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THE COMMUTATION MATRIX: SOME PROPERTIES AND
APPLICATIONS

By JAN R. MAGNUS AND H. NEUDECKER
University of Amsterdam

The commutation matrix K is defined as a square matrix containing only
zeroes and ones. Its main properties are that it transforms vecA into vecA’, and
that it reverses the order of a Kronecker product. An analytic expression for K
s given and many further properties are derived. Subsequently, these properties
are applied to some problems connected with the normal distribution. The
expectation 1s derived of ¢’ Ae - ¢’ Be - €' Ce, where e ~ N(0, V), and A, B, C are
symmetric. Further, the expectation and covariance matrix of x ® y are found,
where x and p are normally distributed dependent variables. Finally, the
variance matrix of the (noncentral) Wishart distribution is derived.

1. Introduction. Tracy and Dwyer (1969) introduced a matrix that was later
given the name “permuted identity matrix” by MacRae (1974). Its central property
1s that it transforms vecA into vecA’, where 4 is an arbitrary (m, n) matrix. We

shall denote this matrix as K,,,. MacRae showed that X, can be used for reversing
the order of a Kronecker product, a property very useful in the calculation of
matrix derivatives. Barnett (1973) and Conlisk (1976) independently rediscovered
this matrix. Balestra (1976), extending MacRae’s paper, gives a great number of

important results on K__ in matrix differentiation.
In this paper we shall derive further properties of the commutation matrix, as we

prefer to call 1t, and use these in some problems in statistics. We shall find
expressions for the expectations and covariance matrices of stochastic vectors
x @y, where x ~ N,(pn, V)) and y ~ N_(u,, V,) are stochastically dependent,
and x ® x, where x ~ N,(p, V). These results will then be applied to the central
and noncentral Wishart distributions for which the variance matrices will be

derived. Various related results will also be reported.

2. Definitions, basic results. Let 4 = (q, ;) be an (m, n) matrix and A , the sth
column of 4; then vecA is the (mn) column vector

A,

veC A =

A
Let further B be an (s, 1) matrix; then the Kronecker product 4 ® B is defined as
the (ms, nt) matrix

N

A® B = (a B).
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382 JAN R. MAGNUS AND H. NEUDECKER

The reader is assumed to be familiar with the basic properties of Kronecker
products (see Neudecker (1968)). For easy reference we only state the following
relations:

(2.1) vec ABC = (C’ ® A)vec B.

Let x and y be vectors of any order, then

(2.2) x @y = vec yx’

and

(2.3) x®y =x =y & x.

The basic connection between the vec-function and the trace 1s
(2.4) (vec A')'vec B = tr AB.

We shall also define the (m, n) matrix

(2.5) H ;= ge,

where a is the ith column unit vector of order m and ¢; is the jth column umit

vector of order n.
Clearly, any (m, n) matrix A can be written as

(2.6) A=2aH,
Finally we define the (n, n) matrix

(2.7) E;, = ee.
From this definition it follows that

(2.8) 2B, = 1.
Also, from (2.2), (2.7) and (2.8) we have

(2.9) vec [, = 2.(e @ ¢),
since

vecl =vec . E. = vec,ee = 2,vec(ege) =2Z.(e D ¢).
Further,
(2.10) E  ® E, = (vec E, )(vec Eﬁ)",
since
(vec E,;)(vec E;) = (vec ¢ e')(vec e,e";)’
= (¢ ® f—"k)(f?} ®e) = (eie;) ® (ec€r) = L Q Ey.
From (2.8) and (2.10) follows
(2.11) S, (E,®E;) = (vecl,)(vecl,).

3. Some properties of the commutation matrix. Let us now introduce the
commutation matrix K, as the (mn, mn) matrix which, for arbitrary (m, n) matrix
A. transforms vecA into vecA’. It is easy to see that K, is unique. Its explicit form
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can be derived as follows. Using (2.1), (2.5) and (2.6), we see that
vec A" = vec 2, .a; H, = vec Z,-j(afAﬁ})(%af)
= vec 2, (e,a/Ae.a)
— El_j_vec (Hf:fA H{;) = EU(HU X H,-})VCC A.
Hence the following definition is put forward:

DEerFINITION 3.1. The (mn, mn) commutation matrix K__ is
Krnn = 2T=12;=I(Hij ® H;’})?

where H, ; 1s an (m, n) matrix with a 1 in its / jth position and zeroes elsewhere, i.e.,

H,;, = a,e/, as defined in (2.5). For example,

- - -
OO — OO

K,y; =

Q= OO0
@ QIO OO

For notational brevity we shall write the (n?, n*) matrix K, as K_.
In words, K, 1s a square mn-dimensional matrix partitioned into mn sub-

matrices of order (n, m) such that the / jth submatrix has a 1 in its j ith position
and zeroes elsewhere. MacRae (1974, page 338) uses the symbol I, ., and Balestra

(1976) uses P, ..

THEOREM 3.1.
(1)
K. = E}'_l(f;‘-' I X e}-) =27 (a ® I @ a)),

where e; and a; are the unit vectors defined above;

(i) Ky = Ky

i) K. K =K K =1 _orK_'=K_ ;

(v) K|, it = 1

(vytr K_ =1+ d(m —1,n — 1), where d(m, n) is the greatest common divisor
of m and n (d(0, n) = d(n, 0) = n).

(vi) The eigenvalues of K, are +1 and —1 with multiplicities sn(n + 1) and

21"(” - 1). |[K|= (- 1)15"("_”. In general, K_(m # n) will have some complex

eigenvalues. |K_ | = (— 1)%’"(’"“”"("“”.
(vi)) K__vec A = vec A', where A is an (m, n) matrix.
(vin) K (A ® B)K, = B @ A, where A is an (n, s) matrix and B is an (m, t)
matrix. Equivalently, K_ (A @ B) = (B ® A)K,..
(1x) Special cases of (vin) are K, ,(A @ B) = (B & A)K__, where A and B are



384 JAN R. MAGNUS AND H. NEUDECKER

square matrices of order n and m respectively. Also
K. (Y®x)=x®Y,

(Y ®x)K, =x®Y,

K (y®x)=x®y,

where Y is an (n, ) matrix, y is an n-vector, and x is an m-vector.
(x) Let P and Q be matrices with m and n rows respectively, x is an m-vector, y
is an n-vector, and z is uarbitrary. Then,

Z7QPQR®y=K (yz7® P)
xQ@QO0Rz2Z=K_ (0 xz').

(x1) The matrix K, , (which denotes K, with m = st) was introduced by Balestra
(1976). It performs a cyclic permutation of the Kronecker produc: of three matrices:

A®BR®C=K, (C®A®B)K,, =K, (B®C®AK, .

where A, B and C are matrices of orders (m, n), (s, t), and (p, q) respectively. Also,
K ..K, K, . =1,.

IS. n=5sn, 15 i, 8

Any two K-matrices with the same set of three indices commute (e.g., K, K, ., =
K K, ).

rLsn""st,n

(x11) Define the (m, n) matrix A, the (p, q) matrix B, the (g, s) matrix C, and the
(n, t) matrix D. Then,

K,,(BC ® AD) = (A ® B)K,,(C ® D) = (AD ® BC)K,
= (1, ® BC)K, (I, ® AD) = (AD ® 1)K, (BC ® I,).

(xii1) tr K (A" ® B) =tr A'B = (vec A')' K _, (vec B), where A and B are (m, n)
matrices.
(xiv) Let A be an (m, n) matrix with rank r. Denote the r nonzero (hence positive)

eigenvalues of A’A as A\, - - - A, and define
P=K (A" ® A).
Then, P is a symmetric matrix with rank r*, tr P = tr(A'A). Fu{'ther, P2 =(AA)
® (A'A). The nonzero eigenvalues of P are N, - - - A\, and = (\A)? (i # ).

PROOF.
(l) Kmn = EU'(H:‘J{ ® H:i;) - 2 -(ﬂj{?f ® E’JG;).

Y
Using (2.3) we see that
Si(ae®ea)=3%,(e®a®a Be)=3 (e ®(Z,q®a) D e)
=3(e ®(Z,aa)®@e)=Z2,(e ®1,Re¢).
Also,
S (ae®ea)=3%, (a®

rJ J
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(H) Kr;m = E;;(a;ﬂ" ® eja:), = zji(e}'a; ® ar'e;) = Knm'
(“1) Kmn Kmn = E; l(e_}a: ® ai%f)zﬂ(aje‘; ® era.:) == Eji.ﬂ(eja;a:e; ® a:'%rera;)
- E_;r(e}e:; ® a:a:) = (21%6}!) ® (Eraa:) = ]mn
Hence, K, = K. =K_'or K K =1
(iv) K,=2/(e®¢)=1=3(¢®¢)=K,.

(v) Clearly, from (iv), tr K,, = n and tr K, = m. The case where m, n > 2 1s
less trivial;

trK,, =tr S, (ae ®ea) =%, tr(a, ® ¢g)(ef ®a) =Z, (¢ ®a)(a ®e)

Now, (¢ ® g;) is an mn-vector with unity in its [(; — 1)m + i]th position and
zeroes elsewhere. Similarly, (g; ® ¢;) 1s an mn-vector with unity in 1ts [(i — 1)n +
jlth position and zeroes elsewhere. Hence,

=1 if (j=1)m+i=((—1)n+j
= 0 otherwise.

(E_',i ® a;)(a; ® ‘5})

Let B[x.|i =1, - - , p] denote the number of cases where x;, i = 1, - - -, p 1s true,
then
tr K, =27 ,27.,(¢ ® a)(a ® ¢)

=B[(j——l)m+f=(£-—l)n+j\i=l“-m,j=1---n}
=B[(j—1)(m—l)=(f-—l)(n—l)|:'=l'--m,_j=l---n]
=1+B:(j—-l)(m—l)=(:'-—l)(n—1)\f=2---m,j=2~-n}
=l+B:j(m—l)=:'(n——1)\E=1-*-m—l,j=l-'-n—-l]
=1+B[(m-—l)/(n—1)=:'/j\:'=l'--m—l,j=l~-n——l]
=]l+dm-—1n-—1).

The last step follows from the following argument: let m" = m/d(m, n) and
n’ = n/d(m, n). Any combination (i, j) that satisfiesi/j =m/n(i=1---m,j =
| - - - n) must be of the form i = am’ and j = an’, where a 1s some positive
rational number smaller than or equal to d(m, n). Write a = p/q, where p and ¢
are positive integers with greatest common divisor (gcd) 1. Then, i = pm’/q and
j = pn'/q. Fori and j to be positive integers it is necessary (and sufficient) that pm’
and pn’ are both divisible by g. Now, p and ¢ have gcd 1 and the only common
divisor of m’ and n’ is unity. Therefore ¢ = 1. This implies that i = pm’ and
j=pn, 1 < p <d(m,n). Thus there are d(m, n) combinations (7, /) for which
i/j=m/n (i=1-+-mj=1---n), ie, Bm/n=i/jli=1---m, =
| - - - n] = d(m, n).

(vi) Since K, is real orthogonal and symmetric, it has eigenvalues +1 and —1
only. Suppose the multiplicity of — 1 is p. Then the multiplicity of +1 1s (n* — p)
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and |K, | = (—1)*. Also, using (v),

n = tr K = sum of eigenvalues of K, = —p + n* — p = n* — 2p,

JAN R. MAGNUS AND H. NEUDECKER

which implies p =3n(n — 1). In order to find |K_ | we write K as (this proof was
suggested by Pietro Balestra in a private communication to one of the authors):

€

Now perform the following column-permutations: for h =1, 2, - - -

Ko =271 ® 1, ®¢)

€,

—

ppppp

— — — — — o e —

€

n

,n— 1, put

the [(n — hA)m]th column in the (nm — h)th position (this involves (m — 1)A
permutations). Then, after (m — 1)[1 +2 + - - -
permutations we have the following matnx:

.

Clearly, this 1s

and therefore

IKmn' — (_ I)Eln(n—- I)Y(m— ”‘Km

—I,nl

—
——

;In(n— D(m=1)+(m-2)+ - -

oo i =)

(_' 1)%!!(:1—])-%!?1(1'”—1}'1 | s (____ 1)%n(n—ljm(m_ I).

+(n— 1] =in(n — 1)m - 1)

+l]'KInl

(vii) In the beginning of this section we have already seen that K vecAd =

vecA’.

(viii) Let X be an arbitrary (s, f)-matrix. Then, by repeated application of (vi)

and (2.1),
K (AQ® B)K , vecX

—
—

e—
—

K (A® B)vec X' = K  vec BX'A’
vec AXB' = (B @ A)vec X.

This holds for every X. Hence the first result. Postmultiplication with K,  gives the

second result.
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(1x) The special cases follow from (viii) by putting (+ = m and s = n); t = 1;
m = 1; and s = t = | respectively.
(x) Using (1) we have

K, . (2Q®PQ®y)= E-(ef' 1, Be¢)(2Q@PBy)=2Z(ez)®P Q(ey)
=2,(e(ey)2)® P =((Zee)yz’)® P =yz Q P.
Similarly,
K(x®0®2)=3,(a®1,®a)(x®0®2)=3(ax)® Q0 ®(az)
=20 ®a(ax)z)=0®(Z.aa)xz =0 @ xz'

Premultiplication with K__ gives the desired results.
(x1) The first result follows from the fact that the order of the Kronecker

products 1n (A @ B)® Cand 4 ® (B ® C) can be reversed using (viii). Further,
=2.1(6®I,Q¢)=2(ef®I)® (I, Qe¢)

=3 .K, .[(I,® e) ® (e ®L)]|K, ,,  (by(viii))
=g@m1®()®1]m*Km&m
Hence, by (n), X, K., K, ., .- Also, since K,, =K,
K, nKi, sn K:: n = Kaon = Ko nKs, e

from which it follows that K, , and K, , commute. Clearly, this holds for any

permutation of the indices s, n, 1.
(x11) The result follows from repeated application of (viii):

(A®B)K (C®D)=K, (B®A)NC®D)= K, (BC ® AD)
= K,,(BC ® I,)(I, ® AD) = (I,, ® BC)K, (I, ® AD).

Also,
(AD ® BC)K,, = K,,(BC ® AD) = K, (I, ® AD)(BC ® I)
= (4D ® I,)K,,(BC ® I).
(x111)
tr K,,(4"® B) =2, tr(H,, ® H ,)(A'® B) = Z,,(tr H ,A")(tr H,B)

;;(E}A a,‘)(a,' BE‘) 2 anU = tr A'B.
Also, by (vi1) and (2.4):
(vec A')'K,, vec B = (vec A)'vec B = tr A’B.

(xiv) PP=(A @A), =K (A" ® A) = P, by (viii). Hence P is symmetric.
Since K, i1s nonsingular we have

rank(P) = rank(A’ ® 4) = rank(A’) - rank(A4) = r*.
Further, tr P = tr(4'A4) by (xin).
P!=PP=(AQAVK, K (A ®A)=(A4ARA)NA @A) =(44") @ (4'A4).
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Hence, the r* nonzero eigenvalues of P* are A\, (i,j = 1- - - r). Each nonzero

eigenvalue of P must then be of the form i()\,-}\j)%. The sum of these r* eigenvalues
is trP = tr(4’A) = 2"_ A. The nonzero eigenvalues of P are thus A, (i =1- - - r)

and +(AA)I (i #j =1+ -7).

4. Applications related to the normal distribution. In this section u will be a
vector of n normally distributed independent stochastic variables ; with Eu; = 0
and Eu? = 1, i.e., u ~ N(0, I,). Further we define the symmetric matrices

(4.1) T,,=E;+ E,
Hence 7, = 2E,. We shall first prove the following

THEOREM 4.1.

(l) E(Uu’ X Hu') = ® [ + %EU(T}}* @ ‘TU) = [ 4 ‘Kn -4 (VCC 1)(vec [)r;

(1) E(uu' @ uu’' Quu')=11 1+ %EU[I T, T, + T, RIRT, +
T,® T, ®I1+2,,(T, ® Ty ® T

ProoF. We know that
and

Clearly,
Euuuu' =T, + 0,1,

where §;; is the Kronecker delta:

%0 it e

Then
Euu' @ uu' = Eu(Eu X (T}j + SU-I)) = EU(EU Q Tu) + ZU(‘SUEU ® I)
=13,(T,® T,) + (S,E)® I =15,(T,®T,) + 1 ®1

I ]

because 2. E. = I. Alternatively,

EU(EU & T,-J-) — 2:';'(Eu‘ ® E;) + EU(EU @ EU) = K_+ (vec I')(vec )’

according to (2.11).
In order to prove (ii) we need the following expectations:

Evuu,uyuu’ = 0, | 7] #FhFKk
= T1,,, = j,iFhFk
=/+T7T +T,, i=jh=ki#Fh
=3T,, = j=hiFK

=3+ 6T, i=)=h=k.
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Thus.

Eul(uw' @ uu') =32, (T, T, )+ 1T, +1Q1+T,81+2%,(T,®T,)

L5
2
and
E“;‘L{;(““f Quu’) =18 Ly 2Ty ® T_;A) + Ek(y}k ® Ty) + 1 ® 1 (i #))
This leads to
Euuuu' @ uu' = SU-[I I +:52 (T, ® Thk)] +I1QT,, +T,Q1
+zk(Tik ® 7}&:) £ Ek(’z}k ® 7:1')5

so that
E(uu' @ uu' @ uu') = U(E @[Euu(uu' X uu’)])
=S(E:®I1®1+32,(T, ® TM)])

+3,(E, ®IQ®T,,)+Z,(E,®T,;®1I)

+3, 4(E,; O[T, @ Ty + 7?;';(@7%])

1®1®1+ 2 (I®T,;®T,) +3;2,(T,,®1®T,))

+52u( :'j ®1)+2uk( ®T;k®7}k)-

This concludes the proof.

Theorem (4.1) enables us to give a simple proof of a result obtained by
Neudecker (1968, pages 78-82). Also, his result is generalized. A still more general
result is available in Magnus (1978), where, along different lines, a formula 1s

derived for the expectation of an arbitrary number of quadratic forms in normally
distnibuted vanables.

THEOREM 4.2. Let A, B and C be symmetric matrices of order n and & ~
N (0, V), where V is positive definite, then

(1) E(¢'Ae-€¢'Be) = (tr AV)(tr BV) + 2 tr AVBV.

(i1) E(e'Ae-€e'Be-€'Ce) = (tr AV)(tr BV )(tr CV') + 2[(tr AV)(tr BVCV') +
(tr BV )(tr AVCV) + (t&r CV)(tr AVBV)] + 8 tr AVBVCV.

I —_ I !

PROOF Let u = V”EE then u ~ N(0O, I). Further, let A = V4V 2,
B=ViBVi and C = ViCV1i.

E(W'ViAViu-u'ViBViu) = E(u'Au- u Bu)

E(u ® u)(A ®B)(u®u)=tr[ (4 ®B)E(uu' ® uu') |
tr[(,:i_®§)[1 Q1 +32, (T, BT, )H

=tr(4 ®B) +3%,, u(AT,, ® BT,

=(rA)(tr B) +33, (tr AT, )(tr BT,,)

= (tr A )(tr §)+12..( 2a. - 2b, )
(trA)(trB)+22 b =(rA)(trB)+2trAB

1] U i}

= (tr AV )(tr BV ) + 2tr AVBV.

E(e A€ - € Be)
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Similarly,
E(e’Ae-€'Be - ¢'Ce) = E(WAu-u'Bu-u' Cu)
= tr[(A_®§ ®C)E(uu' @ uu' @ uu')|.

A straightforward application of result (i1) of Theorem 4.1 concludes the proof.
Without proof we state the following corollary to Theorem 4.2.

COROLLARY 4.1.
(1) Cov(e'Ae, ¢’ Be) = 2 tr AVBYV,
(i) Var(e’'Ae) = 2 tr(A V)%,
(i) E(e'Ae)’ = (tr AV) + 6(tr AV)(tr(AV)?) + 8 tr(A V),
(iv) Cov[(e'Ae)?, €' Be] = 4(tr AV )(tr AVBV) + 8 tr(AV)*BV.

In many instances we need the variances and covariances of the elements of the

stochastic matnx xx’, or, somewhat more general, yx’, where x ~ N(u,, V,) and
y ~ N(pu,, V,) may be correlated. An obvious example is the Wishart distribution.

The following theorem gives these (co)variances and some related results.

THEOREM 4.3. Let the n-vector x and the m-vector y be jointly normally distrib-
uted. Let z' = (x', y") and assume that

= oy — r Q’
Ez = p = (P'z) and Var(z) = V = (Q R ),
where V is positive definite (hence nonsingular). Then,
(i) E(x®y) =vec Q + p; ® py;
(1) Var((x ® )= PO R+ PO p,p, + p p) @ R
+ K (Q®Q + 0 ®pupy+ pyp ® Q)
= (Exx) @ (Eyy’) + K,,,(Eyx") @ (Exy")) — 2p, ) @ py p3;
(ifi) tr(Var(x ® y)) = (trP)(trR) + trQ’Q + pj p,(trR) + p uy(trP) + 2u;0" b
Further, if x is distributed N_(u, V'), V positive definite, then
V) Varlx @ x) =+ KXV OV + V Q pu' + pu' @ V);
(v) rank(Var(x ® x)) =5n(n + 1).
Before giving the proof of the theorem, we shall prove the following simple

lemma.

LEMMA 4.1. Let u ~ N(O, 1), then
(1) E(u @ u) = vec [,
(1) Var(lu ® u) = I + K .

PROOF.
E(u ® u) = F vec uu’ = vec Euu’ = vec 1.
Var(u @ u) = E(uu’ @ uu') — (vec I')(vec l)
=/ ®/1+ K, + (vecl)(vecl) — (vecI)(vecl) =1+ K,

according to Theorem 4.1. This proves (11).
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PROOF OF THEOREM 4.3.
E(x ® y) = E vecyx’ = vec Eyx’ = vec [ Q + (Ey)(Ex)’]

=vec QD + vecu, u; =vec Q + p; @ u,.

Define w = V'~ 2(z — u) and partition

mz;;lj"
A 2d
Now,
w~ N®O, 7, )
and
P O 7= V%V%=FZIZ|’ leﬁﬂ_
Q@ R | _zzz; Z_,_Z:;_'_
Further,
(;)=z= 175[w+ﬁ= ;l w+-i;-= ;1::#'1.
| | &4 | =2 P |
Thus,

x®y=(Zw+ ) (Zw+ )
Var(x ® y) = Var:(le QZ,w)+ (Zw® ) +(p, @ Z,w) + (p, X pq)]

= ‘Vart(Zl RZ)(wOw)+ (Zw®u,) +(pn @ Zzw)]

= Vari(Zl X Z,)(w X w)] + Var(Z,w ® p,) + Var(p, @ Z,w)
+E(Ziw @ )1y ® Zyw)' + E(p @ Zyw)(Z)w @ )’

=(Z,® Z,)Varlw @ w)(Z, ® Z,) + E(Z,w Q@ p,)(Z,w ® u,)’
+E(p @ Zyw)(p @ Zyw) + E(py @ Zyw)(Zyw @ )’
+| E(p) ® Zyw)(Ziw® )|

=(Z£,QZ)I + K, JZ,® 2Z,) + 2, 2] Q s + pypy & 2,25
+ E(m(Z,w) ® Zowp)) + | E(py(Z,w) ® Zywwy) |,

according to Lemma 4.1. Further,
(Z,® Z,)(I + K,, , NZ,® 2Z) = Z,Z]® 2,7, + (Z,® Z,)K,, .(Z, ® Z,)
= 22,9 2,Z,+ K, (2,8 2Z,)(Z,® Z,)
= 22, 9 Z,Z; + K _{Z,Z: ® Z.Z)),
according to Theorem 3.1 (vii). Also,
E(pu(Z,w) @ Zywp)) = E(p) @ (Zw) @ (Z,w) @ p))
=1 ®[E(Zww'Z) | ® ) = p, ®(Z,Z]) @ u,
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Thus,
Var(x ® y) = 2,2, ® Z2,Z, + K, (2,2, ® Z,Z,) + 2,2 D p, ,
@ 22 + ) @ 2,2, Qu+p ®Z,Z,9 p,
=PQR+ K, (0QQ)+ PQupu + pp ®R
+u @0 @ py+ p Q' XD p,
From Theorem 3.1 (x) we see that
w® Q0 =K, (0 D py )
and
b ® Q' ® = K, (p ) ® Q).
This leads to
Var(x ® y)) =P QR+ PO p,p; + pp] ® R
+ K, (Q®Q + QO pp+ pp ®Q)
=(P+ ) ® (R+ mppy) + K, [(Q+ o) ®(Q" + py )|
— iy O pypy — Kon(a i) @ 1)
= (Exx') ® (Eyy’) + K[ (Eyx’) ® (Exy’) ]
—p B oy — Koy ® p)(p) @ 1)
= (Exx') @ (Eyy') + K,,,[(Eyx') ® (Exy’) ]
—2p) py @ oy,
according to Theorem 3.1 (ix). This concludes the proof of (11).
Further,
tr(Var(x ® y)) = (tr P)(tr R) + (tr P)(pypy) + (pjp)(tr R)
Fr K, (Q ® Q) + tr Kpp(Q ® pyp)) + tr Kyp(pa it ® Q)
= (tr P)(tr R) + (pyp)tr P+ (pipm)tr R
+tr(Q'Q) + tr(p pyQ) + tr(Q py i),

by Theorem 3.1 (xui1). As
tr( py w3 Q) = tr(Q pypy) = mQ ko,
the proof of (iii) is completed. Now, letm = n, py = gy =u, P=Q = Q' =R =
V, then we find from (11) that
Var(x @ x) = (I + K)(V OV + V@ uu' + pp' @ V),

where x ~ N(pu, V).
From Theorem 3.1 (vi) we know the eigenvalues of K, . The eigenvalues of

] + K, are therefore 2 (with multiplicity %n(n + 1)) and 0 (with multiplicity
Ln(n — 1)). Hence, rank(/ + K,) =3n(n + 1). Sufficient to show then is the non-

singularity of the matnx
VRV+V®uu+ pu V.
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Pre- and postmultiplying with V'~ 2 ® V™1 we see that
rank(V® V+ VQOup+pup' @V)=rank(/ @I+ ] QW + W ® I),

where W = V "zlp,p"V‘El possesses n — | eigenvalues 0 and one eigenvalue a =
w' V ~'u. The distinct eigenvalues of / ® W + W ® I are therefore 0, a, and 2a.
and the distinct eigenvalues of /1@ I+ I Q W+ W ® 1 are |, 1 + a, and
| + 2a. Since a > 0 all eigenvalues of /1 @ I + I @ W + W @ I are nonzero

implying its nonsingularity.
Thus V@V + V @ up” + pp’ ® V is nonsingular. This completes the proof.

As a final application we shall derive the variance of the (non)central Wishart
distnbution. Consider k statistically independent vectors y,,y,, : - -, y,, all of
order n with

yJ'MNn(P‘j& V) i=1"'k.
Define the (n, k) matrix
M™ = (p, B s s s )
The joint distribution of the elements of the matnx
S = zf=1y:y:

1s said to be Wishart with k& degrees of freedom and is denoted by W (k, V, M).
The distribution is said to be central when M = 0. (See Rao (1973), page 534.
Note that M instead of M'M appears in the expression between brackets. The

latter would seem more logical.)
The vanances and covanances of the central Wishart distribution are given

element by element in Anderson (1958, page 161). The following theorem gives the
complete covariance matrix for a (noncentrally) Wishart distributed stochastic

matrix.

THEOREM 4.4. Let S be Wishart distributed W (k, V, M), V positive definite,

then
(1) ES = kV + M'M,
(11) Var(vec S) = I+ K)A(V O V)+ VOI(MM)+ (MM)S V]

PROOF.
ES=ESyy =S Epy =S(V+ ) =kV+ MM
Var(vec S) =Var(vec 2 p,y/) = Var(Z vec y,y/) = 2 .Var(vecy,y/) =23 Var(y, ® y,).
From Theorem 4.3 (1v) we know that
Var(y, @ y,) = U+ K)(V OV + V Q uu + mu V).
Thus,
Var(vec ) =2,/ + K)(V OV + VO pup + pp V)
=(I+ K)[k(VOV)+ VO(Z,mp) + (E,my) V]
= (] + K,,)[k(V LV)+ VOIMM)+ (MM)® V].

A special case i1s the central Wishart distribution, where M = 0.
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COROLLARY 4.2. Let S be centrally Wishart distributed W _(k, V'), then
ES = kV
Var(vec S) = k(I + K )(V ® V).

Another special case arises when we put n = |:

COROLLARY 4.3. Let x; ~ N(u;, 1), (1 = 1 - - - k) be independent variables. Then
x = 2 .x’ is said to be noncentrally x* distributed with k degrees of freedom and

noncentrality parameter A = Eip,-z. We have
Ex=k+ A
Var(x) = 2k + 4A,

which includes the central x* (where A = 0) as a special case.
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