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The finite-sample behaviour of the mulu-peniod least-squares forecast is considered in the simple
normal autoregressive model y, = By, _ | + u, where |B]| < 1. Necessary and sufficicnt conditions
are cstablished for the existence of the forecast bias and the mean-square forecast error (MSFE)
and an exact expression for the MSFE is given. Exact numencal results are obtained for both
the stationary and the fixed start-up case. Our main conclusions are that for small values of 8
the MSFE 1s a decreasing function of the number of forecast penods, and that the behaviour
of the MSFE in the stationary and the fixed start-up case 1s very similar, except for values of |f3]
close to 1.

1. Introduction

The purpose of this paper is to study the behaviour in finite samples ol the
least-squares (LS) forecast in the simple autoregressive model

-}’"r = ﬁ'l’, - 1 * U,,

where [B| <1 and {u,} 1s a sequence of independent and 1dentically distrib-
uted (1.1.d.) N(0O, 0 *) random variables. The specification of the initial observa-
tion is important in finite samples and we shall distinguish between two cases:
the stationary and the non-stationary (fixed start-up) case.

[f 8 denotes the LS estimator of B based on n observations y,,..., y,, then
the s-penods-ahead LS forecast 1s yp , = ﬁ‘_vﬂ. It 1s well known [Malinvaud
(1970)] that the forecast bias E(y_ ., — v, ..) 1s zero if it exists. We shall show

n+ijy <« N5

that the forecast bias exists if and only if s <»n =2, and that the mean-square

*The first version of this paper was wntten in the Spnng of 1986 whule all three authors were at
LSE. We are grateful to three referees and an associate editor for their careful and positive
comments which improved the exposition.

0304-4076 /88 /$3.50 © 1988, Elcevier Science Publishers B.V. (North-Holland)



328 A. Hoque et cl., Multi-period mean-square forecast error

forecast error (MSFE) of the forecast (that is. the variance of the forecast
error) exists if and only if s <[(n—2)/2] in which case we obtain an exact
expression for the MSFE which can be calculated by numerical integration.

Our exact numerical results show, not surprisingly, that the MSFE 1s a
decreasing function of n for all values of 8 and s. But they also show that it s
not generally true that the MSFE 1s an increasing function of s; indeed, for
small values of 8 the MSFE appears to be a decreasing function of s. We
further find that the behaviour of the MSFE in the stationary and the
non-stationary case is very similar, except for values of |B| close to 1.

There is an extensive literature on the properties of the least-squares
estimator of 8 in this or related models [see, e.g., Hurwicz (1950), Anderson
(1959), White (1961), Copas (1966), Thornber (1967), Phillips (1977), Sawa
(1978), Dickey and Fuller (1979), Evans and Savin (1981), Tanaka (1983),
Hoque (1985b), Hoque and Peters (1586), and Nankervis and Savin (1988)].

The literature on the properties of the LS forecast J, . 1s somewhat less
extensive. Davisson (1965) obtained an asymptotic approximation of the
MSFE up to order n~' for the one-period-ahead forecast and |B| < 1. This
result was extended by Fuller and Hasza (1981) to processes with |B]=1 and
13| > 1. See also Yamamoto (1976) and Baillie (1979). Phillips (1979) develop-
ed an Edgeworth type expansion for the distribution of the forecast error. His
work was extended by Tanaka and Maekawa (1984) who considered the
situation where the true model is ARMA(1,1/u) but misspecified as AR(1).
L itkepohl (1984) and Hoque (1985a) have recently considered more general
ARMA and ARMAX models. Liitkepohl studied the precision of forecasts
from macro-economic time series, while Hoque obtained the exacl MSFE for
the one-period-ahead forecast.

Monte Carlo studies of the forecast error were conducted by Orcutt and
Winokur (1969), Lahiri (1975), Gonedes and Roberts (1977), and Fuller and
Hasza (1980). Of these four studies only Lahiri’s paper is directly relevant 10
our paper and we shall compare his Monte Carlo results to our exact results in
section 4.

The plan of this paper 1s as follows. In sections 2 and 3 we present the
nodel and state our two theorems concerning the mean and the variance of
the s-period-ahead forecast error. Our numerical results are presented 1n
sections 4 and 5. Three appendices, containing (w0 new propositions and the
proofs of the two theorems, conclude the paper.

2. The model

We shall consider the f,-st-order autoregressive process ( y|, Yo} defined
by

};r=ﬁyr—l+ur' "=2*3**"* (1)

. . ® 9 ] o .
where |B] <1 and {u),u,,...} 1s @ sequence of i.i.d. N(0,0°) random vari-

p——
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ables. Regarding the initial observation y, we postulate

y, =8u, 8§>0. (2)

In qrder to obtain our exact numerical results we need to specify §. Thus in
sections 4 and 5 we shall assume either:

Assumption la (stationarity). 8= (1 - f*)" /-

in which case { y,, »,,...} Is a normal strictly stationary time series, or

Assumption Ib (non-stationarity). 6 =1

In wluch‘case lh‘r: series { ¥y, V»,... ) 1S not covariance stationary. Notice that
Assumpuion Ib 1s equivalent to assuming y, = 0.

Let v=(y,, Vaveeos y,) be an n X1 vector of observations generated by (1)
and (2). Then vy is normally distributed N(0, 0 *LL"), where F

(8 0 0 .0 0}
53 1 0 .0 0
§f3° A ] B
il EOE - Y
spr— pr Bt 1 0
K/ A A SO B

The least-squares estimator of S 1s

I n

r
. f
-'f r ’
B= X udi-yf & ¥ = Ayly'By, (4)
[ ) .

=)

where A and B are symmetric n X n matrices defined by

(0 1 0 ... 0 O 1 0 0 ... 0 0
1 0 1 ... 0 0 0 1 0 ... 0 0
W W R
0 0 U 0 1 0 0 0 10
0 0 0 1 0 0 0 0 0 0

(5)
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In the non-stationary case (Assumption 1b) the least-squares estimator 1s the
maximum likelthood estimator.
The s-periods-ahead forecast is given by

[ R (6)

|

Voo = E’,}’,,, S
and the forecast error 1s therefore
A s—1
.fﬂ*‘h—-l’”"*I:(BI_B!")}FH— Zﬁjuﬂ""i‘—j' (7)
j-{]

From (7) we obtain the forecast bias,

E(,f*”.p._;_}‘;,ﬂﬂ) = E(EI}IH)' (8)

and the mean-square forecast error,

vl

E(F . —y.,) =B¥var(y,) +E(B¥y))

s—1

—2B°E(Byl) + 0 L B, (9)

Jr=i

provided the expectations exist.
Malinvaud (1970, p. 554) was the first to point out that the expected value

of the forecast error J ..—y,., is zero when the distribution of wu, 1s
symmetric (as it is here), a result subsequently generalized by Fuller and Hasza
(1980) and Dufour (1984,1985). Theorem 1 gives necessary and sufficient
conditions for the existence of the s-periods-ahead forecast bias.

Theorem 1. The expectation of the forecast error of v .. exists if and only |f

1 <s <n— 2, in which case

E( .f*ﬂ"i'j _.}‘H4j) = 0

Proof. Since it is well known ‘hat the forecast bias is zero when it exists,
we only derive necessary and sufficient conditions for its existence; sec ap-

pendix C.

3. The mean-square forecast error of y_

We shall now go one step [urther and determine conditions for the existence
and obtain an exact expression for the mean-square forecast error (MSFE),

E(§ . —y,.,)> This is done in Theorem 2.

n=+x s M * s

ki — o gy o

—_— e R N Sy e
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Theorem 2. Let A, B and L be the n X n matrices defined in (3) and (5). Let
" denote the last (nth) row of L. Let P be an orthogonal n X n matrix and A a
diagonal n X n matrix, such that

P'L'BLP = A, P'P=iL.
and define
A* =P L'ALP, [* = Pl

Then the mean-square forecast error of p, ., exists if and only if 1 <5<
i = ?.);’2],1 in which case

[E(,fln-+.'r. “.rn*i): =GE({‘:’.1_ 2‘81{‘5“' (1 - KB:‘”T}])/(I __/32))* (10)

where
= 5(1-p8°)
KN = : . (11)
j
Here ¢, (1 <k <n—2) is defined as
R 1 > k=1 f / . : l
i e Zn(v)[ 1A w80 +2 Y (jnrw )8R0} dt,
=15 0 l ) . |
(12)
where the summation is over all 1 X k vectors v =(n;, n,,...,n,;) whose ele-
ments no,oare non-negative integers satisfying Zi‘m i = k.
: -1
v (v) = k24 TT(n,M2)") (13)

J=1

A is a diagonal positive definite n X n matrix, R a symmetric n X n matrix and 9
an n X 1 vector defined as

A= (1 +2A) "% R=AA4%*A, 0=AI", (14)
and the scalars w, w and r, are defined by
A K
W = 1_[1(er*) v w=]1(rRr)", (15)
| - 1=
B

I - .
The symbol [ ] denotes the integer part. Thus, [x] is the largest integer < x

) Econ D
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and
r;=1 if n;=0,1,
(16)
“—(I.I‘RJ’)”’“l if n 2>2
2

Remark 1. The matrix R/ denotes the jth power of the matrix K.

Remark 2. 1In the stationary case (Assumption la) we have K=0; in the
non-stationary case (Assumption 1b) we have K =1.

Proof. See appendix C.

4. Exact results: The stationary case

Application of Theorem 2 involves numerical integration. We used the
Numerical Algorithms Group (1984) (the so-called NAG) subroutine
DO1AMF for this purpose. This subroutine also gives an estimate of the
absolute error in the integration. For all results reported in this paper the
absolute error was less than 10~ °. The eigenvalues and eigenvectors in A and
P were calculated using the NAG subroutine FO2ABF. See Magnus (1986,
sec. 7) for some further remarks on computation in a related problem.

The exact mean-square forecast error (MSFE) of the least-squares (L.S)
forecast 7, , . was calculated for both the stationary and the non-stationary
process for the following selected values of the autoregressive parameter (f3).
the number of observations (n) and the number of periods ahead (s):

3 =0.00,0.10,0.20,. ..0.90,0.95,0.99,
n=10.15, 20,25,
D) W

To consider larger values of n would have been computationally very costly,
since computing time more than doubles for each additional five observations.
Convergence of the integral was particularly slow for values ol 3 close Lo one.

Refore we discuss the numerical results for the stationary case (in this
section) and the non-stationary case (1n the next section) we note some simple
facts which hold for both the stationary and the non-stationary process. First,
the MSFE is proportional to o2 Hence we may, without loss of generality, sct

o2 = 1. All numerical results reported below are for o 2 = 1. Secondly, rewriting
(9), we obtain

s—1

MSFE = E(B2~ )yl +o® L BY. (17)

j=4t

S

-
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Hence
MSFE > o?. (18)

and, since 8 1s a consistent estimator of f,

lim MSFE =02(1-8%)/(1 - B2). (19)

N — 00

Thirdly, since our model has no intercept term, the MSFE is an even function
of 3, that s,

MSFE() = MSFE(- ). (20)

Hence it suffices to calculate the MSFE’s for non-negative values of 8 only.
[n table 1 we present the numerical results for the stationary case. One
would conjecture (at least we did conjecture) that the MSFE is a decreasing
[uncuion of »n, and an increasing function of |B| and s. The first of these
conjectures appears to be true, but the second and third are not generally true.

-

Fig. 1 illustrates that the MSFE decreases with increasing n, thus confirming
our first conjecture. It also illustrates that, at least for s = 1, the MSFE is nor a
monotone function of |f] thus refuting our second conjecture. The maximum
of the MSFE occurs at =091 (when n=10), 8=094 (when n=15),
p =096 (when n=20) and 8=0.97 (when n=25), and the MSFE drops
substantially when B approaches 1.

For the one-period-ahead forecast the MSFE appears to be a very flat
unction ol f, but for the two(or more)-periods-ahead forecast this is no
onger the case. It appears that, although for s > 2 the MSFE 1s a monotone
'lunction of |B], the increase in the MSFE is less for values of || close to 1,
especially if n1s small.

Our third conjecture was that, for fixed n and B, the MSFE increases with
s. Fig. 2 shows, for n =15, that this conjecture is false for 8 < 0.45 (although it
1s true for 8> 0.50). Indeed, for B <0.20 the order 1s exactly reversed. Thus
for B close to zero the one-period-ahead forecast is less precise (has larger
MSFE) than the two-periods-ahead forecast, which in turn is less precise than
the three-periods-ahead forecast, and so on. Exactly the same phenomenon
occurs for n =20 and n = 25. For n = 10 the situation 1s slightly different. For
n =10 and 8 = 0.30 the MSFE increases with s and for small values of 8 the
one-period-ahead forecast 1s less precise than the two-, three- or four-periods-
ahead forecasts, but the four-periods-ahead forecast is less precise than the
(wo- or three-periods-ahead forecasts for all values of . Such a surprising and

“Sce Cryer, Nankervis and Savin (1986). This paper shows that the distribution of the forecast
crror s the same for 8 and = 8, and hence that all moments are the same for 8 and - I8
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Fig. 2. MSFE of LS forecast for n =15 and B < 0.5: Stationary casc.

In fig. 2 we concluded that for small 8 and n = 15,
MSFE(s =1) > MSFE(s =2) > MSFE(s=3) > MSFE(s = 4),
a rather striking result. Fig. 3 shows that we even have
RE(s=1)>RE(s=2)>RE(s=3)>RE(s= 4),

due. of course, to the fact that for =0, MSFE(n = o0) =1 for every s. We
also learned from fig. 2 that for 8> 0.50 the precision of the forecast (as
measured by the MSFE) decreases with increasing s. We now see from fig. 3
that for B > 0.60 or 0.70 not only the precision but also the RE of the forecaslt
decreases with increasing s. |
Finally, let us compare our numerical results with those reported in the
literature. No exact results for this case are available, and the only Monte
Carlo results that we could find are those obtained by Lahiri (1975). Lahin,
unaware of Malinvaud’s (1970) result that the LS forecast is unbiased,’

'Actually, Malinvaud’s remark already appeared in the first French edition ol his book
published 1n 1964,
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Fig. 3. Relative efhiciency of LS forecast for n=15: Stationary casc.

calculated the sample bias and the sample MSFE of the LS forecast y, ..
using one thousand replications for each combination of B and n. The
combinations considered are n=10,20,40, 8=0.2,0.4,0.6,0.8, and s=
1,2,3,4,5. His results are quite poor.® For example, he obtains an average
absolute sample bias of 0.0374 whereas the true bias 1s 0. Similar deviations
occur with the MSFE, particularly for n = 10. Lahiri also reports results based

on Chow's (1973) modified Bayesian predictor; these results are even less
accurate.

S. Exact results: The non-stationary case

The only diflerence between the stationary and the non-stationary case is in
the specification of the imtial observation y,. In section 4 we assumed

vy == B%)""%u (Assumption la), so that {y) is a normal strictly sta-

4 T .
Lahin was also unaware of the fact that for n =10 and s = 5 the MSFE does not exist. See our
Theorem 2 1n sectuion 3.

L e el pa
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:1_: | | l . —_— — -~ A - 3 e
2 | lafex E%’ EEE%‘ E‘;ég = %E %?# ; | exact or Monte Carlo, for the MSFE of the LS forecast in this case are
- - -~ r —_— — — by — " E . .
- | S il Becka s il s e % il bs it available 1n the literature. Our results are presented in table 2.
= j | As in the stationary case we see that the MSFE is a decreasing function of
? ' ‘ i . " ’ r . . . y . 3 - = i .
7 lzzes |gxes |sase lssas (gsen n, and that 1t Is not always an increasing function of s; in fact, the behaviour
: S |2282 15883 (85833 (28333 (8333 of the MSFE in the non-stationary case (considered as a function of s) is
— el e anad Lot ad baiacs identical to that in the stationary case.
2 " There i1s one important difference, however, between the stationary and the
- e - VI e — o v e o | e o SN . :
AR R EE A R E=22 | non-stationary process: for every fixed n and s the MSFE in the non-sta-
i [ oo | o0 | AOSO K= : : : : ;
e BRI BE 8 RIS |Soas | Sae s tionary case is an increasing function of |B|, also for values of |B| close to 1. A
comparison of fig. 4 and fig. 1 illustrates this point. As to the relative efficiency
| — D 1 ") > "
o 2525|2853 388 % a7 = g g % %g of the LS for_ecast as defined in (21), the comments made for the stationary
2 |S338 5588 (8338 ::% S jeess process remain vahlid for the non-stationary process, except that the RE now
A decreases with |B| also when |B] is close to 1. Apart from this one striking
i |8 fvimine | sorseve: | roiiond | oippaysy s difference, the behawo_ur of the MSFE in the two cases is the same.
[t appears that for given B8, n and s the MSFE in the non-stationary case is
» O Q always larger than or equal to the MSFE in the stationary case wi 1y i
x |goos |nnan |9aoa |20 8888 Youtdlg 4 y case with equality if
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34]
and only if B =0 or n= o. Thus if we denote, for given values of 8, n and s, —
: : . (
the MSFE in the stationary and the non-stationary case by MSFE, and
MSFE,, respectively, then Eg( o) yoys =0,R0+ 2,H,8,.
¢ = MSFE,/MSFE, > 1, Proof. Lel
| _ ‘ o -n/2 N I .
unless 8 =0 or n = «. One would expect that ¢ decreases with n, an‘d indeed i yop)=(2m) 201" %exp = 4(y — ) ;' (y—un).
this is the case. Also, by comparing tables 1 and 2, we see that ¢ increases Diffe . . . |
with both |B| and s. It appears that, for given n and s, ¢ i1s not only an Hlerentiating f twice with respect (o p gives
increasing function of |B| but that the increase is very rapid. Hence the Af (v, u)
difference between the MSFE's in the stationary and the non-stationary case 1s e =f(y, u)2: (y—p) (A.1)
at its largest when |B]is close to 1, s 1s large and n 1s small. d | |
and
Appendix A: A result concerning the expectation of functions of normally d°f(vopu) o |
distributed random variables dudu’ =f(r.p)( Q5 (y—p)(y- n)'Q: ' -9, (A2)
Below we obtain certain expectations using a technique developed by Ullah Us _ o o
and Nagar (1974, app. B) and also used, in a different context, by Ullah and 'Sing (A.1) and .lhc fact that differentiation under the integral sign 1s
Ullah (1978, sec. 4) permitted we obtain
Proposition 1. Let y, be a normally distributed n X 1 vector *n-r'rh mean @, and Eg(vo)( o= 1y) = [ ng(_a- W y=pe) J(p, pa)dy
positive definite covariance matrix §,. For every p in R" define R
- af(yop) ]
yp) =0+ 1= po. - zn_/g(,") dy
a‘u J K= Hy
so that y(py) =)o and y(p) = N(p,§2y). Ler g be a real-valued function defined -
in an open neighbourhood B(jt,) of p, such that, for every p & B(p”),. gly(p)) =0, = fg( ) (v, n)dy
is a random variable with finite expectation, say 8(p). If 0 is nwice differentiable SO R
ait Ly, then o
%,
_ = 5| —Egl( y) = {0 T A3
Eg(vo) o= 8pho+ bokto, ’ - du O 070 )
and Stmilarly. using (A.2), we obtain
Eg( o) yode =0u(8Lg+ pony) + QyH R, + Lohopy + pohodl. : , |
/ Eg () = ro)( g - Ho) = 08,82, + &2, Hy$2,. (A.4)
waere
96( 1) 920( 1) The result now follows easily from (A.3), (A.4) and the fact that Eo(vs) =10
8 =4 o hy= ., Hy= , @
“ ( u” ) ! a!“' K™= Hu ’ J‘U.[?‘U. B =Py

. Appendix B: The first and second derivatives (with respect to p) of
In particular, 1f py=0, E()y Ay /y'By) at u= 0 when y ~ N(u, $2)

E.ﬁ( Yo ) ."h - Q{lhﬂ '

Let v~ N, (p. £2). Proposition 2 gives the first and second derivatives (with
respect to p) of E(y'Ay/y'By)* at u=0 for an arbitrary positive integer s.
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Hoque (1985a, app. B) obtained the special cases s=1 and 5'=21 at an
arbitrary point p in R”. The general result for arbitrary s and p 1s given in
Magnus (19883).

Proposition 2. Let y, be a normally distributed n X 1 vector with mean 0 and
positive definite covariance matrix 5= LL'. Let A be a symmelric n X n matrix,
B a positive semidefinite n X n matrix, B # 0. For every u in R" define

v(p) =)o+ u,

.1‘

so that y(0)=y, and y~N(p,2,). Let s be a positive integer and g, da
real-valued function defined by
g (x)=(x'Ax/x'Bx)" if x€R"—A(B).
= () if xeAN(B).
where A"(B) denotes the nullspace of B, i.e., the set {(x €R", Bx=0}. If, for

every p sufficiently close to zero, g (y(p)) is a random variable with finite
expectation, say 0. (pn), then

(a) 6 is o times continuously differentiable at p = 0, and

(b) the first two derivatives of 8, at p= O are

ad(p)
={)1
L Lt
and
J-0
J‘('uF) = "91(0)951 + L' 'PQ P'L b
dudp ol
where
: I"ljf JE+7i ' JR’Jﬁ‘-df
(= |ZYJ(V)'[ (A w - ST, J ‘
(‘5‘"—1)' v 0 \ ;=1

(B.1)

P is an orthogonal n X n matrix, and A a diagonal n X n maitrix such that
P'L'BLP=A, P'P=1,

the summation in (B.1) is over all 1 X s vectors v=_(ny, ny,...,ng) whose
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elements n, are non-negative integers satisfying ny + 2n, + - - - +5n, =3,
5 ~1
= o199 3 i ¥"
v,(v) =s'2°]] (nj.('lj) ‘) 1
J=1
=}/
A= (] + 21A) R=A4A4*A,
b 5
. ; _ r
W = l—[l(trR) uj—r[l(er‘)
j . | =
)
and
ro= 1 if n,=0,1,

n -1

= (trR’) "’ if n.22.

Remark. The matrix R/ denotes the jth power of the matrix R.

Proof. It follows from Theorem 6 of Magnus (1986) that

0 (pn)= (Sj e n(M)f()xf’“llﬂlll*l(u)lf’»:(#,)dr. (B.2)
where

vilp) =exp(—w'bp),  V=05'-L"'PAP'L"",

Ua(p) = Jill[¢,(#)]"’~ (1) =tr R/ + ju'Wp,
and

W =L'"'PARAP L™
[Notice that ,(0) = w.] Since ¢, and {, are oo times continuously differen-

hable at p =0, so1s §.. This proves (a). To prove (b), we differentiate , and
Y, twice at p =0 and use (B.2).

Appendix C: Proof of Theorems 1 and 2

Existence.  Let y=(y,...,y,) bean n X1 vector of observations generated
by (1) under initial condition (2). Let 4 and B be defined as in (5) and note
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that 8 =y'Ay/y' By, as given in (4). Now, let ¢=(0,...,0,1)" of order n x 1.
Then

r(BY)=n—-1, Be=0, e'Ade=0, Ae=#0, ee#0, (C.1)
and

yo=e'y, yr=y'(ee’)y.
Following the procedure of Magnus (1986, theorem 7) and using theorem 1 of
Kinal (1980). we can then prove that E(8°y,) and E(B°);)) exist if and only f
0 <s<n-1.[See also Magnus (1988, theorems 2 and 3).]

From (8) we see that the expectation of the forecast error exists if and only
[ E(S°y,) exists, thatis, if and only if 0 <5 <» — 1. Similarly, from (9). we see

that the MSFE exists if and only if E(8%y,;) and E( B°y?) exist, that is, il and
only if 0 <s<(n-1)/2.

Derivation of the MSFE.  Since the forecast error, given in (7). 15 proportional
(0 0. the MSFE is proportional to o*. [t suffices therefore to prove Theorem )
for 02 = 1. From Magnus (1986, theorem 7) we know that
' ; - . A

| { vt i) ;1(}* + )
E

(y+p)B(y+p)

Fal
=
IA
I
o

exists for all g€ R”. Hence we obtain from Propositions 1 and 2,

Eg vy = LPQ,F'L', 1<k<n-—=2, (C.2

where
f A ,l

1 o i
= v, (v (A NAN wd + 2 1, rfu:f.J R’A; dr.
(L‘"l)!;“(l)fu | |,LL rglj, |

f

O,

In particular we obtain

.

EA* 2= 1'PQPI=1Q\!* =c,.

where ¢, is defined in (12). This, together with (9). yields

vy — |
[Jz‘x’ur( I e o ey 267 + Z B

;=0

as
—
e 2.
|
—
~
-
|

Il
™
-
I
[
=
-
™
[
+
—
—
I
~
e
_I::r
il
ﬂ-h—-...
F‘d
|
fo!
[ -
|
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since

n—=72

ol

var(y,)=1I'l= ) B¥ 4+ 8§3RU"-H

1=\

and K 1s defined 1n (11).
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