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INTERNATIONAL ECONONMIIC REVIEW
Vol. 29. No. 4. November 1988

ON THE MAXIMUM LIKELIHOOD ESTIMATION OF
MULTIVARIATE REGRESSION MODELS CONTAINING
SERIALLY CORRELATED ERROR COMPONENTS*

By JAN R. MAGNUS AND ALAN D. WOODLAND'!

l. INTRODUCTION

Ever since the important paper by Balestra and Nerlove (1966), econo-
metricians and statisticians have made extensive use of error components models,
that is, rcgression models whose crror terms arc the sum of two or more indepen-
dent components. Error components models are typically (although not exclu-
sively) used in analyzing panel data, and the sharp increase in availability of
pancl data in recent years has led to a renewed interest in such models.

In the three-error components model, the error structure is

(1.1} u, =¢, + i, + g, , L2l s i@ 8= L oney Ty

¥ |

where ¢, and g, are the time-specific and the cross-section-specific components,
and le,). 1t and (e, are mutually independent white noise sequences. More
popular (and casier to estimate) is the two-error components model where either
i =0 or ¢, = 0. In this paper, we shall concentrate on the two-error components
model with error structure consisting of ¢, and time-specific component ¢,: the
time-specilic, two-crror components model. Most of the subsequent analysis,
however. applics cqually well to the cross-section-specific, two-crror components
model.

Although hinear and nonlincar regression models with two- or threc-error com-
ponents have performed well in empirical applications, there are two major areas
for gencrahization within the crror components framework. First, there 1s the need
to allow for possible serial correlation in the disturbances, and secondly we wish
to be able to handle multivariate error components models where the compo-
nents are vectors rather than scalars. Let us briefly discuss these two gener-
alizations.

The discussion of scrial correlation within the error components [ramework
ortginates with Lillard and Willhis (1978), who used the two-error components
model o which (e,] 1s assumed to follow a first-order autorcgressive AR(1)
process with a single autocorrelation coelficient applicable for all i. They esti-
mated the parameters of their model by a two-step procedure. Revankar (1979)
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708 JAN R. MAGNUS AND ALAN D. WOODLAND

studied the three-error components model (1.1) in which {e} follows an AR(l)
process. He too proposes a two-step estimator. The properties of the maximum
likelihood estimator for the Lillard-Willis model were studied by Anderson and
Hsiao (1982). Similar models were presented by Lillard and Weiss (1979) and
Hause (1980). MaCurdy (1982) generalized the error structure of Lillard and
Willis to a more general time-series process for {g;,}. Pagano (1974) and Revankar
(1980) studied error components models of a slightly diffcrent sort where the
error structure can be written as

(1. 2) u, = e, + &, =1, covs ds

where the first component {e } follows an AR(p) process and the second (indepen-
dent) component {¢ ] is white noise. See also King (1986).

A multivariate. two-error, components model was first estimated by Chamber-
lain and Griliches (1975) using maximum likelihood (ML) techniques. A full
treatment of multivariate two error components analysis by maximum likelihood
(but without serial correlation) can be found in Magnus (1982).

The aim of this paper is to study the multivariate version of the time-specific,
(wo-crror components structure, where the components are veclors rather than
scalars, allowing serial correlation in both components. In fact, even more gener-
alization is possible. It suflices to assume that {e,} and {¢,} are independently and
normally distributed vectors with zero means such that

(1.3) Eee =y, I and E¢,€), = 44,4,
g Emmlle caws TR e By el

where T is positive semidefinite and A positive definite. The T x T matrices
G =(y,) and M = (y;;) can be taken as the covariance matrices of arbitrary
autorcgressive moving average (ARMA) processes. We shall show that full ML
cstimation of regression models (lincar or nonlinear) with a time-specific, two-
crror components structure defined by (1.3) is feasible, even though the dimension
of the covariance matrix and the number of parameters can be very large.

The model dealt with in this paper should be of particular interest to analysts
of panel data sets in which the number of individuals is relatively small. Such
duta scts include those consisting of a time series of observations on different
industrics (as in our empirical example), states, or countries. In this type of panel
data set. it is often desirable to include a pure time component in the disturbance
to account for shocks common to all industries, states, or countries. If the time
component is included as a vector of fixed effects, the number of paramelters
increases with the number of time series observations. Accordingly, it 1s more
appropriate to include the time component as a random vector.

The plan of the paper is as follows. In Scctions 2 and 3, we discuss the
multivariate nonlinear regression model where the disturbances have a time-
spectfic. two-error components structure and both components follow AR(1) pro-
cesses. Theorem | shows that the likelihood function can be written as a function
of mutrices of small dimension, allowing full ML estimation of the whole system.

In Scction 4 we specialize to the linear regression model in which the matrix of
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explanatory variables docs not depend on i. This situation arises quite often, for
example, when "the regressors are function of prices only, and each of the ¢
industrics faces the same prices. (This is, in fact, the case in our empirical example
of Section 5.) Theorem 2 then shows that we can concentrate the hkelihood
function with respect to the regression parameters, which dramatically facilitates
the optimization.

An empirical example is provided in Section S, where we study the interfuel
substitution possibilitics in Dutch manufacturing. In this illustrative example,
annual data on the cost shares and prices of various fuels in each of six manufac-
turing industrics are used to estimate the model by maximum likelihood. The
cxample shows that i1t is practical to take account, simultaneously, of contempo-
rancous correlation between cost shares of fuels in all industries and serial corre-
lation of cach component of the disturbances.

Scction 6 summarizes our conclusions. Finally, the appendix gives the math-
ematical background of Theorems | and 2, and provides the tools for extending
the theory to the more general structure.

2. A MULTIVARIATE ERROR COMPONENTS MODEL WITH SERIAL CORRELATION
Let us consider a set of nonlinear regression equations
(2.1) v, =f4X;. B,) + u,, T2 311 RSN, =1 ooy &

where y.. f, and u, are p x | vectors, the nonrandom inputs X, are p x [,
matrices, and the unknown parameter vectors f§;, are k; x 1 vectors. We shall
make the following assumption regarding the disturbances.

AssusmPTION 2.1.  The p x | disturbance vectors {u,} decompose as.

u, = ¢, + ¢, ji= b5 50 =015 eyl
where

¢, = Po, oy Fy, =2 vy Tis
(i

i B BB s S AN S =) o ¢ 1= L]

with mmitial conditions

o = ifij2=/2
¢, = (1 — p?) Wene and g =i — a®)" YA %y,

The vectors te)) are iid. N(O, IN), [ positive semidefinite; the vectors {n,,} are i.i.d.
N(0. A). A positive definite; the sequences {v,} and {n;} are independent; and
[l i)l 2 H 220 =i ):

If we think of our data as arising from a combined time-series cross-section of
¢ industries over T years, then the disturbance vectors u;, are composed of a
vector which is dilferent for each industry, and a common vector, which reflects
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macrocconomic disturbances afTecting all industries in the same manner. Both
vectors can be subject to autocorrelation.
In order to assess the appropriateness and flexibility of Assumption 2.1, let us

consider some special cases.

| The disturbance vector can be written as

Cuseli):x=p =0, ¢,

”:‘r == Ur + ’h';-

This is the multivariate version of the well-known, two-error components model,
as introduced by Balestra and Nerlove (1966), which suggests itself naturally
when combining time-series data with cross-section data.? In the present case, the
disturbances u,, arc vectors so that the error components are matrices, visa vis [
and A. This multivariate extension-of the two-error components model was ex-

tensively studied in Magnus (1982).

I

Cuse{ii): T =0, 4, =1. Here we have

)“il' = 1“:‘.1 -} : nit ’

i .. lirst-order vector autocorrelation. Notice that the autocorrelation parameter
4 is assumed to be the same for every industry; this has an important practical
reason. which we shall discuss later in this section. Also notice that we have a

single parameter x rather than a p x p matrix A.’

Case(in): ' =0, 2=0. Now
u, = M. ~ N(O, 4, A).

1] I

This specification is intermediate between a Zellner-type seemingly unrelated
regression model for all industries combined [u;, =~ N(0, A)] and a Zellner-type
scemingly unrclated regression model for each industry separately [u;, =~
N(0. A))].

Cuase 1v): x = 0. Then

—_— f ] ‘l-":.' ¥ —
”n_l:+"‘i ”ir' L:_pel—l +U',

l.c.. two crror components with the common component subject to auto-
correlation.

Cuse (v): p =0. Then

- 8 = 11/2
“i: - l’: T Eirs Sir i ':IEI‘.:—I ¥ "':’ 'Iw

* A linear multiple regression model with covariance matrix as in case (i) was first estimated by
Chamberlain and Griliches (1975) using LM techniques.

' The reason for this 1s provided by Berndt and Savin (1975), who show that all diagonal elements
of a diagonal matrix ol autocorrelation parameters must be equal to be consistent with the adding-up
property of share equations.
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.., two error components with the residual component subject to auto-
correlation.

Case(v1): 2:= p. ! "Then

_ . S N - 1/2
Uy =AM q T Wy Wi =0t £ Has

This 1s the mirror image of cases (iv) and (v). Cases (1v) and (v) have two error
components with one component subject to autocorrelation; case (vi) has auto-
corrclation with a residual consisting of two components.

From these six cases we conclude that Assumption 2.1 is a flexible assumption
to make, and that it allows.interesting hypotheses to be tested.

Let us define

(2.2) PR ([T N A — | i) 1 ==l Moo U5)s

Once may then verify that the covanance matnix takes the form

(2.3) Q=Euw' =AM, QA+ 1"®@M,®@T
where
l x o’ ol ¢ et
I x l X s o | @
M| = : 3 1 l T e
| — 2~ ;
1T—I JT—I IT-J e B l

M s defined similarly (with p instead of «), 1 1s a ¢ x 1 vector of ones, and A 1s
the diagonal ¢ x ¢ matrix with ~,, ..., 4, on the diagonal. Note that, without a
further constraimnt, only ratios of the 4's can be identified, not the 4's themsclves.
We therefore normalize the 2's in the following convenient way.

ASSUMPTION 2.2, The g x g matrix A is normalized by tr A~ = g.

Since the complete covariance matrix € is of the order pyT x pyT, ML esti-
mation of model (2.1) under Assumption 2.1 1s only feasible if we can express the
determinant and mverse of € in terms of matrices of lower dimension. The next
section shows that this 1s possible, duc to the Kronecker structure of Q. This
Kronecker structure 1s destroyed if a (or p) 1s allowed to differ over industries,
and the expressions for Q, [Q] and Q7' become cumbersome and impractical in
that case.

3. THE LIKELIHOOD FUNCTION

With M as dehined in (2.4) and M ) dehined similarly (with p replacing x), we
can now prove the following results, showing that the hkelithood can be written
as a function of p < p matrices only, even though the complete coviariance matrix
Is pg 1 x py'l.



142 JAN R. MAGNUS AND ALAN D. WOODLAND

THEOREM 1. Consider the nonlinear regression model (2.1) under Assumptions
D1 and 2.2. Let Q be the T x T matrix

(Il =a®)* g 0O =i O 0
0 l —a -+ 0 0
= ;

(31) , . ; ; ,

0 0 o0 - 1 -—a

0 0 o -+ 0 1
so that QQ' = M ', and let Z be an orthogonal T x T matrix such that
(3.2) Z'Q'M, QZ = =,
where = is a diagonal matrix with &, ..., {r on the diagonal. Define the T x T

matrix S = (o) by S = QZ, and the p x p matrices W, by

(3.3) H’;=&+q§,r, o) (TR
Then the log-likelihood function is
(3.4) L=—(1/2)qTp In 2n—(1/2)In |Q]|—(1/2)u’2" i,
with
q pT T
(35] |Q|=(l—[ ,l) (] _al)'Pﬂlﬁllﬂ—llT l—[ ”’VJ
(=1 1 =1
and
T q
(3.6) WQ 'u=) (I + é,az)( Y A, AT 'uy, — qup AT ‘E,)
r=1 j=1

T -1 q
=) oA =1 - A==
— 21 Z (Z J’I.j u‘“ﬂ Hjﬁl_i_l —_— qurﬁ ul_'_l)

=1 J=1
T T , T
+ q Z (Z GHEI) wl‘-l(z aslﬁl)t
r=1 s=1 1=1
where :il = r:i-r = (], 5' = | (I = T T — f) and
q
(3.7) w, = Vi —JAX . B a, = (1/q) ). A7 'uy,.
J=1

ProOF.  The proof proceeds by applying the lemmas of the appendix taking
L=A M=M,,0=M,, and a =1 = (1, 1, ..., 1). In particular, we use (A.4),
(A.5). and (A.19). For a full proof, sce Magnus and Woodland (1987a). Q.E.D.

Theorem 1 allows substantial generalisation. In fact, it appears from the Ap-
pendix that essentially the same result holds for

(3.¥) Q=LOMP®RA+ad ®CR®T
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where L s a positive definite ¢ x ¢ matrix (not necessarily diagonal), a 15 a ¢ « |
vector (whose components are not necessarily equal), and M and G arc arbitrary
1" = T matrices (M positive definite, G positive semidefinite). In partucular, M
and G can be covariance matrices of very general ARMA processes. (In Theorem
| both M and G represent an AR(1) process.)

Theorem | shows that although the complete covariance matrix is pgT x pgT,
the hikelihood function only contains p x p matrices. Evaluation of L 1s therefore
casy and inexpensive. Even so, the total number of parameters can be large. It
scems worthwhile, thercfore, to investigate whether concentration of the hkeli-
hood with respect to the ff parameters i1s possible. It turns out that concentration
s indeed possible, but only in @ somewhat restricted class of lincar models. The
next section deals with this.case.

4. THE LINEAR CASE

In Secuions 2 and 3, we considered a set of nonlinear regression equations given
by (2.1). Lct us now consider the following set of linear regressions:

(4.1) Vo = X B % U, R e PES L e 4 s

where y, and u, are p x | vectors, the nonrandom inputs X, are p x k matrices,
and the unknown parameter vectors f§;, are k x | vectors. Notice that the inputs
X, are the same for each i. This is essential. Without this feature, much of the
subscquent treatment would not lead to tractable results.

In this section, we shall investigate whether in the linear model (4.1) con-
centration of the likelihood function with respect to the f parameters is feasible.
The following thecorem shows that this 1s the case.

TueoresM 2. Consider the linear regression model (4.1) under Assumptions 2.1
and 2.2. The maximum likelihood equations for §,, B,,..., B are

(4.2) B:=0;'d, + Q5 'd,

and the “asymptotic covariance matrix " of the ML estimators B, ..., Bq is given
hy

(4.3) as.var (f) = 4, Q7" + (1/9XQ; "' — Q1Y)
and
(4.4) as.cov (B, B) = (1/@)Q5 ' = Q7 ') i#),
where
T T-1
(4.5) di=Y (1 +6,a%c,—a ) (¢ 41+ Clayh
i 1= 1

(4.6) d = i (i a,,X,)J W,“(i O E,).

s=1 1= 1 =1



714 JAN R. MAGNUS AND ALAN D. WOODLAND

y & Y

(4.7) 0, = Z (1 LSICIZ)C”—CE Z (Crus1 + Ciar i

=1 r =1

T T ' 7 4
(4.8) Qz = E (Z UIIXI) H,s_l(z G'lle)"
5= ] r=1

r=1

and

g
(49] C = XA~ t‘k'” fir T Y;‘ﬁ_ 1(.1’1'1 — .Fl)' j;t = (l/[[) Z )‘J- lyj'l’

J=1

while o, and a,, are defined in Theorem 1.

Proor. From Magnus (1978, Theorems | and 3), the ML equation (first-order
condition) for i = (ff|. ..., B is

B=(X'Q™' X)Xy
and the “asymptotic covariance matrix ™ of the ML estimator f is

as.cov (f) =(X'Q 'X)" '

Again, we apply the results of the Appendix, taking N =1, a=1, L = A, and
using (A.7), (A.8), (A.11), (A.13), (A.14), and (A.18). A detailed proof is available 1N
Muagnus and Woodland (1987a). QE.D.

Given the ML cquations for f,,..., ff, from (4.2), we may now define

N q
(4.10) i, = Y5 — X, By u, = (1/q) ) Ay

J
Jj=1

and replace w;, and @, with u;, and 5, in (3.6) and, hence, 1n (3.4). Thus, we obtain a
concentrated log-likelihood function containing only m=p(p+ 1) + g + 1 pa-
rameters (I, A, A, z, p). Maximization of the concentrated log-likelihood function
yiclds ML estimates for these m parameters, and (4.2) can then be used to obtain
ML ecstimates for the remaining gk parameters. That this 1s a worthwhile pro-
cedure 1s shown by our empirical example (Section 5). There we have p = 3,
¢ =6, and kK =9, so that, of the 73 paramelers to be estimated, 54 are con-
centrated out of the likelihood function.

The information matrix, which yields the asymptotic variances and covariances
of the ML cstimators, 1s block-diagonal (Magnus 1978, Theorem 3). For the
“structural” parameters f§; we find from (4.3),

as.var ()= 4,07+ (1/gXQ; "' — O ).

Denoting the m covarniance parameters (I, A, A, o, p) as 0,, 0,, ..., 0, we can

m‘l

* Strictly speaking. we should ditferentiate between the function Q and the true (unknown) value of
(. say €2, Thus the asymptotic covariance matrix of flis (X'Q, X)™".
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compute the symmetric m x m matrix ¥ with typical element

FQ— | (':Q-I
4.11) W=ty Q 38 |8
| ; ( oo, a0, )

The matrix 2% ™' then gives the asymptotic variances and covariances of 0. ...,
). 12

Two problems remain. The first is that maximization of the concentrated log-
likelihood function with respect to I', A, A, 2 and p does not guarantee that the
estimate for [T is positive semi-definite, A positive definite, 2(i = 1, .... q) positive,
2| < I.and |p| < |. Hence, we write

(=L L. and A=L,L,,

where L. and L, are lower triangular.matrices, and maximize the concentrated
log-likelihood with respect to the lower triangular elements of L. and L,, and the
/.. under the constraint that the diagonal elements of L, and L,. and the «~; are
all nonncgative.® This procedure ensures that ML estimates for I and A are
positive semi-definite, but it does not imply nonsingularity of A.

The sccond problem is that most estimation procedures of dynamic error
components models produce inconsistent estimates. A unified treatment of this
problem underlining the importance of initial values 1s given in Sevestre and
Trognon (1983). While the maximum likeclihood estimator will not be consistent
as ¢ increases with T fixed (although the inconsistency is likely to be shght, see
Sevestre and Trognon 1985), it will be consistent and asymptotically normal as T
increases for given ¢: sce Heiygmans and Magnus (1986a, 1986b) for regularity
conditions in a more general context. The latter case (where T increases and g 1s
tixed) 1s the one we have in mind in this study and an empirical example 1s
desceribed in the following section.

S. AN EMPIRICAL ILLUSTRATION: INTERFUEL SUBSTITUTION
IN DUTCH MANUFACTURING

In this scction, we illustrate the model discussed above by estimating 1t using a
combined time-series. cross-scction data sct relating to the inputs of fuels 1n
various Dutch manufacturing industries. In particular, we estimate a system of
fuel cost share equations for six industries taking into account contemporaneous
and serial correlations in the disturbances by using our error components model.

In recent years there has been substantial interest in the cflects of rapdly
changing cnergy prices upon industrial structure and the demand for energy and
non-cnergy inputs. Not only have cnergy prices been changing relative to the
prices of other inputs, but prices of the various energy mputs have also been
changing relative 1o each other. Our empirical application 1s concerned with
measuring the changes in the mix of four types of energy inpuls in response o

*Nlagnus (1978, Theorem d)
“ See Magnus (1982 p 247 and foonote 7)
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changes in the relative prices of these inputs using annual time-series data for SiX
manufacturing industries in The Netherlands. The substitution between energy
and non-cnergy inputs in The Nectherlands was studied by Magnus (1979). Pre-
vious attempts to measure the substitution and complementarity relationships
between fuels in The Netherlands are by Pindyck (1979) and Griffin (1977), both
of whom use aggregate data. In contrast, the present study represents a disaggre-
pated approach, using combined time-series and cross-section data for six sepa-
rate industries within the Dutch manufacturing sector.

We distinguished between four types of energy: (i) solid fuels (COAL), (i1) liquid
fuels (OIL), (iii) natural and manufactured gas (GAS), and (iv) electricity (ELEC).
We also distinguish between six industries of the Dutch manufacturing sector: (i)
food, beverages and tobacco products (FOOD), (ii) textiles (TEXT), (i11) paper
and paper products (PAPR), (iv) chemical industry (CHEM), (v) building materi-
als, earthenware, glass, and glass products (BLDG), and (vi) fabricated metal
products, transport equipment, and mechanical and clectrical engineering
(METL). The six industries combined account for roughly 75 percent of Dutch
manufacturing output.” Data requirements prohibit further disaggregation.

Under the assumption that each industry faces the same energy prices, the
estimation requires data for price indices of COAL, OIL, GAS, and ELEC, and
input costs for ecach of the four energy types in each industry. The time period is
1958 to 1976, for this is the period during which the data collected by The
Netherlands Central Bureau of Statistics are available.®

In order to model the energy outlays of different industries, we assume that
cach industry minimises its cost in two stages, whereby the optimal mix of fuel
inputs is chosen in the first stage, and in the second stage the optimal amount of
“aggregate energy " is chosen along with other variable inputs and outputs.’ This
assumption implies that we can investigate the substitution possibilities between
the various fuel inputs without having to concern ourselves with substitution
between fuel inputs and other commodities.

Assuming, in addition, that the functional form for the unit cost function in the
first stage is the translog function due to Christensen, Jorgenson, and Lau (1973),
we obtain the following cost share equations:

L. a4

s
|

(5.1) yi = bl + ) by In py, + u 51 Pe— -
k=1
t=1 ..., T =19,

where vy, denotes the share of fuel input j in the total energy cost of production

I f1

" The main industry left out is the basic metal industry. From 1958-1968 this industry was a nel
producer of gas. Since we wished to concentrate upon the demand [or the inputs of energy, rather
than on their supphies, the basic metal industry did not fit into our framework.

" A full documentation and discussion of the data (in Dutch) is provided in Magnus and Vastenou
(197¥) The data are tabled in the Appendix to Magnus and Woodland (1987b).

“ The “two-stage optimization™ is equivalent to homothetic separability of fuel inputs from all
other inputs and outputs in the technology. See Shephard (1970, p. 143-146).
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in industry i at time 1, p,, is the price of the kth fuel input at time ¢ (which is the

sume [or cach industry), the u;;, are disturbances, and the parameters b’; and b;,
satisfy'?

(5.2) =b, Y b,=1, Y bl,=0.
2 e J=1

Since we are dealing with shares, the disturbances are constrained by ) 7., u;;, =
0. This implies that we may arbitrarily drop one of the n equations, say the last,
in each year and for each industry (for example, see Barten 1969). Incorporating

the parameter restrictions, we can write (5.1) as
(53] Yy = Xlﬁf T Ui

with

i = (}'Hr* Yairs yl-’:)rl U, = (“li:* Uyirs ”3:‘:)!:

1 0 0 ¢,, &5, ¢, O O O
X,=10 1 0 0 o, 0O ¢5 ¢, 0],
0 0 1

0 0 ¢’Ir 0 ¢’2| ¢3|
where ¢, = In (p;,/ps,).j = 1,2, 3, and

Bi = (bl by, bly, by, bia, by, b3, by, b33).

The model described by (5.3) thus fits into the framework developed in pre-
vious sections. In the present case, T =19,g=6,p=n—1=3,and k =9. Also
notice that the matrix of explanatory variables is independent of i and so the
results of Section 4 apply.

We shall assume that the disturbance vectors u;, are distributed according to
Assumption 2.1. The stochastic specification thus employs a multivariate error
components model involving serial correlation. This model specifies that the
vector of random disturbances in the system of share equations is composed of a
vector which i1s different for each industry, and a common vector, which reflects
macro-economic disturbances affecting all industries in the same manner. As a
result, the disturbances for the different industries are correlated with each other,
requiring joint estimation of the share equations for all industries on efficiency
grounds. Moreover, both components of the disturbance vectors are assumed to
follow first-order autoregressive processes. Thus, the model involves both con-
temporaneous and intertemporal correlations between disturbances. It is esti-
mated by the method of maximum likelithood. Our tests show that both the
intertemporal correlations and the correlations between the industry disturbances
are not negligible and, hence, that there are efficiency gains arising from joint
estimation of the industry share equations.

' The lirst set of restrictions are the symmetry restrictions required for identification. The remain-
ing restrictions are necessary and sullicient for the cost function to be homogeneous of degree one in
prices or. equivalently, for the share equations to sum to unity and be homogencous of degree zero in

prices.
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TABLE |

PARAMETLER ESTIMATES FOR TRANSLOG COST FUNCTIONS®

FOOD TEXF PAPR CHEM BLDG METL
b 1030 0927 1468 0578 2076 0671
(.0424) (.0417) (.0469) (.0490) (.0420) (.0430)
b RIIAES 2376 2216 1643 1914 1339
(.0862) (.0857) (.0896) (.0912) (.0859) (.0866)
e 2071 1523 2533 2742 2910 1498
(.O856) (.O8S53) (.O875) (LO8BS) (.08595) (.0859)
h, A8 5174 3784 5037 3100 .6492
(.0278) (.0270) (.0330) (.0354) (.0274) (.0286)
' —.0157 —-.0242 —.0819 0603 —.0822 0162
(.0430) (.04006) (.0574) (.06134) (.0417) (.0452)
Do — 0683 —.0605 —-.0510 —.0519 —.0453 —.0205
(.0407) (.0384) (.0547) (.0605) (.0395) (.0429)
s 0832 0597 1398 0519 0893 .0009
(.0237) (.0227) .0299) (.0325) (.0232) (.0246)
b, 0007 0250 —.0069 —.0603 0382 0034
(.0271) (.0254) (.0369) (.0410) (.0262) (.0286)
By 0604 1320 0695 2489 1049 1142
(.0614) (.0589) (.0771) (.0839) (.0600) (.0637)
e 470 0291 0253 —.0165 0063 0044
(.0428) (.0421) (.0480) (.0504) (.0424) (.0436)
N — 0391 —. 1006 —.0438 - . 1805 —.0660 — 0982
(.02589) (.0241) (.0362) (.0404) (.0249) (.0279)
| P — 0386 —-.0109 —.0944 0200 -.0263 0830
(.0424) (.0419) (.0459) (.0475) (.0421) (.0429)
b —.0915 —.0779 —.0707 —.0555 —.0693 —.0883
(.0185) (.O175) (.0252) (.0279) (.0180) (.0196)
h,, 1300 939 1214 2963 0971 1831
(.0303) (.0285) (.0415) (.0462) (.0293) (.0321)

* Asymptotic standard errors are in parentheses. Fuels are indicated by C =coual, O = ol
G = pas. E = electnicty.

Since the model (5.3) describes the type of linear regression cquations investi-
pated in Section 4, Theorem 2 applics and we can concentrate the likelihood
function with respect to the 54 f3; paramcters of the share equations. The con-
centrated likelihood function then contains only 19 independent parameters, con-
sisting of 6 lower triangular elements of A, another 6 for I', 5 2 parameters and
the autoregression parameters  and p. The full covariance matrix in this empiri-
cal example is of dimension Tg(n — 1) = 19 x 6 x 3 = 342. The decomposition
of the inverse and determinant of the covariance matrix, as provided by Theorem
1. requires calculation of inverses and determinants of matrices of order 3 rather
than of the full covariance matrix. Thus, Thecorems | and 2 allow considcrable
simplification of the computational burden involved in calculating the lhikelihood
[unction.

The full model was estimated by maximizing the concentrated log-hikelihood
function with respect to the 19 covariance parameters.'' The f, cstimates are
presented together with the estimates of their asymptotic standard errors in
Tablc 1.

Approximalely one hall of the paramcters of the share equations are signifi-

"I The ML estimates were obtinined using the Quasi-Newton algorithm by Fletcher (1972).
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TABLE 2
ESTIMATES OF COVYARIANCE PARAMETERS?

ﬁll
COAL OIL GAS ELEE
COAL 2.87 (.44)
OIL —1.15(.42) 5.37 (.82)
GAS —-.93(.32) —2.64 (.51) 3.03 (.47)
FLEC —.79 (.25) —1.58 (.37) .54 (.25) 1.84 (.28)
ri
COAL 2.72 (1.05)
OIL .20 (1.54) 13.08 (4.57)
GAS —2.32(1.63) —11.96 (4.29) 13.23 (4.49)
ELEC —.61 ( .48) —1.32 (1.01) 1.05 ( .96) .87 (.39)
Autocorrelation
A paramelers
FOOD TEXT PAPR CHEM BLDG METL x p
K175 6271 2.2214 2.9321 7139 1.0101 .7398 9378
(.1698) (.1267) (.4686) (.6187) (.1468) (.2116) (.0385) (.0372)

* Asymplotic standard errors are in parentheses. Estimates of parameters and standard errors of
A* and I'* are the values in the table multiplied by 107%. Since the 4's are normalized by Z{_, 47 ' =
6. the 7 estimate for METL and its standard error were obtained indirectly.

cantly different from zero, using a 5 percent type I error probability.'? In addi-
tion, about 40 percent of the price coeflicients are significantly different from zero,
showing the importance of the dependence of fuel cost shares upon the relative
priccs of the four fuels. For example, in most industries b.g is significantly posi-
tive, indicating that an increase in the price of gas will cause an increase in the
cost share of coal. A more detailed analysis of the estimates of the substitution-
complementarity relationships between fuels is provided in Magnus and Wood-
land (19875).

The ML estimates for A*, I'*, /,, and the autocorrelation parameters a and p,
together with the estimates of their asymptotic standard errors are presented in
Table 2.'° We see that the I'* parameters are roughly twice the size of the A*
parameters (as measured by their traces), which underlines the importance of the
disturbances ¢, (which affect all industries in the same way) relative to the distur-
bances ¢;, (which differ from industry to industry). It is remarkable that the sign
patterns of A* and I'* are the same, but for one element. Ignoring for the
moment the autocorrelation parameters « and p, the disturbance covariance
matrix for the ith industry is I'* + 4, A* in every year, and since the ;s are in the
order of unity, the sign of an element of I'* + 4, A* is the same as the sign of the
corresponding element of A*. Since all non-price effects are represented by the

"2 Since there are only 19 years of observations, it is doubtful if the asymptotic theory would hold
and so the significance tests must be interpreted cautiously.

'*' A* and I'* are the full 4 x 4 covariance matrices of which A and I' are the 3 x 3 north-west
submautrices. The last lines of A* and I'*® have been reconstructed using the adding-up constraint.
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TapLe 3
TEST OF COVARIANCE RLSTRICTIONS®

Restriction I =0 A= x =0 ) = 0 A=y
ks 769.21 8§31.24 793.43 830.50 847.81
LR Statistc 161.81 37.74 113.36 39.22 4.61

* I denotes the loghkelihood of the restricted model. The loglikelihood of the unrestricted modcl 1s
[* = 850.11. The likelihood ratio statisticis LR = 2(* — L).

disturbance. the elements of A* indicate that non-price factors allecting the cost
share of a particular input will, in general, have an opposite effect on the cost
shares of the other inputs. (The exception 1s gas — clectricity.) The matrix I'™*
represents the covariances between input shares which are common (o all indus-
tries. Thus, for example, if one industry uses a larger than average amounl of gas
then the share of coal and oil will tend to be smaller in ¢very industry, since ygc
and 7., are negative. Also, since I” has significantly positive diagonal clements, if
one industry has a larger than average share for an input (say oil) then all other
industrics will tend to have larger than average shares for that input as well. Tt 1s
in this manner that the error components formulation models the overall allo-
cation eflects of economys=wide disturbances.

The 7 estimates in Table 2 show that, while the hypothesis that 4, =1 in all
industries is rejected (as we shall see shortly), only three industries (TEXT, PAPK,
and CHEM) show a / value which is significantly different from one. The covari-
ance matrices of the disturbances in the CHEM and PAPR industrics arc some-
what “larger™ than average, while the covariance matrix of the disturbances In
the TEXT industry is somewhat “smaller.”

Finally, the estimates of the two autocorrelation parameters, &« = .74 and p =
94, are both highly significant, thus firmly rejecting the hypothesis of time inde-
pendence,

As we indicated in Section 2, several special cases of the general covariance
structure arc of interest. We therefore estimated the following five restricted
versions of the model: T'=0, A=1,a=0, p=0, a = p.'* The resulting likeli-
hood ratio (LR) statistics are presented in Table 3. Each of these hypotheses 1s
rejected at the S percent significance level.!® These results confirm the significance
of our assumption rcgarding the covariance structure.

The test result, [C # 0, indicates that the error component, e,, which 1s common
to all industries. is an important part of the disturbance vector in our empirical
application. It thercfore justifies the approach taken, whereby the share equations

' 1t 1s not obvious how the hypothesis /{,: ' = 0 should be tested. One problem is that I hes on
the boundary of the parameter space, il Hj 1s true. Another is thal nuisance paramelers are present
only under the alternative hypothesis, ie. il we write [T = ¢* with tr ' = |, then I = 0 is equivalent
to @ = 0 irrespective of the values in . Sece Moran (1971) and Davies (1977). In our case the LR
statistic, though not strictly apphcable, is sufficiently large (161.81) to reject Hwith confidence.

'* At the § pereent significance level the critical 7° values are 3.84 (1 degree of freedom) and 11.1 (5
deprees of freedom): at the | percent level we have 6.63 (1 degree of freedom) and 15.1 (5 degrees of
freedom).
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of the six industrics were estimated jointly rather than separately for each indus-
try. The result that A # I indicates that the disturbance covariance matrices for
the six industries are not the same. Finally, the tests on parameters a and p
demonstrate that both of the two-error components are subject to serial corre-
lation, but that the first-order autocorrelation paramcters are diflferent.

These test results show, therefore, that the data are not consistent with any of
our model's special cases of the covariance structure for the disturbances. This
modecl is fairly general in that it allows for contemporaneous correlation between
disturbances within and between industries, as well as serial correlation, in a way
that is parsimonious regarding parameters. The model also allows a significant
decomposition of the likelihood function. The question of whether this specifi-
cation would be rejected in favour of some more general model is beyond the
scope of this paper.

6. CONCLUSION

In this paper, we extend the two-error component regression model to deal
simultancously with the case where each component is a vector (multivariate
crror components) and with the case where each component is serially correlated.
The model is discussed and the maximum likelihood estimator analyzed. In
particular, in the nonlinear regression context it is shown that the determinant
and inverse of the covariance matrix can be decomposed so that the likelihood
function can be evaluated by calculating determinants and inverses of order at
most p (the number of equations).

In the casc of a linear regression model where the matrix of explanatory
variables does not depend upon the cross-section, it is shown that the likelihood
function may be analytically concentrated with respect to the regression parame-
ters, thus permitting the ML estimates to be obtained by maximizing the con-
centrated log-likelihood function with respect to only the covariance parameters.

In addition, the asymptotic covariance matrix for the ML estimators is ob-
tained. The paper also shows how the results may be extended to deal with more
complicated covariance structures for the error components.

The model and ML estimation procedure are illustrated by applying them to a
combined cross-section, time-series data set on fuel consumption in six Dutch
manuflacturing industries over the post-war period.

The use of combined cross-section and time-scrics data requires special atten-
tion to the stochastic specification. The error components structure for the distur-
bance in a univariate regression model is well established in the theoretical
literature. Qur generalization of this model allows for the usual correlations
between disturbances in the fuel equations, for the correlation between distur-
bances in the different industries (via the error components structure), and for
correlations between disturbances in different time periods. These correlations are
achicved by a minimal number of covariance parameters. Our empirical results
show that the interindustry and the intertemporal correlations are significant,
indicating that joint estimation of the complete set of industry fuel share equa-
tions is justificd on grounds of elficiency.
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Despite the large number of parameters to be estimated, the error components
modcl we specify is relatively casy to estimate by maximum likclihood. It should
be uselul in a variety of contexts, especially since multivariate data arc becoming
increasingly available as combined cross-section and time-series.

London School of Economics, England
University of Sydney, Australia

APPENDIX
SOMFE MATRIX RESULTS USEFUL FOR MULTIVARIATE TWO ERROR
COMPONENTS ANALYSIS

The three lemmas in this appendix give the mathematical background ol Thceo-
rems | and 2. They also provide the tools for extending the theory to more
general covariance structures. The proofs, which make repcated use of Lemma
2.2 of Magnus (1982), are given in detail in Magnus and Woodland (1987a).

Let L, M and A be positive definite matrices of orders ¢ x ¢ (¢ = 2), T x T
and p x p. respectively. Let G and I be positive semidefinite matrices of orders
T x T and p x p. respectively, and let a # 0 be a g x I vector. Let § be a
nonsingular T x T matrix with columns ¢, ..., g, such that

(A1) SMS=1; and S§'GS ==

where = is a diagonal T x T matrix with nonnegative diagonal elements &, ...,

Cp.'0 Define

(A.2) +=a'L 'a, W=A4+ual, & R ]
and
(A.3) Q=LO M@ A+ad ® G ®T.

Lemma ALl gives the determinant and the inverse of the very complicated
qTp = ¢Tp matrix Q in a manageable and computable form.

Lintsia ALl The gTp x gTp matrix Q defined in (A.3) is positive definite with

determinant

T
‘-‘1\‘4} |£1| — lLlIFI :\'lfi‘JFiél{Q“ nr l_[ l I'V;,l

| = |
dand inverse

(A.5) 0O Y= (LY = () tad V) & MT" & AT

e
+ (/)L 'aad’L ' ® Z (0,00 @ W, ).

=1

U The matrin S can be constructed as follows: let Q be a square matrnix such that Af 7' = QQ’, and
lct Z be an orthogonal matrnix such that Z2'Q'GQZ = = (diagonal). Then § = QZ has the desired
properties. See also Bellman (1970, p. 3¥)
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Now. in addition to the matrices defined above, let X, X,, ..., Xy be p x k
matrices such that the matrix

(A.6) X S (X5Xs0 00 X5

has full column-rank A. Let N be a ¢ x r matrix (I < r < g) with full column-rank
rand dchine

(A.7) X=N® X, Lo=(N'L"'N)™! and b= N'L'a.
Denote by i and o, the st-th element of M ™! and S, respectively. Defining
SR
(A.8) Q.= ) Y X AT X,

: s=1 1=1
and

T T ’ )
{Ag) QZ — z (Z ﬂ-les) WI-I(Z gslxs)*
r=1 s=1 5

S
—

I

we obtain Lemma A.2.

Limsa A2, The k x k matrices Q, and Q, defined in (A.8) and (A.9) are both
positive definite. Furthermore, if the ¢ x 1 vector a is a linear combination of the
colunms of N. then

(A.10) XQ'X =(Lg"' —(1/a)bb") ® Q, + (1/a)bb” & Q,
aned

(A.11) (X'Q 'X) "=(Ly— (1/a)Lybb'Ly) ®@ Q' + (1/a)Lybb'Ly ® Q5.

ReMARK. The assumption that a lies in the column-space of N i1s made for
simplicity only. It will be satisfied in most applications; in particular, it is satisfied
in our application. Without this condition the expressions become somewhat
more involved.

Finally, let y, (=1, ..., ¢g: t=1,..., T) be px 1 vectors and define the
g1 p x | veclor

{A.l?_) Yy = (_‘r’tlls }"11; vovy }’,11': vy y:'.lT)r'

Denote by 4% and /) the ijth element and jth column of L™, respectively, and
deline

T T
(A.13) ¢, = )7 ) WXLAT Y,
s=]1 1=1
q
(A.14) c=(1/a) ¥ (a@l)c;,
j=1

T Y 4 ’
(A]S} d = Z (Z g;[Xj) W'—I(Z Jﬂﬁ!)?

= ]
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where

q
(A.16) v, = (1/a) D, (@'l)y;,-

J=1

LemMa A3 If ais alinear combination of the columns of N, then

q
(A.17) XQ'y=b®@®d—0c)+ ) (NI, ® c)),
i=1
q
(A.18) (XN'Q 'X) 'X'Q 'y=Lob ® (Q;'d—Q7'c)+ D (LoN'l; ® Q[ 'c),
Jj=1
and
r T g .q N
(A.19) yQ 'y=Y Y u"(Z ). ﬂ-”y:-,ﬂ"y,;.—af;eﬂ"ﬁ.)
s=11=1 i= Jj=1
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