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OPTIMAL CONTROL APPLICATIONS & METHODS, VOL. 11, 277-282 (1990)

SHORT COMMUNICATIONS

A DYNAMIC NET PRESENT VALUE RULE IN A FINANCIAL
ADJUSTMENT COST MODEL"

PETER M. KOR'T
Economics Department, Tilburg University, PO Box 90153, NL-5000 LE Tilburg, The Netherlands

SUMMARY

A dynamic model of a self-financing firm is presented in which a convex adjustment cost function B
incorporated. The horizon date is assumed to be infinite. It turns out that the concept of ‘net present
value of marginal investment’ is a useful tool to develop the firm’s optimal investment policy. When this
net present value is positive, negative or zero, it is optimal for the firm to hix the investment rate at 1S
maximum level, minimum level or equilibrium level respectively.

KEY WORDS Adjustment costs Net present value Constrained optimal control

1. INTRODUCTION

The problem of a firm facing convex adjustment costs has received a lot of attention 1n the
literature. '~ One of the most important contributions in this respect is by Gould,” who
studies a competitive firm that maximizes the present value of all future net cash flows. In this
paper we extend Gould’s model by allowing the firm to have price-making power in the output
market® and by incorporating a financial structure which implies, roughly stated, that the firm
must earn the money first before 1t can invest.

We determine the firm’s optimal investment policy by using a new concept termed ‘the net
present value of marginal investment.’’ From this value it can be derived whether the firm is
in equilibrium, and if it is not, how to reach this equilibrium as soon as possible. In standard
books of corporate finance®® the net present value criterion is used as a method to evaluate
an investment proposal and to compare alternative investment proposals. The net present value
of such an investment is defined as the sum of the net cash receipts minus the initial investment
outlay (see Reference 9, pp. 33—34). In this paper the net present value approach 1s extended
to a dynamic context. We show that on the equilibrium path the net present value of marginal
investment is equal to zero. If the net present value is not zero at the start, the firm needs an
adjustment phase in which it invests at its maximum if the net present value 1s positive and
it does not invest at all if the net present value of marginal investment 1s negative.

*The proofs of the results presented in this paper can be obtained from the author upon request.
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2. MODEL FORMULATION

In this section we present our dynamic model of the firm. Assume that the firm behaves so
as to maximize the shareholders’ value of the firm. This value consists of the discounted
dividend stream over the planning period. The horizon date is assumed to be infinite. Hence

maximize S D(t)exp(—1t) dt (1)
0

where D = D(¢) 1s the rate of dividend pay-out at time ¢ and 7/ is the shareholders’ time
preference rate (1 > 0 and constant).

[t depreciation 1s proportional to the stock of capital goods, we can describe the impact of
investment on the amount of capital goods by the commonly used formulation of net
Investment

K(t)=I(t)— aK (1), K(©0)=Ky,>0 (2)

where [= I(r) is the rate of gross investment and « is the depreciation rate (¢ > 0 and
constant). We assume the value of a capital good to be equal to unity and that borrowing is
not allowed. In this way the balance sheet becomes

K(t)=X(t) (3)

where X = X(r) 1s the stock of equity at time 7. To construct the state equation of the stock
of equity, we introduce the following assumptions.

(1) The rate of earnings is a strictly concave differentiable function of capital stock. If we
assume a fixed labour-to-capital rate and constant returns to scale, this implies that the
firm has price-making power in the output market.

(1) The rate of adjustment costs is a strictly convex differentiable function of gross
Investment.

Then the state equation for X is given by
X(t)=S(K(t)) — aK(t) — A(I(t)) — D(1), X(0)= Xo>0 (4)

where § = §(K) 1s the rate of earnings (S(K) >0, S'(K) > a, S"(K) < 0)and A = A([) is the
rate of adjustment costs (A(/) >0, A'(I) >0, A"(I) > 0, A(0) = 0). Dividend is restricted by
a rational lower bound and investment is assumed to be irreversible:

D() =20 (S)
I(1) 20 (6)
Using (2)—(4) we get
D(t) = S(K(t)) — I(t) — A1) (7)
By using (7) we can state the problem as follows:
maxifmize S: (S(K)—T— A(]))exp(—it) dr (8)
subject to
K=1-ak, K(0) =Ko >0 (9)
S(K)-TI-A({I) =20 (10)

[ >0 (11)



SHORT COMMUNICATIONS 279

Table I. Features of feasible paths

Path A A2 / D Policy

I + 0 Max 0 Maximum growth
2 0 0 > () > () Equilibrium policy
3 0 + 0 Max Contraction

The following assumption is required to ensure that capital stock increases when investment
1s at 1ts upper bound (see (10)):

S(K)—aK—- A(aK) >0 (12)

By using standard control theory '’ we define the (current value) Lagrangian

L=SK)-IT-AD)A+N)+¢y(I—-aK)+ N1 (13)
The necessary conditions are
y=0+A'(I)(1+ \1)— A2 (14)
=iy —0L[dK=(i+ a)y — S'(K)1 + \) (15)
A= 0, MOSK)-T-AU))=0 (16)
A = 0, Nl=0 (17)

Because of (9) and (11), K is positive. Therefore the constraint qualification (see Reference 10,
p. 161) is satisfied, which means that conditions (14)—(17) are applicable.

In the direct adjoining approach that we have chosen, the adjoint function i1s continuous
everywhere since the Hamiltonian is strictly concave in /. If, furthermore, the transversality
condition

lim exp(—it)y/(1)(K(1) — K(1)) = 0 (18)

[ = CO

holds for every feasible solution K, then (14)—(17) are also sufficient for optimality '0 since the
maximized Hamiltonian is strictly concave in K.

To facilitate the analysis later on, we distinguish between different paths. Since the Lagrange
multipliers \; (/ = 1, 2) can be positive or zero, each path is characterized by a combination of
positive As. Using the fact that K is positive we can easily derive that A\; and A, cannot be
positive at the same time. The remaining paths are feasible and are presented in Table I.

3. THE OPTIMAL SOLUTION

We first study the case where \; = \» = 0 (path 2). The steady state follows from (2), (14) and
(15) and can be expressed as

v =1+ A'(aK™) (19)
S"(K"=@G+ a)(1 + A'(aK™)) (20)

The determinant of the Jacobian of the system (2), (14), (15) is negative so that the dynamics
corresponds to a saddle point.'?



280 SHORT COMMUNICATIONS

From (14), (15), (19) and (20) we can show that on path 2

y» QO

S"(K(s))exp[-(i+a)is—t)]ds — (1+A'([))=0 (path 2) (21)
(L |
The first term is equal to the marginal earnings of investment, which consist of the discounted
value of the additional earnings due to the new equipment. Capital decays and therefore at
each time s > ¢ it contributes only a fraction of what a whole unit ot capital would add
(Reference 11, p. 129). The second term represents the initial outlay, including adjustment
costs, that is required to increase the stock of capital goods by one dollar at time ‘7.

Hence equation (21) i1s equal to the benefit of an investment of one dollar and therefore can
be interpreted as the net present value of marginal investment. From equation (21) we can
show that the net present value of marginal investment is equal to zero on path 2. Therefore
marginal earnings equal marginal expenses and the firm is in equilibrium.

Next, suppose that at the initial time capital stock is so low (this implies a high level ot
marginal earnings owing to the strict concavity of the earnings function) that equation (21)
dictates an investment level to the firm which exceeds its upper bound described by (10). Then
the optimal policy is to approach this level as rapidly as possible, which implies that investment
1s situated on this upper bound (path 1). From the optimality conditions we can obtain the
following relation which holds on path I:

» OO

(1+ A" (D) = \ S (K(s))exp[— (i + a)(s — 1)] ds

+ \ S"(K(s)exp[—a(s— )N (s)exp[—i(s—1t)] ds — (1 +A'(])) (path 1) (22)

J |

Recall that A, is the Lagrange multiplier of the upper bound of investment plus adjustment
costs (see (16)). Therefore A\; is equal to the extra value of the Hamiltonian gained 1f the upper
bound of investment plus adjustment costs (S(K)) is increased by one. In this way the left-hand
side of (22) represents the gain due to an increase of this upper bound with 1 + A" (/7). Notice
that an extra expenditure on investment plus adjustments costs of 1 + 4'(/) implies a one
dollar increase of the stock of capital goods.

The first and third terms on the right-hand side of (22) can also be found 1n equation (21).
The second term represents the indirect marginal earnings of investment. An extra dollar ot
investment at the instant ¢/’ implies an increase in the stock of capital goods of exp|[— a(s — 1)]
at time s > ¢, generating an extra return of S'(K(s))exp[— a(s—t)]. The upper bound of
investment plus adjustment costs will be increased by this value. In this way the Hamiltonian
discounted to ‘77 1s increased by S’ (K(s))exp[—a(s— )] Ni(s)exp[—i(s—1)] because
N (s)exp[—i(s— )] 1s the shadow price of this upper bound discounted to ‘/’.

We conclude that the right-hand side of (22) is equal to the net present value of marginal
investment on path 1. Since A, is greater than zero on path 1 (see Table I), we see that this
net present value is greater than zero. Thus marginal earnings are greater than marginal
expenses of investment and therefore it is optimal for the firm to invest at 1ts maximum rate.

Because the firm grows at its maximum on path 1, A’ (/) increases (because [ increases) and
S'(K) decreases (because K increases). Therefore the net present value will be equal to zero
at some instant. As soon as this happens, path 1 will pass into path 2 and (22) turns into (21).
Then the firm is in equilibrium. This solution 1s depicted 1n Figure 1.

Finally, we turn to the case where capital stock 1s so high that the net present value of
marginal investment i1s negative at the start of the planning period. Notice that, after assuming
that S’ is sufficiently high compared to A'(0), this case cannot occur when S 1s a linear
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Figure 2. Optimal solution in the case of a negative net present value at the initial time
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function of K and thus when the firm does not have price-making power in the output market.
Now, marginal expenses exceed marginal earnings of investment and it is optimal to invest
nothing at all (path 3). To confirm this we can show from (14) and (15) that the net present
value relation along this path 1s

» OO

— Ny = S'"(K(s))exp[—-(i+a)is—1t)] ds - A+ A'(])) (path 3) (23)

[

On path 3 the stock of capital goods decreases and S’ (K') increases. Therefore the net present
value of marginal investment will increase and become equal to zero after some time. Then
path 3 passes into path 2 and (23) turns into (21). The solution with negative net present value
at the nitial time 1s present 1in Figure 2.
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