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Abstract

In this paper we develop a theoretical framework which makes it possible to analyze
several aspects of convergence between E.C. countries. The analysis is done in a dynamic
game context, where countries, apart from minimizing individual cost functions, minimize
cooperatively a convergence function, which represents the convergence conditions as
elaborated in the Maastricht Treaty in 1991. This aspect of convergence is modeled as a
dynamic constraint on the individual cost functions. We show that if countries’ own welfare
is their primary interest (and convergence becomes secondary) the maximum degree of
convergence is completely determined by the non-cooperative outcome of the game. The
framework is illustrated in a theoretical example. The example shows that costs involved to
obtain convergence can differ substantially between countries and that, ultimately, these
high costs for some countries will result in non-cooperative behaviour. Furthermore, it is
shown that a small deviation from a Pareto optimal solution can increase convergence
considerably. An algorithm is devised to obtain solutions of the game which are politically
more feasible than the Nash bargaining solution and improve on the non-cooperative
solution.
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1. Introduction

The EC governments agreed at the Maastricht meeting in 1991, to start, at the
latest in 1999, with a full monetary union. This final step towards EMU sets out,
however, that uneven developments in the process of integration are set aside.
Therefore, in the Treaty of Maastricht four convergence criteria, for admitting a
country to EMU, were designed. The political and economical consequences of
these criteria are discussed in various papers (see e.g. Bean, 1992; Buiter et al.,
1993). A consequence of the increasing integration process is the strengthened
economic interdependence between member countries, which reduces the room for
independent policy manoeuvring and increases the importance of cross-border
effects. So, the final stages towards EMU involve on the one hand a process of
closer convergence, and on the other hand coordination of the macroeconomic
policies of the various countries. One should, however, note that convergence and
coordination are prerequisites for obtaining a single market but do not necessarily
guarantee a successful establishment of it. Now, there 1s a general consensus
amongst the participating countries that convergence and coordination of policies
is needed for moving towards EMU. There is these days, however, much less
consensus as to how far and how fast this process should take place. The possible
long-run significant increases in economic welfare in the Community are much
less tangible than the short-term welfare loss effects incurred at various domestic
markets. Therefore, a natural reaction one can expect from participating countries
is that they strive for convergence in economic variables, but that they are only
willing to pay a price (in terms of welfare loss) for it if this price is not too high.
These observations suggest to study the convergence problem from a dynamic
games point of view. Studies with respect to macroeconomic policy coordination
in a dynamic games context appear frequently 1n economic literature, see, e.g.,
McKibbin and Sachs (1991), Hughes Hallett (1992). However, the influence of the
aspects of convergence, analyzed in a dynamic games setting, on the effects of
macroeconomic policy coordination has not been studied before. This motivates
the study of this paper.

Starting from the point of view that each country has its own individual welfare
loss function it wants to minimize in cooperation with the other countries, we
develop a theoretical framework to analyze the trade off between extra welfare
loss and more convergence. The analysis will be done in a dynamic games
framework. We assume that each policymaker has an individual objective func-
tion, he /she wants to minimize and that there 1S some common sense on a
convergence function which they want to minimize simultaneously. In the case of
the EMU this convergence function represents the convergence conditions which
are specified in the Maastricht Treaty. As Buiter et al. (1993) argue, monetary
union requires a common rate of inflation of tradable goods which in principle
need not be low or even stable. Strictly speaking this means that the countries at
this stage do not know with what common rate they will finally end up. This



R.C. Douven, J.C. Engwerda / European Journal of Political Economy 11 (1995) 113-130 115

uncertainty in the Maastricht Treaty confuses policymakers (and economists) who,
in principle, are searching for shared (fixed) targets. Therefore, it is more logical
to incorporate the two criteria of convergence in consumer price inflation and
convergence in long-term interest rates in a convergence function (which, finally,
will determine the ‘optimal’ common rate), and to incorporate the budget deficit in
a country’s own objective function. Under the assumption that all policymakers
like to cooperate, we analyze the set of solutions which are obtained by the
policymakers when they simultaneously minimize their welfare loss functions and
convergence function. In particular we will show various aspects of the game if
reducing welfare loss is the primary interest of countries and striving for conver-
gence 1s of secondary interest.

The organization of the paper is as follows. In Section 2 we introduce the
theoretical framework. We consider N countries which cooperatively agree on
minimizing a convergence function and, moreover, all have their own individual
objective function they like to minimize. The aspect of convergence is modeled as
a dynamic constraint on the joint social welfare function. Under the assumption
that all of these functions are convex (and some mild regularity conditions) we
show the above-mentioned aspects. To help the reader to understand the basics of
the presented theory we illustrate the approach in Section 3 by means of a simple
theoretical example. In Section 4 we present the conclusions.

2. Incorporating convergence criteria: A theoretical framework

We consider an integrated economy of the European Community with N
interdependent economies, where the policymakers in each country face a dynamic
economic model which connects the endogenous variables (denoted by ),
instrumental variables (denoted by u) and other noncontrollable variables. Each
country has control over a set of instruments for economic policy, denoted by u;.
In stacked form ' = (u/, ..., u)y). We assume that each policymaker has a convex
objective function, which we specify by J;, which he / she wants to minimize. We
denote the set of Pareto optimal solutions in the (J,,...,Jy)-plane by P. The
point corresponding to the non-cooperative (Nash) solution, which is used as a
bargaining threat-point, will be denoted by N¢:=(J},...,Jy ). Furthermore we
assume that the countries agree to strive for a certain amount of degree of
convergence in some of their economic (endogenous and/ or instrumental) vari-
ables. This agreement will be reflected in a convex convergence function, denoted
by C, which is included in the optimization process. It is important to stress that
the convergence function differs from the countries” objective functions in a way
that the latter contains only variables which belong to its own country whereas the
convergence function contains variables of all the countries. Thus minimizing a
cost function is something that can, in principle, be done by a country alone
whereas minimizing the convergence function has to be done simultaneously.
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The decision-making process of the policymakers concerning what strategy to
follow, will depend on the following set:

T (1) s s Ty u), C(w)) | u € U}, (1)

where we suppose that the strategy-space U 1s a convex set. The policymakers
have to find a cooperative strategy which results in a point in (1) which is
acceptable for them all. Now note that whenever two different strategies yield the
same individual costs J;,, i=1,..., N, but different values for the convergence
function, only the strategy yielding the lowest value for the convergence function

1s of interest to all policymakers. So, the set of relevant control strategies consists
of:

T—

U={uceUIVueU (J,(u),...,Jy(u))=(J(%),..., y(7))
=C(u) <C(u)}.

This observation makes 1t possible to consider the decision problem from the
following point of view. By varying the strategies over the whole set U, we obtain
the set of all possible objective outcomes in the (J,, ..., J,)-plane. To each point
in this set 1s attached a unique value for the convergence function. The problem
for the decision makers is now to select cooperatively a point within this set that 1s
acceptable for everyone. Now, as mentioned in the introduction we will assume
that minimizing their own cost function 1s the primary interest of countries and
that striving for convergence is of secondary interest. In that case the aspect of
convergence acts as a dynamic constraint on joint social welfare. If we, further-
more, refrain from the possibility of side-payments and assume that the axiom of
individual rationality holds (see e.g. Petit, 1990; de Zeeuw, 1984) ! then countries
will cooperatively minimize the joint convergence function as long as their
individual costs will be lower than their non-cooperative costs. So, the set of
possible objective outcomes will then be restricted on the one hand by the
non-cooperative Nash threatpoint N, and on the other hand by the set ot Pareto
solutions P. We will call this set in the sequel the negotiation area (see Fig. 1 for
an illustration in a two-player context).

Remark. To complicate matters not unnecessarily we do not address here the
issue of information patterns and period of commitment (Basar and Olsder, 1982).
For explaining our ideas it is sufficient (and most convenient) to use an open-loop
information structure and binding commitments, which fixes the ‘negotiation area’

' This axiom states that policymakers, if they behave rationally, will never accept an outcome for
their individual object function which is worse than the one a policymaker can obtain by acting
independently (which is represented by the non-cooperative outcome N°©).
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J2

negotiation area

J1

Fig. 1. Representation of the negotiation area in a two-player context.

throughout the entire planning period. In the closed-loop case, we have to take
account of multiple (Nash threatpoint) equilibria and if we also take account of the
possibility of renegotiation our ‘negotiation area’ would vary over time. In the
case of multiple equilibria, in the literature various kind of arbitration schemes and
algorithms have been proposed to discriminate between these equilibria. An
overview of the literature can be found in de Zeeuw and van der Ploeg (1991) and
Hughes Hallett (1991). We use the convergence criteria as an arbitration scheme to
discriminate between the cooperative points. However, when introducing such an
arbitration scheme points outside the negotiation set (i.e., the Pareto optimal
solutions between A and B in Fig. 1) become interesting too. This is what we will
investigate in the sequel.

The basic question is now of course, how we can determine all strategies u € U
which yield outcomes in the negotiation area. The solution we will present has a
number of nice properties. First of all it attaches to a point in the negotiation area a
unique control strategy that can be obtained by minimizing a strict convex
combination of the individual object functions and the convergence function.
Secondly, we will show that this control strategy is parametrized by N parameters
and that this parametrization is a continuous function of its parameters.

The solution is motivated by our assumption that each policymaker is primarily
interested in minimizing his own objective function in a cooperative setting and
that convergence plays a minor role. We model this aspect by rewriting the convex
combination of individual cost and convergence cost in a special way. Consider

T



118 R.C. Douven, J.C. Engwerda / European Journal of Political Economy 11 (1995) 113—130

This is equivalent with (in the non-trivial case a,, , # 1)
(1—X)(a,J, + ... +dyJy)+ AC,
where A=ay,, and a;=a,/(1 —ay,,).

which has the nice property that ¥~  «, = 1. If we minimize this second convex
combination of the individual object functions and the convergence function, then
we have the property that A =0 resembles the case that countries completely
ignore the convergence goal (and because " , «, = 1 we find the Pareto optimal
solutions), and that A =1 corresponds with the case that countries only pay
attention to their mutual convergence interests. We will show (under some
smoothness conditions) that the set of cooperative optimal strategies corresponding
with these adapted object tunctions for each of the N countries, can be parametrized
by the N — 1 parameters «,,..., a,_, and A, and that this parametrization is a
continuous differentiable function of all these parameters. By varying these
parameters, 1n particular A, 1t 1s then possible to analyze the trade off between the
costs individual countries have to pay and more convergence. First, we present a
preliminary result. The next theorem shows that if one considers a certain convex
combination of all object functionals J., i=1,..., N and C, the optimal strategy
minimizing this combination will be a continuous differentiable function of N out
of N + 1 parameters.

Theorem 2.1. Suppose U is a convex set, J(u), i=1,...,N and C(u) are
strictly convex functionals which are twice continuously differentiable in u € U,
and u" is an interior point of U. Consider

FUH, Bysn e s 5y X)) =11 = A)(ZO!I-JE(H)

=1

+ AC(u)

forue U, A€|0, 1] and o, €0, 1] fori=1,..., N, with

3

u'=arg minJ(u, a,,...,ay, A)
I

Then, for every A €[0, 1) and a, €0, 1] for i=1,...,N, with ¥ a, =1,
u" is uniquely determined as a function of the parameters «,,..., ay_,, A, iL.€.
u' =u(ay,...,ay_,, A). Moreover, this function u” is a continuously differen-
tiable function in (a,,..., ay_,, M) €[0, 1] x ... X [0, 1], with ¥¥"'a. < 1.

a,=1. Let

I_l

Proof. Let a:=(a,,...,a,, A) [0, 1] ... x[0, 1] be fixed numbers, with
Y, @,=1. The strictly convex properties of J,,...,J,, C imply that the

function J(u) is strictly convex in u € U. So, J has a unique global minimum on
U at u” (a) if and only if

ou

_ o 1 _0C(u
+(1-2)a () L3 ()=0
N du du
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evaluated at the point u =u"(a). Note that, since J is by assumption twice
continuous differentiable, the functional F 1s continuous differentiable in
(a,...,ay_1, A, ) €[0, 1] X ... X [0, 1] X U. Furthermore, since J,,...,Jy,C
are strictly convex functionals in «, we have that
F(a,u"(a))
Vae [0, 1] x ... x [0, 1], det # 0.

ou

Applying the implicit function theorem yields then that there is a unique continu-
ously differentiable function, say f, such that for all a:=(a«a,,..., ay, A) €[0, 1]
X ...X [0, 1], F(a, f(a)) =0, with f(a)=u"(a). So, u’ =
u (a,...,ay, A)=f(a,,...,ay, A) is a continuous differentiable function in
ae€[0, 1] X ... X [0, 1]. Using the fact that XY a, =1 gives u’ =
ol . N G

Remark. 1In the sequel we will use the notation (a,..., ay_,;)€[0, 1] X ... X
[0, 1], but, by doing so, we implicitly assume that the «,, i=1,..., N — 1 satisfy
the constraint 1" 'a, < 1.

Using the previous result we show now that the set of control strategies defined
in Theorem 2.1., parametrized by

—

U:={u*(a,,....,ay_1, A)I(a,,...,ay_,, A) €[0,1] X ... X [0, 1]}

has the advertised properties. Formally the result reads as tfollows:

Theorem 2.2. There exists a bijective mapping between the set of unique points
(u* (ay,...,an_ s A l(ay,...,ay_y, A) €10, 1] X ... x [0, 1]]

and the set

(T (u™),., Iy(u®), C(u® ) (ay,..., ay_y, A)
e [0,1] x...x [0, 1]}.

Furthermore J((u*),...,Jy(u"), Cu") are continuous functions in
(c:cl.,..., Oy _ 1 A [0, 1] x ... x]0, 1].

Proof. Because (1 — ANXZY  a)+ A=1, with A€][0, 1] and «a, €0, 1], for
i =1,..., N, the unique solution u* of J(u) is a Pareto solution for the objective
function J(u) which represents a game with N + 1 players, where each player
minimizes the objective function represented by J, for player i, (i=1,...,N)and
C for player N + 1. According to, e.g., de Zeeuw (1984) there is a bijective
mapping between the Pareto solutions for J,,...,Jy, C and the optimal solution
for J. The set of Pareto solutions can be found by varying the parameters

(ay,..., ay, A) between [0, 1] X ... X0, 1] with ), a; = 1.
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Because u* is a continuous function in (ay,...,ay_,, A)E[0, 1] X ... X
[0, 1]itis straightforward that Jiu *Corg vy Aot oo Tl Caegs oy,
A), Clu™(ay,..., ay_,, A)) are continuous functions in (a,,...,ay_;, A)E
[0 1] 5€ 0% 10, 1 4

Using the theorem, the set of control strategies U gives us the following subset
of (1):

Hda(* ) ems il ” )o €lu" Y} " € T}, (2)

To see that this reduction of the set in (1) still contains all the interesting points,
we analyze the set in (2) in combination with J more specifically. We have that:
(1) the set in (2) contains the whole set of points (J,,. .., J,) which belong to the
Pareto optimal solutions P. To find these solutions we substitute A = 0 in U
and fill in the resulting control strategies in (2).
(22) the set in (2) contains the points where C is minimal. To find these points we
substitute A =1 in U and fill in the resulting strategies in (2).
Furthermore, from Theorem 2.2, we have that the set of points in (2) form a
continuous surface in the (J,,...,J,, C)-plane, which indicates that we have
parametrized all the interesting points between (1) and (uz) as well. These points
can be found by varying A between 0 and 1.
From now on we will skip the " in the notation and describe the set in (2) as

{( Ty, oy C¥ (550 5 B g5 A) € [0, 1] X ... %[0, 1]). (3)

We will now define some sets of interesting points. A projection of the set in (3),
on the (J,,...,J,)-plane is

S o=y 5505 Ty} [{@g0055 001 A) € [0,1] X ... % [0,1]}.
The subset of S:
P:={(Jy....dy)1(as,...,ay_1,0)€[0,1] X ... X0, 1])

represents the set of Pareto solutions. Iso-convergence lines, i.e. lines with the
same degree of convergence, are defined as follows:

L= Jisenisdn Y 1 CCayy o5 @h—q5 A) = s (F1s: 005 dy) €S yERY].

Note that a small value of y corresponds with much convergence (and vice versa).
The negotiation area 1s defined by:

WU Ty e T Y VB €I s Iy &I (s vnes Iy ) €S},

Using the axiom of individual rationality it is clear that policymakers will not
agree to a certain degree of convergence, denoted by y, if I, N.#" = #. Moreover,
the largest degree of convergence policymakers are willing to accept is given by

o :=min{y\l.},ﬁ‘/lf}#@-
Y
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So, in general policymakers should set their degree of convergence with care
because if this degree is set too ambitious policymakers are not willing to
cooperate anymore. In the next theorem we will prove that, if .#"CS, the point in
(3), which after projection on the (J,,...,Jy)-plane is an element of the negotia-
tion area and yields maximum degree of convergence coincides, after projection,
with N¢. This (unique) point in (3) will in the sequel be denoted by C™*.

Theorem 2.3. If 4/ CS then the point in the negotiation area /V for which
convergence is maximal equals N°.

Proof. According to Theorem 2.2, there is a bijective relationship between U
and the set of Pareto solutions which correspond to a game of N + 1 players,
where player i, (i =1,..., N), minimizes an objective function represented by J,,
and player N + 1 minimizes C. Suppose that u € U yields a point in S which lies
in the negotiation area .#~ which differs from N but for which convergence 1s
maximal. Since u yields a point (J,(w),...,Jy(u)) in the negotiation area it
satisfies the property that J.(u) <J. Because the strategy u corresponds with a
point in S that differs from N°€, there is an i € 1,..., N for which J(u) N L4
Making use of the angular shape of .# and the assumption /" CS§, 1t 1S now
always possible to find a strategy v € U which corresponds with a point in S
which lies on the boundary of .#° and for which J,(v)=J,(w),...,J(v)=
JN, ..., Jy(v) =J,(u). Comparing these two points in the negotiation area, we
have that of all the J-values (j=1,...,N), only the J-value of the two points
differ. Due to the fact that u and v are both Pareto optimal solutions it follows
from the definition of Pareto optimality that the convergence value in both points
differs as well. This observation implies that C(v) < C(u). The fact that strategy v
corresponds with a lower convergence value than u, violates the assumption that u
corresponds with a point in ., for which convergence 1s maximal.

[t is important to indicate here that the non-cooperative strategy which results in
the point N° € S in general differs from the cooperative strategy which results in
the point C™*. In general, if .#"C S, the gains in convergence policymakers will
receive by playing cooperatively will be at most y * — C(uy.), where uy. repre-
sents the non-cooperative strategy which yields N If .#°Z S, the threatpoint 1s
not guaranteed to fall within S. In that case our approach will not work, because
we can not calculate all the points within the negotiation area. However, it 1s our
experience that .#"C S will apply in most applications.

* Counter examples can be constructed by introducing erratic convergence functions or specifying
dynamics for which the Pareto solutions and the Nash threatpoint are situated very far from each other.



122 R.C. Douven, J.C. Engwerda / European Journal of Political Economy 11 (1995) 113—130

3. An illustrative example

We consider a theoretic example in a (discrete time) deterministic linear
quadratic difference game framework with two players (countries). The dynamic
behaviours of player 1 and player 2 are described by

yi(t) =y, (t—1) +u, () +03y,(t—1), y,(0)=1,

y2(t) =y,(t—1) +u,(t) +0.6y,(£—1), y,(0)=0,
where, for i = 1, 2, y.(¢) € R is the target variable and u,(7) € R is the instrumen-
tal variable. From the interaction terms (0.3 y,(z — 1) for player 1 and 0.6 y,(t — 1)
for player 2) follows that each player faces a different dynamical structure. Player
2 1s more influenced by player 1 than vice versa. Each player makes his plans for

the future. We assume that each player has a planning period of 2 and chooses his
desired paths for the future, as follows:

player 1:  y; (1) =2, yi (2) =3
player 2: y;(1)=1.5, y,(2)=23.

These desired paths reflect the policymakers’ own wishes of the future and are
obtained independently from each other. In this example the players have different
preferences but, as can be seen from the ideal paths, both players are striving for
convergence of their target variables in period 2. It is of course not necessary to
choose desired paths which converge but by doing so we will be able to
demonstrate the fact that Pareto optimal solutions do not coincide with conver-
gence solutions, even 1f policymakers strive for convergence in their desired
values. We represent the cost functions J,, J, for every individual player by

iy = 0-5((}’1(1) B 2)2 (:1(2) - 3)2 T ”1(1)2 T “1(2)2)v

J,=05((y,(1) = 1.5) + (v2(2) = 3) +uy(1)” + uy(2)°).

Each player wants to play a strategy, during his planning period, which minimizes
his costs. So the control problem for every individual player (i = 1, 2) is

desired paths

min J,.
u (1), u,(2)
Because the target variable (and indirectly the instrumental variable) of each
player 1s directly related to those of the other player, the control problem of each
player depends on the actions undertaken by the other player. This gives rise to
various solution concepts. From the non-cooperative solutions we will just con-
sider the open loop Nash solution, which we denote by N¢. The cooperative
solutions are represented by the set of Pareto solutions which can be found by
solving

minaJ, + (1 —a)J,

for a €0, 1], where u = (u,(1), u,(2), u,(1), u,(2)).
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However, before playing the game both players want to be sure that there will
be some degree of convergence of their target variables. In this example we
assume that both players want to converge to the average of their target variables.
We take as a measure for the degree of convergence the following convergence
function:

~
2

C = _g";(y,-(l) ~5(1))" +4(5(2) = ¥(2))

where y(1) == 0.5(y,(t) + y,(¢)) for =1, 2. So, both players agree that they want
to minimize the variance of their target variables in each period. Moreover,
minimizing the variance in period 2 is given more weight than minimizing the
variance in period 1, which is represented by the weights of 1 in period 1 and 4 in
period 2. These weights indicate that both players find it more important that there
is convergence at the end of the planning period than during the planning period.
Now, together, the players have to take a decision about the strategy they are
going to follow. In order to choose a strategy they have to weigh out all possible
strategies. So, ultimately they have to find a strategy which is “optimal” in some
sense. In the next subsection we demonstrate the solution concepts developed 1n
Section 2 and analyze the space of interesting outcomes. After that we give a
proposal to determine a feasible degree of convergence, vy, for both players.

3.1. Analysis of the possible outcomes

As stressed in Section 2, the decision about what strategy to follow, will
depend upon the following set:

(J1(u), Jo(u), C(u))lueR*Y. (4)

Because J,, J,, C are strictly convex functions which are twice differentiable in

u, the set U can be found by solving the following problem:
Let a.A €0, 1], and

J(u)=(1-A)(aJ,+(1—a)l,)+ AC.
Find now for every a, A € [0, 1]:

u” =arg minJ(u).

* The above-mentioned convergence criterium is in our two-player case the same as minimizing the
quadratic sum of the differences between the target values: C = 0.5(y,(1) — y,(1 )? +2(y,(2)— y,(2)".
Furthermore, note, that for convenience’s sake we did not include control strategies in the convergence
function which would make the problem indefinite. If one wants to use our approach for practical
purposes, one should realize that scaling of the object functions and convergence function might be
necessary.
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0.4 0:'S .55 0.6 0.65

Fig. 2. The parametrized area S, the leftmost curve represents the Pareto solutions P, the small triangle
on this curve represents the negotiation area ..

From Section 2, the set of control strategies U is given by
(u” (a, ) |(a, A) €0, 1] %[0, 1]}.

Substituting these control strategies in (4) gives the following set (compare with

(3)):
(1@ A), Ta(e A), Cla. M) (@ Ny e[0,1]x[0,1]).  (5)

In the sequel we will analyze this set of points for the given example.

Remark. Computing the outcomes for A =1, a=0, a =1 gives some difficul-
ties because in that case we have a singular system of equations. However, we are

not particularly interested in those situations so we used in our calculations values
which are close to these points.

A projection of the surface in (5), on the (J,, J,)-plane is drawn in Fig. 2. This
set of points 1s denoted by S, like in Section 2.

S={(Ji(a, A), Jy(a, A))I(a, A) €[0, 1] x [0, 1]}.

The black lines in Fig. 2 represent the edges of S. One of these edges is the set of

Pareto solutions, which 1s given by the left black line. It is obtained by computing
for various «:

P={(J(a, 0), Jx(a, 0)) | a< [0, 1]).

Points on the upper part of the Pareto line correspond with a high value of «
and points on the lower part to a low value of «. The edge L, in Fig. 2 is obtained
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Fig. 3. Zooming in on Fig. 2 around the negotiation area. Iso-convergence lines are drawn.

by computing for various A € [0, 1]: (J,(1, A), J,(1, A)) and the edge L, by
computing for various A € [0, 1]: (J,(0, A), J,(0, A)). The edge in the figure
which corresponds to (J,(«, 1), J,(«a, 1)) for @ € [0, 1] is reduced to one point in
the figure. We denoted this point by L,. The small triangle on the Pareto line
denotes the negotiation area .# as defined in Section 2. Note that the negotiation
area .7 is completely covered by S. Zooming in on Fig. 2 around the negotiation
area. Iso-convergence lines are drawn. Zooming in on Fig. 2, around the negotia-
tion area ./, gives us Fig. 3. Specific information about the points A, B, N¢, and
C™* are given in Table 1. In Fig. 3 we draw some i1so-convergence lines, as
defined in Section 2. In the figure for each 1so-convergence line the corresponding
convergence value is given. The degree of convergence on the Pareto line
increases from B to A. As proven in Section 2 and visible in the figure, the point
with the largest degree of convergence in the negotiation area C™* lies on the
edge of the negotiation area and coincides exactly with the N point which

Table 1
Characteristics of some interesting points

J, J 5 & a A
Cooperation
c™ 0.505 0.370 0.1059 0.080 0.270
A 0.497 0.370 0.1258 0.625 0
B 0.505 0.359 0.1483 0.523 0
Non-cooperation
N¢ 0.505 0.370 0.1365 - —
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o

Convergence

Fig. 4. A three-dimensional plot, where for each (0.05 < a < 0.65) and (0 < A < 0.4) the corresponding
convergence outcome 1s plotted. The curve on the back (A= 0) represents a subset of the Pareto
solutions P. The interior of the curve drawn on the surface represents the negotiation area ..

belongs to the iso-convergence line /,,,s,. So, the y*, as defined in Section 2.
equals 0.1059. Furthermore, the gains in convergence are 0.306.

To get an 1dea of the degree of convergence of some points in (3) we plotted
Fig. 4. This figure shows a three-dimensional plot of the following surface:

{C(a, A)|(a, A) €[0.05, 0.65] x [0, 0.4]}.

Looking at this figure we get an indication of which values of a, A belong to the
negotiation area .#, which is drawn on the surface in Fig. 4. The corresponding
a, A-values for A, B, and C™* are given in Table 1. As one notes, the
convergence value declines (so converges increases) as A increases.

3.2. An approach to determine a reliable degree of convergence

In this section we present an algorithm to determine a feasible degree of y. We
have already noted that, without any other agreements between the players, a
degree of convergence which has no corresponding outcome in the negotiation
area 1s unlikely to happen. The question remains, however, which degree of
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Fig. 5. For the edge of the negotiation area, from A to N, the convergence value is plotted. Point E is
the point where the derivative of the tangent of the curve is — 1.

convergence within this negotiation area ultimately will be selected by the players.
In fact without making any further assumptions on the negotiation process, every
point 1n the negotiation area is possible. One way to come to a unique point within
the negotiation area 1s by axiomatizing the negotiation game. We shall not
elaborate this subject here, since for the moment we are more interested in
qualitative rather than quantitative statements. All we will do is sketch how a
feasible degree of y can be determined, using some heuristic arguments. First we
will give an example and then we will present two algorithms which illustrate the
approach 1n general.

In Fig. 5 the convergence value 1s plotted against the costs of player 1, along
the line A to N°, where the costs of player 2 remain constant. Starting at point A
and moving towards N°¢, the convergence value declines rapidly. This continues
until the point where (J,, C) = (0.4987, 0.1098). After that point the derivative of
the slope of the curve gets larger than — 1. In Fig. 5 we denoted this point by E.
From that point on, towards N°, the costs increase more rapidly than the degree of
convergence. If player 1 has to choose an outcome on the line in Fig. 5, he will
start in point A where his costs are minimal. From there onward, 1f player 1 wants
to increase convergence, he will have to weigh out costs against convergence. For
instance, 1f player 1 starts in A and moves towards N and accepts only points
where the slope dC /dJ, < — 1, the result will be the outcome E.

The general 1dea expressed in the above example 1s that players accept an
increase in convergence only if the corresponding costs stay within a prespecified
region. So, a sketch of a numerical approach for determining a feasible degree of vy
would be the following:

(1) Because minimizing their own welfare loss is of primary interest of the
players we start from a point (J,, J,) on the Pareto line between A, B. It
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seems reasonable to start at a bargaining outcome (Petit, 1990: de Zeeuw.
1984).

(2) Determine the direction v = (v, v,), for which there is a ¢ > 0 for which
(J,, J,) + t(v,, v,) €., and convergence increases maximal.

(3) Choose a small ¢ > 0,

(4) Calculate y. = —dC/dv. Check if 8J,/dv < x,( x.), for i =1, 2 where y,( x.).
=1, 2 are (decreasing) functions of y. which indicate the weight players
want to assign to the tradeoff between convergence and costs. That is, if the
additional increase in convergence (reflected by a smaller value for C) equals
X. then the additional increase in costs for each player separately should be
less than y,( x.) for i =1, 2.

(5) If (4) holds then use this new point as a starting point and start again in (2).
Stop, if no point in .#" can be found for which (2) and (4) hold.

A drawback of this approach is that it is timeconsuming, even for small models.
T'he reason 1s that the functions J,, J,, C are parametrized in « and A and
theretore calculating ‘simple looking’ expressions like dC/dv or dJ. /dv for
( =1, 2, or finding a direction v in step (2), take a lot of time.

A good alternative which is strongly related with the previous algorithm, but is
easier to compute, is the following algorithm:

(1) Start in some feasible point between A, B. With this point there corresponds
an uniquely determined «.

(2) Fix «.

(3) Increase A from 0 to 1 by using a stepsize of, for instance, 0.01. Check if the
point stays in the negotiation area ./

(4) Check for every A whether —aC /dA > dJ, /0A and —aC /A > dJ, /0A.

(5) Stop if no A can be found for which (3) and (4) holds.

The conditions in step (4) of the algorithm can be compared with the conditions
in step (4) of the previous algorithm. These conditions state that if for each player
separately costs rise less than convergence falls when A increases by one unit both
players are willing to accept more convergence (as long as they stay within the
negotiation area). Note that for our convenience we took yx, = x,( x.) = x-( x.).

4. Conclusions

In this paper we presented a theoretical approach how to deal with the issue of
convergence between E.C. countries. Based on the assumption that the primary
interest of the countries is minimizing their own individual welfare loss. we
considered the question how cooperative strategies yielding maximal convergence
can be determined. We showed that for a large class of problems, i.e. problems
where the individual costfunctions and convergence function are twice differen-
tiable and convex, a parametrization for a large set of cooperative strategies can be

determined. Using this approach a number of interesting questions can be consid-
ered.
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For instance whether it i1s possible that for a particular time horizon the E.C.
countries can satisty the convergence conditions in such a way that for every
country the corresponding costs are acceptable, and how these costs differ among
countries. In Section 3 we showed in a simple theoretical example how to analyze
such questions. The next step should be to use the same approach on more realistic
dynamic (macro)econometric country models, or just on a part of these models
where the interaction between countries is most essential, e.g. the monetary sector.
In dealing with that problem countries should realize that
(1) it must be clear where one should converge to (van der Ploeg, 1990). Should

they converge to the lowest, the highest or the average rates of their target /
instrumental variables? In our approach this means that countries should agree
on a common convergence function C.

(2) the preferences of countries should be finetuned. It is clear that if preferences
differ strongly among countries, convergence will be a very tough issue. In the
dynamical game approach this can be analyzed with the desired paths and
choice of weights for the target / instrumental variables. The theoretical exam-
ple was chosen in such a way that in the last period of the planning horizon
the countries, at least, strive for convergence, which was implemented by
choosing equal values for the corresponding desired paths.

(3) the time-horizon, necessary for reaching the convergence conditions within a
[imited period, plays a crucial role too. This aspect 1s strongly related to the
determination of the degree of convergence. We expect that for a short
planning period the costs for convergence can be very costly and this may
ultimately result in non-cooperative behaviour of some countries. This subject
remains, however, a topic for future research.

(4) costs for convergence differ among countries. The example in the paper gives
a way how to determine these costs for any given degree of convergence. In
general these differences will depend on the economical structures of the
participating countries. The theoretical example gives already an indication
that these costs could be much higher for countries which have less influence
in the Community.

The approach designed here for analysing convergence can be used for many
other problems as well. If players in a dynamic game have common objectives,
apart from their usual costfunctions, the approach can be used as long as we take
twice differentiable convex functions. If we stay i1n a multicountry setting,
common objectives appear in e.g. environmental 1ssues and trade 1ssues.
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