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Computational Statistics (1993) 8:39-45

The Evaluation of Cumulants and Moments of Quadratic
Forms in Normal Variables (CUM): Technical Description

J. R. Magnus

London School of Economics, Houghton Street, London WC2A 2AE, England and CentER
for Economic Research, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

B. Pesaran
Economics Division, Bank of England, Threadneedle Street, London EC2R 8AH, England

SUMMARY
This paper considers quadratic forms, () = z’Azx, where z is normally distributed with

mean g and variance-covariance matrix ) (positive definite), and A is symmetric. The
subroutine CUM calculates the first s cumulants and moments of Q). An auxiliary sub-
routine, PARINT, 1s also presented and works out all possible partitions of a given
integer.

Keywords: Quadratic forms; Moments; Cumulants; Calculation of expectations; Parti-

tions of an integer.

1 Introduction

In this paper we consider quadratic forms, () = z’Az, where z is normally distributed
with mean g and variance-covariance matrix {0 (positive definite), and A is symmetric.
The subroutine CUM calculates the first s cumulants and moments of ). The routine
s based on theory developed by Magnus (1978, 1979) for the central case where u = 0,

and Magnus (1986, Lemmas 2 and 3) for the general case.

An auxiliary subroutine, PARINT, is of independent interest. PARINT works out all

possible partitions of a given integer M. That is, all possible vectors (n;,n,,...,nar) are

obtained such that for non-negative integers ny,...ns:

T —{-2?12 + es F MTIM = M.
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Some background, motivation and examples for both routines is provided in a companion

paper Magnus and Pesaran (1992a). A related subroutine, QRMOM, considers ratios of

quadratic forms and is presented in Magnus and Pesaran (1992b). The full Fortran 77
code of CUM and PARINT (and QRMOM) is given in Magnus and Pesaran (1992c).

Section 2 describes CUM, section 3 PARINT and section 4 introduces the Fortran 77

code.

2 The Subroutine CUM

2.1 Description and Purpose

The subroutine CUM calculates the first s cumulants and moments of the quadratic form

t'’Az, where z is an n x 1 vector of normally distributed variables with some mean p
and a positive definite (hence non-singular) variance-covariance matrix {1 and A is an
n X n symmetric matrix. The subroutine CUM uses the auxiliary subroutine PARINT

(described in section 3), which is of independent interest.

2.2 Parameter Statements

The following parameters have been set in subroutines CUM and PARINT:

[SPAR = 77 The dimensions of the array ISPRTN (ISPARx ISDIM) where all

& possible partitions for a particular s are stored. This two

ISDIM=12 dimensional array is set up by subroutine PARINT.

MAXMOM=24 The maximum of s allowed.

The above parameter values are sufficient for s < 12. I[f 12 < s <24 is to be calculated,
then both ISPAR and ISDIM should be increased. ISDIM should be at least equal to s
and ISPAR should be set at least equal to the number of all possible partitions of in-

teger s. For a table containing the partitions for integers up to 100 see Hall (1986, p. 38).

Working out cumulants and moments for s > 24 1s also possible. In that case not only

[SPAR and ISDIM should be changed in the parameter statements, but also MAXMOM.
In that case the subroutine PARINT should also be adapted (see section 3.2).



2.3 Common Statements
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The use of the subroutine CUM does not involve any common statements.

2.4 Structure

SUBROUTINE CUM(IMOM, N, LS, A, IEMU, EMU, VARLOW, RKUM, RMOM,
WORK1, WORK2, WORK3, VEC, IFAULT)

Formal Parameters

IMOM integer

N integer
LS Integer
A real array of dimension

at least N x (N+1))/2

[EMU integer
EMU real array of dimension
at least N

VARLOW real array of dimension
at least N x (N+1)/2

RKUM real array of dimension
at least LS

RMOM real array of dimension
at least LS

imnput:

input:

input:

output:

input:

input:

input:

Input:

output:

output:

=0 if only cumulants are required

=1 if both cumulants and moments
are required

number of observations n

order of the highest cumulant or
moment required

unchanged unless LS > M where
M=MIN(MAXMOM,ISDIM) in which
case LS 1s set equal to M

symmetric matrix in the quadratic

form z’Az. Only the lower part of

A 1s stored as:

a,as, ds2,asy, dzz, @33 €tc.

= 0 1t g =0

=0 EED

vector u. Values required only

if IEMU # 0 though storage should be
allocated to 1t

= I, where ) = LL’,

L lower triangular

the required cumulants with 1-th
cumulant stored in RKUM(1)

the required moments with 1-th

moment stored as RMOM(i)



WORKI

WORK?2

WORK3

VEC

[FAULT

2.5 Auxiliary Algorithms

real array of dimension
at least N x (N+1)/2
real array of dimension
at least N x (N+1)/2
real array of dimension
at least N x (N+1)/2
real array of dimension

at least N

integer
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output:

work space
work space
work space
work space

a fault indicator where:
0: no error
l: N< 1

LS <1

2:
3: diagonal elements of L not all positive
4: L can’t be inverted

S:

[SPAR in the parameter

statement i1s too small

CUM calls the following function and subroutine:

FUNCTION INX(I,J):

SUBROUTINE PARINT:

picks out the appropriate element of a

symmetric matrix stored in lower triangular form

constructs the matrix containing all

partitions of an integer

2.6 Constants

The DATA statement in CUM sets EPS = 1.0-11 as a small number. Any number with

an absolute value below EPS will be treated as zero.

2.7 Precision

The version of the routines listed below is in double precision (Real*8). In order to

change the program to single precision the following changes should be made:
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(1) Change all IMPLICIT REAL#8 to IMPLICIT REAL=#4
(2) Change the constants in the DATA statements to single precision versions.

(3) Change DABS to ABS in the subroutine CUM.

2.8 Time and Accuracy

The results for typical CPU times and accuracy of calculations are reported in Magnus

and Pesaran (1992a). These calculations were carried out using the VAX 6330 at the

L,ondon School of Economics.

2 The Subroutine PARINT

3.1 Description and Purpose

The subroutine PARINT works out all possible partitions of an integer M. That 1s,

all possible vectors (ny,na,...,nar) are obtained such that for non-negative integers

ny + 2no + ...+ Mnpy = M.

The routine also works out the total number of partitions MR. The resulting vectors are

stored as an MRxM two-dimensional array MPARTS. Thus each row of MPARTS will

contain a possible set of (n,...,nar).

Partitioning M in such a way is useful in a variety of situations where moments of ran-
dom variables or functions of random variables are required. For example, see Kendall
and Stuart (1977, Section 3.14), Hoque, Magnus and Pesaran (1988), Magnus and Pe-
saran (1989, 1991), and Magnus (1990). PARINT 1s used in the subroutines CUM and
QRMOM, see Magnus and Pesaran (1992a,b).

3.2 Parameter Statement

A parameter statement has been used to set up MAXMOM = 24. If partitions for

numbers bigger than 24 are required this parameter statement should be modified. In a
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DATA statement the vector NUM has been set up to contain the number of all possible
partitions of numbers up to 24. If a MAXMOM bigger than 24 is specified, the DATA

statement for NUM should be extended accordingly. For a table containing the partitions

for integers up to 100 see Hall (1986, p. 38).

3.3 Structure

SUBROUTINE PARINT (M, MPARTS, MRDIM, MDIM, MR, IFAIL)

Formal Parameters

M integer input:
MPARTS integer array of output:
dimension
MRDIM x (at least M)
MRDIM  integer input:
MDIM integer input:
MR Integer output:
[FAIL integer output:

3.4 Accuracy and Precision

integer for which all partitions
are required
each row will contain a possible

partition ny,ng, ..., np

first dimension of MPARTS
second dimension of MPARTS

number of all possible partitions found
fault indicator

—=(0: no error

=1: M<lorM> MAXMOM or
M > MDIM
—2: first dimension of MPARTS 1s

not adequate

All calculations are carried out using integer arithmetic and are exact.

4 Fortran 77 Code

In Magnus and Pesaran (1992c) the complete Fortran 77 code of the following three

algorithms 1s presented:
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SUBROUTINE CUM
SUBROUTINE PARINT

FUNCTION INX(I,J)

A diskette containing the code is available upon request from the authors.
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