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The problem of missing observations in regression models is often solved by
using imputed values to complete the sample. As an alternative for static
models, it has been suggested to 1imit the analysis to the periods or units
for which all relevant variables are observed. The choice of an imputation
procedure affects the asymptotic efficiency of the method used to sub-
sequently estimate the parameters of the model. In this note, we show that
the relative asymptotic efficiency of three estimators designed to handle
incomplete samples depends on parameters that have a straightforward sta-
tistical interpretation. In terms of a gain of asymptotic efficiency, the
use of these estimators is equivalent to the observation of a percentage of
the values which are actually missing. This percentage depends on three
RZ-measures only, which can be straightforwardly computed in applied work.
Therefore it should be easy in practice to check whether it is worthwhile
to use a more elaborate estimator.

We consider the following regression model

yi = Bxy + YZ5 + €5 , € gl IN(O,DZ), (19)
and
Xi = 86Z; g IN(O,GE), (2)

where the regressors xj and zj are assumed to be independent of the
corresponding disturbances e; and vj. The variables yj and zj are observed

for 1 =1, ..., N = N7 + Np, whereas only N; values of xj are observed.
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Along with Gourieroux and Monfort (1981), we assume that the data on Xj are
randomly missing; this means that xj is observed if and only if the random
variable ¢; takes the value zero. The probability that ¢; = 0 equals 1-A
and is independent of the parameters in the model. Moreover, the random
variables ¢j are assumed to be independent of ey and vg, for all i, j and

K. The probability 1imit plim N“122§ = o% 1s assumed to exist and to be

finite.

From the strong law of large numbers, NiN-1 converges to 1-A with probabi-
11ty one when N goes to infinity. For convenience and without loss of
generality, we rearrange the order of the observations such that the
subscripts i = 1,... Ny correspond to the observed values of Xj e

Besides the OLS estimator of the regression of y; on X4 andtzi=fonaiw=aa
..., N1 only, denoted by Ea and ?ﬁ, we consider an estimation procedure in
which the missing x5's are replaced bylgéz1, whereigg is the OLS estimate
of & in (2) using the first Nj observations. This proxy variable for the
missing values of x is the optimal prediction of x given the model (2)is

The estimate va4p is subsequently computed by OLS on
Yk iBaXii = Yz + Wi, (3)

where wi = ej + ¢iBvij + ¢5(BS - 63B3)zy, With & = Xi and ¢4 = 0 if i < Ny
and X; = ggzi and ¢5 = 1 otherwise.
It is straightforward to show that'?a+b can be alternatively computed by

OLS of yj on Xj and z;
- N\
Yi = BXj + YZj + {ej + ¢iBvij + Boj(8 - 83)z}. (4)

Although the regressors and the disturbance in (4) are not independent, the

second moments between (X4,z4y) and the disturbance have zero probability

1imit as the estimator Eé converges to & in probability. Therefore'$g+b
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is a consistent estimator of y. However, the contribution of B¢; (6 -'Ea)zi
to the asymptotic variance of4$g+b is not negligible as plim NZN"1 =A#0

for N » =,

N
In the appendix, we show that the 1large sample distribution of Yz4p 1S

given by
N(Yash - Y) ~ N(0,V), with (5)
Vo= {(1-r2) el -2)} 02/ (1-0)02, (6)

where y = 02(6203 + 02)-1 and riz is the theoretical RZ of the regression
(2) of x on z(rgz ¢ 1). The result in (6) has been implicitly obtained by

Gouriéroux and Monfort [1981, expression (11) on p. 583].

PN N\
The relative asymptotic efficiency of Yz4p With respect to vz is

Eff(;a+b) = Avar(VN'$a+b) / Avar(VNIQa) =1+ Aa(pl -2 - riz). (Z:)

According to (7), in large samples using imputed values as in (3) leads to
a gain of efficiency compared with using complete observations only if u >
%k which is more stringent than the erroneous condition p > (1-A)/(2-A)
given by Griliches (1986), who also considers the model (1) - (2). Both
conditions require that the unpredictable part of x from z is not too

important relative to 02, the overall noise level of (1).

As yi= (1. = "p&

Cea) [ (1 RrEsDs (8)

where r§xz and r§z denote the theoretical RZ's of a regression of y on

respectively x and z and on z only (r§z ¢ 1), it is obvious that a suffi-

cient condition for an asymptotic efficiency gain is r§xz (%, 1.e. the
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predictible part of y is small.

As noted by Griliches (1986) and others, an asymptotic gain is assured if
(4) is estimated by a generalized least squares (GLS) method which takes
the correlation structure of the disturbance in (4) into account. Again,
the term ¢iB(8 - E;)zi cannot be neglected (see Palm and Nijman (1982) and
Nijman and Palm (1985)). Alternatively, the fully efficient maximum like-
1ihood (ML) estimator can be computed, e.g. using the convenient repara-
metrisation suggested by Gouriéroux and Monfort (1981). From their
results, the relative asymptotic efficiency of the GLS and ML estimators

e
with respect to that of y; can be obtained

EFF(YGLS) = 1 - Au(l - r2 ) (9)
and

P 2 2
Eff(yMy) = 1 - Ap(1 - o) = NI = u)re . (10)

Obviously the GLS and ML estimators are at least as efficient asymp-
totically asiqa. A comparison of expression (7) with (9) shows that'¢GL5
15 at least as efficient as $g+b in large samples. Both estimators are
equally efficient when p = 1, that is when conditionally on z, x does not
account for the variation of y. From (9) and (10) it follows that the ML
estimator is asymptotically more efficient than the GLS estimator. They
are equally efficient when u = 1 or when rxz = 0, 1.e. when given z, x does

not explain y or when z and x are linearly unrelated.

The relative asymptotic efficiency in (7), (9) and (10) only depends on the

three magnitudes A, u and r% Equation (9) indicates that in terms of a

zl
gain of asymptotic efficiency, the use of GLS is equivalent to the obser-

vation of 100 u(1 - riz) % of the values of xj that are actually missing.
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Similar expressions can be obtained from (7) and (10) for Ya4p and yyq_ res-

pectively. The values in Table 1 illustrate this result.

— L= B gt i =if e
Table 1 : Percentage of missing observations that are regained by the use

of missing data procedures instead of the complete data only.
(> SFTERINE S sk i 8 Ayt .
T B _r2 2
Ni= (il ryxz)/(l ryz) he. Eain in perceitage points fir
Ya+b YGLS YML
3 2 ~106 24 32—+
.3 .8 - 27 6 40 |
.6 .2 27 48 58
.6 .8 7 12 50 |
| .9 2 71 72 76
Ig IB

18 18 32 ‘

ot st o S e T

Note that a good fit in (2) yielding a "good proxy" for the missing values
of xj does not imply that a large part of the missing information on x5 can

be recovered, because of the induced multicollinearity between Xj and zj in

(4). Especially, when rZ 1is small, the efficiency gain obtained by using

the appropriate estimators can be substantial in large samples. The value
7\
of y is crucial for the asymptotic efficiency of Ya4p. The loss of effi-

ciency can be important when p < %. This loss increases as riz decreases.

Finally, if u is close to one, i.e. x5 is not very important in explaining
y 1in equation (1), all three approaches which take into account the

incomplete data, yield about equally efficient estimators in large samples.

To conclude, although it will usually not be possible in more general
models to express the asymptotic efficiency in terms of a few magnitudes
which can be straightforwardly estimated and used to assess the expected

efficiency gain, the ranking of the estimators discussed above holds true
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for more general models. For a similar model with aggregate observations
on x, we refer to e.g. Palm and Nijman (1982). Results for a dynamic mode]
for y can be found in Nijman and Palm (1985). As OLS based on a proxy
variable given an auxiliary equation is not always more efficient than OLS
using the complete observations only, we recommend the use of the GLS esti-
mator and whenever possible of the ML method to estimate the parameters of

d regression model when some observations on a regressor are missing.

Appendix

In this appendix, we outline the main steps of the proof of the asymptotic

properties of the OLS estimator of equation (4), which can be written as

N% [B - B XN =L g
R — —_— T ’ (A'l)
Ya+b - Y ) )

where X and u are the regressor matrix and the disturbance of (4) respec-

tively.

The inverse of the matrix X'X/N given by

A S
X'X 1 [ Zxé + 62322 TX{Zj + 63%z¢
T N T T 1 2in
TRAREITS i , (A.2)
2XiZ5 + BaZz? $z°2
l 1 2] 1

where the figures 1 and 2 indicate that we sum over i = 1,... Ny and § =

Ni+l,... N respectively (when we sum over all i, no figure is indicated),

converges in probability to

RO e o;Z (A.3)
£ 2 R\
5 6¢ + (1 A)ov o
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I\
as 83, Ix2/Ny, £z2/Np, =xjzi/N1, £z2/N, N7/N converge to &, 02 = 8202 + o2,
71 5 ] 1 i X Z V
og, So%, o% and 1-A respectively (these 1imits are assumed to exist).
The vector X'u/N%2 can be expressed as
ot Fa
1 6 6a(N2/Np)% -B63(522) (522)1 B84 (Np/Np)¥
N-2X'u = (N71/N)*% 2\ e £, (A.4)
0 1 (Np/Np)%2  -B(3z2)(Zz2)-1  B(Np/Nj)*%
Ao [

where € = [N Zviej, N‘%Ezie1, N=7 Tziei, N™%2 Zzsvs, N7 2Z5vil'.
] 11 AT, 11 .

The vector £ has mean zero and diagonal covariance matrix A having 0203,

262 22 242 242 *
0€0%, 0¢0%, 0002 and oG 05 on the main diagonal.

From central 1imit theory for independent random variables, £ converges in

distribution to N(0,A). The matrix premultiplying € in (A.4) converges in
probability to

D= (1_3)% e 5[&/(1-A)]% -BSA/(1-A) 35[3/(1‘5)]%

(A.5)
001" A/ (1=N)728 =BNAGIEN) B[A/(1-A)]%
In large samples, the distribution of the OLS estimator is given by
N2 [B - B ~ N0, A-1p A D'A-D). (A.6)
Yatbi =

Notice that DAD' can also be expressed as DAD' = B + (1-A)B2 C' X C, where

B = plim N-1 X'QX, C = plim N-1X'W and X = 02072 is the asymptotic variance

o
of Nf 5a, With Q being a diagonal matrix with typical element o2 + ¢i8202

W being a vector with typical element ¢iz5. This finding shows that the
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term B¢1(8:Ea)zi in the disturbance of (4) contributes to the variance of

the regression coefficient estimates and therefore cannot be ignored.

at
The asymptotic variance of NY2 Ya+b is the second element of the main diago-

nal of A-1paD'A-1l

Avar (N2Yasp) = 52020;2(1—3)‘1 + 02052 + A(1-2)"1 3203022. (A.7)

Some straightforward algebra yields the result in equation (6).
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