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A PRODUCTION-INVENTORY CONTROL MODEL WITH
A MIXTURE OF BACK-ORDERS AND LOST-SALES*

B. T. DOSHI{ F. A. vAN DER DUYN SCHOUTENGZ AND A. J. J. TALMAN{

We consider a production-inventory control model of finite capacity, in which backorder-
Ing up to a certain level 1s allowed. We assume that there exist two possible production rates.
The control 1s based on two critical stock-levels and prescribes to change the production rate
used only when one of these levels 1s reached. A fixed cost is associated with every
switch-over. The rate at which customers arrive and the distribution of the demand of an
arriving customer depend on the production rate used at that moment. A formula for the
long-run average expected costs per unit time 1s obtained as a function of the chosen critical
levels. From this formula we derive expressions for various interesting operating characteris-
tics of this system, amongst which are the joint stationary distribution of the processes
describing the production rate useéd and the inventory of the system and the average number

of switch-overs and lost-sales per unit time.

1. Introduction

An 1mportant problem in the area of production planning i1s to dynamically select
the production rate in order to cope with the random fluctuation in the demands.
Determining how fast the production operation should respond to the demand
fluctuations and to what extent these fluctuations should be absorbed by accumulat-
ing inventory depends on the relative values of various associated costs. Among these
are the production cost rates, inventory cost rate. backorder cost rate, the costs due to
the lost sales and the costs of switching production rates. Fixing the production rate at
one constant high level causes high production and inventory costs. On the other
hand fixing the production rate at a constant low level 1s associated with high
backlogging costs and costs due to lost sales. Because of the random fluctuations 1n
demand the inventory level can become too high or too low even when this constant
production rate 1s selected to match the demand on the average. This obviously results
in high associated costs. This suggests dynamic changes in production rates depending
on the current inventory level. However, too frequent changes in production rates
result in high switch-over costs. Thus a suitable compromise 1s needed.

Problems of this sort arise in a variety of manufacturing organizations. For
example, changes in the through-put rate of chemical processing equipment may be
difficult and expensive. The output level of an assembly-line may depend on the
number of stations that are manned. The production output of job-shop operation
may likewise be influenced by the costs of making changes in the manning level by
bringing in new untrained people or laying off people.

The problem of finding a suitable compromise between the mentioned conflicting
alternatives has been treated under very special assumptions by Gaver [6] 1n an
initiating study on this subject.

This paper treats a much more general case of this production-inventory control
model. We consider the situation in which at any point in time one has to choose one
out of two possible production rates.

We assume that a switch from one production rate to another takes no time. The
rate of the Poisson process according to which customers arrive and the distribution
of the successive demands depend on the production rate used. By doing this our
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model contains several interesting special cases like the control of the arrival process
or the control of the service process or the control of both. The system is supposed to
have a finite storage capacity. If the system is at full capacity the production is
stopped, until a customer arrives.

Any demand which cannot be fulfilled immediately is backlogged provided the
total backlog does not exceed a given level; otherwise it is lost (whether partially or
entirely).

T'he cost structure imposed on this model includes holding-, shortage- and production
costs at a general rate, costs due to lost sales and fixed costs for switching the production
rate or restarting production.

We consider the control rule which is specified by rwo critical levels. This rule
prescribes to switch the production rate from fast to slow only when the upper level is
reached and to switch from slow to fast only when the inventory has fallen below the
bottom level.

For this control rule we derive by a simple approach introduced in Tiyms [11] a
formula for the long-run average expected costs per unit time. By an appropriate
choice of the cost parameters, we may obtain various operating characteristics for the
system amongst which are the stationary distribution of the inventory and the average
number of switch-overs and lost sales per unit time.

For a special class of cost functions one can use results of Doshi [4] to show that
the optimal control rule among all these two-level rules is, in fact, optimal among all
reasonable control rules. For the production-inventory model without switch-over

costs this was already proved in Doshi [3].

2. Mathematical Description of the Model

First we provide the necessary notation. Let o, and o, denote the two possible
production rates, with o, > g, > 0. We agree upon saying that the system is in phase i
when production rate o, is used, / = |, 2. Furthermore we define:

A;: = rate of the arrival Poisson process when the system is in phase /.

F.(-): = distribution function of the demand of a customer arriving when the
system 1S 1n phase /.

U: = storage capacity of the system.

L: = the (nonpositive) level below which the inventory i1s not allowed to decrease.

h.(x): = holding, shortage and production cost per unit time when inventory 1s x
and the system 1s in phase /, fori=1,2 and x € [L, U].

p;(v): = penalty cost when an amount y of the demand of a customer, arriving
when the system 1s in phase 7, 1s lost.

y,: = fixed cost if production is restarted at level o,

k: = fixed cost for switching the production rate from o, to o,.

Note that the average expected costs remain the same if there 1s a switch-over cost
k, for changing from o, to o, and «, for changing from o, to o, such that x, + k, = k.
We make the following assumptions:

(1) Given that the system 1s in phase /, the demands of arriving customers are
independent, i = 1, 2.

(n) £,(0)=0, [FxdF(x) ='pn, <o and F,(-) 1s assumed to be continuous.
( = 1, 2. The continuity of F,(-) 1s not essential for our analysis.

(111) A.(-) 1s bounded on [L, U] and has only a finite number of discontinuities for
=1, 2.

(1v) p,(-) 1s nondecreasing with [Fp,(y) dF,(y) < oo fori=1, 2.

The control rule under consideration can be characterized by two levels v, and 1,
such that L <y, < vy, < U. This (v,.y,) policy prescribes to switch the production
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rate from o, to o, only when the inventory reaches the value y, and to switch from o,
to g, only when the inventory has fallen below level v,. A typical sample path of the

process under the ( y,, v,) control rule 1s given in Figure 1.
Note that when a customer arrives with a demand Y, while the inventory 1s x. the

inventory 1s decreased by an amount of min( Y, x — L) and an amount of max(0, Y —
x + L) of the excess demand 1s lost.

U
Vi o
. ‘
0 /
T, T . I T / T
&
|
: lost demand
|

v

FiIGURE 1. High Rate 1s Used Between 7, and 7, and Between 7, and 7. Low Rate i1s Used Between
I' and 7, and Between 75 and T,. Production i1s Stopped Between 7, and 7.

3. Evaluation of the ( v,, y,) Control Rule

Let us define the state of the system as x (x") when the inventory level 1s x and the
system 1s 1n phase 1 (2). Denote by X(7) and S(r) the inventory level and the state of
the system at time ¢ respectively, where { X (r), 1 > 0) and {S(z).r > 0} are assumed
to be continuous from the right. Consider now the system controlled by a fixed
(¥1, ¥,) control rule. For definiteness let us assume y, > 0. The case y, < 0 can be
treated similarly with obvious modifications in the resulting formulas.

Using a powerful and simple approach based on the analysis of a properly chosen
embedded process of {S(¢), t > 0} we shall derive a formula for the long-run average
expected costs per unit time of this control rule, cf, also [11] and [12] for other
applications of this approach.

Assume the system 1s empty at time 0. Now let 7, = 0 and let

I,. = nth epoch at which either the inventory level reaches y, while the system is in
phase 1 or the inventory falls below y, while the system is in phase 2 or the inventory
level reaches U, n > |, and

S,. = state of the system at epoch 7, n > 0.

Then {S§,,n >0} 1s a discrete-time Markov chain embedded in the process { S(7). ¢
> 0}, with state space

S = {U YU {3/} U {x|L<x<p}

Note that {§,,n=0,1,...} never reaches a state in the interval (y}, U’) because
inventory increases continuously. Define

Z(1): = total costs incurred in (0, ¢], 7 > O.

Z,. =total costs incurred in (7,, 7,,,].n > 0.

c(s): =E(Z,|S,=s)and 17(s): = E(T,,,— T,|S,=35),5€E .
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The proof of the following theorem which i1s fundamental in our analysis can be
found 1n [11] and [12].

THEOREM 1. The Markov chain {S,} has a unique invariant probability measure
satisfying for any subset A of >

7(A) =‘Lq(5‘, A)7(ds) R

where g(-, - ) denotes the one-step transition probability distribution function of {S,}.
Moreover

EZ(}') ;
= [ c@)(ds)/ [ ()7 () 2

AT

[hm
[ — OC

Next we shall determine the stationary distribution = and the functions ¢(-) and
7(-). To do this we introduce the fol]owinﬁ notation. For/ =1, 2 and x > 0 let

—J (1 — F.(y)) ay.

Note that H (o) = A /0o, denotes the traffic intensity for the system in phase / and
that H.(-) is not a probability distribution function, unless H,(oc) = 1. By a trick given
by Feller [5. pp. 362-363] we shall associate with H,(-) a probability distribution
function that will be involved in the solution of several equations appearing below.

Let §, be defined as the unique root to

fxe“?"dH,(_r) =1, fori=1,2.
/0
Then we define for i = 1, 2 the probability distribution function G, by
G (x) = fﬂe‘ﬁt“dHf(_r). for x > 0.
J0

Finally we define the renewal functions M, by

Mix)= X G {x) Totx 30 (3)

where G"°(+) is the n-fold convolution of G,(-) with itself. To determine the stationary
distribution 7, define for all x €[y,, U] and v €L, v,

p(x,v): = obability that the first value of the process {S(z).r > 0} taken on 1n
the set {U'YU {y|L < y<y,)} belongs to the set { y | L < y <t} given S(U) = X,
and

po(x): =1— p(x, y,). forall x €(y,, Ul
Observe that p(-, -) 1s in fact the absorption probability function for a random walk

which plays a fundamental role in many queueing and inventory processes (€.g. [1]
and [12]).

THEOREM 2. For any x €[ v,, U]and v €[L. y,]

plx.t)=d(x.v) + [ eno(x =y v) dMy(y), (4)

where for some constant c,.
(X, v)=¢€,— Hi(x — v):
For any v €[L.v,]| the constant ¢, can be determined by the boundary condition

p(U, t)=0
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PROOF. First notice that p(-, v) is a continuous function for all v € L, y,].
Suppose the system is in phase 2. The probability of a customer arriving in the time
interval of length Ax /o, (in which Ax units are produced) is approximately A,Ax /o,
tor small Ax and the probability of no arrival during this time interval is approxi-
mately 1 — A,Ax/a,. So by appropriate conditioning we have, for x € (v, U]

A A x
p(x —Ax,v)= — {I—Fz(x-—t:)+f
0

g,

\

p(x —y,v)dFy(y)

J

X "_1'3_

+(1 — AAx/o,) p(x, v) + o(Ax),

from which we get

0 X, t') AZ p—_—
P(ax = { =1+ Folx = 0)+plx, v) —fo . PRx =P, ) sz()l)}. (5)

0,

[ntegration of both sides of (5) yields (cf. [1] and [12]
p(x, v) = &(x. v) +f"‘“-”p(x — y,v) dHy(y), forx € [y, U). (6)
0

Equation (6) can be converted with use of &, into a standard renewal equation, the
solution of which yields (4) (see [1, p. 77] and [5, p. 362]). Q.E.D.
Write for ease of notation

mo=7({U'}), m=a({)"}) and #(v)=w{y|L< y<v), forv e, ).

THEOREM 3. The stationary distribution 7 is given by

/

L= Vo =
To = Po(V1){ 2 — 2 polU —y)dF,(y) + Po( V1) ;
0

\

m=3(1 - T0)s

i

U— ' 3
T(v) =7yl 1 — r'stU =) +f 'lzp(U — Y, 0)dF,(y) + 3(1 — To)P( V), ).
0 y

\

forc€| L, y,].

PROOF. The proof of this theorem is immediately from relation (1), the definition
of p(-, -) and the relation T+ 7, +7(y,)=1. Q.E.D.

To determine the functions ¢(-) and 7(-) we define

Kk\(x): = the expected holding (shortage) and penalty costs incurred up to the first
epoch at which the process {S(r), r > 0} reaches the state y, given that §(0) = x,
L < x< y,and

Ky(x): = the expected holding (shortage) and penalty costs incurred up to the first
epoch at which the process { S(¢), 1 > 0) reaches either U’ or the set (VI LS y< )]
given that S(0)= x", y, < x < U.

From the definition of the function ¢(-) we have the following theorem.

THEOREM 4.

hE(U /75 Yq ~ G
c(U) = 3 ) +f0L a2t k(U — v)) dFy( y) +-/L'—LP2('V = U4 LY dF.( y)

+yi(1= F(U = 1))
c(v)=«+ k,(v), forv€e EAL
(1) = ko 1):
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The formula for 7(s) follows from the corresponding one for c¢(s) by putting
h(x)=1forx €[L, U], pi(y)=0fory >0,i=1,2 and Yi=Y>=k=0.

THEOREM 5.
x— L

Ki(x)=0b,—d(x) +j(; (b, — d,(x _.")}5’6” dM (v) (7)

where

il W Z A e |
d,(x) =fL { (2) B ply =z+ L) dF,(_1')]d:+ O (x— L),

0, 0, J--1

L <x<y,.
ky(x) = b, — dy(x) + f{;_'rz{bz — dy(x _,")}652"' dM,( y) (8)

where

A\

L.

J.'r hz(z) }\2 <
dy(x) =f | v 0_2 _[_LP?.(_V —z+ L) sz(_V)]di Y Rx

Yk .

T'he constants by and b, are determined by the boundary conditions

liTm Ki(x)=0 and limk,(x)=0
xTy, xTU

PROOF. The proof of this theorem is quite similar to that of Theorem 2. First note
that both k,(-) and k,(-) are continuous as is immediately clear. For all x € (L y) tor
which A, (-) 1s continuous at x it follows by the same conditioning arguments as in the
proof of Theorem 2 that

h(x)Ax A Ax
+

o 0,

B

Ki(x —Ax) =

- .

x—= L
f Ky(x —y)dE,(y)

L *4)

—_

o0 P\lix
+f (Ki(L)+p(y—x+ L)}dF,(y); + (l )kl(.r)+ 0(Ax).
x=<rL

) oF

From this equation we get for all x € [L, y,] at which A () is continuous

hl X )\I ’\I X
K'y(x) = ) + — ky(x) j; Lki(-" —y)dF(y)

g, 0, 0,

A

g

[ 7 (kL) +pi(y = x + L)} dF ()

Integration of both sides yields an equation which can again be converted into a
renewal equation. The solution of this equation, together with

k(L) = b, — d\(L) = b,

gives (7) (see also [12]). The proof of (8) is quite similar. Q.E.D.

We now have completed the calculation of 7, ¢(-) and 7(-) and so by equation (2)
we have a formula for the average cost of the (y,, v,) control rule. Using this formula
and making special choices for the cost functions we can deduce several important
operating characteristics of the system. To obtain the stationary distribution of the
inventory define for any ¢ > 0 the random variable 4(7) denoting the phase of the
system at time /, where the process { A(r), r > 0} i1s continuous from the right.
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Now fix kK € {1, 2} and z €[L. U]. We have (e.g. page 99 in [9])
lim Pr(A(1)=k: X(1) < 2)

[ — OC

= long-run expected fraction of time the system is In
phase-kA and the inventory is less than or equal to :=. (9)

However, by choosing A, (x) =1 for x €L, z]. h(x) = 0 for x € (z, U] and taking
the other cost functions and parameters equal to zero the right hand side of (9) 1s
represented by lim, _(EZ(1)/1). Hence for this special choice of the cost functions
and parameters lim,_ _(EZ(1)/1) gives the joint stationary distribution of the in-
ventory and the phase of the system.

Similarly by choosing p,(v)=1 for y >z and p(y) =0 for y € [0, z] for some
k € (1,2} and z > 0 and choosing all other cost functions and parameters equal to
zero lim, __(EZ(t)/1) represents the average number of lost sales larger than - per
unit time. Finally putting all cost functions equal to zero and vy, = 1 for fixed 7 (resp.
k=1) lim,___(EZ(1)/1) represents the average number of times production 1s re-
started at rate o, per unit time (resp. the average number of times the production rate
is switched from o, to o, per unit time).

From these results it is clear that for any (v,. v,) policy we may obtain numerical
results for all mentioned operating characteristics once we have determined the
renewal functions M (+). i = 1. 2 defined by (3). From renewal theory we know that
M () is the unique function which 1s bounded on finite intervals and satisfies for
x 20

M,(x) = G(x) + [ M, (x = 2)g() d. (10)

where g () is the probability density function of G.(+). From (10) the function M ()
can be numerically solved (cf. [7]) or alternatively approximating formulas for M ()
can be used (see [8] or p. 357 1n [3]).

Finally we note that for a production-inventory control problem with no backlog-
ging. a finite number of production rates and a linear cost structure Weeda [13] has
developed an efficient algorithm based on a general Markov decision method (cf. [2])
to compute the optimal switch-over levels.

4. The Exponential Case

In this section we give some explicit results concerning a case in which the renewal

functions M. (-) can be explicitly determined. Let for x > 0and i = 1. 2.

F.(x)=1—exp(—mnx)

[n this case the renewal function is linear. We find 8, = —n, + A, /o, and M (V)
=Xy /o, In the following formulas it 1s assumed that A, # o;n, for i = 1, 2. Put for
abbreviation a. =\, /o, B, =m, — «;, for i=1,2 and

R(yy.vy) =By {maexp{ Bo(U = 2)) ~ arexp{ By(U = ¥)) )y
Then

e
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Denoting
D(y, y,) =( on}j on;’ )(_1*, = Y55 ;}l—)-{- Aﬂ;} R(Yp Vy)
1 P 2172 2 2 P2
o ep(—m(y, -~ L)
oy | |
+ g T (WL B2 = ) — expl =nyly; - 1))
+ oa/[lgl {exp{ = B\(vi — L)} —exp{—ny(y,— L)} )
we find
;l_l.ng]c Pr(A(1)=1; X (1) < z)
l TN
~ D(yp ) - 1,0,( B “2’02) Lexp{ —m(y2 = 2)) —exp{ —my(y, = L)}}
X
"B Lexp{ = B0 = L)) —exp{ = Bi(y, = 2)}]
T mﬁiz(ag?z— 1) exp{ = Bi(ya— L)} —exp{=By(y,— 2)}]
L<z<y,
Iim Pr(A(7) =1: X (1) < z)
B ] - h — M < e .
D()‘]._l‘z) _ 7720|(B| — 1) Il exp{ UZ(}: L)}}
+ L (exp( = B3 — L))
0) P
Uy
~ CFXP{_BI(II —z)jp t 0, 3, E)
+ i texp{ =By(y,— L)} — 1}
”11812(181 — 1) #
V, S 2 S )
!lﬂl*I'I; Pr(A (1) =2; X(¢t) < 2)
B l up: _ o et 4 :
B D(y, y,) 021822 {EKP{_‘Bz(—LE H)} l} 02;2 (2=2)
VY2 S 28K )

lim Pr(A4 (1) =2; X(1) < z)

[ — OC

| | |
D(.-V]" -"}2) i 02 B:
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and
lim Pr(A (1) =2: X(t) < U)

[— OO
1 " N3 up I %
= R(y V) (1*—v+——)
D(ry.y,) _ By ; 0,3, \"' - 2o,

Also we find:
average number of switch-overs from a, to o, per unit time = 1/D(y,. »,):
average number of times production 1s restarted at rate o, per unit time
R(y, V)
D(ry: )
average number of times production is restarted at rate o, per unit time

R( - 12) | [ VA
= D(_l'l._V:) ( exp{ nl( .,12)J)"

average number of lost sales which are larger than z and occur while the system 1s
in phase 1 per unit time

exp(—m2) | a exp!
D(y ry,) Bi( B — M) e

exp{ —m(U — )}

—m( vy = L)} —exp{ = Bi(y— L)} ]

QX

& B (exp{ —my(y, — L)} —exp{=By(»,— L)}}

average number of lost sales which are larger than z and occur while the system 1s
in phase 2 per unit time

—
o

l
- D(y),)

exp{ —m(z + 2~ L))

' The authors are indebted to H. C. Tiyms for many helpful and enlightening discussions.
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