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SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM
WITH LOWER AND UPPER BOUNDS

Hans KREMERS and Dolf TALMAN, Tilburg

Abstract: In order to solve the nonlinear complementarity problem with
lower and upper bounds, a simplicial wvariable dimension restart
algorithm is introduced. The algorithm subdivides the set on which the
problem is defined into simplices and generates from an arbitrarily
chosen starting point a piecewise linear path of points leading to an
approximate solution. When the accuracy is not sufficient the
algorithm can be restarted at the approximate solution with a finer
simplicial subdivision. The piecewise linear path generated by the
algorithm is followed by a sequence of adjacent simplices of varying
dimension. The path can be interpreted as the path of solutions of the
nonlinear complementarity problem with parametrized bounds.

1. Introduction.

This paper is concerned with the development of a simplicial
algorithm for finding an approximate solution for the nonlinear
complementarity problem with lower and upper bounds. The problem is
defined as follows.

Given two vectars a and b in R" with ay < b1 for all i € {1,...,n}
and a continuous function £:¢" 0 Rn, with " defined as

c” = {x € Rn| a ¢ x &b}, find an x* € ¢" such that for all

i€ {1,...,n}

B
x

IR e

fi(x’) <0 if ay
# -

fi(x ) =0 1f 8, <

fi(x’) > 01if X

x

< by (1.1)
b

]
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This problem is also known as the generalized nonlinear

complementarity problem (GNLCP) and it is frequently met in economic

problems,
The GNLCP encloses many well-known problems in the field of
mathematical  programming. Among these problems we

nonlinear complementarity problem

mention the
(NLCP) and the generalized linear
complementarity problem (GLCP). The NLCP can be seen as a special case
of (1.1) by taking a, = 0 and bi = += for all 1 € {1,..,,n}, For an
algorithm solving the NLCP we refer to (2). The GLCP can be seen as a
special case of (1.1) by assuming f to be linear. An algorithm solving
the GLCP can be found in (3). Our algorithm is a natural alternative
for the simplicial algorithm developed by van der Laan and Talman in
().

The paper 1s organized as follows. Section 2 introduces the path
of points the algorithm follows approximately, The steps of the
algorithm are described in section 3, To approximate the path
described in section 2 the algorithm makes wuse of a simplicial

subdivision of C". In section 4 we present an appropriate simplicial
subdivision of C".

2, The path to be approximated by the algorithm.

The path of points in c® which the algorithm will approximately
follow starts din an arbitrarily chosen point v € ¢”, with respect to
this point v we make the following assumption,

Assumption 2.1 (nondegeneracy at v): In the starting point v there

does not exist an i € {1,...,n} such that fi(v) = 0.

Starting in v the algorithm follows approximately a path of points x
in ¢" such that for some py 0 < p €1, x solves the GNLCP on
Cz 1= (1-p){w} + pc“ with respect to f, i.e., for all i € {1,...,n}

fi(x) {0 1if (1-p)vi *pay = x;
£,(x) = 0 if (1-e)v, + pay < % < (L-plyy + eb, {2.1)
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fi(x) >0 if ®, = (l—p)vi + Pbi'

Under some regularity and nondegeneracy conditions the set of points x
being a solution of (2.1) for some ¢, 0 £ p £ 1, form piecewise smooth
curves, Each of these curves is either a loop or a path with two end
points. One of these paths, say P, has v as an end point for p = Q.
All other end points of paths in ¢" are solutions to (1.1). The
algorithm follows approximately the path P from v to its other end
point.

By increasing ¢ from 0 the path P leaves v in the direction
pointing towards the corner point z of ¢" where z, = bi if fi(v) >0

and z, = a; if fi(v) <0 for all 1 € {1,...,n}. If along the path P at
a point x = (1-p)v + pz, with ¢ between O and 1 and z a point in the
boundary of c", fj(x) becomes zero for some j € {i,...,n} while zj =
a‘1 {or bj)' then either x solves (1.1) or the path continues by

increasing xj from (1—p)vj + pai (decreasing x. from (l-p)vj + pbj).
If at a point x on P, x_. becomes equal to (1-(:)«1‘1 + paj (or (l-p)vj +
pbj) for a j € {1|fi(x) = 0}, then the path P continues by decreasing
{increasing) fj(x) from zero. Finally, if at & point x on P, ¢ becomes
equal to 1, then, because C; = ¢" and hence the conditions in (2.1)
reduce to (1.1), the point x is a solution to the GNLCP in (1.1) and
thereby an end point of the path P in Cn. In this way the path P leads
from v to a solution of (1.1).

3. The algorithm.

The algorithm approximately follows the path P described in
section 2 by generating a piecewise linear (p.l.) path P connecting v
with an approximate solution % of (1.1), For a description of this
p.l. path we approximate the function f by a p.l. approximation F.

To define a p.l. approximation F of f we need to subdivide Cn into

simplices. So, let G" be a triangulation or simplicial subdivision of
n

C', For an appropriate simplicial subdivision of Cn we refer the

interested reader to section 4.
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Definition 3.1: The p.l, approximation F of f with respect to the
simplicial subdivision G"of ¢ at a point x € ¢" is given by

n+l i
F(x) = I,27 A0 (3.1)
where the convex hull U(yl,...,yn+1) of yl,....yn+1 in C" is an N~
dimensional or n-simplex in q" containing x and where Al""‘kn+1 > 0
_ gn+l i n+l _ -
are such that x = Zi=1 Ay and Ei=1 A o= L

The results obtained in section 2 with respect to f can also be
applied to the p.l. approximation F of f., In particular, there exists
a p.l. path P of points in C" connecting v and a solution to (1.1)
with respect to F. For each point x on the path P there exists ap
between 0 and 1 such that for all i € {1,...,n}

Fi(x) <0if (1-p)vi * ey = X,
F,(x) = 0 if (1-p)v, + ea; < x; < (1-p)v; + pby (3.2)
Fi(x) > 01if x, = {1-plv, + eb,.

Notice that in (3.2) the sign pattern of F(x) plays a very
important role. Therefore we introduce the notion of a sign vector.

Definition 3.2: A vector s € Rn is a sign vector when for all i €
{1,...,n} we have that sy € { -1,0,+1}.

Now, let for each sign vector s the set Cn(s) be defined by

n _ n ~
¢™(s) = {x € ¢"| for all i, x, = a if s 1

and x, = b if s = +1}. (3.3)

If v € Cn(s) we define A(s) = &, otherwise A(s) is the convex hull of
n
v and C'(s), i.e.,
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A(s) = {x € Cn| for some p,
(1-p)v, + pa, =

Cc

e <1, and for all i

|
=

if s, = -1
- - - (3.4)
(1 p)vi + pay < Xy < (1 p)vi + pbi if 8, = 0

>
!

= (1—p)vi + pbi if s = +1},

Clearly, x € P satisfies x € A(s) with s the sign vector such that s =
sgn(F(x)).

The simplicial subdivision @ of ¢ has to be such that it

triangulates each nonempty subset A{s) into t-simplices where t, the

dimension of A(s), is equal to |Io(s)|+1 with Io(s) 1= {1 €
{1.....n}|si = 0} (see section 4 for an appropriate simplicial
subdivision). So, if x € A(s), then there are a t-simplex
c(yl,...,yt+1) in A(s) and numbers xl.....xt+1 2> 0 such that x = ;:i
Ayt oand 3HE L =1
i i=1 "1 )
On the other hand, if sgn(F(x)) = s, then there exist my >0, h ¢
(4] .
I7(s), such that F(x) = zhilo(s) uhshe(h), where e{h) is the n

dimensional unit wvector with ei(h) = 1 if h = i, Hence, if x lies on

the path ?. then for some sign vector s there is a t-simplex

d(yl,...,yt+1) in A(s) such that the system of linear equations given
by
stel o £(yt) S5 o0 I CICYN R () (3.5)
i=1 M 1 he1Y(s) *nnl o 1 :
has a nonnegative solution x; 20, 1= 1,...,t+1, ua > 0, hilo(s).
with x = X;:i x;yi. The vector 0 in (3.5) denotes the n-vector of

ZEeros.

System (3.5) is a system of n+l equations with n+2 unknowns
leaving us with one degree of freedom. So, assuming nondegeneracy, &
line segment of solutions to (3.5) exists which can be followed by
making a linear programming pivot step in (3.5). This line segment
corresponds to the linear piece of P in o defined by the points x =

t+l i
Zi:l Xiy .
In an end point of a line segment of solutions to (3.5) either kp
= 0 for some p € {1,...,t+1} or My = 0 for some j £ Io(s). If at an
end point, Xp = 0 for some p € {1,...,t+1}, then the point X = Zi#p
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kiyi lies in the facet t of © opposite the vertex yp. The facet % is

elther also a facet of exactly one other t-simplex, say o, in A(s) or
1t lies in the boundary of A(s).

Suppose o exists. Then, in order to continue the path P in A(s), a
pivot step is made in (3.5) with the column [f{ o7 1] corresponding
to the unique vertex 9 of & not contained in t. The algorithm is
continued by repeating the procedure described.

Suppose o does not exist and hence T lies in the boundary of A{s).
If 1 lies in Cn(s). then the algorithm has found a point % € Cn(s)
with sign wvector s equal
solution for (1.1)

to sgn(F(x)) so that x 15 an approximate
. Otherwise, 7 is a (t-1)-simplex in Als) where s is
a sgign vector such that E& # 0 for some 4 € Io(s) while 51 = g, for
all i # 4. Then the algorithm continues in A(s) by pivoting the column
[546(4) 7,017 into (3.5).

If at an end point of solutions to (3.5), m, 1s zero for some j 4
s), then at x 2t+1

{1 iy we have F (%) = sJuJ = 0, Let s be a sign

h % for h # j. Suppose that A(s) =
Then X lies in C"(s) whereas sgn(F(x)) = §.
solution to (1.1)

19
vector such that 8, = O and s

Hence, x is an approximate
. Otherwise, if A(S) # &, then there is exactly one
(t+1)-simplex & in A(s) having ¢ as a facet. Now the algorithm
continues by pivoting the column [f‘(gl)T,l]T into (3.5), where y is the

vertex of @ not contained in a.

Now we have described how the algorithm proceeds along the path P

in the different subsets A(s) of Cn, we still have to describe the

initialization of the algorithm at v. At v the system (3.5) becomes

f(v) n e(h)] _ [0

M[ 1} h=l h"h[ o) = [1 (3.6)
having & unigue solution k =1, n, = sgfh(v) >0, h€ {1,...,n},
where s0 = sgn{f(v)). If A(so) 2, then v Ecgh (s } and the algorithm

stops with an exact solution at v. Otherwise, the starting point v is

a facet of a unique Ll-gsimplex c(yl,yz) in A(so) with y1 = v, The

algorithm then pivots the column [f‘(yz)T.l]T into (3.6).
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Since all steps are unique, returning to v is impossible, and the

number of simplices is finite, the algorithm terminates within a

finite number of steps with an approximate solution x of (1.1). The
accuracy of the approximation f(x) can be measured by the smallest & »
0 for which for all i € {1,...,n}

fi(f) <e 1if a; = fi
-6 < fi(f) e ifa < % <by (3.7
~& < Fi(x) if x; = bi'

If f(x) is not accurate enough, i.e. if € is too large, the algorithm
is repeated being started at v = % with a finer simplicial subdivision
of c". This in the hope to find s more accurate approximation within a
relative small number of steps. In this way, within a finite number of

steps an approximate solution with any accuracy can be found.

4, A simplicial subdivision of C",

In order to triangulate c” one can use any simplicial subdivision.
The only restriction one has to pose on the triangulation of c® to
underly the algorithm described in section 3 is that it has to
triangulate all nonempty subsets A(s), A triangulation that perfectly
fits into this framework is the V~triangulation of the product space
of unit simplices developed in (1). In this section we adapt the
V-triangulation to a triangulation of Cn.

' To describe the triangulation we first subdivide each nonempty
A(s) into subsets A(s,y(T)) with #(T) = (yy,....7,_4), t = [1%(s)s1,
a permutation of the t-1 elements of a set T such that for all jEIO(s)
either j or -j belongs to T. If we define the projection p(s) of v on
Cn(s) as the vector with elements

8, if 8, = -1
ph(s) =15, if s, = +1 h € {1,...,n}, (4.1)
v, if s, =0

h h
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then A(s,¥(T)) is defined as the convex hull of v and the projections

p(sh). h € {1,...,t}, where

M es s ):‘j:rl1 o(r,) h € {1,...,t}, (4.2)

with for all i, ei(xd) = +] if yj = 1, ei(yj) = -1 if ¥y, = -i, and
ei(rj) = 0 otherwise. Notice that st = g and that p(sl) is & vertex of
o

For some positive integer m, each nonempty A(s,¥(T)) is now
triangulated into t-simplices G(yl,n) with vertices yl....,yt+l in C"
such that

i) y1 = v+ 2E=1 a(k)m_lq(k) with integers a(k) satisfying

0<a(t) ... < a(1l) {ml;
i1y m = ("1""‘"t) is a permutation of the elements of
{1,...,t} such that for all i € {1,...,t-1} holds :
prp'ifm, =i, n_ =1+, and a{n_,) = a{m );
ivl 4 P P P P
idi) y =y e moglm), 4= 1t

where q(l) = p(sl) - v and

alk) = p(s¥) - p(sFY, k=2,....t (4.3)

If we denote this triangulation by G;(s,x(T)), then the set A(s) is
triangulated by the union G;(s) of G;(s,x(T)) over all ¥(T). Moreover,

" is triangulated by the union Gg of Gg(s) over all s, m‘1 being the

grid size.

In section 3 we described how to follow the path P through c" by
meking pivot steps in the system of equations (3.5) with respect to a
sequence of adjacent gsimplices o in A(s) for varying sign vectors s.
After having introduced a specific triangulation of ¢" we will now
describe how, given the parameters yl, m, and a(h), for h = 1,...,¢,
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of a t-simplex o, the parameters of a simplex o adjacent to ¢ are
obtained.

The movement from a t-simplex G(yl,n) in A(s,¥(T)) to an adjacent
simplex 3(;1,5) ig called a replacement step when E(;l,ﬁ) is also a
t-simplex in A(s,¥(T)). Making & replacement step we replace the
vertex yp, p € {1,...,t+1}, of ¢ opposite the common facet t of o and
o by the vertex y of o not belonging to t. The possibilities are

listed in Table 1, where &, = a(h), h = 1,...,t, and 8, = 0, h =
t+l,...,n,

Table 1: Replacement step.

-1 - -
y n a
=1 y1+m-1q(n ) (m S a+e(m, )
1 1 2' e 1
1<¢p Ct+l y ("1'“""p-z'"p'"p-l'"p+l'"""t) a
p = t+l yl—m-lq(n Yy (m.m o) a-e(m, )
t [ A A TS t

In case the replacement step with regpect to yp cannot be
performed, the facet t of d(yl,n) opposite yp lies in the boundary of
A(s,r(T))., Lemma 4.1 describes when T 1lies in the boundary of
Als,y(T)).

Lemma U4.1: Let a(yl.n) be a t-simplex in Gn(s,x(T)) and T the facet of
o opposite vertex yp, 1 < p < t+l. Then T lies in the boundary of
A(s,r(T)) if and only if one of the following cases holds:
1y p =1, LA 1, and a(nl) = m~1;
2) 1 ¢ p < t+1, "p—l = 1 and np = i+1 for some i € {1,...,t-1},
and a("p-l) = a(np);
3) p = t+l, LA t, and a(nt) = 0,

In case 1 of Lemma 4.1, © lies in Cn(s). In case 2 and when 1 = 1, @
shares T with an adjacent t-simplex E(yl.ﬁ) in A(s,r{T)) where T = T \

{r;} v by w(M = (), and s (g, o,
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"p—l'"p+l"“'"t)' Othirwise in case 2, a(yl,n) shares t with an

adjacent t-simplex o{y”,n} in A{s,y{(T)) where y(T) = (xl. ¥ ¥ g

’1-1'7i+1"""t-1) and = ("1""'"p—2'"p'"p-1'"p+1'"""t)' Case 3

and when I"(s) # # represents the case where the facet T opposite the
t+l

vertex y *L of o is the {t-1)-simplex E(yl,ﬁ) in A(s,r(T)) where 5 = s

velr )y T=T\ {r b ¥(T) = (ryeeoary ) and e (e

""t—l)‘
Otherwise in case 3, we have that t = 1 and a(l) = 0 which means that
T = {v}.

Finally, a t-simplex G(yl.n) in A(s,¥(T)) is a facet of exactly
(t+1)-simplex ¢ in a nonempty A(s) where Ek = 0 for some k £ IO(S)
and s, =8, for all other i € {1,...,n}, More precisely, let h = +k 1if
8 = +1 and h = ~k if 8y = -1, then ¢ is the (t+1)-simplex E(yl,ﬁ) in
A(s,¥(T)) where T = T u {(n}), ¥M
(nl....,nt,t+1).

one

= {¥y1e. ¥, _qoh), and m =
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