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SIMPLICIAL VARIABLE DIMENSION ALGORITHMS FOR
SOLVING THE NONLINEAR COMPLEMENTARITY
PROBLEM ON A PRODUCT OF UNIT SIMPLICES
USING A GENERAL LABELLING*T

G. VAN DER LAAN,*A.J. J. TALMANS aND L. VAN DER HEYDEN **

This paper deals with the nonlinear complementarity problem on the product space of unit
simplices, §. A simplicial variable dimension algorithm developed by van der Laan and
Talman for proper labellings of S is extended to the case of general labellings. General
labellings allow a more natural description of the complementarity problem on the boundary
of §. A distinctive feature of the new algorithm is that lower dimensional simplicial movement
can occur both on the boundary and in the interior of S. In contrast, the van der Laan and
Talman algorithm for proper labellings of S allows lower dimensional simplicial movement
only in the interior of S. Computational experiments confirm the usefulness of general
labellings for solving nonlinear complementarity problems.

1. Introduction. This paper concerns the nonlinear complementarity problem
(NLCP) on the product space of unit simplices. Let /* denote the index set {1,..., k 3
Let §=38"X---XS§" denote the product of N unit simplices S* = {9 &
REYUY Sy = 1. T ™= Mo b o, it = ):N n; and m = ):N il 1) = a8+ N
An element x € § will be denoted (Mo a0 xN) w1th X ==l s Xjn, +l})" =Ehy

jl’ . s
j € I'™. Similar notation will be used to describe elements of Rl % oo X RINEL =
R™. The datum for an NLCP on § is a continuous function z:S — R™ x =
(X15-..5 Xy) = 2(x) = (z2(x),..., zy(x)) satisfying x/z,(x) =0 for all x € § and

1= 1"" Given such a function the NLCP on S c0n51sts m finding a point x € S such
that z(x) < 0. Such a point x is complementary to z(x), that is, x;;Z;;(x) =0 for all
jeIV¥and i€ It

This problem arises quite naturally in different fields such as economics, nonlinear
programming, and game theory. An example of an NLCP on a single unit simplex is
the problem of computing an equilibrium price vector in a pure exchange economy. In
this example the datum z(-) is a market excess demand function. The complementarity
condition x’z(x) = 0 is known as the Walras law (see, e.g., [10]). An example of an
NLCP defined over a product of unit simplices arises in game theory when computing
a Nash equilibrium for a noncooperative multiperson game. Each player contributes a
strategy simplex to the simplicial product S. Examples of such NLCPs will be
presented 1n the computational section of the paper. Also discussed in that section are
NLCPs arising in nonlinear programming.
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The NLCP on § 1s equivalent to the well-known Brouwer fixed point problem on S
(see, e.g., [10]). The NLCP formulation adopted in this paper emphasizes that we are
especially concerned with the possibility of solutions, or fixed points, on the boundary
of §. Nash equilibria for noncooperative games, for example, typically lie on the
boundary of §. Similarly, NLCPs arising in nonlinear programming have solutions
lying on the boundary of S unless all constraints are binding at the optimal solution.
This paper presents a simplicial algorithm for solving the NLCP.

Scarf [10] first introduced a simplicial algorithm for solving the NLCP on a single
unit sstmplex, S”. His algorithm is based on a subdivision (or triangulation) of S” into
n-dimensional simplices, or n-simplices, and on a labelling assigning to each point in
S" an integer from the set /”*'. A simplex of the subdivision is said to be completely
labelled if its n + 1 vertices jointly bear all labels in 7”**!. The labelling is constructed
in such a way that a completely labelled simplex yields an approximate solution for the
NLCP. The reader will verify that an example of such labelling is

/(x) = min{i € I"*}|z,(x) = max, ¢ q+12,(x)}, xe s (1.1)

To ensure the convergence of the Scarf algorithm to a completely labelled simplex,
the labelling must satisfy a condition on the boundary of S”, called properness. A
labelling 1s said to be (Scarf-)proper if each point x = (x,,..., x,,,,)’ on the boundary
of §" 1s given a label i for which x;, = 0. Some simplicial algorithms alternatively
require the labelling to be Sperner-proper. A labelling is Sperner-proper if each point x
carries a label i for which x, > 0. For simplicity we cast our discussion in terms of
Scartf-proper labellings and refer to Freund [2] for details on Sperner-proper labellings.

An example of a rule which assigns unique and proper labels to points on the
boundary 1s

[(x) =min{iEI”“|xI=Oand x,-_umodnﬂ)?»O}, x € dS", (1.2)

with d§" = {x € §"|x; = 0 for some i € I"*'}. Note that this rule assigns boundary
points artificial labels, namely labels that bear no relation to the datum of the NLCP.
The reader will also verify that even when the labelling is given by (1.2) on the
boundary of §”, a completely labelled simplex still yields an approximate solution for
the NLCP.

T'he Scarf algorithm uses the information provided by the labelling to generate a
path of adjacent simplices terminating at a completely labelled simplex. Two simplices
are said to be adjacent if they share all but one vertex. A typical position of the
algorithm 1s an n-simplex whose n + 1 vertices jointly carry all labels in 7", one label
being duplicated. A typical step of the algorithm consists in deleting one of the vertices
with the duplicated label and moving to an adjacent simplex. The latter simplex shares
n vertices carrying all labels in 7" with the former simplex. The simplex differs from
the previous simplex in exactly one vertex. The algorithm terminates if the new vertex
carries the missing label, n + 1. If not, the new vertex shares its label with one other
vertex of the simplex and a new position is reached. The algorithm proceeds by
deleting the old vertex with the duplicated label.

The Scarf simplicial path terminates with a completely labelled simplex if the
labelling satisfies (1.2). The accuracy of the associated approximate solution for the
NLCP generally increases with the grid size (or mesh) of the subdivision. If a given
approximate solution 1s found to be of insufficient accuracy, the subdivision needs to
be refined. Eaves [1] first presented a simplicial algorithm which continuously refines
the subdivision. Another approach to computing approximate solutions of increasing
accuracy is the use of a restart algorithm. A restart algorithm is an algorithm which can
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be initiated at an arbitrary grid point. Successive restarts with subdivisions having
decreasing grid sizes yield increasingly more accurate solutions. Every restart is
initiated close to the most accurate solution computed so far.

Merrill [4] first introduced a restart algorithm for complementarity or fixed point
problems on R". Kuhn and MacKinnon [3] later proposed a similar algorithm for
complementarity problems on S”. The restart possibility is obtained by introducing an
additional dimension. The simplex S” is embedded into the set S” X [0, 1]. The latter
set 1s subdivided into (n + 1)-simplices having vertices on the “real” level., S” X VO,
or on the "artificial” level, $” X {1}. Such a subdivision is easily obtained by mapping
§" X [0,1] into a subdivided subset of S"*!. Vertices on the real level are labelled
according to (1.1) and (1.2). Vertices on the level S” X {1} are artificially labelled so as
to enable a restart at the desired location and to ensure the finite convergence of the
algorithm. The path generated by the algorithm consists of adjacent (n + 1)-stmplices
whose common rn-subsimpices bear all labels in 7”*!. The path terminates whenever
the algorithm finds a completely labelled n-simplex on the real level.

Luthi [8] avoids the artificial labelling on the boundary of S” and uses labelling rule
(1.1) on the whole simplex. The resulting labelling is not necessarily proper so that the
existence of a completely labelled n-simplex is no longer guaranteed. However, Liithi
observed that when all vertices in a subdivision of S” are labelled according to (1.1)
lower dimensional simplices on the boundary of S” yield approximate solutions for the
NLCP if they satisfy the so-called completeness condition. A z-simplex (0 < ¢ < n) 1S
called complete if for each index i € I""' one of the vertices of the simplex carries
label i or the simplex lies on the boundary x, = 0 of S”. As mentioned previously,
solutions for the NLCP often lie on the boundary. When this is the case, complete
simplices contained in a boundary generally provide more accurate solutions than the
completely labelled n-simplices generated by simplicial algorithms using proper label-
lings. To find a complete simplex, Liithi extends Merrill’s restart algorithm to the case
of a general labelling of §”. The new algorithm allows lower dimensional simplicial
movement on the boundary of $” X [0, 1], which is typically faster than a movement in
the same direction using full dimensional simplices.

Van der Laan and Talman [5] bypass the introduction of an artificial level and the
embedding of §” into §” X [0, 1]. Their algorithm, which assumes a proper labelling of
§", directly generates a path of adjacent simplices of varying dimension in S”. This
path starts at an arbitrary grid point representing a 0-simplex, and terminates at a
completely labelled n-simplex. The attractiveness of this restart method lies in the fact
that movements with simplices of varying dimension in S” are typically faster than
movements with full dimensional simplices in S”*1.

Finally, in [6] van der Laan and Talman extend their restart algorithm on S” to deal
with complementarity problems defined on a product of N unit simplices, S = S™
X --+ X§"~, The algorithm assumes a proper labelling of S. A labelling of S is a
function assigning to each point of S an integer in the set I = {(/, k)|j € IV and
k €I}, A labelling of S is said to be proper if each point on the boundary of S
carries a label ( /, k) for which x;, = 0. A rule which assigns proper labels to points on
the boundary 1is

[(x) = lexicomin{(j, k) € I|x; = 0 and x,,, > 0 with k" = k — 1(mod n, + 1)},

x € 48, (1.3)

where 9§ = {x € S|x;, = 0 for some j € I" and k € I""*!}. Given a simplicial
subdivision and a proper labelling of S, the van der Laan and Talman algorithm for
solving the NLCP on § determines a simplex whose vertices jointly carry the labels
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(J: 1), <o iC s+ 1) for'someji €4 . Such a simplex is said to be completely labelled.
A completely labelled simplex in a subdivision of § is easily seen to yield approximate
solutions for the NLCP if points in the interior of S are labelled according to the rule

I(x) = lexicomin{(j, h) € I|z;,(x) = max{,-‘k,e,sz(x)}. (1.4)

Note that this rule extends labelling rule (1.1) to a product of simplices.

In this paper we generalize the van der Laan and Talman restart algorithm on S to
the case of a general labelling of §. A Merrill-type restart algorithm (i.e. a restart
algorithm defined with the help of an artificial dimension) extending Liithi’s algorithm
to a product of unit simplices 1s not known. The new algorithm presents the variable
dimension features of the van der Laan and Talman algorithm on S and of Liithi’s
algorithm on S”". Lower dimensional movement is possible both in the interior of S
and on the boundary of S. As indicated earlier, both factors favorably influence the
efficiency of the computation. This is confirmed in the numerical experiments reported
at the end of the paper.

The paper contains some theoretical results. First, we introduce the notion of a
complete simplex 1n a labelled simplicial subdivision of S. A simplex o is said to be
complete if there exists an index j € I'V such that for each & € I"s*! either ¢ lies on
the boundary x,, = 0 of §, or ¢ has a vertex carrying label ( j, #). Our main theoretical
result 1s a lemma stating the existence of a complete simplex in an arbitrarily labelled
simplicial subdivision of §. The lemma is proven constructively using the simplicial
restart algorithm presented in this paper. The lemma was stated independently by
Freund [2]. The algorithm presented in Freund’s constructive proof of the lemma can
be considered a special case of our algorithm, where the initial grid point is chosen to
be a vertex of S. In our theoretical section, we further show how, when the labelling is
given by (1.4), complete simplices yield approximate solutions for the NLCP. A
by-product of our arguments is an intersection theorem for closed subsets of S that
generalizes an earlier result on S” by Scarf [10]. See also [2].

The paper 1s organized as follows. §2 contains our theoretical results. §3 reviews the
van der Laan and Talman algorithm for determining a completely labelled simplex in a
properly labelled simplicial subdivision of S”. §4 extends the latter algorithm to the
case of a general labelling of S. §5 discusses the introduction of vector labels in the
algorithm. As 1s well known, see, e.g. [10], vector labels generally yield more accurate
approximate solutions than integer labels. §6 contains our computational results.

2. Theoretical results. Let G denote a simplicial subdivision of S. Let /: S — I
be an integer labelling of S. We define the label and index sets of a r-simplex and then
state when the simplex is complete. Notice that the index set of a ¢-simplex identifies
the faces of S containing the ¢- Simplex

2.1. DEFINITION.. Let v = 7(x,..., x'"')bea t-simplexinG,0 <t < n=YN,
L(t)= {l(x"),...,(x"*1)} is the label set of 7. I(7) = {(j, h) € []xjh = ( for al]
x'e g’} isthe mdex set of 7

2.2. DEFINITION. Let 7 be a simplex 1n G. 7 1s complete if there exists an index
j € IV such that 7AYo s (/,n;+ 1)} ©L(7t) VU I(7). 7 is then said to be j-com-
plete. 7 1s said to be (j-) completely labelled if {(j,1),..., (/. i+ 1)) EllT).

Definition 2.2 generalizes to a product of unit 51mphces the concepts of complete
and completely labelled simplices in a simplicial subdivision of a single unit simplex.

The following lemma states the existence in a labelled subdivision of S of a complete
simplex. It will be proven constructively in §4.
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FIGURE 1. Complete Simpliceson S (N = 2, n;, = n, = 1).

2.3. LEMMA (Generalized simplicial Scarf lemma on S). A4 generally labelled simpli-
cial subdivision of S contains a complete simplex.

The lemma 1s 1llustrated in Figure 1. The labels of the vertices appear in parentheses.
The 1-simplices o, and o, are 2-complete. The O-simplex 7, is 1-complete and T, is
2-complete. The 2-simplex p 1s 2-complete. Observe that p has a 1-complete face but is
not 1-complete.

One easily observes that if the labelling is proper and given by (1.3) on the boundary
of §, then every complete simplex is necessarily completely labelled. The same holds if
the labelling 1s proper, without necessarily satisfying (1.3), and if the simplicial
subdivision contains no simplex that intersects all faces x, =0 of S, h € I''"!, for
some j € I'™. This last result is known as the simplicial Scarf lemma (see, e.g., [10]).
We thus have shown that the simplicial Scarf lemma on S follows as a corollary of
Lemma 2.3. Another corollary is the following intersection theorem for labelled subsets

of §S. See also [2].

2.4. THEOREM (Generalized Scarf lemma on §). Let C= {C,|(j,h) €1} be
a collection of possibly empty closed subsets of S that cover S, i.e., U inyerCm = 8.
Then there exist a point x € S and an index j € IV such that, for each h € 1",

PROOF. The proof follows from Lemma 2.3 and a limit argument. First, let
{G.lk =0,1,...} be a sequence of triangulations whose grid sizes go to 0 as k& goes to
infinity. An example of a triangulation that can be refined arbitrarily will be given in
94. Let /1§ — I be a labelling of § verifying /(x) = (, h) only if x € C;,. Lemma
2.3 states that each G, contains at least one complete simplex, say o,. There thus is an
index j € I and a subsequence of j-complete simplices, {0, |k’ = 0,1,...) converg-
Ing to a point x € §. Suppose that x;,, > 0 for some (j, h) € I. For sufficiently large
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k’, o, must have a vertex w* with /(w*") = (/, h). Hence, w* & C;- Since w*
converges to x when k’ goes to infinity, the closedness of C, implies that x € Cip-

2.5. COROLLARY. The NLCP on S always has a solution.

PROOF. Consider the NLCP on § with datum z:S — R”™. For (j, h) € I, let

Cr={x € S|z;,(x) =max ,, e;z;,(x)}. The continuity of z(-) makes the sets C
closed. Theorem 2.4 guarantees the existence of an index j € I and a point x € §
such that x € C;, if x;, > 0. Let H= {h & I |x,, > 0). For all h € H, Zip(x) =
max ; e ;Zy(x). The identity x'z,(x) =0 yields z;y(x) =0 for h € H. The in-
equality z,(x) < 0 for all / € I'"V is now immediate.

The following lemma bounds the accuracy of approximate solutions to the NLCP

associated with complete simplices. The labelling is the one described in the proof of
Corollary 2.5.

2.6. LEMMA.  Let I: S — I be a labelling such that I(x) = (j, h) only if z;,(x) =
max ; e 2 (Xx), with z(-) being the datum of an NLCP on S. Let n > 0 and let G be a
simplicial subdivision of S whose mesh is such that |z in(xX) =z (¥)| <mforall (j,h) €l

and for all points x and y lying in the same simplex of G. Any point x in a complete
simplex o satisfies z,,(x) < 2 for all (j, h) €I

PROOF. Since o is complete there exists an index j € IV such that, for each
he I, x, =0 forall x€qg or o has a vertex, say, y/", with Uy =15 k).
Suppose that there is a point x € ¢ with Z(x) > 2n for some (i, k) € I Let
H={he I”ﬁllxjh > 0}. Consider an arbitrary index » € H. o has a vertex, y/*
with /( y/*) = (j, h). Since both x and y/" lie in o, z,,(y/*) > 7. The labelling of y/*
then implies z,(y/") > z,,(y’/") > 1. Hence z(x) > 0 for all h € H. This clearly
contradicts x/z,(x) = 0 and proves Lemma 2.6.

1=

3. The van der Laan and Talman algorithm for proper labellings of S”. In this
section we review the van der Laan and Talman algorithm for finding a completely
labelled simplex in a simplicial subdivision of a single properly labelled unit simplex,
5". The algorithm first subdivides S” into n-simplices according to the ¢ triangula-
tion. The grid points of this triangulation form the set {y € 8"y, = m,/d, m, integer,

i € I""'}, with d being a positive integer. The grid size of this triangulation is 1 /d. To
define the triangulation further, let

1 -1 0 0
0 ] . =1 0
Q=1q(),....,q9(n+1)] = & Rir+=Dxmxl)

0 0 0 =i

=] 0 0 1
An n-simplex of the Q triangulation, o = a(y',..., y”*1), is the convex hull of
n+ 1 gnd points, y',..., y"*1 satisfying y'*! =i+ g(m)/d, i=1,..., n, with
m=(m,...,m,,) being a permutation of I"*! Since y"*! =y + g(m, ., ,)/d, an

n-simplex o has n + 1 representations in terms of a leading vertex, y', and a
permutation, 7.

A t-simplex o = o(y',..., y'*1),0 <t < n,ina simplicial subdivision is the convex
hull of 7 + 1 vertices, y',..., y'*! of an n-simplex in the subdivision. The (t — 1)-
simplex obtained by deleting a vertex of o is called a facet of 0. More specifically, the
facet o(p', ..o Ly L o 9t Y) of 0 is called the: facet of .o opposite vertex y'.
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FIGURE 2. Illustration of the regions 4(7) in S2.

a. v lies in the interior of S°. b. v lies on the boundary of §2 [A({2}) = A({2,3)) = @]

TI'wo simplices are said to be adjacent if they have a common facet. The subsimplex
obtained by deleting any number of vertices of a simplex o is called a face of o.

To compute a completely labelled simplex the van der Laan and Talman algorithm
partitions S” into relatively open regions A°(T) = {ye S"ly=0v+ Liera;q(j), a,
> 0}, where v 1s an arbitrary grid point and where T is a subset of I"*! of cardinality
at most n (|I'| < n). Let A(T) denote the closure of 4°(T). The regions A(7T) are
lustrated in Figure 2. Observe that 4(@) = A%(@) = {v} and that 4A(T) may be
empty if the initial point v lies on the boundary of S”.

Each nonempty region 4(T') is a ¢-dimensional convex, compact subset of S” with
t = |T|. The Q triangulation subdivides each nonempty A(7') into t-simplices. Each
such 7-simplex 1is uniquely characterized by a nonnegative Integer vector a =
(ay,...,a,.,)" satusfying a, =0 for j & T, and by a permutation = of 7. Such a
simplex 1s then denoted o(a, 7). The ¢ + 1 vertices of the s-simplex o(a. 7)1n A(T)
are

y‘I=U+ ZGJQ(j)/d, I=1,
jeT
=y‘”1+q(7rf_1)/d, = 2,..., e e (3.1)

Each n-simplex o in S§” lies in a unique region 4(7). Hence, although o has n + 1
different representations in terms of a leading vertex and a permutation of 7" "1, its
representation o = a(a, 7) 1S unique.

An 1mportant property of the given simplicial subdivision of each region A(T) 18
that any facet of a s-simplex in A(7) is the facet of at most one other -simplex 1n
A(T) (1 = |T'|). We now identify the s-simplex ¢ in A(7') sharing the facet 7 opposite

TABLE 1
[ a = (fl_; ..... Enﬁ-l); T = (ﬁl ..... T_Tr)
1 a, =a, + 1 for h = m (Toisv5 M, M)
=a, otherwise
2k ! a, = a, forh=1,..., ni+ 1 (TR TWriioiy Ty Mo Fosba oty 7, )
I+1 ﬂh=ﬂh—1 fOI'h"—“}'Tf (WIFW]'-'"“WI—I)

= a,, otherwise




384 G. VAN DER LAAN, A. J. J. TALMAN & L. VAN DER HEYDEN

vertex y, i=1,...,¢+ 1, in the t-simplex o = o(y',..., y'*!) with 0. Let y denote
the vertex opposite facet 7 1n o. It 1s clear from (3.1) that the only possibility for y 1s

y=y*'+q(m)/d ifi=1,

=y +4q(m)/d  2<ixi,

|

y' —q(m)/d S i (3.2)

The expression of the characteristics, a and 7, of the simplex o(a, 7) in terms of the
characteristics of the adjacent simplex o(a, 7) 1s easily deduced from (3.2) and appears
in Table 1.

Observe that o liesin A(7T')1f and onlyif y > O and a > 0. If either y 2 0O or a 2 0,
the facet t lies on the boundary of A(7") and there 1s no t-simplex in A(7) adjacent
with o through facet 7.

A(§1})

FIGURE 3. Illustration of the van der Laan and Talman algorithm for determining a completely labelled
simplex in a properly labelled subdivision of S~.
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Now consider a proper labelling of S” satisfying (1.2). Let 7 be a subset of J”*!
and let t = |T'|. A (¢t — 1)-simplex is called I-complete if its ¢ vertices jointly bear all
labels in 7. Any z-simplex o in A(T) has at most two I-complete facets. Any facet of
o lies in at most one other r-simplex in A(T '), which, if it exists, can be found by
following the rules in Table 1. If a facet of ¢ lies on the boundary of A(T), then the
facet belongs to a unique -simplex in A(T), and Table 1 does not determine an
adjacent simplex. The z-simplices in A(T) having T-complete facets therefore form
chains of adjacent -simplices with common I-complete facets. Every such chain is
either a loop or has two terminal simplices. A t-simplex in A(T), o, is terminal when
either 1t 1s (1) (T U {k})-complete for some k & T. or when it has (11) a T-complete
facet in the boundary of A(T). We consider these two cases in turn

() If 1 =n, o is completely labelled. If ¢z < n, then o is a boundary facet of a
unique (¢ + 1)-simplex o = o(a, #) in A(T) with T=TuU (e} jand T =
& T, k). 0 1s a terminal simplex in a chain of (7 + 1)-simplices in A(T') having
common 7-complete facets.

(1) The properness condition (1.2) implies that the T-complete facet, 7, lies in A(T)
with 7= T\ {k}, k = n,. If t > 1, then 7 is a terminal (¢ — 1)-simplex in a chain of
(£ — 1)-simplices in A(T) having common T—complete facets. If r=1, then T = @
and 7 = {v}. Notice that T = {/(v)} for this to occur.

A simplex could present both features (i) and (ii), in which case the chain reduces to
this single simplex. We nevertheless think of such one-simplex chain as having two
terminal simplices to account for the two distinct termination criteria present in the
simplex.

Except for the terminal simplex {v}, each terminal simplex of a chain is either
completely labelled, or uniquely determines a terminal simplex of a new chain. Chains
can thus be linked yielding loops, or paths with two terminal simplices. Except for the
simplex { v}, each terminal simplex on a path is completely labelled. There thus is a
unique path which has {v} as terminal simplex. The van der Laan and Talman
algorithm follows this path to the other terminal simplex which will be completely

labelled. The algorithm is illustrated in Figure 3.

4. An algorithm for general labellings on S. The algorithm presented in the
previous section was extended by van der Laan and Talman [6] to find a completely
labelled simplex in a properly labelled triangulation of a product of unit simplices, S.
This section generalizes the latter algorithm to general labellings of S.

The key to the new algorithm is to understand the extension of the regions A(-), as
defined in the van der Laan and Talman algorithm, into larger regions A(-). Indeed.
having defined a triangulation of these extended regions A(-), the new algorithm can
be described quite simply as operating in the regions A(-) in the same fashion as the
original algorithm operates in the regions A(-).

T'o motivate our modification of the original algorithm, we examine the case of a
single unit simplex S = S" with n = 2. First, consider the nonproper labelling
/(y) = for all y € S% with j € I’. The unique complete simplex in any simplicial
subdivision of S? is the 0-simplex {e(J)}, where e( ) is the jth unit vector. To reach
this complete 0-simplex from the starting 0-simplex {v}, 1t seems desirable to extend
A({ j}) into a 1-dimensional piecewise linear region A( { /}) having extreme points v
and e( /). A natural extension of the regions A({Jj}), j € I’, appears in Figure 4. For
this 2-dimensional example, the regions A({i, j}) coincide with the original regions
A({i, j}).- Next, consider a general labelling of S?2, like the one indicated in Figure 4.
T'he previous hint that the new algorithm operates in the by now familiar way 1n the
regions A(-) should enable the reader to replicate the simplicial path generated by the
new algorithm in its solution of the problem depicted in Figure 4.
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We now turn to the general case, § = §™ X --- X §"~. We first briefly review the
subdivision of S into simplices according to the Q triangulation [6,11]. The subdivi-
sion of a product of unit simplices 1s a straightforward generalization of the subdivi-
sion of a single unit simplex. The grid points of the O triangulation of S form the set
G={y€S|y,=m;,/d, m, mteger, (j, h) €1}, with (d,,..., dy) being a vector
of positive integers. The vector (1/d,,...,1/d,) 1s the grid size vector of the
triangulation. To specify the triangulation further, we generalize the matrix Q to be an
m X m block diagonal matrix

A e a8

LO QN_]

Each block Q 1s the (n; + 1) X (n, + 1) matrix used in § 3 for a Q triangulation of
the unit simplex S”. Let j€ I he I"*! and let g =YX/"}(n,+ 1) + h. The gth
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column of Q is denoted q(j, h). Hence q(j, h) = e(j, h) — e(j, h’) where h’ = h —
1(mod n; + 1) and where e( j, k) denotes an m-dimensional unit vector having a +1 is
position X/-/(n; + 1) + k. A leading vertex and a permutation of n columns of Q
define an n-simplex of the Q triangulation of S, just as in the case N = 1 discussed in
§3. The n columns of Q must, of course, be linearly independent. Hence, for each
Jj € I, the n chosen columns of Q contain, for each j € IV, exactly n; columns of Q.

Given an arbitrary grid point » € G, the van der Laan and Talman algo-
rithm partitions S into relatively open regions AN(T) ="{ y" " Sly ="p
iimer®q(Jj, h), a;, > 0}, where T is a subset of I such that the columns of Q with
indices in 7' are linearly independent, i.e. |T N I( JI<n; for each je€ IV with
I(j) = {(Jj, h)|h € I"'*1). Such a subset T of I will be said to be independent. Let
A(T ) denote the closure of 4°(T).

Each nonempty region A(T) is a t-dimensional. compact, convex subset of S.
t = |T'|. The Q triangulation subdivides each nonempty 4(7) into t-simplices. Each
such 7-simplex is uniquely characterized by a nonnegative vector g = (lysnni @) E
RAYE S s SER Mt satistying a, = 0 for (j, h) &€ T, and by a permutation 7 of T.
The simplex 1s then devoted o(a, 7). The ¢ + 1 vertices of o(a, m) are

yi=v+ ) ath_lq(j,h), 1 =1,
(/s h)ET

=y'"  + D7 g(m_,), s Qo il t+ 1,

where D is the m X m diagonal matrix whose ( j, h)th diagonal element is equal to d s
(j,h) €l

We now come to the main construction required for the extension of the van der
Laan and Talman algorithm for proper labellings on S to general labellings. We
extend the region A(T') into the region 4(T) = UB(T, U), where the union is taken
over all subsets U of I such that TN U= @ and T U U independent, and where
B(TU)=A(TUU)N {x € S|x;, =0 for all (j,h) € U). Each nonempty A(T)
consists of a union of |T'|-dimensional convex pieces.

Each nonempty B(T,U) is subdivided by the Q triangulation into f-simplices,
t = |T'|. To describe these simplices we need to introduce some notation. With
(/,h) €1, let p(j, h) denote the first index of the sequence (J, h — 1), (j, h —
7.) T (3 ) TR n;+1),...,(J,h) not in U. Let b(j, h) be such that p(j, h) =
(/,b(j,h)) and let ¢ = b(j, h) + 1 (mod i+ L),

The set P(J, h) is defined as follows:

PLjs k) = dse)slie & W coafgort; & Dl o D vna (L)) s if e By

= [ fo ¢ silgve 050 00 G B)) if ¢ < h.
A t-simplex in B(T,U) is characterized by a quadruple (7, U, a, 7) where a €
R™™H X -+« XR"*! is a nonnegative vector satisfying a;, =0 for (j,h)e TU U,

and where =7 1s a permutation of the ¢ elements of 7. The simplex is then denoted
o(1,U, a, ). The t + 1 vertices of o(T, U, a, 7) are grid points in S satisfying

(i) y'=v+ Z ath'—lq(j,h),
(/,hYeTuU

() 1 = B s T R

(i) Uc{(j,h) eIy}, =0}cTUU,
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with r(Jj, h) = L; 1yepr;md4(J, k) = e(j, h) — e(J, b(J, h)). Observe that (4.1.iii)
identifies U as the index set of the facets of S containing o(7, U, a, 7). The definition
of the directions r(-) indicates that o(7, U, a,7) also is a face of a simplex in
AT U U).

An important property of our simplicial subdivision of B(T, U) is that any facet of a
t-simplex in B(T, U) is the facet of at most one other z-simplex B(T,U), t = |T|. We
identify the 7-simplex o in B(T, U) sharing the facet 7 opposite vertex y’, i € I'*! in
the 7-simplex o = o(y',..., y'*!) with 0. Let y denote the vertex opposite facet 7 in
o. It 1s clear from (4.1) that the only possibility for y is

=y~ '+ D r(m,) 2Ll
=y —= D7 'r(m) i =1+ 1. (4.2)

The expression of the characteristics a and 7 of the simplex o(7, U, a, 7) 1n terms

of the characteristics of o(7, U, a, m) is easily deduced from (4.2) and appears In
Table 2.

The reader will observe that o lies in B(T,U) if and only if y > 0 and a > 0. If

either y or a fail to be nonnegative, the facet 7 lies on the boundary of B(7, U) and
there 1s no 7-simplex in B(7, U) adjacent with ¢ through facet r
It 1s immediate from (4.2) that y 2 0 only if

Yoty =0 and =1,
}p(w)—O and - 2 i<,

Yo =0 and i=1+1.

Furthermore, Table 2 indicates that @ 2 0 only if i=¢+ 1 and a,, =0 with
c—b(j,h)-l—l(modn +l)and(j h) =,

We examine these cases In turn.

(i) i = 1: y}j(’;l = 0. Let 7, = (J, h). The facet T of o lies in the face X p(m) = 0 of

M (TU U) N I(j)|=n, then 7 does not belong to any other region B(+); i
\(TU U)ynI(j)|<n, then 7 1S a facet of another simplex ¢ in B(7T,U) with

TABLE 2
l a T
1 Elf-h—aﬂr-l-l (j.,h)ep(ﬂl)
(Wz ..... ﬂf"wl)
=a;, otherwise
) r & o (m y Hj— 29 s Wy
..... jh L6 jh
XL EI Wf)
t + 1 A= Q=1 (J, h) € P(m,)
(Wr*ﬂlﬂ Wr—l)

Il

a, otherwise
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U= UU { p(m)). Having updated U, the characteristics @ and 7 of the simplex
o =o(T,U, a, 7) are as given 1n Table 2.

(11) =2 < . <K yp(w) = (0. Note that for this case to occur 7._, = p(m). T 18
a (t — 1)-simplex 1n B(T U)with T=T\{m_,}and U= UU {m_,}.

(m) i =1¢t+ 1 and y,,r = 0. 7 is (¢t — 1)-simplex in B(T,U) with T = T\ {=,} and
U=UU {m7}.

(iv) i =1t + 1, yjr >0;andva; =10 whereicr=ib( j;n) =1 (modn s=il)5( j,*h) =7
Let (j, k) be the index of the last zero element in the nondecreasing sequence
(40 @ycapnys ==l )o I K sonithenissassa. (2e—:1 )-simplex muB(T, U) wath (T =i Te\
(m,).If k # h thenU = U\ {(J, k)} and 7 is a facet of a t-simplex ¢ in B(T, U). The
characteristics a and 7 of 0 = o(7, U, a, m) are as given 1n Table 2.

We summarize our examination of the above four cases. If a facet 7 of a r-simplex in
B(T,U) lLies on the boundary of B(7,U), then one and only one of the following
holds:

(1) facet T does not lie 1n any other region B(-);

(ii) facet 7 is also a facet of a r-simplex in exactly one other region B(T, U) with U
differing from U 1n a single element;

(i1) facet 7 1s itself a (¢ — 1)-simplex 1in exactly one other region B(T, U) with
T| = |T| — 1 and U differing from U in at most one element.

Now consider a general labelling /: § — I and the problem of determining a
complete simplex. Let 7 be a nonempty, independent subset of / and let ¢+ = |T'|. The
t-simplices in B(7, U) having T-complete facets form chains of adjacent z-simplices
with common 7-complete facets. Each chain 1s either a loop, or has two terminal
simplices. A t-simplex belonging to such a simplicial chain in B(7, U) 1s terminal
when (1) it has a T-complete facet on the boundary of B(7, U), or when (11) 1t has only
one T-complete facet. As in §3, we continue to say that even a single simplex chain has
two terminal simplices, thereby identifying that there are two ways in which the
simplex i1s a terminal simplex. In the next paragraph, we show that, except for the
starting simplex { v}, each terminal simplex either 1s complete, or uniquely determines
a terminal simplex in another region B(7, U), where the sets 7" and U difter from 7°
and U respectively in at most one element. The O- 51mplex {v}1s a terminal simplex of
a single simplicial chain, the chain of 1-simplices in A({l(u)} having {/(v)}-complete
facets. Simplices in A(T') having T-complete facets can, for varying T, be linked into
chains of adjacent simplices of varying dimension. Each chain which 1s not a loop has
two terminal simplices. The 0-simplex { v} is the only terminal simplex that may not be
complete. Our simplicial algorithm determines a complete simplex by following the
chain for which {v} is a terminal simplex to its other terminal simplex.

We now indicate that a terminal simplex of a chain of adjacent #-simplices 1n
B(T, U) having T-complete facets, ¢t = |T|, either 1s complete, or uniquely determines a
terminal simplex of a similar chain in a region B(7, U) with T and U differing from T
and U respectively in at most one element. Let o = o(7T, U, a, m) be a terminal simplex
in B(7, U) having a T-complete facet 7. Let y!, ..., y'*! be the vertices of o and let 7
be the facet opposite y' in o, i € I'"'. o is terminal because (1) 7 lies on the boundary
of B(T,U), or because (11) o 18 T-complete with T= T U §Cj,oh)Ys (s ) E-T: 'We
examine both cases in turn.

(1) 7 lies on the boundary of B(7T, U). There is no simplex o in B(7, U) adjacent
with o through facet . The preceding discussion of boundary facets of 7-simplices in
B(T, U) yields the following four subcases.

(a) i = 1: y’;;}) = 0. Let 7, = (J, h). 7 1s either complete (if (U U) N I(j)| = n;)
or is a T-complete facet of a terminal simplex o = o(7,U, a,7) n B(T,U) w1th
U=UU {p(m)} (f (TU U)NI(j)| <n;). Having updated U, the characteristics

a and 7 are as given in Table 2.
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(b) 2<i<t y,,=0. 7 is a terminal simplex in B(T,U) with T = IR SR
and U=UU {7_,). %

(¢c) i=1t+ 1 and y,j,r = (. 7 1s a terminal simplex in B(T, U) with T = I'\ {7} and
U=UuU (7).

(d) i=1tr+ 1 and y,;f > 0, and a, = 0 where ¢ = 0(J;h) + 1:(mod n: 1) h)
= m. 1t a;, = 0 then 7 is a terminal simplex in B(T, U) with T = I\{m}) W ay,=0
let (/, k) be the index of the last zero element in the sequence (a;., a;.11y,.-.,a in)-
Then U= U\ {(J,k)) and 7 is a I-complete facet of a t-simplex o = o(7,U, a, m) in
B(T. U ). The characteristics a and 7 are given in Table 2.

(ii) o is T-complete for some 7 = T U {((j,h)y with (j, h) & T.

(@) (j,h) & U. o is either complete (f . (TR I(j)|= n;) or a facet of a
terminal simplex 6 = (7, U, a, 7) in B(Z,U):f (T WU) eIy < n;), with 7 =
(s, uh)): X

(b) (j,h) € U. o is a facet of a terminal simplex 7 in B(T,U) with U = U\
{((/, h)}. To specify the characteristic 7 of § = o(71,U, a, m), let (J, k) be the first
index in the sequence ( j, & + ) LR (6 - ksl 1) b 6 k) notin U Ift(j,k)eT
then (j, k) = 7. forsome i € I' and 7 = (T o oo ol QG RY, Wi S ) If(j,k)eT
then 7 = (m,..., 7w, (j, h)).

We have thus shown that, except for the terminal simplex {v}, every terminal
simplex in B(T, U) either is complete, or uniquely determines a terminal simplex in a
different region B(T, U).

The algorithm, starting at the O-simplex {v}, generates a simplicial chain going
through various regions 4 (1), where the simplices generated in 4 (7") have T-complete
tacets. The steps followed by the algorithm in its simplicial movement can be described
as follows.

Step O [Initialization]. Set T= @, U = {((j, h) e llv, =0}, a=0, 7= @ and
y = v.

Step 1 [Computation of the label of the incoming vertex]. Compute /(7). Let [(y)
be equal to ( , 4). Proceed to one of the following subcases.

(@) i(p)& T W-UME KT W UM I(j)| = n, then o(T, U, a, 7) is J-complete; stop.
If not, set i = ¢+ 1 and go to Step 2.

(b) /(y) € T. Determine the vertex y' of o(T, U, a, 7) for which /(y') = I(y) and
y' # y. Go to Step 3.

(¢) /(y) € U. Identify the first element, say (j, k), in the sequence (j, h +
L), il (D0 i) ot belonging to U. If (j, k) & T,set i =1t + 1. If
(/, k) € T, let i be the index such that 7. = (J, k). Proceed to Step 2. ,

Step 2 [Increase in the number of elements of 7 with possible decrease in the
number of elements of U]. Set

F="TO A ¥)},

U=U if 1(7) & U,
=UNAF)) I(7) e U,

7= (m,...,7_,, (7)) if i=¢+1
=(Wl,...,wf_l,1()7),713-,...,97{) LE i<t

Let y =y’ + D‘lr(a?,.). Set T = T, Chi= L_/, 7 = 7, and return to step 1.
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Step 3 [Replacement of y' in o(7T, U, a, w)]. As long as the conditions below are
not satisfied, a and 7 are updated as in Table 2. Let y be the new vertex of
o(7T,U, a, m), as given 1n (4.2). Set a = a, m = 7, and return to Step 1. The exceptions
to the above rule are:

(a) i =1 and y;(“;}) = 0. [Increase in the number of elements of U.] Let 7, be equal
to (j,h).Set U=UU {p(m)}. If (TUU)NI(j)|=n; then o(7,U, a, 7) 1s com-

plete; stop. If not then the updates @ and 7 are computed as in Table 2 and let
y =yt 4+ D (7). Set U = U, a =a, m = 7, and return to Step 1.

(b) 2 <i<tand y, ., =0.Go to Step 4.

(c) i=t+1and a;, =0, where m, = (j, h) and ¢ = b(j, h) + 1 (mod n; + 1). Go
to Step 4 if y> = 0. If y,,},r > 0, let (j, k) be the index of the last zero element in the
sequence (a,,, Iaj(cﬂ),..., a;,). If (j, k) = m, proceed to Step 4. If (J, k) # m, go to
Step J.

Step 4 [Decrease in the number of elements of 7" with possible increase in the

number of elements of U]. Set

T = T\{w;!:'-l}’

Let 7' be the vertex in (7, U, a, 7) with /(') = m,_,. Set T = T, U
i = i, and return to Step 3.
Step 5 [Decrease in the number of elements of U]. Set

|
S
3

|
|
oo
=
o

U= U\ fCl )
& =t 1\ dor(j i) e PLih),
= a otherwise,
T = (75,00, 500 Ta)s

Let y = y! — D™ 'r(7,). Set U= U, a =a, m = 7, and return to Step 1.

This concludes the description of the steps followed by the algorithm in its simplicial
movement. The possible number of different simplices visited by the algorithms being
finite, the algorithm will terminate finitely with a complete simplex unless 1t returns to
a previously visited simplex. The first simplex visited twice would be reachable in three
different ways from adjacent positions [7]. This is impossible as we have shown that
any simplex of a simplicial chain is adjacent to at most two simplices of the same
chain, with the O-simplex { v} being adjacent to at most one simplex of the same chain.
Another well-known way to prove the absence of cycling is to verify that the
algorithm’s steps satisfy the ‘reversibility property.” To explain this property, assume,
that after initializing the algorithm at a position associated with a simplex o, the steps
of the algorithm generate the vertex y and a new position associated with the simplex
5. The algorithm obeys the ‘reversibility property’ if simplicial movement in the
‘reverse direction’ (i.e. through the facet of o opposite y) returns the algorithm to o. If
satisfied, this property clearly eliminates any possibility of returning to a previously
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visited position, except the initial one. But the latter is excluded as well, because the
starting position can be reached (and left) in only one way.

The convergence of the algorithm to a complete simplex constructively proves
Lemma 2.3 for the Q triangulation. The proof for an arbitrary triangulation of S is
similar. Given a vertex v of S, one defines 1-dimensional simplicial paths, Intersecting
only in v, from v to each of the vertices of S. These paths are then used to define the
regions A(7), and then the extended regions A(T), just as we did for the O
triangulation. For more details, we refer to [2], where v is chosen to be one of the
vertices of S.

S. Vector labelling. Approximate solutions to the NLCP on S can also be
computed using vector labelling. The extension from Integer to vector labels is
standard (see, e.g., [10], [6]). We highlight differences that arise with 6] because of the
improperness of the labelling.

To approximate solutions for the NLCP on S with datum z: S — R™ using vector
labelling, every point in § is associated with a vector according to therule /: § - R™
X = I(x)=2z(x) + Me, with e = (1,...,1)" € R™. The positive scalar M is chosen
large enough such that — Me is a vector that bounds the function z(-) from below, 1.e.
Z(x) + Me > 0 for'all x € S. The continuity of z(-) ensures the existence of such a
scalar M.

Given the vector labelling /(-), a t-simplex o = o(yl,.. .. y'™1) lying on the
boundary dS(U) = {x € S|x;, = 0for (j, h) U} of S is said to be complete if the
linear system

TIIN+ T e, b, = Me (5.1)

has a nonnegative solution A, K,, verifying, for some ;e IV, ki >0 only if
(/, h) € U. Simplex o is then also said to be J-complete. The following lemma states
that a complete simplex yields an approximate solution of the NLCP on S

0.2. LEMMA. Let z: S = R™ be the datum of an NLCP on S. Let IS — V)
x = l(x) = z(x) + Me be the associated vector labelling of S. Let m > 0 and let G be a
simplicial subdivision of S whose mesh is such that |2(x) = 2, (¥)| < m forall (j, h) € ]
whenever x and y lie in the same simplex. Finally, let o = o(y',..., y'*1) be a complete

simplex in the boundary dS(U) of S, UC I. Any pointy € ¢ satisfies z;,(y) < 27 for
all (J, h) € I.

PROOF. Let A, and p ;» denote the weights associated with the complete simplex o
and satisfying (5.1). Let j € IV be such that k;n > 0 only if (j, h) € U. Further, let
A=XIA; and U(j) = I(j) N U

We first claim that A > 0. If not kjn =M for all (j, h) € I(j) and, hence.
U(j) = I(j). This is impossible as no simplex in a simplicial subdivision of S/ can be
contained in all facets of S-.

Next, observe that pin =0 for (j, h) € (_]-(j), where {7(1') = 1(j)\ U. Equation
(5.1) can be rewritten

I+ 1

¥ (zﬂ,(_})") + M)}\,- =M for(j, h)e (_](j) (5.2)

i=1
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Simple manipulations yield

r+ 1

Z (Zjh(yj) i J‘h(Y))}\f/)\ 5 Z;h()’) =M(1 —-A)/N for(j,h) € (_](J) (5.3)

i=1

Observe that, since y € o, y;, = 0 for (j, h) € U(j) and L, e ;) V;» = 1- Hence
0 - ()zj)’zj(y) - ZU‘.MEU(j)yJ.h;}+h(y). Summation of the above equations, after multi-
plication with the weights y,,, yields

t+1
Z___ Yin E (Zjh(yj) T zjh(y))hf/)\ = M(1 - A/A).
(hyet(y) =1
The inequality M|l — A/A| < 7 easily follows as the vectors y, y',..., y'*! all lie in o.

Equation (5.3) then yields z,(y) <27 for (j, h) € U(j). The validity of the in-
equality for any (j, h) € I follows from (5.1) in the same manner if we first recall that
the weights u, are nonnegative. =

To use the algorithm of §4 with vector labellmg we need to extend the notion of
T-completeness. 4 (¢t — 1)-simplex 7 = (Y, 2.5 P m A(T) t = |T|, 1s said to be
T-complete if the system of linear equations

Z[()’j)}\f"' 2, e(.}.?h)”ﬁ::Me (5.4)

=1 (jyn)El

has a nonnegative solution A, p, with p,, > 0 only1if (j, h) & T. We assume, without
loss of generality, that linear system (3. 4) is nondegenerate. The linear system, when
feasible, then has a unique solution.

C0n51der a t-simplex o = o(y',..., y'*") having a T-complete facet 7 =
r(y', ..., y"). A linear programming prOt step introducing column /(y‘*') into the
feasible basis of (5.4) eliminates from the basis either a column /(y”/), 1 <j <, or a
column e( j h), (J, h) & T. The first occurrence identifies a second 7T-complete facet 1n
o, T=7(y,...,y/7Y, y/*,..., y'"). The second occurrence indicates that o 1s
T-complete wnh T =TU {(j, h)}. The fact that the labels are nonnegative vectors
different from zero implies that the linear system is bounded. The nondegeneracy
assumption then ensures that every linear programming pivot step identifies a unique
column to be removed from the current basis.

As in the case of integer labels, T-complete facets of simplices in A(T) can, for
varying T, be linked to form simplicial chains. The algorithm again follows the unique
simplicial chain having the starting O-simplex {v} of endpoint to its other terminal
simplex, which will be complete. The vector labelling algorithm accomplishes this by
alternate linear programming pivot steps and simplicial replacement steps, outlined 1n
the preceding section. The linear programming step determines whether a vertex of the
current simplex needs to be replaced, or whether a new vertex needs to be added to the
current simplex because of the extension of the label set 7. The reverse of the latter
step is called for when, for some ( J, h) e T, a T-complete facet, 7, 1s reached in A(T)
with T = T\ {(J, h)}. Let 7= 7(y",..., y') with ¢ = |T|. The umt vector e(, h) 1S
introduced into the current basis for linear system (5.4). A linear programming p1vot
step removes a label /(y/), 1 <j < t, from the basis. The algorithm then pursues its
simplicial movement by leaving simplex 7 through its facet opposite vertex y/.
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6. Applications and numerical results.

Application 1. We first consider the strictly convex quadratic programming problem
with quadratic constraints (QPQC)

mil'l Qn+1(x)
st 10(x). =0 e I", (6.1)
X € P

where each Q,: R* -» R, x - Q,(x) is a strictly convex quadratic function and where
P 1s a nonempty compact polyhedron in R™. See Phan-huy-Hao [9].

Let x: 8" - P, u— x(u) denote the unique solution of the convex quadratic
programming problem (with linear constraints)

n—+1

min:; Y. wi0:(x) 7 st x € P.
i=1

The mapping x(-) 1s easily shown to be continuous. Further, define the sets C,,
i e I"" as follows:

C,={u€S8"Q,(x) =max,;c.Q(x(u)) >0} fori

|
ek
~

= {ue S"Q;(x(u)) <Oforall jeI") n+ 1.

Theorem 2.4 states the existence of a vector u € §" such that u;, =0 or u € C,
i € I""!. The reader will easily verify that, if u,,, > 0, then x(u) is an optimal
solution of QPQC. The positivity of u, ., 1s ensured by a standard constraint
qualification requiring the existence of a point y € P satisfying Q.(y) < 0 for all
LiE LT,

To compute a solution of QPQC we use the algorithm with integer labelling. The
labelling 1s the one used in the proof of Theorem 2.4, /(u) = min{: € I""'|u € C,).

The data for the three QPQC’s solved appear in [9]. Our computational results are
given 1n Table 3. A comparison with the results in [9] 1s difficult because of the absence
of a precise description in [9] of the algorithm used, and because of an apparent
difficulty in solving the third problem. The reported number of iterations required in
that problem to refine a grid of size 10! by a factor of 10 is 278. The number of

TABLE 3

Cumulative Number of Function Evaluations Required to Solve
The Three QPQC'’s Given in [9] with Integer Labelling
(n = dimension)

Function evaluations

(cumulative)
Gnd size Problem 1 Problem 2 Problem 3
(d) (n=2) (n = 2) (n=4)
5107 4 5 2
5::: 1072 7 7 4
5.+ 10752 10 11 7
55102 15 18 13
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iterations required in [9] to solve the second problem are approximately three times
ours. We also solved the three problems using vector labelling. The resulting number of
function evaluations did not differ much from the number reported in Table 3.

Application 2. Our second application concerns the computation of equilibrium
strategy vectors of a noncooperative N-person game. Let n; + 1 be the number of pure
strategies of player j € IV, and let K denote the product of the index sets I"*!. A
VECLOr /¢ = (/; 52 KN E K denotes the pure strategy vector in which player j € IV
plays pure strategy k, € I ";*1. Furthermore, let a’/(k) be the loss to player j if k is
played. We assume without loss of generality that a/(k) > 0 for all Kk € K and all
j € I™. The simplex S" is the mixed strategy space for player j. The simplicial
product § = §™ X --- X §"~ 1s the strategy space of the noncooperative game, i.e., if
x € §, then x;, denotes the probability that player j uses pure strategy h € I"5*!. The
expected loss to player j if x is played is p/(x) = X, c x4 (k)l—[,_lx,k The expected
loss to player ; if he plays pure strategy h rather than x;, and the other players
maintain their strategies as given by x, 1s

m;’;(x) = Z af(k)ljlek,,

ke kK.
Jh 15

with K, = {k € K|k; = h}. Observe that for each x in § and for each j € I",
pl(x) = ”fllxjhm (x) A point x € § 1s an equilibrium strategy vector for this
noncooperative game if, for each j € I", p/(x) < m{(x) for all h € 1"+,

The computation of an equilibrium strategy vector 1s equivalent to solving an NLCP.
The datum for this NLCP 1s z: § = R"™, x = z(x) = (z;,(x)) = (pl(x) — mi(x)).
Corollary 2.5 then states that every noncooperative multiperson game has an equi-
librium strategy vector.

The integer and vector labelling versions of the algorithm were applied to solve three
noncooperative multiperson games. The data for these problems are given in Appen-
dix. We also applied the integer and vector labelling algorithms for proper labellings
described 1n [6]. Table 4 summarizes the numerical results obtained with both al-
gorithms when computing an approximate equilibrium strategy with accuracy
max  ; 4yerZp(x) < 10~ ®. Each restart refines the grid size by the factor two. Table 4
shows that the elimination of artificial labels can considerably shorten the computa-
tion.

TABLE 4

Cumulative number of function evaluations (and linear
programming pivot steps when applicable) required to solve
the three games described in the appendix up to accuracy

-8

Game Labelling
Integer Vector
Proper General Proper General
1 289 282 158 (146) 162 (149)
2 981 218 1120 (1758) 20 (20)
3 376 133 682 (653) 99 (77)

The table compares the use of a proper labelling (this is the algorithm
presented in [6]) and a general labelling. Results are presented for both
integer and vector labelling.
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Appendix: Loss tables for noncooperative multiperson games

Game 1: N = 3, natl s,

(1,1) (1,2) (2,1) (2,2)
(1,1) ] 2 8 5
(1,2) . 8 2 2
(2.1) 4 2 2 1
(2,2) 2 - 1 3
(3,1) 4 1 4 2
(3,2) 8 8 2 1

The key to reading the above loss table is as follows. The entry in row (/, p) and column (g, ) is the loss to
player ; if he plays pure strategy p and his opponents, ordered in increasing value of their index, play their

pure strategies ¢ and r, respectively. For example, the entry in row (3, p) and column (g, r) represents the
value of a’(q, r, p).

Game 2: N = 3, nj+1=3,

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3;3)
(1,1) 2 3 4 2 3 3 4 1 5
(1,2) 1 1 4 3 - 1 6 3 2
(1.,3) - 7 2 4 5 5 3 6 =
(2,1) 5 6 7 4 8 9 3 5 1
(2,2) 1 1 3 3 2 1 2 2 -
(2,3) 2 3 6 d 3 6 7 5 8
(3,1) 1 3 S 1 6 2 1 2 =
(3,2) 2 6 5 3 3 7 8 s 5
(3,3) S 2 2 - 6 d 8 1 3

Game 3: ' N'= 14, n,+1=2,

(15, 1) (1,1,2) (1,2,1) (1.2.2) (2051) (2,1.2) (2:2:15) (2:2.2)
(1.1) 3 3 4 2 3 3 4 1
(1.2) 4 1 4 3 1 1 6 8
(2.1) 4 6 2 4 5 3 3 6
(2.2) 5 2 7 4 8 6 3 5
(3.1) 1 6 3 3 3 3 3 2
(3,2) 2 2 6 5 4 6 1 5
(4,1) 6 3 5 1 3 2 3 2
(4,2) 2 6 d 3 4 7 1 5
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