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THE FIRM'S INVESTMENT POLICY UNDER A CONCAVE
ADJUSTMENT COST FUNCTION*

Peter M. Kort
Tilburg University, P.O. Box 90153, 5000 LE Tilburg (The Netherlands)

ABSTRACT

The purpose of this article is to examine the
effects of a concave adjustment cost function on
the optimal dynamic investment policy of a

Jirm. Such an assumption facilitates the expla-

nation of stepwise investment expenditures
instead of continuous investments. Therefore,

an optimal control model is formulated which
allows discontinuities in the level of capital good
stock. Using the conditions of the optimal solu-
tion we will design a search procedure which
enables us to develop the optimal investment
pattern.

1. INTRODUCTION

[n the hiterature, adjustment costs within
dynamic investment models nearly always are
convex functions of investments. This implies
rising marginal costs compared to the rate of
investment. In that case adjustment costs are
minimized through spreading out investment
expenditures as much as possible over time.
Investments are a smoothing problem.

In this contribution we will introduce a con-
cave adjustment cost function. Such costs
imply decreasing marginal costs of 1nvest-
ments and therefore 1t 1s optimal for the firm
to 1nvest either very much or nothing at all.
Investments now become a scaling problem.

We will formulate an optimal control model
that allows discontinuities in the development
of capital good stock at those moments when
the large investment expenditures take place.
To solve this model, we combine the necessary
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conditions based on Pontryagin’s maximum-
principle (see e.g. Kamien and Schwartz [1])
with some additional “‘jump’ conditions,
which have been designed by Seierstad and
Sydsaeter [2].

From the optimal solution we infer a search
procedure that helps us to fix the optimal
points of time to 1nvest, as well as the optimal
scales of the investment expenditures at the
different points of time. The same kind of
search procedure was applied by Luhmer [3]
1n order to solve an inventory problem.

Section 2 contains a short description of the
theory of adjustment costs with emphasis on
the concave form and 1ts implications. In Sec-
tion 3 our dynamic model with concave
adjustment costs 1s presented, whereas Section
4 contains the derivation and a further
description of the search procedure. Finally, 1n
Section 5 we apply this search procedure to a
numerical experiment.
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Fig. 1. A convex and a concave adjustment cost function.

2. THE THEORY OF ADJUSTMENT
COSTS

In the literature a distinction 1s made
between convex and concave adjustment cost
functions (see Fig. 1). Convex adjustment
costs apply to a monopsonistic market of cap-
ital goods: 1f the firm wants to increase its rate
of growth 1t will be confronted with increasing
prices on the market because of its increased
demand of capital goods. Because convex
adjustment costs imply rising marginal costs,
large investment expenditures are very expen-
sive. Therefore, the firm will tend to adjust i1ts
capital good stock slowly instead of instanta-
neously; investments are a smoothing problem.

In the literature most models have 1incorpo-
rated such a convex adjustment cost function.
Some authors, however, like Nickell [4] and
Rothschild [5], have argued that there are
important economic reasons which plead for a
concavely shaped adjustment cost function,
such as 1ndivisibilities, use of information,
fixed costs of ordering and quantity discounts.
In order to 1llustrate the first two arguments
we give two quotations of Rothschild [5]:

“Training involves the use of information (once one has
decided how to train one worker, one has in effect decided
how to train any number of them), which 1s a classic cause
of decreasing costs. Furthermore, the process i1s subject to
some indivisibilities. It requires at least one teacher to train
one worker. Presumably no more teachers are required to
train two or three workers.”

“Similarly, reorganizing production lines involves both
the use of information as a factor of production — (once
one has decided how to reorganize one production line,
one has figured out how to reorganize two, three or n),

and indivisibilities — (one may not be able to reorganize
only half or a tenth of a production line).”

[f the adjustment cost function 1S concave,
marginal costs are decreasing with increasing
investment expenditures. Therefore, the firm
minimizes 1ts adjustment costs if 1ts 1nvest-
ment policy consists of an alternation of very
large investment expenditures and zero invest-
ment expenditures. In this way an impulse pat-
tern arises which causes discontinuities in the
development of capital good stock. Accord-
ingly, we incorporate concave adjustment costs
In an optimal control model that allows dis-
continuities in the state variable.

3. THE MODEL

We first assume that the firm behaves as 1f 1t
maximizes 1ts value for the shareholders. This
value 1s expressed as the value of the profits
over the planning period plus the value of the
firm at the planning horizon. The profits in this
model are the difference between the present
value of the earnings stream and the sum of the
present value of investment expenditures and
adjustment costs. The final value of the firm
equals the present value of the final capital
good stock at the end of the planning period.
Further, we assume that the firm operates
under decreasing returns to scale and that the
adjustment costs are a concave function of
Investments.

The above results 1n the next goal function:

=112 50N

J S(K)exp (—iT)dT—-) (I,+U(I))) exp (
1=0 :

—il;)+K(z)exp (—iz) (1)

1n which

[, —=/'th iInvestment expenditure
i =time

Z —=planning horizon

K —total amount of capital goods
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! — discount rate

We also assume that the amount of capital
goods will 1ncrease by i1nvestments and
decrease through depreciations, which are pro-
portional to the value of the capital goods. So,
we get the next state equation of capital good
stock:

dK

e el
T

W T£T;=12..n. (2)

1n which
a =depreclation rate

K*(T)-K-(T)=I, ifT=T,j=12,...n. (3)

in which

K™ (7T) = amount of capital goods just after
the investment impulse

K~ (7) = amount of capital goods just before
the investment impulse.

Investments are irreversible. so:

10101 1= .00 (4)

Finally, we assume a positive value of the
capital good stock at 7=0:

K(0)=K,>0 (9)

Now eqns. (1) through (5) form our dynamic
investment model with concave adjustment
costs. As discontinuity of the state variable K
1s allowed, 1t 1s a non-standard optimal control
model. So, besides Pontryagin’s maximum-
principle we have to apply additional optimal-
1ty conditions which have to be fulfilled at
jump locations. These kind of necessary opti-
mality conditions are described by Seierstad
and Sydsaeter [2]. The application to our
problem can be found in the next section.
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4. OPTIMAL SOLUTION

At the location of an investment impulse, the
following equation must hold:

O Sl (6)

definitions:

W — co-state variable

H —=hamailtonian

g(K~,I;,T;) =K" —K~

—h(K~,1,,T)) —total cost of the
Investment
expenditure

The additional necessary conditions, devel-
oped by Seierstad and Sydsaeter [2] are the
following:
at the jump points, 1t must hold that:

g O ;
¥ olrmogp-toag (7)
oh dg

>0 for T=0

" ~ dh  _ 0g

5 R 5 | —aT—w c?T_O for7e(0,z) (9)
530 fOI' 1=z

for all 7"at which there 1s no jump, 1t must hold
that:

oh(K~,0,T) dg(K~.0,T)
T R ST TR ¢19)

From the model of Section 3, we get that the
following must hold:

WK ,1,T))=—(,+U(I))) exp (—1iT)) (11)

g(K_'.lI;&T;):[_} (12)

Applying the maximum-principle of Pontry-
agin to the model of Section 3, we obtain the
following necessary conditions:

H=S(K) exp (—1T)—-wakK (13)
N .
—gz/deexp(—fT)—aw (14)
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w(z)=exp (—1iz) (transversality condition) (15)

After substituting egns. (11) and (12) 1n
eqns. (7) through (10) we get:
at the jump points, 1t must hold that:

wt—w =0 (16)

dU . i
—(].d!f)exp(—fT)*w/ =) (1°7)

H"—-H —i(U{,)+1)exp(—iT)>=0tor T=0
=0 tfor T€(0,2) (18)
m‘:':..OfOI' 1=z

for all 7°at which there 1s no jump. 1t must hold
that:

—(l+dtr(!:0))exp(—*J'T)+y/-:§0 (19)
dl

From eqgn. (16) we can conclude that y 1s
continuous at every jump point. Due to the
insertion of egn. (13) 1n egn. (18) we obtain
that at a jump point 1t must hold that:

(S(K7)=S8(K7)) exp (—iT)—ay(K™ —K~)

>0 for 7=0
—1(U(;))+1) exp (—iT)=0 for Te(0,z) (20)
QO fOI‘ 1=z

After substitutingeqns. (6) and (17) 1n egn.
(20) and dividing this equation by exp ( —i7)
WE geiL.

_r e )
S(K*)_S(K_)_a(l dt)!,,— >0 for 7=0 (21)

+—d_1; =0 tor 7€(0,z)
<0 forT=:Z
I(U(1;)+ 1,

[f we substitute in the solution of the differ-
ential equation, eqn. (14), the transversality
condition egn. (15), we get:

Yl I'Y=expi(aT) Jfg%exp (—(i+a)t)dt

[ =

+exp (aT) exp (= (i+a)z) (22)

From eqns. (17) and (22) we finally derive
that at a jump point 1t must hold that:

% P

=1

dU
i =exp (— (17 z—T)+
| al exp (—(1+a) ( )

((=it+a) (t=T))dt (23)

The left-hand side of expression (23) repre-
sents the costs of increasing the investment
expenditure by one unit; at the right-hand side
we find the marginal earnings of investments
consisting of the present value of the remain-
Ing new equipment at the end of the planning
period (the value of the new equipment
decreases with depreciation rate “a’” during the
rest of the planning period) plus the present
value of additional sales over the whole period
due to this new equipment (the production
capacity of this equipment decreases with a rate
“a” during the remainder of the planning
period). Expression (23) thus means that at
all locations of investment impulses, marginal
costs of 1nvestments must equal marginal
earnings. This 1s easy to understand, because
on the optimal production plan the cost of
adjustment involved 1n 1nstalling one addi-
tional unit of capital good stock must always
balance the net gain of the adjustment. For 1f
it does not balance, then either one unit
Increase or one unit reduction of the invest-
ment at that moment will lead to an increase
in the present value of the firm.

Equations (6), (21) and (23) together may
be exploited for a search procedure in order to
obtain the optimal investment pattern. This
can be done 1n a similar way Luhmer [3]
established the optimal ordering plan of the
inventory problem under consideration. Con-
trary to Luhmer, we substitute the co-state
variable out of the search procedure by solving
1its differential equation. However, a conse-
quence 1s that an integral equation arises and
therefore, our search procedure starts at z and
goes backwards 1n time, instead of starting at
the initial time point and continuing in course
of time until the planning horizon 1s reached.

The search procedure, that 1s represented by
Fig. 2, starts by choosing an arbitrary value of
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choose X(Z)

¥
-l

T = 2=
>
K(T) ="C expl(=aT)
in which |
C = K(z) exp(az) 1if no investment impulse has heen
found vet
= K (t) exp(at*\
| in which
t"‘r =: polnt of ‘time of the last found inuegt—:l
ment impulse j
/N +
¥t = ko)
Y

.

2
substitute X in ¢6) and f?l\J

: '

solve (6) and (21) to ohtain

K and 1

|

Isubstitute T in (23) and check|

'_'if (:3\ holds

2
S
[7°2 11

¢ "fT = D”+;Fchpck through (5) %

K(T)

check 1f (21)|=—y]|solution is

e

if initial invest and (23) hold|] infeasible
-+

ment impulse 1is

\ X
R
L ‘—-\‘..\_-
|gn]ur10n i{s feasihle

necessary

Fig. 2. The search procedure which enables us to develop the optimal investment pattern.

K(z). Obviously, due to eqn. (23) no 1nvest- In case of an inequality no investment impulse
ment impulse can occur at the planning hori- takes place at this point of time; we now go to
zon itself, so we can go immediately to period the previous period and continue the algo-
T=z—1. We obtain the magnitude of K(z—1) rithm. If egn. (23) holds, however, the invest-
by substituting z— | for 7 into the differential ment 1mpulse 1s optimal, K(z—1) becomes
equation according to which K behaves during equal to K~ and we continue 1n the same way
time intervals at which there 1s no investment as before. The algorithm stops as soon as the
impulse. Then we equalize K(z—1) and K~ start of the planning period 1s reached. From
and insert this value in egns. (6) and (21) 1n the initial state constraint (5) we can check 1f
order to get the corresponding values of 7 and an investment impulse 1S necessary at time
K —. Next, we check whether the obtained value point zero. If it is not, the obtained solution 1s

of I fulfills the equality sign of expression (23). feasible; and if it is, the solution is only feasible
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Fig. 3. Candidate solutions of the optimal investment pattern.

when the magnitude of the investment impulse
satisfies the inequality sign (!) of egns. (21)
and (23).

By applying this search procedure we can
develop investment patterns for every K(z). It
depends on the corresponding value of the goal

- — .1 )

3 4 5
TIME

function which of these patterns 1s the optimal
one.

5. NUMERICAL EXPERIMENT

In this paragraph we use the search proce-
dure to derive the optimal investment pattern



of a firm with the following earnings and
adjustment cost functions:

S(K)=300 (1 —exp(—0.00158K))+0.2 K (24)

U(lI)=30 (1 —exp(—=0.00158 1)) (25))

The earnings function is adopted from Lud-
wig [6], who also used the following parame-
ter values:

a=0.2 (27)

The length of the planning period 1s equal-
1zed to five years:

Further, the 1nitial and final value of capital
goods are equal to:

K, =686 (29)

K(z)=600 (30)

Luhmer (1986) postulates, that application
of the search procedure could lead to a tree
structure of candidate solutions. The results
presented in Fig. 3 show that this is the case in
our problem. From this figure, we can also
conclude that the search procedure generates
eighteen different investment patterns. It
depends on the corresponding value of the goal
function which of these solutions is the opti-
mal one.

We can, of course, apply the search proce-
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dure to the same problem with another final
value of capital goods. In this way we are capa-
ble of enabling the optimal final value by com-
paring the values of the goal function of the

optimal investment patterns corresponding to
the different K(z)’s.
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