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EQUILIBRIUM SELECTION
IN THE SPENCE SIGNALING GAME V

by

Eric van Damme and Werner Giith

Abstract: The paper studies the most simple version of the Spence job market signaling
model in which there are just two types of workers while education is not productivity increas-
ing. To eliminate the multiplicity of equilibria, the general equilibrium selection theory of John
Harsanyi and Reinhard Selten is applied. It is shown that without invoking Pareto comparisons,
the Harsanyi/Selten theory selects Wilson’s Es-equilibrium as the solution. The main elements
in the analysis are the study of primitive equilibria and of the tracing procedure. The analysis
sheds light on the “evolutive” anid the “eductive” aspects of Harsanyi and Selten’s theory and it
also allows a better understanding of the older, non game theoretic literature on signaling.

1. Introduction

Recently, signaling games have been extensively studied in economics:and game theory. In
such games, there is an informed party who sends a message to which one or several uninformed
players react; the payoffs of the participants depend on the private information of the informed
party, the signal that this player sends and the responses that the uninformed players take.
Many economic models with informational asymmetries contain a signaling game as an essential
ingredient. For a (very) partial overview of this huge literature, see Van Damme [1987, Sect.
10.4].

A signaling game typically admits a great multiplicity of equilibria. This is caused by the
fact that the signal space is usually larger than the type space of the informed player so that
there exist unused signals. The Nash equilibrium concept does not tie down the uninformed
agents’ beliefs and actions at such unreached information sets, and this arbitrariness of off the
equilibrium path.responses in turn allows many outcomes to be sustained in equilibrium. As
a consequence, the class of signaling games has provided fertile playground for game theorists
working on equilibrium refinements. Indeed many refinements of the Nash equilibrium concept
have been defined initially only for such games although in most cases the concepts can be
extended to general extensive form games. Again, see Van Damme (1987, Sect. 10.5] for a
partial survey.

To reduce the multiplicity of equilibria in signaling games arising in economic contexts,
variations on the theme of iterative elimination of dominated strategies have been most popular.
Some of such (sometimes ad hoc) procedures can be justified by refering to the general notion
of stable equilibria introduced in Kohlberg and Mertens (1986]. Indeed, various authors claim
additional virtue for the result they obtain by stating that the outcome obtained is the only one
satisfying the Kohlberg/Mertens stability criterion. However, the latter stability notion has its
share of counterintuitive examples (see, for instance, Van Damme [1989]), and even the seemingly
unobjectionable notion of iterative elimination of ordinary weakly dominated strategies is not

1 Supported in part by the Sonderforschungsbereich 303 (DFG), Institut fiir Operations Research,
Universitdt Bonn, W. Germany. The research was carried out while the authors participated in
the research group 'Game Equilibrium Models’ at the Center for interdisciplinary research of the
University of Bielefeld.
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without pitfalls as Binmore [1987] has argued. As a consequence, the present authors are not
convinced that the theory that is currently accepted by the majority of researchers in the field
will survive in the long run; there is scope for alternative theories.

Our aim in this paper is to illustrate such an alternative theory, viz. the equilibrium selection
theory of John Harsanyi and Reinhard Selten [1988](the HS theory), by means of applying it to a
simple signaling game arising in an economic context. Specifically, we will study the most basic
version of the job market signaling model introduced in the seminal work of Spence [1973,1974).
We take this well-known model rather than an abstract signaling game for didactical reasons.
Since many economic signaling models have a mathematical structure similar to Spence’s model,
arguments similar to the ones we will use will come up in their analyses and the reader can get
a good idea for how the HS theory works by reading the present paper. In the literature, the
reader can already find several applications of the HS theory, however, all of these are to games
that admit multiple strict equilibria, and in these games stability a la Kohlberg/Mertens is not
very powerful. (Recall that Kohlberg and Mertens do not claim that their theory is a selection
theory, cf. Fn. 2 of their paper.) To our knowledge, the present paper is the first to apply the
HS theory to a game in which the multiplicity of equilibria is caused solely by the existence of
unreached information sets, i.e. by the perfection problem.

There is no doubt that there are fundamental differences between the HS (general) theory
and alternative (partial) theories such as Kohlberg/Mertens stability. We refer the reader to the
postscript of Harsanyi and Selten [1988] in which some of these are described. Perhaps the most
profound difference is that HS work with the standard form of the game (this is basically the
agent normal form), whereas stability is a normal form concept. Accordingly, HS reject ideas of
"forward induction’ since they conflict with their 'subgame and truncation consistency’. Since in
our game no player has two strategic moves along the same path?® | this difference is not relevant
for our model, however. (Also, cf. Mertens [1988]).

On the other hand, there are common elements in the various theories: HS teratively
eliminate inferior strategies of the perturbed standard form, Kohlberg/Mertens stability allows
iterative elimination of dominated strategies in the normal form, and dominated strategies are
inferior. Apart from the difference in game form, the main difference here is in the order of oper-
ations: HS perturb first and thereafter eliminate, whereas Kohlberg/Mertens follow the opposite
order. A simple example in Appendix A illustrates that the order in which the operations are
carried out may make a difference in general. However, in this paper we show that this is not
so in the present case, i.e. if the unperturbed Spence game is dominance solvable (which holds
if the proportion of low quality workers is relatively high), the Harsanyi/ Selten solution is the
equilibrium that remains after all dominated strategies have been iteratively eliminated, i.e. the
HS solution is the Pareto best separating equilibrium. Actually, the proof of this proposition
constitutes the heart of the present paper, hence, the parameter constellation that is trivially
solved according to conventional methods poses the greatest difficulty for the HS theory. The
case where the proportion of low ability workers is small (so that the game is not. dominance
solvable) is relatively easy to solve by means of the HS theory. In this case, we show that only
the Pareto best pooling equilibrium spans a primitive formation, therefore, the HS theory deter-
mines this equilibrium as the solution. To summarize, in our simple model, the solution obtained
by the HS theory coincides with the E;-equilibrium notion proposed by Wilson [1977]. It should
be stressed that to obtain this result we do not make use of Pareto comparisons. Although such
comparisons play a role in the HS theory, in our analysis we will never be in the position that the
HS theory allows us to make such a comparison. Finally it should be remarked that it remains
to be investigated for which class of games the Wilson and HS solutions coincide.

The remainder of the paper is organised as follows. In Sect. 2 we introduce the model and

%2 The informed player moves twice, but the second move (the choice of employer) is not really
strategic, subgame perfectness determines this choice uniquely.
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derive the Nash equilibria of the unperturbed game. (The model is chosen so that every Nash
equilibrium is sequential). The HS theory cannot be applied to this game directly, rather one has
to apply the theory to a sequence of uniformly perturbed games and then let the perturbances
go to zero. In the Sects. 3 and 4 it is investigated which equilibria of the original game are
uniformly perfect, i.e. which equilibria can be approximated by equilibria of such uniformly
perturbed games. HS consider as the initial set of solution candidates of a perturbed game the
so called primitive equilibria, i.e. those equilibria that span primitive formations. A formatjoy is
a subset of strategy combinations that is closed under taking best replies. A primitive formation
is a minimal one, this concept generalizes the notion of a strict equilibrium point. In Sect, 5
we investigate the formation structure of the uniformly perturbed games. We show that, if the
proportion of able workers is sufficiently high, only the Pareto best pooling equilibrium spans a
primitive formation, hence, this equilibrium is the HS solution if there are many able workers,
If there are only few able workers, then there are multiple primitive formations, in particular,
the Pareto best pooling equilibrium as well as all separating equilibria in which the able worker
does not invest too much in education span primitive formations. In this case, the HS solution
is determined by applying the risk dominance criterion (in which use is made of the tracing
procedure). In Sect. 6 it is shown that the Pareto best separating equilibrium risk dominates
all other equilibria, hence, this equilibrium is the solution if there are few able workers. Sect. 7
offers a brief conclusion.

2. Model and Equilibria

Let Y be a finite set (of possible education choices) and let W be the finite set of possible
wages that firms can offer. The entire paper is devoted to the analysis of the signaling game
I'(Y, W, X) described by the following rules:

(2.1) A chance move determines the type, respectively the productivity, ¢ of player 1 (the
worker); with probability A the type is 1, with probability 1 — A the type is 0; only player
1 gets to hear his type.

(2.2) Player 1 chooses y € Y.

(2.3) Two firms (the players 2 and 3) observe the y € ¥ chosen and they then simultaneously
offer wages wy, w3z € W.

(2.4) The worker observes the wages offered and chooses a firm.

(2.5) The payoff (von Neumann-Morgenstern utility) is 0 for a firm that does not attract the
worker, it is ¢ — w for a firm that pays the wage w to a worker of type t, and it is w — y
(resp. w—y/2) for a worker of type 0 (resp. type 1) that receives the wage w after having
chosen the education level y.
Several comments are in order concerning the above specification

(i) The main difference between our game and the basic model of Spence (1973 ] is that in
our case the least able worker is not productive. This assumption simplifies the analysis
somewhat since it ensures that every Nash equilibrium is a sequential equilibrium. With
minor modifications our arguments also apply to Spence’s specification, however.

(ii) To reduce the number of parameters, we have normalised the education cost such that
these are twice as high for the type 0 worker as for the type 1 worker. Given our other
assumptions, this normalisation is without loss of generality; the reader may verify that
the HS theory yields the Wilson Ej-equilibrium as long as the least able worker has higher
education cost.
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(iii) Competition between the firms is modeled as a Bertrand game between two firms. It may
be checked that the same results would be obtained with n firms, n > 2. Of course, if
there is just one firm the solution is completely different (the firm offers a wage of zero
and the workers do not invest in education).

(iv) Since the HS theory aplies only to finite games, we are forced to work with finite sets ¥
and W, hence, we discretize the continuous specification of Spence. Throughout, we will
assume that this discretization is sufficiently fine, and at the end we will let the diameter
of the grid go to zero.

Let ¢ > 0 denote the smallest money unit. All wages have to be quoted in integer multiples
of g, hence

(2.8) W ={kg; k=0,1,2,...,K}.
To simplify the analysis somewhat, it will be assumed that
(2.7) YCWand 0,\,1,2€7,

an assumption that is, however, not essential for our results to hold (Details are available from
the authors upon request). To avoid some further technical uninteresting difficulties, let us
assume that the grid of W is finer than that of Y, specifically

(2.8) if y,y'€Y and y#y, then |y— Y| >4g.
Finally, we introduce the following convenient notation:
(2.9) If z€R,then 27 =maz{we Wlw<z}.

Next, let us start analysing the game (Y, W, ). Note that this game admits several (trivial)
subgames in stage (2.4): Subgame perfection requires that at this stage the worker chooses the
firm offering the highest wage, and symmetry implies that the worker should randomize evenly
over the firms in case they offer the same wage. Hence, it is natural to analyse the truncated
game obtained by constraining the worker to behave in this way in stage (2.4). The HS theory
allows this procedure to be followed.3 Therefore, from now on, attention will be restricted to
the truncated game. This game will be denoted G(Y,W,\)

Denote by s4(y) the probability with which the type t worker takes the education choice .
Hence, (s0,31) is a behavioral strategy of player 1 in G(Y,W,)). Let s(y) be the probability
that education level y is chosen

(2.10) s(y) = As1(y) + (1 = N)so(y),
and let p(y) be the expected productivity if y is chosen with positive probability. By Bayes’ rule
(2.11) py) = Asi(y)/s(y)  if s(y) > 0.

Assume s(y) > 0. In any Nash equilibrium of G(Y, W, }), firms, in response to y, play a Bertrand
equilibrium of the game in which it is known that the surplus (i.e. the worker’s productivity) is
#(y). The following Lemma specifies the equilibria of this game.

Lemma 2.1. The game in which two firms compete for a surplus p by means of wage offers
w; € W has the following equilibria:

2 Actually, the HS theory requires to first perturb the game before one starts replacing subgames
(which are cells in the perturbed game) by their solutions. To simplify the exposition, we have:
interchanged the operations of perturbing and decomposition, what, for the case at hand, does not
influence the final result,.
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(a) Ifp € W, both firms either offer M, or = or pT .

(b) If u ¢ W, both firms either offer K7, or u= or they randomize between p~ and y=-
choosing y~ with probability (g — u + #7)/g, where g is as in (2.6) (i.e. g = p~ — BT

. Proof. A straightforward argument establishes that, if 4 ¢ W, only u~ and 4~ can be in the
- support of an equilibrium. By investigating the 2x2 game in which each firm chooses between
£~ and =7, conclusion b) follows easily from (2.6). If u € W, the equilibrium support now
possibly also includes 1 and conclusion a) follows easily by investigating the 3x3 game in which
each firm chooses between g,y and p=~. 0

Remark 2.2.  Note that in case (a) of Lemma 2.1, the equilibrium in which both firms offer
# is not perfect if y > 0 (bidding y is dominated by bidding p7), while the other two equilibria
are perfect (even uniformly perfect) if > 3¢. At a certain stage of the solution process, the HS
theory eliminates the equilibrium s~ since it is not primitive (when my opponent offers ==,
I am indifferent between == and K, also see Sect. 5). The equilibrium (u~, u™), being strict,
is definitely primitive. Consequently, in case (a), we will restrict attention to this equilibrium
right from the beginning. (Also note that p#~ " cannot occur in equilibrium if there are more
than two firms). In case (b) all three equilibria are (uniformly) perfect. The mixed equilibrium
is not primitive. To simplify the statements of results to follow somewhat, and without biasing
the final result, we will restrict attention to the equilibrium (g™, ™) also in this case.

Let s = (sg,51) be an equilibrium strategy of player 1 in G(Y,W, ) and write Y(s) =
{y; s(y) > 0}. The above lemma and remark, with p = p(y) as in (2.11) determines the
equilibrium response of the firms at y. Assume v,y € Y(s) with y < 3. From optimizing
behavior of the worker, one may conclude that uly) < ",u(y’). Since it cannot be the case that
both types of worker are indifferent between y and ¢’ we must have p(y) = 0 or (y") = 1, hence,
in any equilibrium at most three education choices can occur with positive probability. The
Nash concept does not specify the equilibrium responses of firms at education levels y € Y/ Y (s).
To generate the set of all equilibrium outcomes we may put w;(y) = 0 at such y, since this is
the best possible threat of the firms to avoid that y will be chosen. Using this observation it is
not difficult to prove that the set of Nash equilibrium paths of G(Y, W, )) is as described in the
following Proposition.

Proposition 2.3. (s,w) with s = (s0,91) and w = (wq, w3) with w; : Y(s) —» W is a Nash
equilibrium path of G(Y, W, \) if and only if

(2.12) if s¢(y) >0, then { y € argpax wly) —y/(t+1)
and w(y)—y/(t+1)>0

(2.13) w(y) = wi(y) = wa(y) = p(y)~ for all y € ¥(s)

In the following sections, emphasis will be on those equilibria in which player 1 does not
randomize. (The other equilibria are not primitive, hence, the HS theory eliminates them, see
Sect.6). These equilibria fall into two classes:

(a) pooling equilibria, in which the two types of worker take the same education choice, hence
Y(s) = {7} for some § € Y. Then u(y) = A and w(¥) = A~ .Therefore, (2.12) shows that
¥ €Y can occur in a pooling equilibrium if and only if <A




268

(b) separating equilibria, in which the education choice 3 of type 0 is different from the
choice y; of type 1. Proposition (2.3) shows that the pair (yo,%1) can occur in a separating
equilibrium if and only if yy = 0 and

(2.14) 17—y S0 17—y /2

Hence, we have

Corollary 2.3. For any§ € Y withy < A, there exists a pooling equilibrium of G(Y, W, }) in
which both players choose §j. There exists a separating equilibrium in which type t chooses y; if
andonly ifyg =0 and 1 <y; < 2.

3. The Uniformly Perturbed Game

G(Y,W,)) is a game in extensive form. The HS theory is based on a game form that is
intermediate between the extensive form and the normal form, the so called standard form. In
our case, the standard form coincides with the agent normal form (Selten [1975]) since no player
moves twice along the same path. The agent normal form has 2|Y| 4 2 active players, viz. the
two types of player 1, and for each y € Y and each firm i an agent iy that is responsible for
the firm’s wage offer at y. This agent normal form will again be denoted by G(Y, W, A). Note
that, if (s, w) is a pure strategy combination (s = (so,s;) with s,(y;) = 1 for some y; € Y, w =
(w2, w3) with w; : ¥ — W), then the payoffs to agent ¢ (the type ¢ worker, t = 0,1) are

(3.1) Hy(s,w) = mazi=1,2 wi(y:) —ye/(t + 1),
while the payoffs to agent 7y are

0 if s(y) =0 or wi(y) < wj(y)
(3.2) Hiy(s,w) = { p(y) — wiy) if s(y) > 0 and wi(y) > w;(y)
(u(y) —wi(y))/2 if s(y) > 0 and wi(y) = w;(y)

To ensure perfectness of the final solution, the HS theory should not be directly applied to
G(Y,W, ), but rather to a sequence of uniformly perturbed games G(Y, W, A) with e > 0, e
small, ¢ tending to zero. The latter games differ from the original one in that each agent cannot
completely control his actions. Specifically in G¢(Y, W, \), if agent ¢ intends to choose y;, then
he will by mistake also choose each y € Y, y # y; with a probability € and he will actually play
the completely mixed strategy s§ given by

o n i ify # v,
(3.3) si(y) _{1—(|Y|—1)e if y =y,

More generally, if the type ¢ worker intends to choose the mixed strategy s, then he will actually
play the completely mixed strategy s{ given by

(3.4) sg(y) = se(y)(1 = [Y]e) + ¢

(Of course, € should be chosen so small that |V|e < 1). Similarly, if agent iy intends to choose
wi(y), he will actually also choose all different wages with the same positive probability €
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Formally, the uniformly perturbed game G.(¥, W, )) has the same agents as players, these have
the same strategies available (which are now interpreted as intended choices), but the payoff
function H* is slightly different from that in (3.1) — (3.2) and takes into account the above
described mistake technology. If e is small, the payoffs H® of those agents moving on the
equilibrium path are close to the payoffs as described by H, however, for agents iy that cannot
be reached intentionally there is a discontinuity. Namely, since both types of player 1 choose y
with probability € in the perturbed game, such agents play a Bertrand game with surplus A. It
will be convenient to assume that actually firms never make mistakes. The reader may verify
that this assumption does not influence our results, it just simplifies notation. In this case, the
perturbed game payoff to agent iy is given by

pe(y) — wiy) if wi(y) > w;(y)
(3.5) Hiy(s,w) = (ps(y) = wi(y)) /2 if wi(y) = w;y)
0 if wi(y) < w;(y)

where the expected productivity at y is given by

Asiy)
$()+ (1= N)ss(y)

(3.6) n(y) = A

with s§(y) as in (3.4).

If firms do not make mistakes, the workers’ payoffs are (up to a positive affine transformation,
depending on the worker’s own mistakes) exactly as in (3.1). Since affine transformations leave
the solution invariant, we will consequently analyse the game in which the types of the worker
have pure strategy set ¥, the agents of the firms have strategy set W and in which the payoffs
are as in (3.1),(3.5). This game will be denoted G(Y,W, ). Note that the perturbed game
Gy, W, A) is an ordinary agent normal form game of which we will analyse the Nash equilibria.
There is no need to consider a more refined solution concept: All “trembles” have already been
incorporated into the payoffs.

After having uniformly perturbed the game, the next step, in applying the HS theory consists
in checking whether the game is decomposable, i.e. whether there exist (generalized) subgames,
so called cells. (See the diagram on p. 127 of Harsanyi and Selten [1988]). It may be thought
that, for each y € Y, the agents {2y, 3y} constitute a cell. Indeed these agents do not directly
compete with an agent iy’ with y' # y. However, they directly interact with both types of the
worker and, hence, through the worker they indirectly compete also with agent zy’. To put it
differently, the game does not contain any (proper) subcells, it is indecomposable. Therefore,
we move to the next stage of the solution procedure, the elimination of inferior choices from the
game.?)

4. Elimination of Inferior Strategies

A strategy is inferior if its stability set, i.e. the region of opponents’ strategy combinations
where this strategy is a best reply, is a strict subset of another strategy’s stability set. It can be

* Tt will turn out that this step is actually redundant in the case at hand, i.e. the reader may move
directly to Sect. § if he prefers. Since one of our aims is to illustrate the various aspects of the HS
theory, we thought it best to include the discussion on inferior strategies.
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verified that in our model, the inferior strategies are exactly those that are weakly dominated.
Clearly, such strategies exist in our model: For any agent iy offering a wage greater than or equal
1is weakly dominated. Furthermore, for the type t worker, choosing y with y/(t+1) > mazW is
dominated by choosing 0. HS require that one eliminates all such choices, and that one continues
this process until there are no inferior choices left. (Along the way, one should also check whether
the reduced game obtained contains cells, but this will never be the case in our model, see also
Fn. 3). The following Proposition describes the irreducible game that results after all inferior
strategies have been successively eliminated.

Proposition 4.1.  If ¢ is sufficiently small, then by iterative elimination of inferior strategies,
the game G (Y, W, \) reduces to the game G7(Y, W, \) in which the following strategies are left
for the various agents:

Fortype 0: Y{={yeY;y<l1}

For type 1 : Y ={yeY; y<3—rmaz(2)1)}

For agent 1y withy <1 : WL={weW, w<l}

For agent 1y with1 <y <8 —maz(2)\,1) : W] ={we W;we [A7,1)}
For agent iy withy > 3 —maz(2),1): W{ = {17}

Proof. Clearly w € W with w > 1 is inferior for any agent iy. Once these inferior strategies
have been eliminated, choosing y > 1 becomes inferior for type 0 (it is dominated by choosing
y = 0) and y > 2 becomes inferior for type 1. We claim that in the resulting reduced game
an agent ty with y < 1 does no longer have any inferior actions. Namely, w;(y) = 0 is the
unique best response against w;j(y) = 0 if so(y) =1 and s;(y) = 0 (hence us(y) < g), so
that offering zero is not inferior (Here we need that ¢ is small). Furthermore, if w < 17, then
w is the unique best response of agent iy against w;(y) = w™ if pS(y) ~ 1 (i.e. so(y) = O and
51(y) = 1). Therefore, such wages also are not inferior. F inally, since both firms offering w = 1°
at y is a strict equilibrium if p$(y) > 17, also w = 1" is not inferior, which establishes the claim.
Next, turn to an agent iy with y > 1. Since the type 0 worker cannot choose y voluntarily,
we either have s(y) = 0, hence p&(y) = A, or the type 1 worker chooses y voluntarily, in which
case p5(y) ~ 1. Consequently, at y the firms play a Bertrand game for a surplus of A or of 1.
The standard Bertrand argument implies that, starting with w = 0, all wages with w < ) will
be iteratively eliminated. On the other hand, the same argument that was used for the case
y < 1 establishes that wages strictly between A and 1 cannot be eliminated. The reduction of
the firms’ strategy sets obtained in this way does not introduce new inferior strategies for the
type 0 worker. Namely, if this worker expects that y* < 1 will result in the wage 17 while all
other y < 1 yleld wage 0, then the unique best response is to choose y*, so that y* cannot be
inferior. If A > 3 L the reductlon leads to new inferior strategies for the type 1 worker, however.
Namely, by choosmg y = 1, he receives an income of at least \™ — 5 so that any educatlon choice
y 2 3 — 2) becomes inferior. Finally, if y is inferior for both the type 0 and the type 1 worker,
then firms at y play a Bertrand game for surplus A and we already ~argued above that in this
case only A" is not (iteratively) inferior. Hence, we have shown that G (Y, W, A) can be reduced
to at least GT(Y, W, A) as specified in the Lemma. Since the latter game is irreducible, the proof
is complete.

0

The following Figure displays the result of Proposition 4.1. Along the horizontal y-axis, we
indicate the noninferior actions of the worker. For each value of y, the shaded area displays the
noninferior responses of the firms. The Figure is drawn for the case A > o
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Figure 1. The reduced perturbed game G7(Y, W, \).

By comparing Proposition 4.1 with Proposition 2 .2 it is seen that, at least if A > %,
some equilibria of the original game are eliminated by considering the reduced perturbed game.
Specifically, separating equilibria in which type 1 invests very much in education as well as some
equilibria involving randomization are no longer available in é:(Y, W,A). All in all, however,
this step of the HS solution procedure is not very successfull in cutting down on the number of

equilibrium outcomes.

It is also instructive to compare Proposition 4.1 with the result that would have been
obtained by iterative elimination of dominated strategies in the unperturbed game G(Y, W, A).
In the latter, after wages w > 1 have been eliminated, choosing y > 1 becomes dominated for
type 0, but not for type 1, hence, whenever such y is chosen, firms play a Bertrand game with
surplus 1 so that all wage offers except 1™ are dominated. Hence, by choosing y = 1, the type 1
worker guarantees a utility of (about) . In particular, choosing y > 1 is now dominated for this
type. We see that the reduced game associated with the unperturbed game is strictly smaller
than G7(Y, W, ). The difference is especially dramatic if A < % Proposition 2.2 shows that in
this case there is (essentially) only one equilibrium of the unperturbed game that remains in the
reduced unperturbed game, viz. the separating equilibrium with y; = 1. Hence, if A < %, the
unperturbed game is dominance solvable ¥ , and indeed, the conventional analysis generates
the efficient separating equilibrium (yy = 0,3, = 1) as the outcome when A < 1. The reduced
perturbed game, however, does not force agents 7y with y € (1,2) to offer the wage of 1 since
they may still think that they are reached by mistake. As a consequence, G7(Y,W, A) still
admits many equilibria even if A < %, and the HS theory does not immediately yield efficient
sepapration as the solution. Still we will show that, the risk dominance criterion of HS forces
efficient separation as the solution in this case.

5. Uniformly Perfect Equilibria

As argued before, the multiplicity of equilibria in our model is caused solely by the imper-
fectness problem, i.e. by the fact that there necessarily exist unreached information sets at which
the firms’ beliefs are undetermined. At such education choices, firms may threaten to offer a
wage of zéro which in turn implies that the worker will indeed not take such a choice. The final
consequence is that there exist equilibria with unattractive payoffs for the worker.

The HS theory solves the game via its uniformly perturbed game to avoid the imperfectness
problem. The natural question to ask is how successfull this step of the solution procedure is

® Oune could also perform this elimination in the extensive form. Since y > 1 is dominated for type
0, one eliminates the branch in which type 0 chooses such y. The resulting extensive game then
has a subgame at each y > 1 and subgame perfectness forces the firms to offer the wage 1. This
argument might suggest that in the perturbed game, for each y > 1 there is a cell consisting of
the agents 1,2y and 3y. If this would hold, it would follow immediately that efficient separation
is the Harsanyi/Selten solution if A < % However, it is not the case that the agents 1,2y and 3y
form a cell. Even though the cell condition (see Harsanyi and Selten [1988, p.95]) is satisfied for
the agents 2y and 3y, it is violated for the type 1 worker: His payoff depends in an essential way
on how firms react at other values of y. The reduced perturbed game does not contain any cells, it
is itself indecomposable.
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to reduce the number of equilibria. At first glance it appears as if this step is very successfull,
it seems that the uniformly perturbed game admits just a single equilibrium. Namely, assume
that the equilibrium payoff of the type 0 worker would be strictly less than A". Motivated by
Proposition 2.3, it seems natural to assume that there exists y sufficiently close to zero that is
not intentionally chosen by either type of worker. According to (3.5) and (3.6) firms will offer
the wage A\~ at such y, but then the type 0 worker profits by deviating to y. The apparent
contradiction shows that the type 0 worker should have an equilibrium payoff of at least A™ and
inspection of Proposition 2.3 shows that the unperturbed game has only one equilibrium that
satisfies this condition, viz. the pooling equilibrium in which both types of workers choose § = 0.
It seems that only the Pareto best pooling equilibrium can be an equilibrium of the uniformly
perturbed game, and that using uniform perturbations completely solves the selection problem,

The fallacy in the above argument is that there may not exist y close to zero with s(y) =0.
Even though it is true that in the unperturbed game at most 3 education levels can occur with
positive probability in an equilibrium, this structural property no longer holds in the perturbed
game. In most equilibria of the latter game, the type 0 worker is forced to randomize intentionally
over many education levels including levels close to zero. Once, the type 0 worker chooses y
intentionally, firms will not have unbiased beliefs at y and they may offer wages strictly below
A. In particular, the wage may be so low that the type 0 worker becomes indifferent between
choosing y and taking any equilibrium education level, and in this case there is no reason why
he should not intentionally choose y. To put it differently, the Pareto best pooling equilibrium
of G(Y, W, )) is the only equilibrium that can be approximated by pure equilibria of G.(Y, W, A).
For later reference we list this result as Proposition 5.1.

Proposition 5.1. Only the pooling equilibrium outcome in which both types of the worker do
not invest in education can be approximated by pure equilibria of uniformly perturbed games.

An equilibrium outcome of the unperturbed game G(Y, W, A) is said to be uniformly perfect
if, for € > 0, there exists an equilibrium (s, we) of é:(Y,VV,/\) that produces this outcome
in the limit as € tends to zero. Hence, Proposition 5.1 may be paraphrased as "the pooling
equilibrium outcome at ¢ = 0 is uniformly perfect”. In the remainder of this section we first
derive a condition that payoffs associated with uniformly perfect equilibria necessarily have to
satisfy (Corollary 5.3), thereafter we show (Proposition 5.6) that this condition is sufficient for
the outcome to be uniformly perfect as well. The overall conclusion (Proposition 5.7) will be
that relatively many equilibrium outcomes of the original game are uniformly perfect.

The next Lemma states a lower bound on the wage that firms offer in an equilibrium of the

uniformly perturbed game, as well as a derived lower bound on the utility of the type 1 worker.

Lemma 5.2. If (s,w) is an equilibium of GT(Y, W, \) and if u, is the equilibrium payoff of the
type t worker, then

(5.1) if  y>A"—wup, then w(y)>ir",
(52) U Z (/\_ + Uo)/z .

Proof. Assume y > A~ — ug but w(y) < A~. Then w(y) — y < ug, hence, the type 0 worker
cannot choose y voluntarily. Therefore, s4(y) = 0 and pé(y) > X. The Bertrand competition
(Lemma 2.1), however, then forces firms to offer a wage of at least A~ hence w(y) > A~. The
contradiction proves (5.1). To prove (5.2), assume (without loss of generality) that A~ —ug € Y.
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By choosing, y = A~ — uy, the type 1 worker guarantees a wage of A~, hence, he can guarantee
a payoff A — (A~ —u0)/2. This establishes (5.2).
O

As a direct consequence of Lemma 5.2, we have

Corollary 5.3. If (s,w) is a uniformly perfect equilibrium of G(Y,W, ) with u, being the
equilibrium payoff of the type t worker, then

If (s, w) is a separating equilibrium with s;(y;) = 1, then ug = 0 and u; = 1~ — ¥1/2, hence the
above Corollary implies that y; <2~ — A. Consequently we have

Corollary 5.4. If (s,w) is a uniformly perfect separating equilibrium and s1(y1) = 1, then
Y1 <2 — A

It is easily checked that Corollary 5.3 does not allow us to eliminate any pooling equilibrium
(in this case, (5.3) is always satisfied with equality), hence, let us turn to equilibria in which
the worker randomizes. First, consider the case where only the type 1 worker randomizes, say
between § and y; with § < y;. Then type 0 chooses § for sure, and ug = w(§)—g, 1 = w(§)—-7/2.
Furthermore, w(§) < A~ since p&(§) < A so that (5.3) is violated. Next, assume that type 0
randomizes, say between y and § with y, < . Then y; = 0 and type 1 also chooses § with
positive probability. Furthermore, ug = 0 and u; = §/2 since w(y) = §. Hence, (5.3) implies
§ 2 A7, Therefore, § > A in view of (2.8). We have shown:

Corollary 5.5. FEquilibria in which only the type 1 worker randomizes are not uniformly
perfect. Equilibria in which the type 0 worker randomizes between y; = 0 and ¥ > 0 are
uniformly perfect only if § > X, hence u; > A/2.

Figure 2. Uniformly Perfect Equilibrium Outcomes.

We now come to the main result of this section, which states that condition (5.3) is also
sufficient for an equilibrium outcome to be uniformly perfect. We will give the formal proof only
for separating equilibria. The reader may easily adjust the proof to cover the other classes of
equilibria not excluded by Corollary 5.3 .

Proposition 5.6. A separating equilibrium outcome (yo,v1) withyo =0 andy; < 2— A s
uniformly perfect.

Proof. The proof is by construction. Take e small and define the strategies (s, w) by means
of

e(A-y—g) :
[R0=FTGTa }i‘: : swe A
(54) soy) = it y>
1— 3 so(y) if y=0
y#0

5) a={ Fyru
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y if 0<y<A
(5.6) w.'(y)={/\‘ if y>X\y#m
1= if y=y

Note that so(y) — 0 for all y # 0 as € — 0, so that sq is a well-defined strategy if € is small.
This strategy has been chosen so that

(5.7) psy)=y+g for0O<y<A

(Direct verification using (3.4) and (3.6) is easy). Furthermore, if € is small, then 4¢(0) < g, so
that due to (Lemma 2.1), firms’ agents indeed bid equilibrium wages for y < A. If y > ) and
Y # y1, then pé(y) = A, while pé(y;) > 1 if € is small so that firms bid optimally also for these
education choices. If wages are as in (5.6), the type 0 worker has the interval [0, ) as optimal
education choices, while the optimal choice of the type 1 worker is y; since y; < 2—\. Hence, for
e small, (s,w) is an equilibrium of é:(Y, W, X). Since (s, w) in the limit produces the separating
outcome (Yo, 1), this outcome is uniformly perfect. j 0

The proof that other outcomes that are not eliminated by Corollary 5.3 are uniformly perfect
proceeds similarly. The basic insight is that, if y < A~ — up, then ¥ = w(y) — uo for some w(y)
and the type 0 worker may choose y voluntarily in order to justify the wage offer w(y) of firms
at y. Furthermore, as long as the type 0 worker is indifferent, the type 1 worker will not have
¥ as an optimal choice. Hence, condition (5.3) is sufficient for the equilibrivmoutcome to be
uniformly perfect, and we may state

Proposition 5.7.  The uniformly perfect equilibrium outcomes of G(Y,W,)) are
(i) all pooling equilibrium outcomes
(ii) the separating outcomes with y; < 2 — X, hence, u; > A/2

(iif) the equilibrium outcomes in which type 0 randomizes between yo = 0 and § with § > ),
hence u; > \/2.

Note that all three classes of equilibria described in the above Proposition satisfy u; > A/2.
This condition is necessary for uniform perfectness ( cf. Corollary (5.3)), but it is not sufficient:
There exist equilibria in which only the type 1 worker randomizes that satisfy this condition and
these are not uniformly perfect (Corollary 5.5).

6. Formations and Primitive Equilibrium Outcomes

Given that strict equilibria (i.e. pure strategy equilibria in which each player looses by
deviating) are (at least at the intuitive level) more stable than non-strict ones, it frequently is
more natural to select a strict equilibrium. (Harsanyi and Selten [1988, Sect.5.2]). Of course,
strict equilibria do not always exist so that HS were led to search for a principle that generalizes
(weakens) the idea of strictness as a selection criterion and that still helps to avoid those equilibria
that are especially unstable. HS have come up with the concept of primitive formations. A
formation of a game specifies for each agent a subset of his strategy set such that any best reply
(in the original game) against any correlated strategy combination with support contained in
the restricted game is again in the restricted strategy set. Primitive formations are sets that are



275

minimal with respect to this property. HS (Lemma 5.2.1) have shown that primitive formations
exist, and it is also true that any formation contains an equilibrium of the original game. If
(8,w) is an equilibrium of GT(Y, W, \), then we will write F¢(s,w) for the primitive formation in
G7(Y,W,)) that contains (s,w). We will say that (s, w) spans F*(s,w). Note that Fé(s,w) =
{(s,w)} whenever (s,w) is a strict equilibrium. Hence, primitive formations are the smallest
substructures with similar properties as strict equilibria. The HS theory favors the selection
of equilibria which span primitive formations to retain as much as possible of the stability
properties of strict equilibria. Specifically, HS consider as the natural solution candidates (the
first candidate set) the set of all solutions to primitive formations. (See the flowchart on p.222 of
Harsanyi and Selten [1988]). In this section, we determine the minimal formations of Gr(Y,w, A)
and their solutions. We will proceed by constructing for each equilibrium (s,w) the minimal
formation spanned by it, and then check whether there exists an alternative equilibrium (s, w")
with

(6.1) Fe(s' ) ; F(s, w)

An equilibrium (s, w) belongs to a primitive formation if and only if no (s',w') satisfying (6.1)
can be found. Such an equilibrium (s, w) will be called a primitive equilibrium. (This definition
differs slightly from the HS definition, the results in this section however show that the equilibria
that are primitive according to our definition are exactly the initial candidates in the HS sense. ).
Finally, an equilibrium outcome of the unperturbed game will be called primitive if it can be

obtained as a limit of primitive equilibrium outcomes of perturbed games as the perturbations
vanish.

We have already seen in Sect.4 that the efficient pooling equilibrium outcome of the unper-
turbed game can be approximated by pure equilibrium outcomes of the e-uniformly perturbed
game. Namely, if € is small, the strategy combination

(6.2) 50(0) =5(0) =1, wi(y)=X forall yeY,

is an equilibrium of GT(Y, W, ) which produces this outcome in the limit.%) Note that the
equilibrium (6.2) is strict, hence, primitive. Consequently, the pooling equilibrium outcome at
y = 0 is primitive as well.

Proposition 6.1.  The equilibrium outcome in which the workers are pooled at § = 0 is
primitive.
To verify which other outcomes are primitive, the following Lemma is helpful.

Lemma 6.2. Let (s,w) be an equilibrium of GI(Y, W, \) and write Ff,(s,w) for the strategy
space of agent iy in the formation F¢(s,w). For e small, we have

(6.3) if y=0or s(y)=0, then A\~ € Fy(s,w) .

Proof. If s(y) = 0 and workers play according to s, then firms play a Bertrand game for
surplus A at y. Remark 2.2 and the fact that each formation contains an equilibrium implies

¢ The reader may recall from Lemma 2.1 that the Bertrand game for a surplus of A, has equilibria

that differ from (A~, A~). However, these are not primitive, hence, at last we can justify Remark
2.2
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that A~ € Ff,(s,w). Next, consider y = 0. The statement of (6.3) is clearly fulfilled for the
equilibrium from (6.2). If (s,w) is an alternative equilibrium, then the argument from the
proof of Proposition 5.6 implies that there exists an alternative best reply s’ of the worker with
§'(0) = 0. Since §' is a best reply s’ € F¢(s,w) and F¢(s,w) C F¢(s',w). The conclusion now
follows from the first part of the proof. 0

The Lemma immediately implies that equilibrium outcomes of the unperturbed game with
u; < A~ cannot be primitive. Namely, if (s, w) is an equilibrium of GT(Y, W, )) with u; < A~
then both types of the worker have the education choice 0 as the best response whenever firms
offer w(y) £ A~ + y/2 for y # 0 and offer A~ for y = 0 ( The Lemma implies that such a
strategy of the firms belongs to F*(s, w)) But if workers play this strategy, firms should offer
w = A~ for all y and F(s,w) contains the equilibrium (6.2), hence (s, w) is not primitive.

Corollary 6.3. In any primitive equilibrium outcome, the payoff to the type 1 worker is at
least A~. !

The above Corollary in turn implies

Corollary 6.4. Equilibrium outcomes in which the workers are pooled at § > 0 are not
primitive.

Next we show that the mixed equilibrium outcomes that were not yet eliminated in Sect.5
are not primitive.

Proposition 6.5. Equilibrium outcomes in which the type 0 worker randomizes between 0
and § are not primitive.

Proof. Let (s,w) be an equilibrium of GI(Y, W, )) that produces in the limit an outcome
as described in the Proposition. Then so(§) > 0 and s1(j) > 0. Hence, the formation F¢(s, w)
also contains the strategy in which both workers choose 7 for sure. The firms’ best response
against this strategy is to offer A~ for each education choice, and, if firms behave in this way,
the workers should choose y = 0. Hence, F*(s,w) contains the equilibrium from (6.2) so that
(s, w) is not primitive.

(]

Figure 3 graphically illustrates the results obtained thus far.

Figure 3. Primitive Equilibium OQutcomes (A < 1).

Finally, let us turn to separating equilibrium outcomes. For the outcome to be primitive
it is necessary that choosing y = 0 is not an alternative best response for the type 1 worker
whenever firms offer the wage A~ at y = 0, hence, y1 < 2(1 —)). (cf. Corollary 6.3). In the next
proposition we show that this condition is not only necessary but that it is also sufficient for a
separating outcome to be primitive.

Proposition 6.6. A separating equilibrium outcome is primitive if and only if y; < 2(1 — }).

Proof. It suffices to show that the condition is sufficient. The proof is constructive. Let
{0,1) be a separating equilibrium outcome with yo = 0 and y; < 2(1— ) and let the equilibrium



277

(s,w) of GT(Y,W,)) that produces this outcome in the limit be constructed as in the proof of
Proposition 5.6. It is easily seen that , for ¢ small, F¢(s,w) contains the following restricted
strategy sets

(6.4) Yo={yeY;y<i} Yi={n}

{weW;w <A~} ify <A
(6.5) VV,'y = {1—} ify=y1,
{17} otherwise.

Furthermore, one may easily verify that the collection of strategies defined by (6.4) (6.5) is closed
under taking best replies, hence, it is a formation and, therefore, exactly equal to F*(s, w). Since
(s, w) is the unique equilibrium that is contained in this formation, (s, w) is primitive.

O

Since ¥ > 1 in any separating equilibrium outcome, we see from Proposition 6.6 that no
such outcome is primitive if A > 7. By combining this observation with Proposition 5.6 and the
previous results from this section, we, therefore obtain

Corollary 6.7. (i) If A > 1 , only the outcome in which the workers are pooled at § = 0 is
primitive.

(i) If A < %, in addition to the efficient pooling outcome, also the separating equilibrium
outcomes with y; < 2(1 — X) (hence u; > ) are primitive.

7. Risk Dominance

In the previous section, we determined all primitive equilibria of
GI(Y,W, ). The set of all these equilibria is what HS call the first candidate set. HS propose
to refine this set by a process of elimination and substitution until finally only one candidate,
the solution, is left. Loosely speaking, this process consists in eliminating all candidates that
are 'dominated’ by other candidates and by replacing candidates that are equally strong by a
substitute equilibrium. In our application, we will not need the substitution procedure. We will
show that there exists exactly one equilibrium in the first candidate set that dominates all other
equilibria in this set.

Attention will be confined to the case where A < 1/2. If A > 1/2, and € is small, then the

perturbed game GE'(Y, W, A) has just a single primitive equilibrium, and this induces the efficient
pooling outcome, so that we have .

Proposition 7.1.  If A > 1/2, then the HS solution of the Spence signaling game T'(Y, W, })
is the pooling equilibrium in which both workers do not invest in education.

Let ¢, €' be two different solution candidates of the perturbed game GT(Y, W, )), write A for
the set of agents participating in this game (with generic element a) and let uq(e) (resp. ua(e’))
be the payoff to agent a when e (resp. €'} is played. Finally, denote by A(e,e'), the set of all
agents for which e, # e/, that is, who play differently in e and in ¢’. The strategy vector e payoff
dominates ¢’ if

(7.1) us(e) > ug(e')  forall ae€ Ale,e'),
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The HS theory requires that one first eliminates all payoff dominated equilibria from the initial
candidate set. In our case, the only initial candidates that could possibly be payoff dominated are
those that approximate an equilibrium in which the type 1 worker is separated at an education
level y' strictly above 1. Indeed, the type 1 worker prefers to be separated at a lower level y.
However, condition (7.1) requires that one also considers the payoffs of the agents of the firms
at ¥ and y', and it cannot be the case that all these agents unanimously strictly prefer the type
1 worker to choose y: If agent iy strictly prefers the worker to choose y rather than y' | then
agent iy’ strictly prefers this worker to choose y'. Consequently, no initial candidate is payoff
dominated, and we have

Proposition 7.2. The criterion of payoff dominance does not reduce the initial candidate
set.

In case of multiple payoff undominated candidates the HS theory requires to compare equi-
libria using the risk dominance criterion. The notion of risk dominance is central to the HS
theory. It tries to capture the idea that, in a situation where the players are uncertain about
which of two equilibria should be played, the players enter a process of expectation formation
that may finally lead to the conclusion that one of these equilibria is less risky than the other
one, and that, therefore, they should play this less risky equilibrium. In the remainder of this
section we will show that the best separating equilibrium, (i.e. type 1 chooses y; = 1), risk
dominates all other solution candidates. Hence, this equilibrium is the HS solution if A < 1 /2.
Before proving this main result, we introduce some notation and formally define the concept of
risk dominance.

Assume it is common knowledge that the solution of the game will be either e or ¢’ and
let A(e,e’) be the set of those agents whose strategy in e differs from that in e’. The re-
stricted game generated by e and ¢’ is the game in which the player set is A(e,e') and in
which the set of strategy combinations is the smallest formation generated by {e,e'} with
all agents a ¢ A(e,€') being bound to use their e, = eq-strategy. Let a € A(e,e') and as-
sume this agent believes that his opponents will play e with probability » and e’ with prob-
ability 1 — 2. Then a will play his best response b (2, ¢, ¢') against the (correlated) strategy
combination ze_, + (1 — z)e' ,. Harsanyi and Selten define the bicentric prior of agent a as
Pa = by(e,€') = fol bo(2,¢,e')dz. This bicentric prior may be interpreted as the mixed strat-
egy which an outside observer (or an opponent of a) expects a to use. (Adopting the principle
of insufficient reason, the outsider considers the beliefs of a to be uniformly distributed on
[0,1]). Denote by p the mixed strategy combination p = (pa)aca(e,er). This p represents the
initial expectations of the players in this situation of common uncertainty. The tracing proce-
dure transforms these preliminary expectations into final expectations. Formally, the tracing
procedure is a map T that converts each mixed strategy combination p into an equilibrium T'(p).
Risk dominance is defined by means of the tracing procedure. The equilibrium e is said to risk
dominate €' if for the bicentric prior p = b(e, ¢’) generated by ¢ and ¢’ we have T(p) = e We
conclude this overview of definitions by briefly describing the operator T. In our case it turns
out that the linear tracing procedure is well-behaved, so we only specify this one. Let G be a
game with payoff function H, and for ¢ € [0,1], let G; be a game with the same strategy sets,
but in which the payoffs are

(7.2) Hl(o) = tH, (o) + (1 ~t)Hy(0a,P-a)

hence, for ¢ = 0, one plays against the bicentric prior, for ¢ = 1, one plays the original game.
Let E! be the set of equilibria of G- (In our case) it can be shown that E, = {EL;¢t € [0,1]}
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contains exactly one continous path connecting the unique equilibrium of Gg with an equilibrium
of G}, = G. The tracing result T(p) of p is the ¢ = l-endpoint of this continous path.

After this review of definitions, we turn to the results. We will first show that, for e small, the
efficient separating equilibrium risk dominates any other separating equilibrium. The intuition
for this result is simple. Let e be the separating equilibrium in which type 1 chooses y = 1 and
let ¢’ be a separating equilibrium in which this type chooses y' > 1. The initial beliefs of the
firms’ agents at y and y' will be that the type 1 worker chooses both y and y' with a probability
that is bounded away from zero. Since the type 0 worker only chooses y and y' by mistake, and
mistakes are rare, firms will be willing to offer a wage w = 1~ at y and at y'. Since y and y
garner the same wages, the type 1 worker strictly prefers to choose y as the cost incured there
are lower. This reinforces firms at y = 1 to offer w = 1=. On the other hand firms’ agents at y'
will gradually update their beliefs, they become more pessimistic and finally they will conclude
that y' can only occur by mistake. Hence, ultimately they will offer w = A~ : We end up at the
separating equilibrium at y = 1.

The following Proposition makes this argument precise.

Proposition 7.3.  Let ¢’ be an equilibrium of G7(Y,W,)) in which the type 1 worker is
separated at y' > 1. Then, if € is small, there exists an equilibrium e in which the type 1 worker
is separated at y = 1 that risk dominates e'. Hence, efficient separating equilibria risk dominate
all other separating equilibria.

Proof.  Let ¢’ be given. Modify ¢’ such that the type 1 worker chooses y = 1 rather than
y' > 1, and such that firms offer w = 17 at y rather than at y' (where they now offer A7)
The resulting strategy combination e is an equilibrium. We will show that e risk dominates ¢'.
Note that A(e, e') consists of 5 agents, viz. the type 1 worker and the firms’ agents at y and y'.
The game relevant for the risk dominance comparison has strategy space {y,y'} for the type 1
worker, whereas the firms may choose from {w € W; A~ < w < 17} at y and y'. (Note that
education levels § with y < § < y' are never optimal for the worker since w=*(§) = A~.) The
payoft to the worker is as in (3.1), if agent iy overbids the opponent with wage w, then its payoff
is

(7.3) s (y) (ni(y) — w)

where p§(y) is as in (3.6) ( with so(y) = 0) and s¢(y) is the probability that y is chosen by the
worker

(7.4) sy) = (1= Ae+ Asi(y) -
If agent iy bids lower than the opponent, its payoff is zero, if both agents at y bid the same wage

w, they share the quantity from (7.3). Payoffs at y' are defined similarly.

We now compute the bicentric prior combination associated with e, e’. If the type 1 worker
expects his opponents to play according to ze + (1 — z)e’, then his payoff if he chooses y is equal
to

2174+ (1-2)A7 —1/2,
while if he chooses y' his payoff is

AT+ (1-2)17 —y'/2
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His best response is to choose y whenever
z>1/2—(y —1)/4(1 = )).
Accordingly, his bicentric prior assigns the probability
(7.5) pi(y) =1/2+(y' - 1)/4(1 - ).

to choosing y and the complementary probability to choosing y'.

Next, turn to agents of the firms. Let agent iy have beliefs ze + (1 ~ z)e!. If this agent chooses
w ¢ {A7,17}, then he will only get a worker if ¢ is played and in this case his expected payoff
is negative. Hence, such a wage cannot be optimal since by offering A~ the agent guarantees a
nonnegative payoff. In fact, A~ yields an expected payoff of

(7.6 (1-2)egf2. ?
On the other hand, if the agent chooses 1~ his expected payoff is
(7.7) 22 g2+ (1—-2)e(A-17),

where A® and ¢¢ are defined by

A¢ = s%(y)
with s;(y)=1.
9¢=pily) — 17

( Note that (A, g¢) — (A, g) as € — 0). Comparing (7.6) and (7.7) we see that agent iy should
choose A~ whenever

(7.8) 2 ¢°/2 < (1—2)e(l-X—g/2).

Write 6 for the probability that (7.8) holds when z is uniformly distributed on [0,1]. Note that
6° — 0 as ¢ — 0, hence, the prior strategy of agent ¢y chooses 1~ with probability close to 1
if € is small. The computations at y' are identical to those at y, hence, we find for the prior
strategies of the firms

1~ with probability 1 — 6¢
(7.9) ’w,‘y = w,'y, =
A~ with probability §¢

Given the prior strategy combination p as in (7.5), (7.9) it is easy to compute the equilibrium
of Gg, that is, the starting point of the tracing path. Since the expected wage at y is the same
as that at y’, the worker chooses y since costs are lower there. Denote by p*(y) the expected
prior productivity at y( i.e. p(y) is determined by (7.4), (7.5) and (3.6)). Then u¢(y) — 1 as
€ — 0. The expected payoff from offering 1~ is at least equal to

(=6 (u(y)-17)
whereas the expected payoff associated to any other wage is bounded above by

6 p(y) =A™
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Consequently, only 1~ is a best reply against the prior if € is small. Hence, in any equilibriym
of Gg, the firms offer w;, = 1~. The same argument also generates this conclusion at 4/, Hence
G} has a unique equilibrium, and this is given by ‘

(710) Sl(y) =1 y Wiy = Wiy = il

Now consider ¢ > 0. If firms do not change their wage offers, there is no reason for the
worker to deviate from y, and if this worker stays at y, the agents 2y and 3y should not change
their wage offers either. What about the firms’ agents at y'? For ¢ small, their (subjective)
payoffs from (7.2) are still largely determined by their priors and they will find it optimal to
offer w = 1~. Consequently, for ¢ small, the tracing path continues with the equilibrium from
(7.10). However, if the worker remains at y = 1, then the expected productivity at y' decreases
with increasing t and the payoffs to the firms’ agents at y’ would become negative for ¢ close to
1 if these agents would remain at their wage offer of 1~. Consequently, these agents will be the
first to switch, and they will switch to lower wages. This, of course , reinforces the decisions of
the worker and consequently of the firms’ agents at y = 1: Along the tracing path, these agents
will never switch, and the agents at y’ have to adjust until finally an equilibrium of G is reached.
In the end, these agents will, therefore, offer the wage A~ and we see that the tracing path must
end up in the equilibrium e. Hence, e risk dominates ¢’. &

It is instructive to study in somewhat greater detail the adjustment process (i.e. the tracing
path) that brings players from the prior p to the equilibrium e. As already remarked above only
the agents at y' change behavior during the process. Take ¢ fixed and write @; for the game as
in (7.2) played by these agents given that the type 1 worker chooses y = 1 for all ¢. C;‘;, resembles
a standard Bertrand game for a surplus u(t) where yu(t) is decreasing in t with 1~ < p(0) <1
and p(1) = A. The only difference with an ordinary Bertrand game is that in G’; each agent is
committed to choose 1~ with probability 1 — . Nevertheless, the equilibria of C:T;, can be read
off from Lemma 2.1. It is easily seen that there exists t; > 0 such that only (17,17) is an
equilibrium of G; for t < t;. Furthermore, there exists t, > t; such that for ¢ € (t,,¢,) the game
C:-'; has three equilibria, viz. (17,17),(177,177) and a mixed one. If ¢t > #;, (177,17 is
still an equilibrium, but the other two are not, and they are replaced by two different equilibria,
viz. (1-8g,1-3g) and a mixture of 1-2g and 1-3g. Hence, a switch of behavior has to occur at or
before t3. Since the tracing path must be continuous, it cannot jump from (1I7,17)to(177,177)
at t1 or i, consequently it must bend backwards at t;. Therefore, the initial segment of the
tracing path looks as follows. From 0 to t, it consists of the equilibrium (17,17). At ty it
bends backwards (i.e. t is decreasing), continuing with the equilibrium in which firms randomize
between 1 — ¢ and 1 — 2¢ (gradually increasing the probability of 1 — 2¢g from 0 to 1), at ¢,
it bends forward again and continues with the equilibrium (1 — 2¢,1 — 2g¢). This alternation
between forward and backward moving segments continues while simultaneously lowering the
wages until finally the path becomes stationary at (A=, A7).

We finally come to the risk dominance comparison of the pooling equilibrium with the best
separating equilibrium. The main result of this section states that the separating equilibrium
dominates the pooling one if A < 1 and € is small. Again the intuition is simple. Consider a
situation of mutual uncertainty concerning whether, in the unperturbed game, the separating
equilibrium e or the pooling equilibrium ¢’ should be played. The type 0 worker chooses y=0

in both, hence, for him the situation is unproblematic. In fact, since the wage at y = 1 is at
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most 17, this type will always strictly prefer to choose y = 0. The prior uncertainty will however
lead the type 1 worker to choose both y = 0 and y = 1 with a probability that is bounded away
from zero. (Below we show that the probability is approximately 1/2). Hence, firms at y = 1
will infer that they face the type 1 worker and they will offer w = 1~. On the other hand, firms
at y = 0 infer that the expected productivity is below (and bounded) away from ), hence, their
wage offers will be below A as well. Given that 0 < w(y) < A for y = 0 and that w(y) = 1 for
y = 1, the type t worker prefers to choose y = ¢. These choices reinforce firms to offer w = 1~
at y = 1. At y = 0, however, firms gradually become convinced that they face the type 0 worker
and this leads them to gradually lower their wage offers, until they finally offer 0. Hence, we end
up at the separating equilibrium, the separating equilibrium risk dominates the pooling one.

Formalizing the above argument is, unfortunately, rather cumbersome since the HS theory
requires working with the perturbed game. The difficulty is caused by the fact that the separating
equilibrium can only be approximated by mixed equilibria of the perturbed game and the latter
are rather complicated (cf. Proposition 5.6). Hence, there is an enormous number of switches
along the tracing path. The difficulties are not of a conceptual nature, however, formally one
just has to go through a large number of steps similar to the ones described in detail in the proof
of Proposition 7.3. Since already in that case the notation became cumbersome and the formal
steps were not particularly illuminating, we prefer to stick to the main ideas and make the risk
dominance comparison in the unperturbed game. It can be shown that this shortcut does not
bias the results. (The detailed argument for the perturbed game is available from the authors
upon request).

Proposition 7.4.  If A < 1/2, then in the unperturbed game, the best separating equilibrium
risk dominates the best pooling equilibrium. The same dominance relationship exists in the
perturbed game GL(Y, W, ) provided that € is small.

Proof. The main advantage in working with the unperturbed game lies in the reduction in
the number of agents involved in the risk dominance comparison: We do not have to consider
the type 0 worker (he chooses 0 in both equilibria), nor the firms’ agents at y # 0,1. Let e
denote the separating equilibrium in which the type 1 worker chooses 1 and let ¢’ be the pooling
equilibrium in which both workers choose 0. We first compute the bicentric prior. Let players
have beliefs ze + (1 — z)e'. If the type 1 worker chooses y = 0 his expected payoff is (1 — z)A~,
if he chooses y = 1, the expected payoffis 7 21~ + (1 — z)A™ — 1/2. Consequently, this worker
will choose both y = 0 and y = 1 with a probability of approximately 1/2. Next, consider the
agent of a firm at y = 1. This agent has to move only if the separating equilibrium is played,
and in this case the agent of the competing firm offers 1. Hence, the only way in which this
agent can make a profit is by also offering 1=. Therefore, the bicentric prior is to offer 1~ for
sure. Finally, consider a firm’s agent at y = 0. It is easy to see that any wage w ¢ {0, A7} yields
negative expected profits. If the agent offers the wage 0 the expected profit is 0, while the profit
resulting from A~ is equal to

—2(1 =M —g)+ (1 —2z)g/2.

Consequently, the agent at 0 should offer the wage 0 if

2(1=A)(A - g) +9/2) > g/2.

" The pooling equlibrium of the unperturbed game does not specify a unique wage at y = 1, we fix

this wage at A™, that is, at the limit of the wages of approximating equilibria of the perturbed
games.
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Let 6 be defined by

B 9/2
(1.11) S =T 0-g72

then the bicentric prior of an agent at 0 chooses A~ with probability § and 0 with probability
1— 6. Since g can be chosen arbitrarily small, the initial expectation of the worker is, therefore,
that the expected wage at 0 is close to 0. Consequently, for g small, the best response of the type
1 worker is to choose y = 1 for sure and this reinforces the firms to offer w = 1~ at y=1 We
claim that in any equilibrium along the path followed by the tracing procedure, the type 1 worker
chooses y = 1. Namely, this property can only fail to hold if the firms at y = 0 offer a sufficiently
high wage (at least equal to 1/2) and this will never be the case since the expected productivity
at 0 will always be below A and )\ < % In fact along the tracing path the wage offer at y = 0 will
never be above A/2 since this is the highest expected productivity at y = 0 along the path. The
exact tracing path can be determined by using an argument as the one that follows the proof of
Proposition 7.3: For tracing parameter t, the agents at y = 0 play a Bertrand game for a surplus
of (approximately) (1 — t)A/2 modified to the extent that each agent is committed to play his
prior as in (7.11) with probability 1 —¢. The unique equilibrium of this game for ¢ = 0 is (g, g).
As t increases, firms initially switch to higher wages (since for ¢ small the expected surplus is
large), however, for larger ¢, wages fall again since the surplus decreases. (Again the tracing
path contains many backwards running segments). As ¢ tends to 1 the surplus, hence, the wages
tend to zero; along the way the wages never exceed the maximal surplus of A/2. Consequently,
the agents at 0 finally switch to the wage corresponding to the separating equilibrium. Since the
other agents are already at this equilibrium from the beginning, the tracing path leads to the
separating equilibrium. Hence, the separating equilibrium risk dominates the pooling one.

8. Conclusion

By combining the Propositions 7.1, 7.3 and 7.4, we obtain the main result of this paper.

Corollary 8.1. The Harsanyi/Selten solution of the Spence signaling game T(Y, W) is ®
(i)  the pooling equilibrium in which both workers choose y =0 if A < 1,
(i) the separating equilibrium in which the type t worker chooses y =t if A > 1 .

Even though we used the assumptions (2.6) - (2.10) to derive this result, it can be checked
that at least for A # 1/2, the statement of Corollary 8.1 remains correct if these assumptions
are not satisfied. Hence, the result is independent of the discretization chosen. It is, therefore,
justified to make a limiting argument and to talk about the HS solution of the continuum game.
Hence, ¢ = 0 and Y and W are continua, as in the usual specification of the Spence model found
in the literature. Denote this game by I'(A). The (limit as ¢ — 0 of the) solution found in
Corollary 8.1 is known in the literature as the Wilson Ej-equilibrium (Wilson [1977]). It is that

. Actually, this Corollary only describes the outcome associated with the HS solution, it doesn’t
describe the wages firms intend to offer at education levels that are not chosen. From the previous
section we know that w;(y) = A~ for all y if A < 1/2 and w;(y) = min{y, A7} if A > 1/2 and

y# 1.
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sequential equilibrium of I'(A) that is best from the viewpoint of the type 1 worker. Hence, we
have

Corollary 8.2.  For A # 1, the HS solution of the Spence signaling game I'()\) is the Wilson
E3-equilibrium of I'()), i.e. it is the sequential equilibrium that is best for the type 1 worker.

Given the ad hoc nature of Wilson'’s solution concept, it is to be expected that a coincidence
as in Corollary 8.2 will not hold in general. However, the authors conjecture that for a broad class
of signaling games that have similar structural properties as the game studied in this paper, the
HS solution coincides with the solution proposed in Miyazaki [1977]. (The important properties
are monotonicity and the single crossing condition, see Cho and Sobel [1977], it is conjectured
that the number of types does not play a role). A detailed investigation into this issue will be
carried out in a future paper.

The simple structure of our game enables a sensitivity analysis with respect to several
assumptions made by Harsanyi and Selten that is difficult to carry out in general. We will not
go into detail, but restrict ourselves to one issue. Some people have argued that the uniformity
assumption made in the construction of the prior to start the tracing procedure is ad hoc.
Consequently, one may ask how robust the results from Sect. 7 are with respect to this prior.
The reader can easily convince himself that the outcome is very robust. Robustness especially
holds for Proposition 7.4 : The separating outcome will result for A < % as long as the prior
expectations of the players assign positive probability to this outcome (i.e. as long as the density
of z is strictly positive on [0, 1]).

The theory of Harsanyi and Selten has both evolutionary and eductive aspects. (See Binmore
[1987] for a general discussion of these notions). The preference for primitive equilibria is most
easily justified by taking an evolutionary perspective, the tracing procedure most certainly is
eductive in nature. It is interesting to note that the HS theory ranks evolutionary considerations
prior to eductive ones. It seems that the ordering of steps has consequences for the final outcome
since, at least in the unperturbed game, the separating equilibrium outcome with y; = 1 risk
dominates any other equilibrium outcome for all values of ). (cf the proofs of the Propositions 7.3
, 7.4). If the solution would be based on risk dominance considerations alone, the solution might
always involve separation. Consequently, the solution that was initially proposed by Spence and
that is defended and used in most of the subsequent literature may also be justified on the basis
of risk dominance. Again we intend to investigate this issue more thoroughly in future work.

Finally, let us mention that recently related work has been done by Michael Mitzkewitz
(Mitzkewitz [1990 ]). He computes the HS solution for signaling games in the following class:
There are two players, player 1 has 2 possible types, and he can send 2 possible messages, to
which player 2 can react in two different ways. Mitzkewitz does not assume the single crossing
property, hence, he is forced to use an approach that differs from ours.
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Figure 1. The reduced perturbed game GT(Y, W, \).
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Figure 2. Uniformly Perfect Equilibrium Qutcomes.
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Figure 3. Primitive Equilibrium Outcomes (A< 3).
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Appendix A: Dominance Solvability and the HS Solution

Consider the 2-person normal form game

A, B, C,
Ayl 10 0 0

10 10 0
B;| 10 6 0

0 6 6
Cy O 6 1

0 0 1

Table 1: G

which admits three Nash equilibria, viz. A = (A;,A4;), B = (By,B;) and C = (C1,Cy).

We have that A; (resp. A;) is dominated by B, (resp. B;), while in the reduced game
that results after A;, A, have been eliminated, By (resp. B;) is dominated by C, (resp. Ch).
Hence, the (unperturbed) game is dominance solvable, with solution C. (This is the unique
stable equilibrium of the game). HS, however, do not analyse the unperturbed game, but rather
a sequence of uniformly perturbed games. In the e-uniformly perturbed game G(e) of G each
player, when he intends to choose the pure strategy X;, will actually choose the completely
mixed strategy (1 — 2¢)X; + €Y; + eZ; with X;, Vi, and Y; being pairwise different. Neglecting
terms of order €?, the payoff matrix of G(¢) is given by

10 = 30¢ 22¢ 11e
10 — 30¢ 10 — 24¢ 27¢
10 — 24e 6 — 8¢ 17¢
22¢ 6 — 8¢ 6 —17¢
27¢ 6 —17¢ 1+ 2¢
11le 17¢ 14+ 2¢

Table 2: G(e)
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In G(e), we have that A, (resp. A;) is dominated by B; (resp. Bj). The reduced game
in which these inferior strategies have been eliminated has two strict equilibria, viz. B and C.
(There is a third equilibrium in mixed strategies but this is not primitive). Hence, the initial
candidate set is { B, C'}. Since B payoff dominates C, the HS solution of G(e) is B. Consequently,
B is the HS solution of G. Hence, perturbing first may make a difference since it can transfer
non-strict equilibria into strict ones.

This example may lead the reader to think that the discrepancy between dominance solvabil-
ity and the HS theory is caused by the fact that the latter makes use of Pareto comparisons and
that a solution that is based only on risk dominance comparisons would always yield the stable
outcome for dominance solvable games. Indeed in G(e) the equilibrium (C,C) risk dominates
(B,B) if € is small. This issue is investigated further in Van Damme (1990).

References

Binmore, Ken (1987,1988) : Modeling rational players; Journal of Economics and Philosophy.
Part 1,3 179-241, Part II,4 9-55.

Cho, In-Koo and Kreps, David (1987) : Signalling Games and Stable Equilibria; Quarterly
Journal of FEconomics 102, 179-221.

Cho, In-Koo and Sobel, Joel (1987) : Strategic stability and uniqueness in signaling games;
Mimeo, U.C. San Diego.

Harsanyi, John and Reinhard Selten ( 1988) : A general theory of equilibrium selection in games;
MIT Press, Cambridge, MA.

Mertens, Jean-Frangois (1988) : Stable Equilibria - A reformulation; Core DP 8838.

Selten, Reinhard (1975) : Reexamination of the perfectness concept for equilibrium points in
extensive games; International Journal of Game Theory.

Kohlberg, Elon and Jean-Francois Mertens (1986) : On the Strategic Stability of Equilibria;
Econometrica 54, 1003-1039.

Mitzkewitz, Michael (1990) : Equilibrium Selection in signaling games; Mimeo, Bonn.

Miyazaki, Majime (1977) : The rat race and internal labor markets; Bell Journal of Economics
8, 394-419.

Spence, Michael (1974) : Market Signalling: Informational Transfer in Hiring and Related Pro-
cesses; Harvard Univ. Press, Cambridge, USA.

Spence, Michael (1973) : Job Market Signalling; Quarterly Journal of Economics 87, 355-374.
Van Damme, Eric (1987) : Stability and Perfection of Nash Equilibria; Springer Verlag, Berlin.

Van Damme, Eric (1989) : Stable Equilibria and Forward Induction; Journal of Economic Theory
48, 476-496.

Van Damme, Eric (1990) : A note on risk dominance and dominance solvability; Mimeo, Tilburg.

Wilson, Charles (1977) : A Model of Insurance Markets with Incomplete Information; Joumal
of Economic Theory, 167-207.



