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Econometrica, Vol. 52, No. 6 (November, 1984)

MISSING OBSERVATIONS IN THE DYNAMIC REGRESSION
MODEL

By F. C. PALM AND TH. E. NUMAN'

We consider the dynamic regression' model with lagged endogenous variables and moving
average disturbances, when some observations on the endogenous variable are missing.
The available data are assumed to be sampled at regular intervals of length m and can be
linear combinations of the realizations of the variable over a finite number of periods.

We discuss the identification of the parameters in the model. For some selected models,
we evaluate the large sample variances of the maximum likelihood (ML) estimates for the
incomplete data and complete data respectively. In this way, we get an indication of the
loss of information when the data are incomplete.

Finally, we give some results for the effects on the properties of the OLS estimator,
when interpolated series are substituted for the missing observations and we briefly discuss
ways to obtain ML estimates. Our general conclusion is that when the sample is incomplete
it is very important to use all available reliable a priori information to analyze the model.

1. INTRODUCTION

IN ECONOMETRIC ANALYSIS of time series, it is usually assumed that the relevant
data consist of observations on the variables in the model pertaining to T
subsequent time periods that are considered appropriate on a priori grounds.
Attention has been drawn in the literature to the consequences of loosening these
assumptions which will often not be met in applied work. One stream of contribu-
tions is concerned with the problem of missing observations. The problems of
temporal aggregation in dynamic models form another related research topic that
has received increasing attention in recent years.

In this paper we concentrate on the dynamic regression model with moving
average disturbances when the endogenous variable is observed every mth period,
as is usually the case for stock variables, or when only a linear aggregate for the
m periods, such as a flow variable measured over the m periods, is observed.
Formally, we assume that the endogenous variable y, is generated by the following
regression model:

(1) P(L)}’t=k§l Bixi +0(L)e,

where p(L)=1-Y pL’, 6(L)=Y]_, 6,L’, L being the lag operator, and the
g,’s are independent normal variates with mean zero and variance o2, 6,= 1, and
the x;,’s are strictly exogenous variables, i.e., x;, is independent of ¢,_; for all ¢
Jj, and k. We assume that the standard conditions for identification of the para-
meters in (1) are satisfied. Furthermore, we assume that all x;,’s are known
(k=1,...,K;t=1,..., T), but that only linear combinations of the y,’s defined

' An earlier version of this paper was presented at the Econometric Society Meeting in Dublin,
September 5-9, 1982. The authors thank Econometrica’s editors and a referee for their useful comments
and R. J. Reichardt for his help in carrying out the computations.
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A
(2) V=X Wiy, forteT,,

i=0

are observed, where T,, is defined as the set T,,={m,2m, ..., T}. The weights
w; are deterministic and known.

The problem of missing observations has been analyzed along two different
lines. A simple formal way consists in deriving for instance quarterly data from
yearly observations on the same series by minimizing some criterion function
(see, e.g., Boot, Feibes, and Lisman [2]). A second approach consists in specifying
a model in which the missing observations are explained by other variables. When
exogenous variables are missing, one usually extends the model by introducing
an equation that relates the unobserved exogenous variables to other explanatory
variables. In this way, our results also apply to the case where observations on
an exogenous variable are missing. Next, the unobserved realizations are
integrated out (substituted for) to get the data generation process. The parameters
of the model (1) for data and missing observations can be estimated, provided
they are identified, and the model can be used to generate predictions of the
missing observations.? Quite often, the parameters of the process for the observa-
tions will be subject to restrictions which follow from the specification of the
joint process for observations and missing data. These restrictions allow for testing
the validity of the initial model.

The problem of missing data in dynamic models has received attention in
econometrics and time series analysis (see, e.g., Kmenta [9] and Dunsmuir [4]
and the references cited therein). Usually, although not exclusively, estimation
problems have been studied in the literature. This paper is focussed on the
identification problem in relation with the sampling scheme in the dynamic
regression model with missing endogenous variables. Results for univariate
ARMA-models will also be discussed. Special attention will be paid to the loss
of information due to incomplete sampling. Estimation problems will only be
briefly considered.

The plan of the paper is as follows. In Section 2, we introduce some patterns
for the data transformation (2) that are particularly relevant in economic applica-
tions. Section 3 is devoted to the identification of the parameters in the model.
In Section 4, we examine the loss of information due to incomplete sampling by
comparing the asymptotic efficiency of the maximum likelihood (ML) estimates
for the model when data are missing with that of the estimates when all observa-
tions are available. In Section 5, we briefly consider the computation of ML

2 When the missing data have to be predicted, identification of the parameters in (1) may be
required. For example, for m=2, K =1, p=1, g=0, the conditional expectation of y, given past
observations on y, and past and present observations on x,, is Ey,=py,_,+ B8;x,, When future
observations on y, and x,, are also used, it becomes:

Ey,=(1 +P2)_1[P,Vz—| T oY+ B Xy — BipXy 41

Using the projection of y, on the space for x, only yields predictions for y, t€ TS—> T,\T, or t being
outside the sample period, which are less accurate than those using the observed values of y, as well. When
B, =0, identification of p is required for one step ahead prediction of y,
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estimates and present some results on the effect on parameter estimates in large
samples of using interpolated data as proxies for the missing endogenous vari-
ables. Finally, in Section 6, some concluding remarks are given.

2. RELEVANT DATA TRANSFORMATIONS

In the previous section we assumed that the observations are in the form of
the linear transformation (2) of the unknown data. Dropping the assumption of
linearity would admittedly introduce new problems. Transformations of type (2)
are somewhat restrictive however; several authors have discussed transformation
patterns that do not fit into (2) (e.g., Dunsmuir and Robinson [5], Harvey and
Pereira [7]). For economic time series, the most important cases that do not fit
into (2) are perhaps the randomly missing observations and the («, 8)-sampling
with @ # 1. In case of randomly missing observations the availability of an
observation on y, is determined by a probabilistic mechanism that is independent
of the probability law according to which y, is generated. The term (a, B)-sampling
refers to a procedure in which the process under consideration is periodically
observed for a consecutive periods and not observed for the next 8 consecutive
periods. For the scheme in (2), @ = 1. Although the scheme (2) is restrictive, it
is relevant in many economic applications. Moreover, some of the implications
of the (1, B)-sampling remain valid for more general sampling schemes.

For a stock variable y, observations will often be available every mth period.
If the data are generated by a quarterly model and observed on an annual basis,
m =4 and the coefficients in (2) are

(3) A=O, W0=1.

This set of coefficient values will be referred to as the skipped data pattern. If y,
is a flow variable, the total flow for m periods is usually observed, so that we have

(4) A=m-1, w;=1 (i=0,1,2,...,m—1).

The scheme (2) is valid in other cases as well. Assume that the model (1) is
formulated in first differences, that is y, = Az, =z, —z,_,. If z, is a stock variable
observed every mth period (t€T,) then z,—z_,, =Z:"=—0' Yei=p, for t=
2m,3m,..., T, can be obtained. In this case, (4) applies as well. If z, is a flow
variable for which every mth sum of the last m realizations is observed, we have
information on y,=(1—L") Z:":_O' z,_; which gives y,=(1+L+---+L™"")?%y,
These transformations of y, with y, being generated by a static regression model,
have been analyzed by Zellner and Montmarquette [16]. Similar patterns arise
when the model (1) is formulated in second differences, y, = 4%z, =z, —2z,_, + z,_,,
while we observe skipped data, z, te T, (assuming m = 2), so that

j;t = Zt_2zt—2+zt—4=yt+2yt—l +}’1—2 (t=69 8, v T),

can be computed.

More general weighting schemes can be obtained in a straightforward manner.
If y,=A%z, and observations on z, or on Z:":_Ol z,_;, teT,, are available, the
transformation will always be of type (2).
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3. THE IDENTIFICATION OF THE MODEL

To illustrate the nature of the identification problem in dynamic models when
observations are missing, we consider a first order autoregressive—second order
moving average (ARMA (1, 2)) model, which is a special case of (1) (i.e., when
B:=0,k=1,...,K):

(5) Ve=py_1te +0g_+06_,,

with &, satisfying the assumptions made for (1). Define C; = Ey,y, .

As the variable y, is normally distributed, its distribution is determined unce
the variance and the autocovariances are given. The parameters of model (5) are
identified if the system relating the autocovariances C, [=0,1,... to the para-
meters in (5) can be solved uniquely for ( p, o, 6, 8,), which is the case provided
|p|< 1, the roots of the moving average polynomial lie on or outside the unit
circle and are different from p>—p~".

If however y, is observed every second period, only every second autocovariance
of y, can be estimated. The model, which can be written as

(6) Vi=p Vi ate +(0,+p)e_+(0, +p0,)€,_>+pbre, 3,
is identified if
Co= P2C2+0'2[1 +(6, +P)2 +(P2+92 +p0,)(6,+p6,) +P20§

+p°0,(6, +p)],
Cy=p’Co+0[ pb,+6,+p>6, +p8,6,],
(7) Ck = pzck—29 k>29

can be solved for (p, ?, 8y, 6,). Eliminating y,_, from (5) to get (6) is in fact
equivalent to marginalizing with respect to y,_;. When 6, and 6, are known to
be zero, i.e., y, is generated by a first order autoregressive model, (7) can simply
be solved for p” and o®. Without additional a priori information, the AR (1)
model is not identified as no information on the sign of p is available.

This finding is at variance with a conclusion by Telser [14].> The AR (1) model
is locally identified, which was implicitly shown (for p #0) by several authors
who established the information matrix of p and o in this model. When the
restriction p = 0is ignored, although it holds true, the Hessian of the log-likelihood
function is singular, but p is still identified, even globally. It can be consistently
estimated e.g., from the ratio of sample autocovariances C, and C,. Convergence
of the estimate of p however is then slower. For a discussion of the asymptotic
distribution of estimators for a locally identified model when the gradient is not
of full rank, the reader is referred to Sargan [13]. Another interesting conclusion
that can be derived from (7) is that pure moving average models of order 1 or

3 For the AR (1) model with observations for every second period, Telser states that in 75, =
Y. —P*yi_»= &, +pe,_, “all powers of the roots are present” (p. 493). This is not true however for the
variance of 7, as Telser implicitly claims below his equation (31).
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2 as well as the ARMA (1, 2) model are not identified. The order condition that
the MA coefficients have to appear in at least q +1 equations of (7) for the model
to be identified is not satisfied. These examples are special cases of a more general
result that will be presented at the end of this section: when only skipped data
are observed (no matter how many periods lie between two successive observa-
tions), an ARMA (p, q) model is not identified if g > p. That an ARMA (1, 1)
model is locally identified if p # 0 can be shown by evaluating the Jacobian of
the transformation of the equations for (C,, C,, Cy) in (7) to (p, o2, 6,), which
is 2p>C,0*(1—6%)/(1 - p?). The presence of an autoregressive parameter in this
example helps to identify the moving average parameter. Notice however that
the ARMA (1, 1) model is not globally identified, because if (5, 2, ) satisfies
(7), so does (—p, &°, —6,).

The identification problem clearly shows up in the shape of the log-likelihood
function. For an ARMA-model p(L)y, = 6(L)e,, o*= 1, te T\, when observations
are skipped denote the data generating process by 5(L™) Y= 6( L), te T, with
v, being a white noise with variance o2. We evaluate the large sample value of
the log-likelihood function

T

A T A
5, 0) = ———1n C(p, 6) ——
f(p, 6) o 11 (p, 0) m

at the point (p, 5) with C being the residual variance

E(63) = E[§(L™)5~ (L™ § ' (L™)6(L™)u,F.

For instance for an ARMA (1, 1)-process (1—pL)y,=(1+6L)e, and m = 2, we
have §(L?)=1-p’L? and 6(L?) =1+6L> with @ and o2 obtained from the
relations 602 = p6 and (1 +6%)o2 =[1 +( p +0)>+p?67). (For the ease of exposi-
tion, parameter §ubscripts are deletegl.)

We plot f( p, 8) for the values (5, ) which are not significantly different from
the true parameter values (p, 8) at which f( 5, 5) reaches a maximum and we set
f(p, 6) equal to f(p, 6) —3x%s(n), whenever f(p, ) —f(p, 8)=1x3s(n), with n
being the number of parameters in p(L) and 6(L).

From Figure 1, it is quite obvious that the parameters are locally but not
globally identified. The value of f docs not change if the sign of both p and 6
changes. Moreover f reaches its maximum at g = pand 6 =0 and at p=—p and
6 =—6. Once we have a priori knowledge on the sign of p or 8 (both being
different from zero), the model is globally identified. The two maxima are
separated by a set of points, which are significantly different from the true
parameter values. The value of 6 is not essential for the shape of . A picture
with local maxima similar to Figure 1 also arises when the true model is AR (1),
i.e.,, when 8 =0. Figure 2 is even more instructive. As noticed above, when p =0,
0 is not identified. The likelihood function is constant for different values of 0,
when p =0. l}Iotice also that f is constant and reaches a maximum on the set of
points p=—6.
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FIGURE 1—ARMA (1, 1)-model: p=.8, §=.5, m=2, T =100.

Now we assume that we observe every second period the aggregate over two
periods. From (5) we derive the relationship for the temporally aggregated data

(5’) Ve=pyi—1 T & +0,8,_,+08_,,

where y, =y, +y,_, and & =g, +¢,_,. For this model, the expression analogous
to (6) is

(6") V= Pz}_’t—z +& +(6, '*‘P)E:—l +(92 +P‘91)5r—2 +p6,8,_;.

Equation (6') can be represented as a first-order autoregressive second-order
moving average model in L*:

(7’) V= szr—2+(1 _wle_w2L4)Uz,

where v, is a white noise with mean zero and variance o2. It is immediately clear
that an MA (2) model for y, when y, is observed for t € T, is not identified in
this case either, as there are only two parameters o> and w, in which ¢?, 6,, and
6, appear, when p =0 (w, being zero). The MA (1) and ARMA (1, 2) models are
identified, provided the usual requirement for the parameters in (7') are satisfied.
For instance, when p = 6,=0, (7') reduces to an MA (1)-model in L?, with the
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FIGURE 2—MA (1)-model: 8 =.5, m=2, T=100.

relations —w,0>= 0,0% and (1 +w?i)o2=[1+(1+6,)*+ 63]o’ from which o* and
0, can be determined. For practical purposes, it can be quite useful to split the
identification problem into two parts by first checking the identification of the
data generating process (e.g., (7)) and then examining the relation between the
parameters of the data generating process and the parameters of interest. Notice
finally, that observing sums instead of single realizations helps in identifying the
parameters. The sign of p is determined here.

To illustrate the impact of the presence of exogenous variables for the parameter
identification, we consider the model

(8) Ye=pYi—1 +Bx, t&,

with ¢, being a normally distributed white noise, and we assume as in (7) that
skipped data are available every second period.
Substitution of the model for y, , yields a model for the observed variables

(9) y,=p2y,_2+/3x,+[3px,_, +u,

with u, being a normally distributed white noise with mean zero and variance
a?(1 +p?), for te To. It should be noted that if 8 5 0, the regression coefficients
in (9) are odd functions of p, so that there is usually information available on
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FIGURE 3—Regression model, skipped data: p=.6, B=1, m=2, T =100.

the sign of p. The coefficients of (9) are not only identified, they are also subject
to restriction, so that the validity of the specification (8) can be tested using (9).

To illustrate the identification problem, we consider the regression model (8).
For B=1, p=.6, a’=1, T=100 and skipped observations with m = 2, the large
sample value of the log-likelihood function is plotted in Figure 3. We assume
that x, is generated by a first order autoregressive process with parameter y = .95.
The value of R? is used to determine the variance of x, A small value of R?
(R?*=.3) is chosen to make the figure informative. The log-likelihood function
has two local maxima. However, there is only one global maximum which
corresponds to the true parameter values. The smallest local maximum will be
unimportant for large T, but for small samples, its presence requires some care
when the parameters of the model are estimated.

Finally we discuss the identification problem for the general model (1). For

this purpose, we use a transformation that has been introduced by Amemiya and
Wu [1]. Defining

(10) -’thzw(L)xjr and §,=w(L)s,

where

w(L)=§ wiL,
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we have
K
(11) p(L)y, = kgi BiXi, +O(L)E,.

Now let ay, a,, . .., a, be the (possibly complex) roots of the polynomial equation
p(L™")=0. Multiplying (11) by
a(L)=T1{., 1-al)'(1=a7L™) =]I], (T/2; «iL),

we get
K

P
(12) ‘Hl (l—aﬁ"Lm)kaZ] a(L)BiX +a(L)0(L)E,

i= -
As m is the time lag between subsequent observations on the endogenous variable
and because all data on the exogenous variables are assumed to be available,
(12) is an expression in observed variables. Introducing a new parametrization
for notational convenience and assuming that x,, is the constant term, we can
write equation (12) as

K p(m-1)

p
(13) J7r = g q’iﬁt—im +4, + Z Z 8kl-’zkt—l +e,

i=1 k=2 1=0
where ¢, is a MA disturbance term

p(m—1)+q+A

€= > 771L18r
1=0

with 7, being defined by

p(m—1)+g+A
miL' = a(L)6(L)w(L)

=0
and
p(m—1)+g+A
Eee, =& = o’ ) Z NiNj—im
j=im

The definition of ¥; and &, should be clear from (12). Notice also that the
parameters in (13) are all real because the «;’s will be in conjugate pairs if they
are complex. Equation (13) states that the observations are generated by a dynamic
regression model as well. This model is referred to as the transformed difference
equation. The order of the MA disturbance in (13) denoted by mq™ satisfies
mq*<(m—1)p +q+ A. It should be noted that when for one exogenous variable
only skipped data are available while all other variables are observed at each
time period, a transformation similar to that used above can be applied in order
to obtain a dynamic regression equation in which only observed variables appear.

The conditional density function for the observed endogenous variables given
the exogenous variables can be written in terms of the parameters (¥, §, ¢) which
are functions (¥, 8, £) = f( p, B, 6) of the parameters in (1). Here @ denotes the
g+1 vector (6,,..., 6, ). Alternatively, the disturbance in (13) can be para-
metrized as a g*th order MA process u, =Z;’=O @V —jm = 0(L™)v, wo=1, where
v, is a white noise with mean zero and variance o?.
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A sufficient condition for global identification of (p, B8, #) on a subset P of the
parameter space is therefore that the parameters (¥, 8, £) are identified in f(P)
without the use of the restrictions on (¥, 8, £) implied by f(p, B, #) and that the
equations (¥, §, £) = f(p, B, 6) have a unique solution ( p,, Bo, 6o) in P for every
(¥, 8, &) in f(P). A necessary condition is that (¥, 8, £) = f(p, B, 6) has a unique
solution ( po, Bo, 0o) for every (¥, §, £) in f(P), i.e., that f is injective.

CoroLLARY: The MA parameters 6; and o in model (1) are not identified if
q>pt(q—p+A)/m, thatisif q>p+A/(m—1).

Proor: The q 6;’s and o appear in f(p, B, 6) only through the g*+ 1 nonzero
¢’s. The necessary conditions can therefore not be met if g>p+(g—p+A)/m.

The corollary implies that the dynamic regression model (1) is not identified
when only skipped data are available (transformation pattern (2) and A=0) if
g > p. Similarly, itis not identified when only aggregates are available (transforma-
tion pattern (2) and A=m—1) if ¢> p +1. Of course some parameters in model
(1) can be identified, although other parameters are not. This is a problem of
aliasing. Writing

P , p -
1+Y .L™"=1] (1-¥.L")
i=1 i=1

we can see that the p;’s are identified if there is sufficient a priori information to
determine them uniquely from a{" = ¥

If K >0, this a priori information is not always needed as the roots of a" = ¥,
can partly be determined from the &, If the vector B is identified and there is
at least one X, such that the variables X, j=0,...,p(m—1) are linearly
independent, a(L) can be obtained from the §,; and p(L) can be obtained by
dividing [[7_, (1—a"L™) by a(L). 3

Finally, it may be difficult to accurately estimate the ¥;’s and a(L) when m
or p are large as will be seen in the next section. The identification of B8 is
straightforward if (13) is identified. A necessary condition for the identification
of B is that the K variables a(L)x, are linearly independent. For instance, 8 is
not identified in models with a constant term and a seasonal dummy over m
periods or with two dummies because a(L)x,, = Aa(L)X,, with k# k' in that
case; that is B, and B, enter in (12) only as (B, +AB ), hence they cannot be
identified. Finally when g < p + A/(m — 1), the identification of 8 can be checked
by showing that the Jacobian of the transformation &= £(8) has full rank and
that 6 is a regular point (see, e.g., Rothenberg [12]).

4. INFORMATION LOSS DUE TO INCOMPLETE SAMPLING

In the preceding section, we have seen that when data are incomplete large
areas of the parameter space may not differ significantly from the true parameter
values. Moreover, local maxima will often occur and the Hessian matrix may
become singular for some points in the parameter space. The examples given in
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Section 3 indicate that identification and the related problem of estimation require
additional care when the sample is incomplete. We shall see that in some cases,
almost unidentifiability occurs, although formally the model is identified. In this
section, we examine the loss of information due to missing data by comparing
the asymptotic efficiency of the ML estimator of the parameters in a dynamic
regression model, when the complete sample is available, with that of the ML
estimator, when some observations on the endogenous variable are missing.’ The
relative efficiency is perhaps of limited value for practical situations, as an
investigator usually does not have the choice between either using a complete
sample or relying on incomplete data. However, the results that we shall present
are interesting for the following reasons.

For empirical work, it is important to know that for some parameters the large
sample precision of the ML estimator deteriorates dramatically as a result of
incomplete data, whereas other parameters can be estimated fairly accurately in
large but incomplete samples. Using the information matrix, we show which
restrictions become essential for identification and accurate estimation when
observations are missing. Other consistent, but not fully efficient estimators will
have a still larger asymptotic variance. The asymptotic efficiency of alternative
consistent estimators has been investigated by Palm and Nijman [10, 11]. Finally
the results indicate for which kind of sampling and for which parameter values
the loss of efficiency due to missing observations is important. This may be of
interest to those in charge of data collection so that they can better appreciate
which gain can be expected from a more detailed data collection.

In Tables I and II, we give the ratio of the asymptotic variance of the ML
estimator of the parameters for skipped data, aggregate observations. and for
w(L)=(1+L+---+L™")? with respect to that when complete data are avail-
able. The transformation w(L)=(1+L+- - - +L™')* occurs when the change of
a variable z,, y, =z, —z,_,, is explained in the regression model (1), whereas one
observes an aggregate of z, or when the model (1) explains second differences
of skipped observations. Table I contains results for univariate ARMA (1, 1)-
models. In Table II, we report on the relative efficiency for regression models.
The number of periods m is 2, 3, and 4 respectively and is given in the first
column of the tables. The true parameter values are pe{—.8,0, .8}, o’=1, 8¢
{—.6, 0, .6}. The coefficient 8 equals one in Table II, where several alternative
processes are considered for the exogenous variable:

X, = u, is a white noise with mean zero and variance o2, denoted by WHI;
x, =.9x,_, +u, denoted by AR;

x, = ut, a trend denoted by TRE;

X, = x,_; +u,, a random walk denoted by RWA;

X, = X,_, +u, +u, a random walk with drift denoted by RWD, with u/o,=1.

4 An alternative measure, proposed by Dempster et al. [3], is the information matrix associated
with the density for the missing observations conditionally on the data. Notice that the expectation
of their measure with respect to the data equals the difference between the information matrices of
the complete sample and the incomplete sample respectively.
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The values of the coefficient of determination R> which are close to those
frequently observed in empirical work with economic time series, have been used
to determine the parameter of the process for x,. The large sample variances
needed for the efficiency comparisons in the tables have been computed as the
diagonal elements of the inverse of the information matrix (for some details, see
the Appendix). When the process for x, is nonstationary, its parameters are
determined from R? with T =30.

The reader should have a look at the tables. By NID, we indicate that the
parameter is not locally identified. INF denotes that the asymptotic variance of
the ML estimator is infinite due to a singularity of the Hessian matrix. When
results are reported for a parameter that is zero, this means that the parameter
is considered as being unknown. If no result is reported for an individual
parameter, it is assumed to be zero. For p, ¢, and 6, a large relative efficiency
of the ML estimator for complete data is caused by the large variance of the ML
estimator for incomplete data. For B, the relative efficiency of the former is
sometimes important, although the variance for the estimator based on incomplete
data seems to be reasonable. We checked this by computing numerator and
denominator of the relative efficiency separately. In order to give some insight
in the relationship between the results in the tables and the characteristics of the
model, we derived analytical expressions for the relative efficiency for some
simple models. For instance, for the pure first order autoregressive model, the
relative efficiency of the ML estimator for p compared with that for skipped data
(m=2) is equal to (1 +p?)/2p*=1 and that for o is (3 +p?)/(1 +p?). Then we
get the following results:

p 0 1 3 5 7 9

rel. eff. ppL INF 50.5 6.05 2.50 1.52 1.12
rel. eff. o3y 3.00 298 283 260 234 210

From these figures, it is obvious that the relative efficiency of py is very sensitive
to the value of p, whereas that for o3, increases only slowly with decreasing p.

The efficiency of the ML-estimate of p is infinite when p=0. For o7, the
efficiency of the ML estimate is finite. Both parameters p and o are globally
identified when p =0 and can be estimated consistently. Notice that (0, ¢?) is
not a regular point of the Hessian matrix, i.e., a point in the parameter space for
which there exists an open neighborhood in which the Hessian matrix has constant
rank. Therefore, Rothenberg’s [12] necessary and sufficient condition for local
identification requiring the Hessian to be nonsingular does not apply. For a
regression model with x, generated by a linear trend, p =0 and with skipped
observations (m = 2), the relative efficiency for pyy, is 2 + 80/ u>. Using the value
of R? with T =30 and 100 respectively to determine o/ u°, we obtain the following
results:

R? 7 95 99

T 30 100 30 100 30 100
rel. eff. pyL 1082.56  1450.07 134.65 178.08  27.47 34.17
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Notice that for trending x,, the loss of efficiency caused by skipped data remains
large, even for values of R? close to 1. From the results in the tables, it becomes
obvious that for skipped data, a large loss of efficiency occurs when the model
is overfitted, e.g., if p is estimated when it is zero, and when the true value of p
is close to that of 6. Notice also that for skipped data, the efficiency of p and 6
is not affected, when the sign of both is changed. The small differences in the
results are due to rounding errors. For aggregates, a large efficiency loss arises
when 6 is large, independently of the value of p. For w(L)=(1+L+---+L™™")?
a large imprecision is found when p is negative. In general, the loss of information
increases as R” decreases. Notice finally that a large inefficiency can be seen as
almost unidentifiability of the corresponding parameter.

To conclude, the results in the tables give an indication about the loss of
precision in parameter estimates and about the order of magnitude of the variance
of the ML estimator when observations are missing. It should be obvious from
these results that the loss of precision is not simply proportional to the number
of missing data points but that it can strongly depend on the true values of the
parameters and on the sampling scheme. In principle, it is possible to express
the relative efficiency as a function of the characteristics of the data generating
process and the sampling scheme. Except for simple models such as discussed
above, the derivation of the formulae for the relative efficiency is tedious and
the formulae are complicated so that the insight they give is limited.

5. PARAMETER ESTIMATION FROM INCOMPLETE DATA

As noted in the introduction, parameter estimation has received much attention
in the literature. We shall give new results on the properties of a procedure
frequently used in applied work and we shall briefly discuss some alternative
estimation methods.

Quite often in empirical work, values for the missing observations are obtained
by interpolation such that the resulting series is plausible according to some
criterion and is in agreement with the observed values of the series. Then the
constructed series is used as realization for the missing observations. This pro-
cedure has the advantage of being straightforward to apply. However, it yields
inconsistent parameter estimates in most occasions. In order to know whether
this drawback is relevant for applied work, we shall now investigate the large
sample bias of the OLS estimator for p and B in (1) using interpolated data.

Boot, Feibes, and Lisman [2] have proposed an interpolation method which
has been applied on a large scale. Other more sophisticated methods have also
been proposed in the literature. Generalizing their method to other cases than
observed aggregates, one obtains the interpolated series y, as the solution to the
following optimization problem:

T
> [(1-L)%.F

1

(14) min
P

t

subject to y=y, for te T,, and d being a priori given. Boot et al. [2] suggest
using d =1 or d =2. The procedure reflects the fact that many economic time
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series are smooth and that the constructed series should have that property too.
The interpolated series can be written as a linear transformation j = Ry of the
realizations, where y=(J,...,¥r), y=1, ..., ¥r), and R is a matrix of con-
stants that does not depend on the observations y,. When g =0, ordinary least
squares estimates of p and B in (1) using the constructed series y, are given by

(15) ( g) —(Z2'Z)"'Z'Roy,

where Z =(R,y, Ryy, ..., Ryy, X) with R, being the matrix obtained by deleting
the first (p —i) and the last i rows of R. When R is a block-Toeplitz matrix with
a limited number of nonzero elements, i.e., with i, jth block equal to A;_; for
|j —i|=< n, for some finite n and zero otherwise, we can compute the probability
limit of the OLS estimator in (15). Thereby, we use the property that products
of matrices of this structure are again block-Toeplitz matrices. The matrix R for
the procedure of Boot et al. [2] is not of the form described above but can be
very closely approximated by such a matrix. The probability limit of the OLS
estimator in (15) can be obtained straightforwardly by replacing the cross-
products by their second order moments expressed in terms of the parameters
using results of the Appendix.

In Table III, we report the probability limit of g and 8 when aggregates over
m periods are observed and the method proposed by Boot et al. [2] is used with
d =2 and m =4. (Results for other interpolation schemes can be obtained on
request from the authors.) For the exogenous variable x,, we consider the processes
that have been used in Section 4. For the parameters in (1), we choose the values
pe{—.8,—.4,0,.4,.8}, B=1,a’=1. For the details, we refer to the preceding
section.

From Table III, it is obvious that the probability limit can substantially differ
from the true values of p and B. When p =.8, the probability limit of g is
reasonably close to the true value, except for some nonstationary models. For

TABLE 111

THE PROBABILITY LIMIT OF THE OLS ESTIMATOR WHEN USING INTERPOLATED DATA FOR THE
MISSING AGGREGATE OBSERVATIONS, m=4, B=1, 0*>=1

R x 5 B i B 5 B 5 B i B

0.70 WHI  0.86 0.02 0.86 0.03 086 0.06 087 0.11 093 020
0.95 WHI 0.86 0.02 0.85 0.03 0.85 0.06 086 0.12 093 0.20
070 AR 0.78 0.11 077 0.16 0.78 0.22 081 0.34 090 0.60
095 AR 0.75 0.13 071  0.19 0.68 0.30 0.71  0.48 085 075
070 TRE -0.01 0.56 0.00 0.71 002 098 003 1.61 0.05 4.77
095 TRE -0.01 056 -0.01 072 -0.01 1.01 —-0.00 168 —0.00 5.00
0.70 RWA 065 0.19 072 0.20 076  0.24 0.81 032 0.87 0.65
095 RWA 055 0.25 0.54 032 0.56 0.44 0.63 0.62 079 1.03
070 RWD -0.01 0.56 0.00 0.71 0.02 098 003 1.62 0.02 492
095 RWD -0.01 056 -001 072 -0.01 1.01 -0.01 1.8 -0.00 5.0l
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most models with nonpositive p, OLS largely overestimates p. The coefficient
is usually underestimated, except when x, is nonstationary and p > 0. The figures
slightly improve when R? increases. When x, is generated by a trend or a random
walk with drift, the probability limit of g hardly varies with the true value of p.
Also, we like to note that the convergence of OLS to its limiting value appeared
to be very slow in simulations of the path of OLS estimates as a function of
sample size.

Finally, we point out that Boot et al. [2] originally designed their method for
economic variables, for which the roots of the autoregressive part are often
positive. Therefore, we do not want to draw strong conclusions from the results
in Table III, when p =—.8, p =—.4, and x, is a white noise. Nevertheless, as an
overall conclusion, we cannot recommend applying OLS to interpolated data, if
the aim is to estimate the parameters of a dynamic regression model from an
incomplete sample. In the light of this result and the conclusions on the identifica-
tion problem, we advocate the use of methods which rely on relevant a priori
information to analyze regression models with missing observations.

Fortunately, there are many ways for implementing ML and other nearly
efficient estimation methods. After the elimination of the unobserved variables,
one obtains a dynamic regression model of the form (13) with moving average
errors or, when B, =0, k=2,..., K, a univariate ARMA-model. The parameters
of these models are usually subject to restrictions implied by (¥, 6, £) = f(p, B, 6).
One way to obtain ML estimates of p, 8 and @ consists in estimating the
unrestricted model (13) by means of nonlinear least squares or ML and then
apply the method of asymptotic least squares proposed by Gouriéroux et al. [6].
Alternatively, the restricted model (12) can be estimated directly by means of
e.g. the Gauss—Newton algorithm using e.g., the chain rule to compute the partial
derivatives of the disturbance v, with respect to the parameters (see Appendix).
Some ML procedures do not require explicit marginalization with respect to the
unobserved variables. For instance, the log-likelihood function in prediction error
decomposition form and its derivatives can be evaluated by means of the Kalman
filter in order to obtain ML estimates of the parameters and predictions for
the missing data points (see, e.g., Harvey and McKenzie [8]). Alternatively, the
EM algorithm proposed by Dempster et al. [3] can be applied to the joint process
for data and missing observations to get the ML estimates of the parameters and
predictions for the missing observations. As the EM algorithm is based on a
sufficient statistic, it is less suited for models with MA parameters. Advantages
of the EM algorithm are that the value of the likelihood function increases at
each step of iteration and that it moves quickly to a region close to the maximum.
Watson and Engle [15] show how the EM algorithm can be implemented by
means of the Kalman filter and how standard errors for the ML estimates can
be computed. The prediction error decomposition and the EM procedure are
also suited for other sampling schemes not discussed here.

Finally, many consistent but not fully efficient estimation methods are available.
For instance, besides efficient estimators, Dunsmuir and Robinson [5] present
consistent frequency domain moment estimators for ARMA models with ran-



MISSING OBSERVATIONS 1433

domly missing observations. Palm and Nijman [11] compare the efficiency of
several consistent generalized moment estimators which are computationally
attractive. These estimators can be fairly efficient compared with the ML estimator
provided the most important restrictions are taken into account.

6. CONCLUDING REMARKS

In this paper, we have considered the problems of identification and estimation
arising in dynamic regression models and univariate ARMA models, when some
realizations of the endogenous variable are not observed. After the presentation
of different schemes in which information on the endogenous variable may be
available, we consider the conditions for identification of the parameters in
regression model with incomplete data.

The examples discussed above show that the data may not be very informative
on the parameter values. The Hessian of the log-likelihood function can become
singular when some restrictions on the parameters are ignored although the model
is still identified. The results on the loss of information due to an incomplete
data set indicate that some parameters can be determined with reasonable
accuracy whereas other parameters are almost unidentified. Ad-hoc estimation
procedures based on interpolated data which do not take account of the features
of the model can be heavily biased in large samples. However fortunately, many
procedures to obtain ML estimates are available. Each of them has specific
computational advantages.

In the light of our results, we should like to advise an investigator to carefully
check the identification of the parameters of the dynamic regression model with
incompletely observed endogenous variable and to estimate the parameters by
ML. Moreover, as some coefficients in the model cannot be determined very
accurately from the sample information, we also like to advise him to use all
available reliable a priori information.

Vrije Universiteit, Amsterdam, The Netherlands

Manuscript received October, 1982; final revision received March, 19584,

APPENDIX

THE LARGE SAMPLE COVARIANCE MATRIX OF ML ESTIMATES

In this Appendix, we shall briefly outline how the asymptotic covariance matrices for the ML
estimator of the parameters in equation (12) have been obtained. The large sample covariances have
been used to compute the results in Tables I to II in Section 4. First, we obtain the Hessian matrix
of the unrestricted regression model (13). For the ease of the exposition, we assume that there is
only one explanatory variable X, in equation (13) which we write as

(A.1) V(L™)y,=8(L)X, + w(L™)v, v,~ N(0, o2).
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The Hessian matrix of the log-likelihood function L with respect to the vector of unrestricted
parameters v =(V¥’, 8, ') in (A.1) is

9L av, dv, v
(A.2) =—0,2 ¥ (—1~—I+ . v,).
dv, ay, teT,, \O¥, v, 8y, 9y,
For the restricted model (12), the information matrix is then given as
9L T
(A3) —-EB——B'=—BCB/,
dv dv m

where B'=8u/d¢’ with u'=(v', 02) and ¢'=(p’, B’, 6', o%) and
Cc, 0 . oo v, 9y,
C= .| with C/ = E—
0 20 v av'

The elements of C; can be obtained in a fairly straightforward way (when w(L) is invertible) by
using results given below together with the following relationships which express the gradients as
linear functions of disturbances and explanatory variables:

v,

(A4) Ez _w_l(Lm)j;:—lm = _W_I(Lm)[vt—im +w71(Lm)6(L)£z—im]s
av av s yma o~
a—wj=—w_1(Lm)vt—im’ 6_6:=_w (L )X

The Jacobian matrix B can be obtained by analytical or numerical differentiation.

In order to compute the elements of C,;, we need expressions for the sample moments for the
variables y, and x, We assume that x, is nonstationary (when x, is stationary, the derivation is
stralghtforward) and generated by X=X, 1+u +u, with u, being independently distributed as
N(0, o2) and independent of past x,’s. The process for x, and y, can be written as:

t
(A.5) X,=ut+ Y u+x,

s=1
t
(A.6) Y= gopl(x,_‘ +&4),

where x,, y_,, and g, are assumed to be zero. As Z 0 p'i® is O(TP) for finite a, we ignore the terms
of this form. When divided by T, they become negllglble in large samples. We denote by “=" that
the equality holds except for terms of order O(T®). From (A.5), the second moment for x, is:

T/n a'i » 1 ry ,
(A7) E Z xtn+kxm+l#:u’2D+_T +o+— O-u’Ts
t=0 2n 2 n
where
T/n 1 1 1+k n 1 Ik
(A.8) D= Y (nt+k)(nt+l)=—T3+—(1 )T2 [ +—(l+k)+—]T
1=0 3n 2 n 6 2 n

and r =min (k, I). Using (A.6) and (A.8), the sample moments E Z y,,1+ky,,,+, and E Zt Lo Vin+kXmt
can be expressed as functions of T, n, k, I and the parameters in (A 5) and (A 6).

Flnally, the coefficient of determination R? defined as the ratio of E Z x*z/E Z, 0y,, where
x¥ —Zl o P'X,_; is used to determine the parameter values for the models i m Sections 4 and 5.
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