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IN A BALANCED GAME

Kazuya IKamiya Dolf Talman
Osaka Unwersity Tilburg Uniwversity
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Abstract In this paper we propose a simplicial algorithm to find a core element for balanced games without
side payments. The algorithm subdivides an appropriate simplex into smaller simplices and generates from
an arbitrarily chosen point a sequence of adjacent simplices of variable dimension. Within a finite number
of iterations the algorithm finds a simplex yielding an approximating core element. If the accuracy of
approximation 1s not satisfactory, the algorithm can be restarted with a smaller mesh size in order to
improve the accuracy.

1. Introduction

[t 1s well-known that a cooperative game need not to have an outcome which cannot be
improved upon by any subset of players. In case of a game with side payments the core,
consisting of all outcomes which cannot be improved, is nonempty if and only if the game i1s
balanced, see Bondareva (4] and Shapley [8]. A core element in a balanced game with side
payments can be easily calculated by solving a sequence of linear programming problems.

Games without side payments were introduced by Aumann and Peleg (2], and Aumann
[1] developed the core concept for such games. Scarf [7] proved the nonemptiness of the core
for such a game if 1t 1s balanced. Scarf gave a constructive proot based on the complementary
pivoting technique introduced by Lemke and Howson [6]. Shapley [9] generalized the well-
known Knaster-Kuratowski-Mazurkiewicz Theorem on the unit simplex in order to give a
constructive proof of the nonemptiness of the core. In an arbitrary subdivision of the (unit)
simplex into simplices, a sequence of adjacent simplices 1s generated, which 1s mitiated at
one of the corners of the big simplex. The terminal simplex vields an approximating core
element.

[n this paper we propose a simplicial algorithm which can be mitiated at any point of the
unit simplex. From that point the algorithm generates a sequence of adjacent simplices ot
varying dimension. The algorithm leaves the starting point along one out of 2" — 2 directions
in case there are n players. This number corresponds to the number of proper coalitions 1n
the game. The algorithm is based on the simplicial algorithm developed by Doup, van
der Laan and Talman [5] for computing economic equilibria. Along the path of simplices
generated by the algorithm, coalitions are added and sometimes deleted until a balanced set
of coalitions has been found. Once such a set is obtained, an approximating core element has
been found. If the accuracy of approximation at that point is not satistactory, the algorithm
can be restarted at that point with a smaller mesh size of the triangulation in order to
improve the accuracy. Within a finite number of restarts any accuracy of approximation can
be reached.

In Section 2 we describe a balanced game and define the core. Section 3 gives the steps
of the algorithm for finding a core element. Concluding remarks are made 1n Section 4.
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Computation of a Core Element 223

2. Balanced game and core

Let N denote the set {1,---,n} and 2V the set of all nonempty subsets of N. We call
the elements of N and the elements of 2%, players and coalitions, respectively. A game is a
pair (N A) where v 1s a mapping from 2 2V to the set of subsets of the n-dimensional euclidean
space, B'. The set v[S’) represents the set of payoff or utility vectors that the players of
coalition S can ensure by themselves, regardless of the actions of players outside the coalition.
For S in 2%V, let RS denote the |S|-dimensional subspace of B" with coordinates indexed by

the elements of S. If z € RY and S € 2V, then 2° € R® will denote the projection of = on

RS.

Assumption 2.1: For each S € 2, the set v(S) satisfies
)it ¢ € v(S) and &x; = y; tor all 1 € 5, then y € v(3),
1) if z € v(S) and y < x, then y € v(5),
1) v(S) 1s closed,
iv) {z° | z € V(S)} is nonempty and bounded from above.

Without loss of generality we assume that each set v({¢}),2 € /N, has been normalized
to the half space {x | x; < 0} and that the other v(5)’s have been shifted accordingly. The

core of a game represents the set of feasible utility vectors that cannot be improved upon by
any coalition.

Definition 2.1: The core of the game (N, v) is the set C'(N,v) = {2 € v(N) |AS € oN o4
y € v(S) such that y; > z; for all 1 € 5}.

Under Assumption 2.1, the core is a closed and bounded set but may, however, be empty.
[t is a well-known fact that every balanced game has a nonempty core.

Let B be a collection of nonempty subsets of 2, and let B, = {S € B |1 € S}. The set
B is said to be balanced if there exist nonnegative numbers 6g. 5 € B, such that

Y és=1 foralli€ N.
SEB,

A game (/NV,v) is said to be balanced if for every balanced set B

ﬂ V(19 )-C vN):

SEB

Theorem 2.1 (Scarf [7]): Every balanced game has a nonempty core.

Let U be the (n — 1)-dimensional subset of R" defined by U/ = conv{—Mne(j) | j =
l,---,n} where e(y) 1s the j-th unit vector in RY and the number M > 0 is such that
z € v(S) implies z; < M for every 1 € S. Let e be the n-vector of ones. The function

7 : U — R4 1s defined by

r(u) = max{r € R|u+re¢€ U
SCN

Clearly, 7 is a continuous function on U, for example see Berge [3]. For 5 € 2V we now

define the set C'g by
Cs={uelU|u+rt(u)e € v(5)}.
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Since v(5) 1s closed, the set C's is also closed. The algorithm will compute a pomt u* n U
such that for some balanced collection B*

U E rw Cag:
SEB*
Then z* = u* 4+ 7(u*)e € ﬂ v(S) C v(N) and 2* lies in the core since 2* lies on the
SeB*
(upper) boundary of U v(SY).

SCN
Lemma 2.2 (Shapley [9]): For all u € U, if u € Cs then S C {i € N | u; # 0}.

Proof: Let u € Cs and T = {t € N | u; # 0}. The lemma is trivial if T = N. So assume

that |T'| < n. Because u; = 0 for all : € T, we have Y ui = —Mn, so there exists a k € T
1€T

for which ug < —M. Since u + 7(u)e € RY, we have u; + r(u) 2 0, and hence 7(u) > M.

On the other hand, u + 7(u)e € v(S), so for every j € S,u; + 7(u) < M. Therefore u; < 0
for every y € S, from which it follows that S c 7.

Q.ED.
T'he lemma will guarantee the algorithm never hits the boundary of the set {/.

3. The algorithm

To describe the algorithm, let p be an arbitrarily chosen starting point in the relative
interior of U. Next, let s be a sign vector in R" | i.e.. s; €{0,—1,+1} for all j € N. We call
a s1gn vector s feasible if s contains at least one —1 and one +1. For a feasible sign vector
s let the subset A(s) of U be defined by

A(s) = {u e U | w;/p;= max up/ph if 8; =~1

g e = mhin up/pr if s; = +1}.

Clearly, the dimension of A(s) is equal to t = 179(s)| + 1 where

I’(s)={ie N

8:==10%,

In particular, if the sign vector s does not contain zeros then A(s) 1s a 1-dimensional set.
being the line segment connecting p and the point p(s) in the boundary of U given by

p;(s) = 0 for all y with s; = +1 and p;(s) = —Mnp;/ z pp tor all j with s; = —1. For

-5!;—:_]

n = 3 the subdivision of U into sets A(s) for an arbitrary pis illustrated in Figure 3.1. Next
U 1s subdivided into (n — 1)-dimensional simplices such that each A(s) 1s triangulated into t-
dimensional simplices, for example see Doup, van der Laan and Talman 15]. A t-dimensional
simplex or ¢-simplex o can be represented by its ¢ + 1 vertices w!. - .. ;2w To each vertex
w of the simplicial subdivision we assign a vector label a(.5) corresponding to some fixed
coalition S for which w lies in Cg, where a;(5) =1—|5|/n for j € S and a;(S) = —|S|/n

n
for ) € S. Notice that Z a;(5) =0. Forg=tort—1,let o(w!, - -, w9t be a g-simplex
)=1
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with vertices w!, .- w9t in A(s) for some feasible sign vector s. Let a(57) be the vector
label of vertex w’, then we call o s-complete if the system of linear equations

g+1

A e(h) oA ,
SV x; el st gy gy FELP I (3.1)

J=] 2 d Sh'-}é[]

has a nonnegative solution A7,7 =1,---,9+ 1, ui for h & 1"(s). In particular, for t =1 and

g = 0, the zero-dimensional simplex consisting of the pomnt p 1s s'-complete with s! = +1

if i.€ S% and s = —1.if 3¢ S°, where S0 is such that a(S") is the vector label of p. If S"
equals N, the point p + 7(p)e lies in the core. Suppose now that SY unequals N. Clearly, s"
is feasible and does not contain zeros. Notice that there are 2" — 2 feasible sign vectors not
containing zeros and that each such sign vector corresponds in this way to one of the 2" —2
proper coalitions.

Figure 3.1

The starting point p of the algorithm is an end point of a uniquely determined 1I-
dimensional simplex o(p,p') in A(sY) and therefore o(p,p') is also s”-complete. Let alS3)
be the vector label of p! then the algorithm is initiated by making a linear programming

pivot step with (a(S" )T 1)1 in the system

"a(S?) & o [e(h) 0 %
A _ (1 )- _’g:lﬂh‘bh, ; () ! _1_ ('32)

If by this pivot step A becomes first 0, the algorithm moves to the 1-simplex a(pt, p?) in
A(s%) adjacent to o(p,p') and continues with making a pivot step with (a(S?)T,1)!, where
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a(S”) is the vector label of p*. Otherwise, one of the y;,’s must become first 0. Suppose that
. becomes zero first. Then the algorithm terminates in case there are only two players.
[t there are more than two players, the algorithm continues with the 2-dimensional simplex
o(p,pl,p*) in A(S) containing o(p, p') as a facet, where 5, = 0 and 5, = gy forh #ik.

In general the algorithm generates, for varyimg feasible sign vectors s, a sequence of
adjacent t-dimensional simplices in A(s), having s-complete common facets. In each simplex
o(w!, - w't!) alinear programming pivot step is made with one of the variables in (3.1) in
order to determine which other variable becomes first 0. To prevent degeneracy we perturb
the right hand side of (3.1). If for some 3 € {1,---,# 4+ 1}.A; becomes 0, then the facet 7
opposite to w’ of o is also s-complete. If this facet does not lie in the boundary of A(s),
there 1s exactly one ¢t-simplex @ in A(s) having 7 also as a facet. Let @ be the vertex of @
opposite to 7, then the algorithm continues by making a pivot step in (3.1) with (a(S)!,1)T
where a(S) is the vector label of w. If 7 lies in the boundary of A(s) then either 7 is a

(t — 1)-simplex in A(3) with |I°(3)| = |I°(s)| = 1 or 7 lies in the boundary of U.

Lemma 3.1: An s-complete facet in A(s) does not lie in the boundary of U.

Proof: Suppose that 7 1s an s-complete (¢ — 1)-simplex in 4(s), lying in the boundary of
U. Clearly, ; = 0 for all * € 7 and all ¢ for which s; = +1. Let y',--- 3! be the vertices of

r. Therefore y; = 0 for all 7 for which s; = +1. Let a(S?) be the vector label of vertex y’,
1.e., ¥ hesin Cg;,7 = 1,---,t. According to Lemma 2.2, we must have: & S7,9 =1,--- 1.
for all 2 for which s; = +1. On the other hand, 7 is s-complete. Therefore

%(S7)] e(h)] _ [0 .
4| = X e |07 = | (3.3

1=1 i - Sh#“

has a nonnegative solution Aga 2= L 50 i 10F g [Y(s). For all ¢ with s; = +1. since

: & S7, we have that a;(S?) = ~|59n, 3 = 1A%t Consequently. tor 2 with s; = +1, the
-th equation at the solution of (3.3) i1s equal to

{
= Z /\j|51l/u — u; = 0.
J=1

t
Since Z \j = 1, at least one of the A7’s is positive and hence for all 7 for which s; = +1 we

1=1
obtam pu; < 0, which contradicts p* > 0.

Q.E.D.

An s-complete facet of a t-simplex in A(s), lying in the boundary of A4(s), must therefore
be a (f — 1)-simplex in A(3) with 5; # 0 for some j € I"(s) and 5, = s, for all A # j. Then
the algorithm continues with making a pivot step with E‘,(t(j)T. 0)+"

Fmally, by making a pivot step in (3.1) for a {-simplex o in A(s), one of the ;s may
become first 0. Because of the perturbation of the right hand side we may assume that only
one of the yuy’s, say pp, becomes 0. If s; is not the only positive or negative component
of s, then 7 is a facet of just one (¢ + 1)-simplex @ in A(3). where 5. = 0 and 5, = s;, for
h # k. Let w be the vertex of @ opposite to o and let a(5) be the vector label of @, then
the algorithm continues by making a pivot step with (a(5)'.1)!. Suppose now that s is
the only positive or the only negative component of s, then system (3.1) implies that when

E
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we disregard the perturbation and add up the first-n equations that all yp’s must be zero.
Therefore the system

S o LT
2 ek :

b B - e

has a nonnegative solution A},7 =1,---,t+1. Forj =1,---,t + 1, let 6; be defined by
t+1

2 SAMOTAS" | fn):
1=l

then we get
0 = 1 dora =00 .1,

Hence, the subset B* = {S!,..., S'*!} is balanced. We remark that some of the A7’s and
therefore some of the ¢7’s might be equal to zero. In that case we restrict ourselves to

| t+1,
the balanced subset of coalitions S7 for which A7 > 0. The point = Z Ajw’ can be
)=1
considered to approximately lie in ﬂ (¢ in the sense that u* lies close to a point in C'g for

SeB*
any S € B*. Hence, the point u* + 7(u*)e can be taken as an approximating core element.

For u € U, let 7% (u) be defined by
TN(H) = ma.x{?' c K | u—+re e u(;\-')}.

As a measure of accuracy of approximation at u* one could consider the nonnegative number
r(u*) — 7 (u*). If the latter number is too large one may restart the algorithm with a
simplicial subdivision of U having a smaller mesh size and with p equal to u”. Now, let
(Ck}"l,(}'gj ...) be a sequence of triangulations of U/ with mesh size tending to zero and let

U T(uk')e be the approximating core element found with the algorithm applied for the
triangulation G*¥ k=1,2,---. Let B*" bhe the set of balanced coalitions corresponding to
K

the vertices of the final simplex o

ki, ka,-- -, such that BY = B* for some balanced set B* and u*/ converges to some u* in U.

Since the vertices of of on this subsequence also converge to u* and each Cg 1s closed, we

obtain that u™ € ﬂ Cs and hence that u* 4 7(u*)e lies in the core, due to the balancedness
SeB*

of B*. Notice that 7(u*) — 7" (u*) must be zero.

Because the number of simplices of any triangulation ¥ in the sequence is finite and
due to the perturbation to avoid degeneracy, the algorithm cannot visit a simplex more than
once and therefore finds for each k£ within a finite number of iterations an approximating
core element. Moreover, within a finite number of restarts, any accuracy of approximation
will be reached.

' containing u* | for all k. Then there exists a subsequence

4. Concluding remarks

In this paper we presented an algorithm for computing an approximating core element
of a balanced game. The algorithm can be considered as an adjustment process. During
the process, the payoffs for the players are adjusted simultaneously, order to make every
player balanced. At the starting point players in the coalition SY can be considered to be
overbalanced whereas the players outside SV are underbalanced. Overbalanced players are

given more payoff and underbalanced ones less payoff. As soon as a new coalition 1s added to
|
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the current one, one player becomes balanced and he is kept balanced. In general, when the

g+1 |
algorithm operates in A(s) at the vector z = Z A;y’ obtained from the solution of system
1=1 K
(3.1), we call a player h overbalanced if s, = +1., underbalanced if s, = —1, and balanced
if s, = 0. During the process the payoffs of the overbalanced (underbalanced) players

are 1 principle increased (decreased) in order to make them (more) balanced, whereas the
payoffs of the balanced players are adjusted to keep them balanced. When a new coalition is
added to the set of current coalitions, a not-balanced player becomes balanced. Sometimes
a coalition is deleted from the current set, making a balanced player not balanced anymore.
T'his property guarantees that the process will terminate with a set of coalitions such that
all players are balanced and hence an approximating core element has been found.

When we apply the algorithm to market games or exchange markets, the adjustment of
the corresponding process seems to be very natural and intuitive in terms of economics.
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