency)
i=1
(ii) S zi > v(S) for all S € 2V (Stability)
i€S
The set of vectors satisfying (i) and (ii) is called the core of the game and is denoted by

C(v). If £ € C(v), then no coalition S has an incentive to split off, if z is the proposed

reward allocation for N, because the total amount ) z; allocated to S is not smaller
i€S
than the amount v(S) which they can obtain by forming a subcoalition.
For the game in figure 2.1 the vector (70,60,0) € C(v), which corresponds to the

vector (30, 30, 80) in the cost core, which is defined by

C(c) := {z € RV | im; = c(N),Z:c.; < ¢(S) for all S}.

=1 €S

This vector (30, 30, 80) is tightly related to the minimum spanning tree, corresponding

to this problem.

It is well-known that all minimum cost spanning tree games have a non-empty core.
For the game < N, v > in example 2.3 the vector (40, 40, 50) is in the core. However,

there exist traveling salesman games with an empty core (cf. Potters and Tijs (1992)).
In view of a famous theorem concerning necessary and sufficient conditions for

the non-emptiness of the core (Bondareva (1963) and Shapley (1967)), games with a

non-empty core are also called balanced games. The core is one of the most interesting

solution concepts. Others are e.g. the Shapley value (1953), the nucleolus (Schmeidler,

1969), the r-value (Tijs, 1981).

In Curiel, Pederzoli and Tijs (1989) for sequencing games an interesting rule, the Equal

Gain Splitting Rule, was introduced, which fits nicely with these class of games.

In the following sections only the core will be considered, and most of the considered

games will be balanced.

3. FLOW GAMES

Nice examples of balanced games are those arising from flow situations with veto
control. In the flow situation there is one source and one sink and on the arcs there are
capacity restrictions. Furthermore, with the aid of a simple game for each arc, one can
describe which coalitions are allowed to use the arc. These are the coalitions which are
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winning in the simple game. In this context such games are called control games. The
value of a coalition S is the maximal flow through the network from source to sink (per
time unit), where one uses only arcs which are controlled by S.

Example 3.1. Consider the network in Figure 3.1 with one source, one sink, one
intermediate node where

— wl
4 \‘\. ll
p 10 w |
source = S .O sink
5'\ _ _____/Jh
w2
Figure 3.1.

the three arcs [, l2, {3 have capacities 4, 5 and 10 respectively.
The control games are w;, wg, w3 with
wi(S) =1if S € {{1,2}, N} and w(S) = 0 otherwise
we(S) =1if S € {{1,3}, N} and wz(S) = 0 otherwise
w3 = 6, player 1 owns arc {3

The coalition {1, 2} can only use the arcs [, and 3, so the maximal flow (per time unit)
for {1,2} is 4. This results in v({1,2}) = 4 for the corresponding flow game < N, v >,
whose characteristic function is given by

v({i}) =0ifi e N, v({1,2}) =4, v({1,3}) =5

v({2,3}) =0 and v(N) = 9.
A minimum cut for the flow situation corresponding to the grand coalition is {l1,l2}. By
the max-flow min-cut theorem of Ford and Fulkerson (1962) the sum of the capacities
of l; and l2(4 + 5) is equal to v(N). Divide v(N) as follows. Divide 4 equally among

the veto players of w;, and 5 equally among the veto players of wa. The result for the
1
%, 2 25). Note that this vector is in C(v).

The next theorem shows that the non-emptiness of the core of the control games

players is the payoff vector (4

is inherited by the flow game.

Theorem 3.2. (Cf. Curiel, Derks and Tijs (1989)) Suppose all control games in a
controlled flow situation have veto players. Then the flow game is balanced.
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Proof. Take a maximal flow for the grand coalition and a minimum cut in the network
for the grand coalition consisting of the arcs

I1,la,...,l, with capacities ¢1,¢2,...,Cp
and control games wy,ws,... ,w,y, respectively. Then the theorem of Ford-Fulkerson
says that v(N) = Y ?_, c,. For each r take z" € core(w,) and divide c, according to

the division key z" (i.e. c,z[ is the amount for player i). Note that non-veto players
get nothing. Then ) 7_, c,z" € C(v) because
n p p n p
) X Yeazi=)c ) zi= ) cr=v(N)
i=] r=1 r=]| 1i=1 =1
(ii) For each coalition S, the set
Ls:= {lr | e {11 :p}r w,(S) = 1}
is a cut of the network, governed by the coalition S.

p P
Hence, (Y. crxf) = Yo Szl 2 Y crw (S) = ), ¢ = capacity (Ls) > v(S)
t€S r=1 r=1 t€S r=1 l.€ELs

where the last inequality follows from the Ford-Fulkerson theorem. 1]

The question arises whether any non-negative game can be obtained from a flow
situation with veto control (i.e. all control games possess veto players). The affirmative
answer is given in

Theorem 3.3. Any non-negative balanced game arises from a flow situation with veto
control.
Proof. Let v be such a game. By a theorem of Derks (1987) there are positive numbers

k
¢1,C2, ... ,ckx and balanced simple games wy, wz, ... ,wk such that v = ) c,w,. Take
r=1

the flow situation as

source sink

Figure 3.2.
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in figure 3.2 with no intermediate nodes and arcs l,l2,... ,lx from source to sink with
capacities ¢, c2,... ,ck and control games w;, we,... ,wi respectively. Then, one can
easily prove that the corresponding flow game coincides with < N,v >. [

Remark 3.4. (Cf. Kalai and Zemel (1982a, 1982b).) Let < N,v > be the flow game
corresponding to a flow situation where all control games are dictatorial games. Then
it is easy to prove that each subgame < S,v, > (where v, is the restriction of v to
2%) has a non-empty core. (Such games are called totally balanced). For extensions to
multi-commodity flow games see Derks and Tijs (1985, 1986).

Remark 3.5. In this section we looked at the class of max flow games. Interesting is
also the class of minimum cost flow games, which can be seen to contain assignment
games (Shapley and Shubik, 1972) and permutation games (Tijs et al, 1984). We will
not treat this class here.

4. LINEAR PRODUCT GAMES

Linear production games are introduced by Owen (1975). Generalizations of Owen’s
results are given in Dubey and Shapley (1984), Granot (1986) and Curiel, Derks and
Tijs (1989).

Consider the linear production situation where products P, P, ... , F;,... , Pn can
be made using resources G;,Ga,... ,Gk,... ,Gq. Suppose that for the production of a
units of P;(a > 0)aa,; units of G}, aaj; units of Gy,..., are required. Furthermore,
the price per unit of product P; is ¢;. Let A := [a;k]7L;,x—, be the corresponding
production matriz. We suppose that A > 0 and that each row of A has a positive
coordinate. If a bundle of b € R% of resources is available, then feasible production
plans can be described as vectors z € RT with zA < b, where z corresponds to the
plan: make for each j € {1,2,... ,m} z; units of product P;. The value of the products
made by such a plan at price c is equal to the inner product z - ¢ of z and c.

Let
val(b) :=max{z-c|z >0, A < b}

be the value corresponding to an optimal production plan, given the resource bundle b.
That val(b) is well-defined follows from the fact that {z > 0, A < b} is a compact set,
in view of the conditions put on A.

Now suppose that a group N = {1,2,...,n} of agents controls in some way the
resources and that b(S) is the resource bundle which is available to a coalition S € 2V
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provided they cooperate. Then the above situation corresponds to a linear production
game < N,v >, where

v(S) := val(b(S)) for each S € 2™\ {0}.

The papers of Owen (1975), Granot (1986) and Curiel, Derks and Tijs (1989) give
sufficient conditions for the map S — b(S) to guarantee the non-emptiness of the core
of the corresponding linear production game.

Example 4.1. Consider the linear production situation

G G,
Plf1 21)/5
P ( 2 1 )(7)
b' = (5,8)

b? = (5, 2)
b’ = (0,2)

Table 4.1.

as given in table 4.1, where 2 resources G; and G are involved and 2 products P; and
P, with prices per unit 5 and 7. Suppose that 10 units of Gy and 12 units of G, are
available: player 1, 2 and 3 own, respectively, resource bundles (5,8), (5,2) and (0,2).
This situation corresponds to a 3-person linear production game < N,v > with

v(S) := max{5z; + Tzz | z; > 0,22 > 0,z + 2z2 < b1(S5), 211 + T2 < b2(S)} (4.1

where b (S) = (3,5 b')k for k € {1,2} denotes the total amount of resource Gx owned
by coalition S.
If one wishes to calculate v, rather than (4.1) it is easier to use formula (4.2), which is
derived from the duality theorem of linear programming theory. The reason is that for
all dual programs corresponding to the 2" — 1 = 7 coalitions the feasible region is the
same. We have

v(S) = min{b1(S)y1 + b2(S)y2 | y1 2 0,92 2 0, y1 + 2y2 2 5,21 + 92 > 7}  (4.2)

The feasible region of the dual problem has 3 extreme points, namely § = (3,1), 7' =
(5,0), ¥ = (0,7). For each of the 7 problems in (4.2) the minimum is attained at one
of these extreme points. The next table 4.2 describes where the minimum is attained
and gives also the characteristic function v.
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minimum v(S)

X 23

0" 14

8ol OB, | :

(1,2) (10, 10) U 40

(1,3) (5, 10) U, 25

(2,3) (5, 4) U 19

(1,2,3) | (10,12) i 42
Table 4.2.

For the grand coalition N the value is equal to 42 and is attained at § = (3,1). Here,
3 can be interpreted as (shadow) price for G;. According to these prices the bundle
b! = (5, 8), owned by player 1, has value 5-3+8-1 = 23. For players 2 and 3 the values
of their bundles are 17 and 2 respectively. These values correspond to the imputation
(23,17,2) of < N,v >. Note that (23,17,2) is even a core element of < N,v > and that
to find this vector we only need to solve the dual linear program in (4.2) for S = N.

In the Owen model each player i owns a bundle b* = (b%,b%,... ,bfr) of resources
and b(S) := Y, g b* for each S € 2V\{@}. An example is given in 4.1.

In the Granot model one considers the g commodity games < N, ¢, > with cx(S) :=
b (S) and assumes that these games are balanced.

In the Curiel-Derks-Tijs model for each commodity G there are portions a1, a2,
... yOogy(k) available, where the control of these portions is described by control games
W1, Wk2, - - - , Wke(k) Tespectively. One assumes that the control games are simple games
with veto players. Hence, bx(S) = Ef_‘j} arrWir(S) for each S. (See example 4.4.)

Note that in the Owen model bx(S) = Y ,cg bk = iy bi6i(S) for all k € N and
S € 2V\{0}, where §; is the dictator game with dictator i. This implies that this model
is a special case of the third model by taking for each k € {1,... ,q} : t(k) = n, and for
eachi € N: ai = b, wr; = 6.

The Granot model can also be incorporated in the third model, since by a theorem
of Derks (1987) each of the non-negative balanced commodity games cx can be written
in the form ¢, = ) __, Qkrwk,, where ax, > 0 and wg, is a balanced simple game.
Conversely, the third model can also be seen as a special case of the second model by
noting that in the third model, for each k, S — bx(S5) = Z:S)l akrWkr(S) is a balanced
game, because balanced games form a cone.

All the three models give rise to balanced linear production games. In view of the
above we only need to prove this for the third model.
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Theorem 4.2. (Curiel-Derks-Tijs (1989).) Consider the linear production game
< N,v > corresponding to the linear production situation with production matrix
A € R™*9, price c € R™ and commodity function b : 2¥\{#} — RY such that for all
ke {l1,2,...,q} and all S € 2V\{0}:

t(k)

bk (S) = ) akrwir(S)
r=1

where all ai, are positive real numbers and all wg, are simple games with veto players.
Then
(i < N,v > is a balanced game.
(ii) A core element z of < N,v > can be obtained by taking
g t(k)

I = ZZak,—ﬂk\V(k,r)l'lev("'r) (4.3)

k=1 r=1
where V (k,r) is the set of veto players in wg,, ¥ is an optimal vector in the dual
program 4.2 with S = N and e” is the vector in RN with coordinate el =1ifie S
and el =0ifi ¢ S.
Proof. We only need to show that z given by (4.3) is a core element.
(1)

q t(k)

Z:r. ZZZakryk\V(k Rl e

i=1 i=] k=1 r=1
t(k) n

q
=" ) dnown Y Vikir)|hey B
k=1 1

i =1

q

)
LLka-’kr Zykbk =y b(N) =v(N)

k=1r=1
where the last equality follows from (4.2).
(ii) Now take S C N, S # 0. First note that § is feasible for the dual program in (4.2)
corresponding to S. Hence,
q t(k)

u(S) < ) bi(S)iik = Zyk(z Qr Wir (5))

k=1

(k)
Je Yy okr|V (k)| 7S N Vi

M‘“

x
|

1
g t(k)

Z Y eV (k, )| tel &0

k=1r=1

L.

Cal)

-l
m
N

12



So z € C(v). @

Note that the core element z in theorem 4.2 is obtained as follows.

(i) First calculate shadow prices 7,... ,3, for the commodities by solving the linear
program (4.2) for the grand coalition.

(ii) With respect to the shadow price Jx the portion ak, has value ak,-x. Divide this
amount equally among the veto players in the game wg, which describes the control
of the portion ag,.

(iii) To find z; add the amount obtained by i over all portions.

Remark 4.3. Consider the third model where the value ag, 7k is divided equally among
the veto players in wx,. We change the situation and take as division key for akryi a
core element z5" of wk, i.e. player i obtains from a,Jx the amount ak,Jx2z;". It is then
easy to prove that this procedure also leads to a core element T of the linear production

game, where
t(k)

T = Z E &krﬁkzkr.

k=1 r=1

Example 4.4. Consider the linear production situation given in table 4.3 where there
are 2 products and 2 resources. There are 3 players involved, player 1 owns 4 units of
G1, and 6 units of G are controlled by the unanimity game u(2 3. The control of the
12 available units of G is described by the control game w with w(1,2) = w(1,2,3) =
1, w(S) = 0 otherwise.

G, G
P, ( 1 3 )(30)
Py 4 2 40
(10 12)
| il
4
o, 12
6 w
u{2,3}
Table 4.3.

Then

v({1,2,3}) = min{10y; + 12y2 | y1,%2 = 0, y1 + 3y2 2 30, 4y, + 2yq > 40)
= (10, 12) (91, y2) with §; =6, g2 = 8
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The first portion 4 of G; has (shadow)value 4 - 6 = 24 going to player 1. The second
portion 6 of g; has value 36, where player 2 and 3 get each 18 units. The 12 units of
G2 have value 12 -8 = 96 and are divided equally among the veto players 1 and 2. This
results in the core element

(24,0,0) + (0,18, 18) + (48,48,0) = (72,66, 18)
of the corresponding linear production game. For this linear production game v we have
v(1,2) = 120, v(N) = 156 and v(S) = 0 otherwise.

In case we have a linear production situation with some portions of resources con-
trolled by committees where there are no veto players, then not necessarily the corre-
sponding linear production game is balanced. One can stabilize the situation e.g. by
replacing the control games with empty cores by so called corresponding tax games and
then use a core element of these tax games as a division key for the value of such a
portion. This is done in Curiel, Pederzoli and Tijs (1988).

Linear production games can be seen as special cases of linear programming games
(cf. Dubey and Shapley (1984), Granot (1986)) which arise from linear programming
situations described by an m x g-matrix A = [a;;]72,,]_,, ¢ € R™ and a function
b: 2N\{#} — R9 which are such that for all S € 2¥\{0@} the set {zA < b(S), = > 0}

is non-empty and £ — z - ¢ is bounded from above on this set. The corresponding
LP-game < N,v > is given by

v(S) : = max{z-c| zA < b(S), z 2> 0}
= min{b(S) -y | Ay > ¢, y > 0}

Theorem 4.5. Let A, b, c be as above. Suppose that, for each j € {1,... ,q}, the core
of < N, f; > is non-empty, where 3;(#) = 0 and

B;(S) = (b(S)), for each S € 2”\{@} (4.4)

Then the LP-game < N,v > has a non-empty core. Moreover, if 22 € C(f;) for each j
and y € RY is such that

b(N)-y=v(N), Ay2¢c, §20

then z:=3"7_, §;27 € C(v).

14



Proof. Note that g is feasible in the dual of the LP-problem determining v(S) and
optimal in the dual LP-program determining v(/N). This implies that

q q
Z jiBi(N) =) " §;b;(N) = v(N)
1 9=1 =1 =1
J ; J
T

&
- !
M

ﬁJ(S) = b(S) - g > v(S5).
iI€ES '=l €S

Hence, z is a core element of < N,v >. &

Remark 4.6. Let A, b, c be as above and let D be an m x r-matrix. Consider LP-games
< N,v > with
v(S) :=max{z-c|zA < ¥S), zD =0, z > 0}

(i) It is easy to prove that such LP-games have a non-empty core if the corresponding
games (1,02, ... ,0,, as defined in (4.4), have a non-empty core.

(ii) Flow games arising from flow situations with veto control, as in section 3, can be
seen as LP-games of the above type. This leads to another proof of theorem 3.2.

Now we introduce permutation games and show that these games are balanced by
showing that they can be seen as LP-games. For that purpose we need the theorem
of Birkhoff (1948) - von Neumann (1953) on the extreme points of doubly stochastic
matrices.

Theorem 4.7. Let
DS™ := {D = [dij]fn1, 71 ERT*" | "D =€, De" =¢")
be the convex set of doubly stochastic n X n-matrices. Let
PERM" := {D € DS" | d;; € {0,1} for all 1,5 € N}
be the set of permutation matrices. Then DS™ is the convex hull of PERM".

Consider the following situation (cf. Tijs, Parthasarathy, Potters and Rajendra
Prasad (1984).)
(i) There are n persons 1,2,... ,n and each person i, 1 <1 < n, possesses a machine
M; and has a job J; to be processed.
(ii) Each machine M, can process any job J;, but no machine is allowed to process
more than one job.
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(iii) Coalition formation and sidepayments are allowed.

(iv) If a person does not cooperate, his job has to be processed on his own machine.
(v) The cost of processing job J; on machine M; equals k;;, where 1 <13, 7 < n.

This situation can be reduced to the n-person cost game < N, c > where for each
coalition S € 2\ {0}

c(S) = minz Kio(s) (4.5)
" €S
with the minimum taken over all S-permutations ¢ : § — §. Such a o corresponds to
a plan where job J; of player 1 € S is processed on machine M, ;) of player o(i). The
game defined by (4.5) is called the permutation game, corresponding to the cost matriz
K = [kij]iz1);

i=]11=1"
We want to prove that the core

C(c) :={z € R" | i:c.- = ¢(N), Z:r,—, < ¢(S) for all S € 2V)
i=1 €S

of such permutation game is non-empty by reducing such a game to an LP-game as in
theorem 4.5. But let us first give an example.

Example 4.8. Consider the 3-person permutation game < N,c > with cost matrix

3
9

1
K=|3
4 12

coO OO N

Then < N, ¢ > and the corresponding cost savings game < N, w > are given in table 4.4.

It follows e.g. that c¢(1,2) = min{1 + 6,3 + 2} = 5, corresponding to the costs incurred

when job J; (J?) is processed on machine My (M;). Note that (—2,6,9) € C(c) and
(3,0,3) € C(w).

Table 4.4
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Denote the standard inner product of 2 n x n-matrices A = [a;;|7.,,7—; and B =

[bij]e 17—y by A* B. Hence, A* B:=3""_, 3", a;jbi;. For S € 2V \{0} let
PERM] := {P = [p;j]i=1,5=1 € R"*" | pi; € {0, 1} for all i, j, eV P =¢°, Pel =e€%).
Then (4.5) can be rewritten as

¢(S) = min{K x P | P € PERMj%}.

To prove that C(c) # 0, it is sufficient to show that for the reward game < N,v >,
where v = —c, the core is non-empty. We can prove this last fact by showing that
< N,v > is an LP-game as in theorem 4.5.

Note that for each S € 2V\{0}:

v(S) = max{(—K) = P | P € PERM%}
— max{(-K)*D|D>0,eND < e, -eV"D < —e°,De" < e°,-De" < —€°}

where the second equality follows from the Birkhoff - von Neumann theorem. But then
one easily shows that < N,v > is an LP-game (with m = q = n?). Finally, theorem 4.9
follows from theorem 4.5 by noting that the games < N, §; > are additive.

Theorem 4.9. Permutation games are (totally) balanced games.

For further information on permutation games and related assignment games we
refer to Shapley and Shubik (1972), Curiel-Tijs (1986) and Potters-Tijs (1987).
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