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ABSTRACT

We consider the problem of when the matrix equation X + A*X7'A = Q has a
positive definite solution. Here Q is positive definite. We study both the real and the
complex case. This equation plays a crucial role in solving a special case of the
discrete-time Riccati equation. We present both necessary and sufficient conditions
for its solvability. This result is obtained by using an analytic factorization approach.
Moreover, we present algebraic recursive algorithms to compute the largest and
smallest the solution of the equation, respectively. Finally, we discuss the number of
solutions.
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1. INTRODUCTION

Recently there has been renewed interest in positive definite solutions to
the matrix equation X + A*X A = Q, with Q > 0. In [2] this equation was
studied from the point of view of shorted operators, while in (5] the real case
was considered, and an application to optimal-control theory was given. The
equation appears in many other applications as well; see the reterences given
in [2].

In this paper we continue the study ol this equation. In Section 2 a
necessary and sufficient condition for solvability is given, as well as a
description of all solutions in terms of symmetric factorizations ot the rational
matrix-valued function $(A) = O + AA + A 'A*. Also, the order structure
of the set of solutions is studied. In Section 3 it is shown that the general case
can be reduced to the case where Q =1 and A is invertible. Section 4
presents iterative procedures to approximate the largest and the smallest
solution to the equation. In Section 5 the particular case where Q =T and A
invertible is studied. Here the following results of [3] are re-proved (using the
result of Section 2): the equation X + A*X ™ 'A = [ has a positive solution X
if and only if the numerical range of A is contained in the closed disc ot
radius 5 in the complex plane. Section 6 makes a connection to the theory of
matrices in an indefinite scalar product. It describes the set of solutions of the
equation X + A*X “'A =1 with A invertible in terms of Lagrangian sub-
spaces invariant under the matrix

) —A~
A¥ —=A""

This enables one to make precise statements concerning the number of

solutions. In Section 7 a relation to the theory of algebraic Riccati equations
is outlined. Finally, in Section § the real case is considered.

2. NECESSARY AND SUFFICIENT CONDITIONS IN TERMS OF
FACTORIZATION

In this section the equation

X+A*X"'A=0 (2.1)
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So CT = A*C, ". Thus

O=CIC,+ A*C;1CF 'A=X+ A*X"'A,

i.e.. X solves Equation (2.1). |

REMARK.  “¢f(A) > 0 on the unit circle” does not imply “/(A) regular.’
Consider e.g.,

Not every factorization of y(A) as in (2.3) corresponds to a solution X of
the equation (2.1); the requirement det C, # 0 is necessary for this. To see
this consider the trivial example A = 0. In that case, }\ Q. Taking a
minimal factorization of ¥(A), we have ¥(A) = Q = C;C,, so for such
factorizations we obtain the solution X = Q as in the theorem. However.
taking the nonminimal factorization $(A) = A7'Q'2O'"A, we see C, = 0,
and we do not obtain the solution X = Q by taking C¥C,.

The next theorem describes the order structure of the set of solutions of
Equation (2.1) in terms of the factorizations of the type (2.3).

THEOREM 2.2.  Let X, and X, be positive definite solutions of Equation
(2.1), and let @(A) =C,, + AC,, (i =1,2) be such that Y(A) =
0, (A" D*@.(A) and det C,, # 0 and C¥.C,, = X.. Suppose @,(A) @, (A) ™" is
analytic in the open unit disc D. Then X, < X,. In particular, if X, denotes
the solution corresponding to the factorization (2.3) of y(A) such that
det(C, + AC,) # 0 for |Al <1, then X, is the largest solution of (2.1).
Moreover, X, is the unique solution for which X + A A is invertible for all
AeD

Proof. Put U(A) = ¢,(A)¢,(A)"". Then UA"D*UN) = 1. ie.. U(A) is
a unitary rational matrix function. Such a function has no poles on the unit
circle; see, e.g., [1, 7]. As ¢, ¢, ' is analytic on D by assumption, it is analytic

on D (i.e. the closure of the unit disc). As U is rational. it is actually Lm.;ll\’
tic on a disc of radius R > 1. Write U(A) = X7_, U N for Al < R. Then

A1) = =0 U™, So

T yv

Jj=0

[ =U(A~"Y)*U(A) = ( Z L;*A"-f)

j=0
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is studied in terms of properties of the corresponding rational matrix-valued
function

Y(A) =Q + LA + A7'A* (2.2)

Here Q is assumed throughout to be positive definite and we are looking for
a positive definite solution X. The function ¢ is called regular it det s(A) is
not identically zero, i.e., if there exists at least one point where det y(A) # 0.
As det (A) is itself a rational (scalar) function, there are only a tinite number
of points for which det /(A) = 0 in case ¢ is regular.

THEOREM 2.1.  Suppose Q is positive definite. Then the equation X +
A*X"'A = Q has a positive definite solution X if and only if ¢ is regular and
Y(A) = 0 for all X on the unit circle.

In that case Y(A) factors as

y(A) = (CE +A7'CT)(Cy + AC)) (2.3)

with det C, # 0, and X = C;C,, is a solution of (2.1). Every positive definite
solution is obtained in this way.

Proof. Suppose X > 0 is a solution. Put C, = X'* C, = X /A,
Then

p(A) = (I + A 'A*X ) X(T+ AX'A)

= (C{T + /\_ICT)(C” s AC‘]),

so P(A) is positive semidefinite for |A| = 1. Since X is invertible, we have
det(C, + AC,) # 0 ftor |A] small; hence ¢ is regular.

Conversely, suppose ¢ is regular, and positive semidefinite for [A] = 1.
Then it is well known that there exists a factorization as in (2.3) (see, e.g.,
Section 6.6 in [15] and the references given there). Moreover, the factor
C, + AC, can actually be chosen such that it is invertible for |A| <1, i.e.,
det(C, + AC,) # 0 for |A| <1 (also see, e.g., Section 6.6 in [15]). Put
X = C;C,, where C, comes from this particular tactorization. As det C;; # 0
in this case. X > 0. From (2.3) one sees

Q =C{TC“+C:I*:C1" Aﬂ’ =C=1FC”1 fl __HC[TCI
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that in [2] it is allowed that X > 0, the inverse in the equation (2.1) being
interpreted as a generalized inverse. This explains the differences between
our results and those in [2].

3. REDUCTION TO A SPECIAL CASE

In this section the general equation (2.1) will be reduced to the special
case where Q = I and A is invertible. This reduction is a repeated applica-
tion of two steps. The first step is the following simple observation.

PROPOSITION 3.1.  Let Q be positive definite. Then X is a solution of the
equation

X+ A*X 'A=0Q

if and only if Y = Q'/>XQ '/ is a solution of the equation

Y + A*Y A =1,
where A = Q‘I/EAQ_ 2
For the second step let us consider the equation

X+ A*X'A =1, (3.1)

with A a singular n X n matrix. [f A =0, the equation is trivial. Otherwise
decompose C" as follows: C" = Ker A & Im A*. W ith respect to this ortho-
gonal decomposition write

0 A,
0 A,

|0
. X=10 X,

. =

(X necessarily must have this form, as X|g.r a4 = I'lger 2 and X < I.) Then
(3.1) reduces to an equation for X,:

X, + ASX;'A, =1 — ATA,. (3.2)

Thus, if there is a positive solution X of (3.1) then I — ATA, > 0. Applying
Proposition 3.1, we can reduce the equation (3.2) once again to one of the
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[n particular, U U, < I, i.e. U, is a contraction. From

2 U_;A‘j(cnl T ACII)

U(A) e (A) =
j=0
= @y(A) = Cyp + AC),
one verifies U,C,, = C,,. Theretore

5 e * - *Oyk * M — ¥
*"\i o Cnicuﬂ o CnlLu Uncni S Cnl(‘nl - }\l-

Let X, be the solution corresponding to the factorization (2.3) tor which
det(C, + AC,) # 0, [A] < 1. Denote by ¢,(A) this particular factor. Then
@;(A) " is analytic on D, so for any solution X and the corresponding factor
@(A) we have @(A)e,(A)~" is analytic on D. Thus X < X, because of what
we have just proved.

Let ¢,(A) =C, + AC, be the ftactor for which det(C, + AC,) # 0,
Al <1. Then X, =C#C,, and so C, = U, X;//* for a unitary U,. As
A=C¥C, =X;7°U*C, we have C, = U, X; '/#A. Thus

e (A) = U, XITI/E(XL + AA).

So det(X, + AA) # 0 for [A| < 1. Now suppose X, is a solution of (2.1)
such that X, + A A is invertible for A € D. Put ¢,(A) = X|/* + AX[ /A,
Then ¢, (M@, (A)~" is analytic in D, and by the first part of the proof we
have X, < X,. As X, < X, is already proved, we get X, = X, . i

The fact that the solution corresponding to the factorization of (A) for
which det(C, + AC,) # 0, A € D, is the largest solution can also be derived
quite easily from [15], Theorem A in Section 5.9.

The tunction ¥(A) can also be viewed as the symbol of the Toeplitz
operator

O A* 0
A Q A*

A ¢
0

Positive semidefiniteness of T is equivalent with (A) being positive
semidefinite on the unit circle. This provides a link to [2, Section 4]. Observe
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form (3.1) but now in lower dimensions. Continuing this process, one ends
with either one of the next two possibilities: an equation of the form (3.1)
with A = 0, or an equation of the form (3.1) with A nonsingular. (In the
former case, necessarily the original A must have been nilpotent to start
with.) In fact, a combination of the two reduction steps applied repeatedly
proves the following theorem.

THEOREM 3.2 Suppose Q) > (). Then. in case the equation X +
A*X A = O has a positive solution, either it has precisely one such solution
or there are nonsingular matrices W, and A completely determined by A and
Q. such that any solution X is of the form

_, Tr o
X = WL T - | W
0 X
for a positive solution ¥ of the equation
X+AX 'A=1 (3.3)

Proof. Atter applying Proposition 3.1 and the reduction that [t’:‘cld‘; from
equation (3.1) to (3.2), it is seen that any solution X of X + A*X = is
ot the form

172 l 0 L /2

D" Xs

for a solution X, of (3.2). Apply again Proposition 3.1: let Q, =1 — ATA,.
Then X, = l/4}') ,©,/" for a solution Y, of

) /i}z Y5 ]z'"{ﬂ = ],

i

~

A -1/2 ~172 ¥ SRR
where A, = /24, g0 %, A, is nonsingular or zero, we are done.

Otherwise t:l(-%compme the space aguin and repeat the argument. =

Note that this reduction process respects the order structure on the set

of solutions. In other words. if X, and X, are two positive solutions of
X 4+ A*X~ 1A = Q, and

= h™
X, =W = |W,
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where W is as in the theorem and X, X, are positive solutions of (3.3). then
X, <X, itand only it X, < X,.

THEOREM 3.3.  Let A be invertible. Then X solves the equation (3.1), i.e.,
X+ A*X'A =1
if and only if Y =1 — X solves
Y 4+ AY 'A¥ =1, (3.4)

In particular, if Y, is the maximal solution of (3.4) then X, =1 —Y, is
the minimal solution of (3.1). Moreover, X, is the unique positive solution for
which X + AXA* is invertible for Al > 1.

Proof. Let X be a solution of (3.1). Then A*X 'A =1 — X. Hence
X' =A*" (I = X)A™". Taking inverses yields X = A(I — X) 'A* so Y =
[ — X solves (3.4). The converse is seen in the same way:.

Note that X, < X, it and only if Y, > Y,. Hence the relation between X,
and Y,. By Theorem 2.2, X_ is the unique solution for which Y, + AA* =
[ — X, + AA* is invertible for all A € D. Now by (3.1),

I — X + AA* =A*X"'(A + AX).

So X is the unique solution for which A + AX_ is invertible tor A € D.
Equivalently, (A + A~ "X )* is invertible for |A] > 1. But

(A+A7'X)* =A%+ 27X, = A71( X, + AA%).

So X, is the only solution such that X, + A A* is invertible for [A| > 1. i

We can generalize the last statement of Theorem 3.3 to the case of
Equation (2.1).

THEOREM 3.4. Suppose Q > 0, and assume the equation X +
A*X7'A = Q has a positive solution. Then this equation has a largest and
a smallest solution X, and X, respectively. Moreover, X, is the
unique solution for which X + XA is invertible for |[Al < 1, while X_ is
the unique solution for which X + X A* is invertible for |A| > 1.

Proof. First we show the existence of a smallest solution. The reduction
process outlined in Theorem 3.2 and Proposition 3.1 preserves the ordering
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of the solution. Thus we may apply Theorem 3.3 to see that there exists a
smallest solution.

To prove the second part of the theorem we only need to show that X_ is
the unique solution for which X + AA* is invertible for |A| > 1. It is not
hard to see that this property is also preserved under the reduction process of
Theorem 3.2 and Proposition 3.1. Thus, again, this follows from Theorem 3.3.

[

As a C(:nr()llur}f we have the following theorem which tells us exactly when
there is a l.111ique solution.

THEOREM 3.5, Suppose Q > 0. Then the equation (2.1) has exactly one
solution if and only if the following three conditions hold:

(i) ¢ is regular;
(ii) Y(A) = 0 for |[A| = 1;
(iii) any zeros of det Y(A) are on the unit circle.

Proof. Suppose Equation (2.1) has exactly one solution. Then (i) and (ii)
must hold by Theorem 2.1. Moreover,

Y(A) =(X+ 2 'AHX (X + AA).

Therefore, det (A) = det X' det( X + A A)det( X + A 'A*). As X is the
unique solution, we have X = X, = X, . By Theorem 3.4, det(X + AA) and
det( X + A~ 'A*) are both invertible for |A| < 1. Thus ¥(A) is invertible for
all A inside the unit circle (with the exception of zero). As ¢ is self-adjoint, it
tollows that y( A) must be invertible for all nonzero A not on the unit circle.
Thus (ii) holds.

Conversely, assume (i), (ii), (iii) hold. Then there is at least one solution
by Theorem 2.1. Moreover, by (iii) we have for any solution X of (2.1) that
X+ AA and X + A7'A* must be invertible for |A| < 1. Thus by Theorem
34 X=X =X, =

S

4. TWO RECURRENCE EQUATIONS

In the previous section we saw that whenever our matrix equation (2.1)
has a solution, it automatically has a largest and a smallest solution, denoted
by X, and X, respectively. Moreover, we presented an algorithm to calcu-
late these solutions X, and X_. In this section we show that these solutions
can also be obtained via a recurrence equation. The advantage of these
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recurrence e(ilmtmm are that they are directly related to the original equa-
tion (2.1) and very simple to lllll)|(~‘111(‘l1t Whether both solutions X, and X,
are obtained from these equations in a numerically reliable way remains at
this point an open question, and therefore a problem for tuture research.
We shall see that the algorithm to calculate the largest (real) solution X,
is the easiest one. To calculate X, we will in fact implement the dual
algorithm for calculating X, . However, since the dual algorithm only works it

matrix A is invertible, in general we tirst have to apply some transtormations.
alreadv mentioned in the previous section, to Equation (2.1).
The algorithm to calculate X, is as follows.

ALGORITHM 4.1. Consider the recurrence equati(m

e
|
—

(L)
Xn+| =5 £ A‘*‘X”_ l“%

[f Equation (2.1) has a solution X > 0, then X, — X, .

Proof. We show that X, is a monotonically decreasing sequence that is
bounded from below, and thus converges. To that end we tirst show by
induction that X;, > X V& € N. Note that as a consequence then X; > 0 for
any k € N, and since X is an arbitrarily chosen solution of (2.1), we have
that X, > X, Vk € N.

For k = 0, the statement is trivially satistied. So assume that the state-
ment holds for k =n. Then, X,,, —X=A%X"" =X )A >0, since
X, = X > 0, which completes the first part of our argument.

Next we show that X, is a monotonically decreasmq qequenco The proot
is quite similar to the previous argument. First, consider X, — X,. From the
definition of X, we have that X, — X, =1 — (I — A*. ’_]A) = A* =0. 8o
the statement helds for k = 0 Next, assume that X, — X, ,, = 0 for k =
Then, using the induction argument and the fact that X, > 0 for any k, we
have X, ., — X, ., = A*(X,;, — X, ')A > 0. So the induction argument is
complete. Combination of both results yields that X, = X, . B

To calculate X, the following algorithm can be used.

ALGORITHM 4.2. If Equation (2.1) has a solution X > 0, then this
algorithm gives us the smallest (real) solution X, of the equation.
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1. () If A is invertible then go to part 2.
(ii) Else apply a unitary transformation T such that

A 0)
T.
Ay, 0

A=T*

(iii) It A,, = 0, then

Y__T*I—AEAH UT
S ) I

and the algorithm stops.

(iv) Else

¥ 0
X i T*] ° T,
L 0 I

with Y > 0 the smallest solution of Equation (2.1), where A is
replaced by (I — A%, A,))7"7*A,,(I — A%, A,)" "2, Now return
to (1).

2. Consider the recurrence equati(m

Xy = AA™,

*XFH+I = A(I o Xn) ‘A%

Then X, — X._.

Proof. Part 1 of the algorithm follows from the reduction process of
Section 3. So what is lett to be proved is that part 2 works under the
assumption that A is invertible. Using Theorem 3.3 and Algorithm 4.1, this is
however straightforward to prove, and therefore the proof is omitted. ]

For Algorithm 4.1 compare also [3, 2]

5. ANOTHER NECESSARY AND SUFFICIENT CONDITION

In this section we shall assume A is invertible and O = I. Recall that the
set {C Ax, x) |llx]| = 1} is called the numerical range of A; we shall denote
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this set by W(A). Furthermore, let us denote by w( A) the numerical radius
of A, ie..

w( A) = max{|z]|z € W(A)}.

With this notation the tollowing theorem holds.

THEOREM 5.1.  Suppose A is invertible. Then there is a positive definite
solution X of the equation X + A*X 'A = I if and only if o(A) < 3.

Pmof . Suppose X > 0 and solves the equation X + A*X"'A = I. From
Theorem 2.1 we know that the rational matrix function Y(A) =1 + A A +
A AT 148 positive semidefinite for [A| = 1. Now take x with [[x|| = 1. Then,
for |A| = 1,

0 <{Y(A)x,x) = (x,x) + A(Ax, x) + A{Ax . x) .
Hence for z = (Ax.x) € W(A) and |[A|=1 we have 0 <1 + Az + A=
But this is easily seen to be equivalent to |z] < %
Conversely, assume w(A) < % Then for ||x|| = 1 and |A| = 1.

((A)x,x) =1+ 2Re A(Ax, x).

Now [A{ Ax, x)| < 5 so y(A) > 0 for |[A| = 1. But as A is invertible, /(A) is
regular. Indeed,

Y(A) = A7TAY(AA* T + APAY 1A + 1),

Now A~ 'A* is invertible for A # 0. while A7'A* + M2A* 1A + T is a regular
matrix polynomial. Thus (A) is regular and positive semidefinite for [A| = 1.
By Theorem 2.1 the equation X + A*X" 'A =T has a positive solution. ]

This theorem was essentially obtained by ditferent methods in [3]. In one
direction the result can also be derived straightforwardly from Lemma 1 in
[4]. Using again different methods, the theorem was derived for the special
case of normal matrices A in [5].

Next we consider a similar condition for the more general equation
X + A*X 1A = Q, where we assume Q > 0 and A nonsingular. The Q-
numerical radius of A is defined as

‘UQ( A= “’(Q_I/QAO_I/E)'
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THEOREM 5.2.  Suppose A is nonsingular. Then the equation X +
A*XT'A = Q has a positive definite solution X if and only if w,(A) < 5.

As the pr(mf follows essentially the same lines as the prooft of Theorem
5.1. it is omitted. =

6. DESCRIPTION OF THE SET OF SOLUTIONS IN TERMS OF
INVARIANT SUBSPACES IN CASE A IS INVERTIBLE

The equation we Stud}f here is the one obtained after upp]icati(m of the
reduction process of Section 3. In other words. we consider the equation

X+ A*X'A =1, (6.1)

where A is nonsingl_llar. Introduce the matrices

() —~ A~ O I .
H=[A$ _%_I], ]=[___I o |- (6.2)

Note that H is ]—unitm}-', le.. H7 ]H = j . The next theorem gives necessary
and sufficient conditions for solvability of Equation (6.1) in terms of H and
its invariant snhspaces.

THEOREM 6.1.  The following are equivalent:

(i) there is a positive solution X of (6.1);

(i) Yy(A) =T+ AA + XA 'A* is regular and positive semidefinite for
Al = 1:

(iii) there is a number m, Inl =1, such that (n) > 0 and the partial
multiplicities of H corresponding to its eigenvalues on the unit circle (if any)
are all even:

(iv) there is a number m, |m| = 1, such that ¢(n) > 0 and there exists an
H-invariant subspace M such that [M = M ~ .

Proof. The equivalence of (i) and (i) is already observed in Theorem
2.1. First we show that (ii) implies (iii). The existence of 7, [p| = 1, such that
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Yy(n) > 0 is immediate from (ii). To show the second part of (iii), first note
that

| ] [ ()
lA:k I (H o ’\I) A A — [() w()\)] (63)

So Y(A) and H — AI are equivalent (in the sense of analytic matrix tunc-
tions) on C\ {0}. Hence the partial multiplicities of H and (A) at their
eigenvalues on the unit circle coincide (see, e.g., [6]). Next, for z € R define

Z + 1

(& §)

p(z) =(z—1i)y

g s g
= (224 DT+ (22 = 1)(A +A%) + 2iz(A - A%).

Then ¢(z) > 0 for z € R, and the partial multiplicities of ¢ at z coincide
with those of iy at A = (z + i) /(z — i). But the partial multiplicities of ¢ at
real zeros are all even [8, Chapter 12]. Hence, those of ¢ at its zeros on the
unit circle are all even, and so (iii) is proved.

Now we prove (iii) = (iv) = (i). Since H is [-unitary and the partial
multiplicities of H at its eigenvalues on the unit circle are all even, there is a
H-invariant 51.|l)spuce M such that JM =M + (see [12. 13)]). Let

-X]

A i -
1 =Im X.

Then we shall show that X, is invertible. For this, note that for any n on the
unit circle for which H — n and H + 7 are invertible.

(H+n)(H-m) 'M=M.

Us;ing_{ (6.3). we have

(H+n)(H-m) = [""‘ 2"’(;7)1]‘

:é:

Now, assume X,x = 0. Then
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Hence also

Xo X

i

al B .. =
(H+ n)(H — 7) ’[ - [M(n) Xo¥|l e M.

=

Since [M = M + we have

[ 0 S o 1! f s
0= (] XEIJ._,(H + n)(H — n) [\311 | =<,‘Xil}2lff('f}) I.XEI>.

|'

Now, by assumption () is positive definite. So X, x = 0. But dim M = n,
and so Ker X; N Ker X, = (0). Hence x = 0. Now put X = X, X|'. Then

I'I

M =1 .
m[l_

From [M =M “ we obtain

0=1[I X*][_(I) (I)H{ =X — X*.

So X is Hermitian. Since HM = M. we have

- B . Y fideon
M = Im H[ [ = |Im AA
X | A* — A7'X

Applying the result above, we see that —A ™' X is invertible and X = (A* —
AT XN=A"*X)"1 Consequently, — XA~ 'X = A* — A~ 'X. which vields
A*X'A—-T= —-X,ie, X+ A*X A =1

Next, put P(A) =1 + AX"'A. Then

1
& AA*X")X(I + AX"'A)

P (—IX )*XP( A)

1
X+ A*X7'A A AA* + AA =1+ AA + A7 'A®

b(A).
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[n particular, as (n) > 0, we obtain that I + nX 'A is invertible and
X > 0. I

From the last paragraph of the proof also the tollowing corollary is
obtained.

COROLLARY 6.2. If (6.1) has a positive definite solution then all its
hermitian solutions are positive definite. =

The next theorem provides a description of the set of solutions in terms of
invariant subspace M of H for which JM = M * . Such subspaces are called
Lagrangian subspaces.

THEOREM 6.3.  Suppose (i)—(iv) of Theorem 6.1 hold. Then for any
solution X > 0 of (6.1) the subspace M = Im[ ::] is a Lagrangian H-invariant

subspace. Conversely, any Lagrangian H-invariant subspace M is of the form

M = Im[ i] for some X .S'ati.sﬁﬁng (6.1).

Proof. Let X > 0 be a solution. It is a straighttorward computation that
JM = M ~ . Furthermore, by (6.1)

Il | —-A"'X
H_Xl - [A* —A7'X

= [i](—A"X’).

The converse was proved in the proot of Theorem 6.1. [

The pair (H, i] ) has extra properties connected with the sign characteris-
tic which are extremely important for determining the fine structure of the
set of solutions of (6.1). Recall from [9] that the sign characteristic of the pair
(H,i]) may be defined to be the sign characteristic of the pair (i(H + n)
(H — m)~',i]), the latter being defined from a canonical form for matrices
selt-adjoint in an indefinite scalar product (see [9]). Let @(A) = (A + 1)
(A—m) s then (H+ n)H —n) ' = o(H).

In the following theorem we shall denote by X, (H) the spectral invariant

subspace of H corresponding to its eigenvalues outside the closed unit disc.

THEOREM 6.4. Statements (i)—(iv) in Theorem 6.1 are also equivalent to

(v) there is a number m, |m| = 1 with y(n) > 0; H has only even partial
multiplicities corresponding to its eigenvalues on the unit circle; and the signs
in the sign characteristic of (H, i) are all 1.

Proof. Clearly (v) implies (iii). So assume there is a solution X of (6.1).
Then (iii) holds, and to prove (v) it remains to show that the statement on the
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sign characteristic is correct. To see this, compute

e(H) =(H+ n)(H - 1)

1 I
(—I+2df(n)" ;A* 2¢(m)

L —2AY(n) A [ —2nAy(n)

By Theorem 6.3

I [
H Im[X] C Im[X}.

But then

il enll]

which implies that X solves the algebmic Riccati equation

1

2Xy(n) X + X(—I +2¢4(n) ' —A*

» + [—I—I—2nAt//(n)_]]X

+ 2Ay(n) " A* = 0.

From the positivity of ¢(n) it follows that we may apply [9, Corollary 11.4.7].
According to this corollary the signs in the sign characteristic of (i p(H), i])
are all 1’s. M

As a consequence of this theorem and the one preceding it we can now
describe the structure of the set of solutions of (6.1) in terms of the set of
invariant subspaces of a matrix.

THEOREM 6.5.  Suppose (i)—(v) hold. Then for every H-invariant sub-
space N contained in X [ (H) there is a unique solution X of (6.1) such that

Im[f(} NX,(H)=N.

Proof. From [12, Sections 7 and 2] it follows that (v) implies that given
N as in the theorem. there is a unique H-invariant Lagrangian subspace M
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such that M N X, (H) = N. But Theorem 6.3 gives a one-one correspon-
dence between such subspaces M and solutions X ot (6.1). &

As a corollary we present the following.

COROLLARY 6.6.  Suppose (6.1) has a solution X > 0. Then there is a
finite number of solutions if and only if dimKedH — A) =1 for every
cigenvalue A of H not on the unit circle. Otherwise there is a continuum of
solutions.

Proof. If dim Kerl{ H — A) = 1 for all A, [A| # 1, which are eigenvalues
of H. then clearly the number of H-invariant subspaces N € X, (H) is
finite. So there is a finite number of solutions. Conversely, it there is a tinite
number of solutions, there can be only finitely many H-invariant subspaces
N C X, (H). This implies dim Kerl H — A) = 1 whenever [A] > 1 and A is
an eigenvalue. However, as H is [-unitary dim Kerl H — A) = dim Kerll H —
A Y. SodimKer{H — A) =1 also when |[A| < 1 and A is an eigenvalue.

In case dim Kerdd H — A) > 1 for some eigenvalue A not on the unit
circle, there is a continuum ot H-invariant subspaces in X.(H). (See [10,

Proposition 95.41.) E

Actnu]]}'.. in case there is a finite number of solutions. one can be more
precise. Let A, ..., A, be the eigenvalues of H outside the closed unit disc,
assume dim Kell H — X)) = 1, and let n, ..., n, be the algebraic multiplici-
ties of A,,..., A,. Then the number of solutions is exactly ]_[;":] (nJf + 1).
Indeed, in general every invariant subspace N ot H such that N € X, (H)
can be decomposed (uniquely) as N = N, + --- + N, , where N, is H-invariant
and o(H|y) C{A}. As dimKerlH — A;)) =1, we have n; + 1 possible
choices for N, namely N, = Ker(H — A)?, p=0,1,..., n,. Making all
possible combinations, we arrive at the total of I_[:-‘;l (n; + 1) possibilities

for N.

Next, we analyze the number of solutions in the particular case when A is
1 normal matrix. Recall that for a normal matrix the numerical radius w( A)
equals the spectral radius r( A).

THEOREM 6.7. Let A be normal. and assume r( A) < % Let S, = {A €
a(A)|[|Al = 3} and let p = #S,. Then (6.1) has

(a) exactly one solution if and only if p = n,
(b) 2"°7 solutions if and only if dimKeddl A —A) =1 for all A €
LA\ S,

(¢) a continuum of solutions in all other cases.
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Proof. Making a unitary transformation, we may assume A to be diago-
nal, A = diag(A,,..., A,). It is a straightforward calculation to see that the
eigenvalues of

are given by

M+ = (_'.']E  x %\/1 - 4“:“2 )Ai_l

and dim KedlH — u,,) = dimKer(A — A,). Clearly |y, .| =1 if and only if
A, = 3. Thus, all eigenvalues of H are on the unit circle if and only
if p =n. So (a) holds. Also (c¢) is easily seen. To prove (b), assume dim
KelA — A) =1 forall A, € 0(A)\ S,. The algebraic multiplicity of w, .,
as eigenvalue ot H is one as well, and exactly one of the numbers w,, and
u;_ lies outside the unit circle. (To be precise, u,_ is outside the unit circle.)
So H has n — p eigenvalues outside the unit circle, all with geometric

multiplicity one, and algebraic multiplicity also one. Therefore the number of
solutions of (6.1) is 2" P, &

7. CONNECTIONS WITH ALGEBRAIC RICCATI EQUATIONS

Many of the results in the previous section are very reminiscent of
theorems on the discrete algebraic Riccati equation (compare [14] for
instance). That this is no coincidence is seen from the following statement.

PROPOSITION 7.1. Let A be invertible. Then X is a solution of X +
A*X'A =1 if and only if X is a solution of the discrete algebraic Riccati
equation

X = AXA* + AA* — AX(-1 + X) " XA* (7.1)
Prm:f Rewrite X + A*X !A =T as

X=A(I-X) " A*
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(use Theorem 3.3). The result follows from

I -

F .
\
- ]

r ==e:] 7 y r o
(I-X)Y =I+X+X(1-X)
Note also that in the course of proving Theorem 6.4 we have found that
the solutions of (6.1) coincide with the solutions of the continuous algebmic
Riccati equation (6.4).
Using Proposition 7.1, some of the results of Section 6 migllt have been

derived directly from [14, Section 1]. We have chosen to give full proofs here,

independent of this observation. Algorithm 4.1 may be compared with

recursive algorithms to compute the lurgest solution of a discrete u]gebmic
Riccati equation; see e.g. [11].

8. 1THE REAL CASE

The case where A and QO are real and we are looking for real symmetric

positive definite solutions X is also of interest.

THEOREM 8.1.  The solutions X, and Xs of X + A'X " 'A = Q are real.

Proof. Note that the reduction procedure of Proposition 3.1 and
Theorem 3.2 preserves real solutions. So we may assume A is invertible and
Q = I. Consider Algorithm 4.1. The matrices X, in this algorithm are
all real. Hence X, is real. Also the matrices X, of Algorithm 4.2, step 2
are all real. Thus X is real. &)

Note that also the matrix H in (6.2) is a real matrix. Moreover. real
solutions X of X+ A'X 'A =1 with A invertible. correspond to real
H-invariant Lagrangian subspaces. So all results of the previous sections hold
for real solutions as well, with the exception of the result on the precise

number of solutions stated after Corollary 6.6. We now give the version of
that result for the real case.

PROPOSITION 8.2.  Let A be invertible, and let H be given by (6.2). Let
AL, ..., A be the real eigenvalues of H outside the closed unit disc, and
Aks 1sAksts oo o5 Ay gs Ap g, the nonreal eigenvalues of H outside the closed
unit disc. Assume dimKed H — X)) =1 fori=1,..., k + q. Denote by n,
the algebraic multiplicity of A,. Then there are exactly ]—[fj /(n; + 1) real
symmetric positive cdefinite solutions Uf the equation X + ATX A =1

Proof. The number of real solutions is equal to the number of real
H-invariant subspace N such that N € X, (H). Such a subspace can be
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decomposed uniquely as N =N, + -+ +N + N, + -+ + N, ., where
N, CcKer(H—A)", i=1,...,k, and N, € Ker(H — A)" + Ker(H —
Xi)"f, i=k+1,...,9. In case A, is real, there are exactly n;, + 1 real
H-invariant subspaces N, C Ker(H — A,)". In case A, is not real, there are
n, + 1 real H-invariant subspaces N, C Ker(H — A)" + Ker(H — A)™.
This proves the theorem. ]
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