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Abstract

Due to embodied technological progress new generations of capital goods are more
productive. Therefore, in order to study the effects of technological progress, a model
must be analyzed in which different generations of capital goods can be distinguished.
We determine in what way the firm adjusts current investments to predictions of techno-
logical progress. In the presence of market power we show that a negative anticipation
effect occurs, i.e. current investments in recent generations of capital goods decline when
faster technological progress will take place in the future, because then it becomes more
attractive to wait for new generations of capital goods. In case that only investments
in new machines are possible, actually a whole wave of anticipation phases arises.
Journal of Economic Literature Classification Numbers: D92; O33; C61

Key words: Vintage capital; Embodied technological progress; Learning; Maximum
principle

1 Introduction

This paper studies the effect embodied technological progress has on the firm’s capital
accumulation process. Embodied technological progress implies that capital goods of later
date are more productive. In order to analyze the implications of this feature, a model must
be built in which capital stocks of different building years can be distinguished. To do so
a vintage capital goods model is developed in which capital goods of younger vintages are
more productive.

In a vintage capital goods model productivity of a capital good is completely determined
by its age and the year in which it actually operates. In view of technological progress,
productivity increases with time, for capital goods of a given age. On the other hand,
over time workers get more experienced in working with the same machine over the years,
so that the productivity per machine increases with age. For example, due to a learning
curve the LCD industry experiences a so-called ramp up time (time needed to start up
a production line) with a strongly increasing yield (amount of good products relative to
the total amount of products) in the first quarters after the start of production. Hence,
a trade-off arises: new machines are relatively productive, because they embody superior
technology, but due to learning effects it can still happen that working with old machines
leads to higher productivity than working with new machines.

Technological progress is increasingly embodied in new capital goods (see Dekle [14]). To
illustrate, Gordon [18] has shown that the relative price of capital has declined fairly steadily
and rapidly in the post-war US and other economies. Moreover, Greenwood et al. [19]
found that embodied technological progress is the main driver of economic growth. They
discovered that in the post-war period in the US about 60% of labor productivity growth was
investment-specific. A main example is information technology as noted by Yorokoglu ([32],
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p.552): ”Information technology capital has a very high pace of technological improvement.
Compared with more traditional types of capital, the efficiency of information technology
capital has increased much faster over the last few decades. As an example, consider the
market for personal computers. IBM introduced its Pentium PCs in the early 1990s at the
same price at which it introduced its 286 PCs in the 1980s. Therefore it took less than a
decade for the computing technology to improve on the order of 20 times in terms of both
speed and memory capacities, without increasing the cost”.

In Chari and Hopenhayn [13] three questions are posed: (i) why are new technologies
often adopted so slowly?, (ii) why do people often invest in old technologies even when
apparently superior technologies are available?, and (iii) how are decisions to adopt new
technologies affected by the prospect that even better technologies will arrive in the future?
To answer the second question, the work by, e.g., Solow et al. [27], Malcomson [24], Benhabib
and Rustichini [3], and Boucekkine et al. ([5], [7], [8], and [9]) cannot be used, because
there it is only possible to invest in the newest generation of capital goods. The common
denominator of the just mentioned contributions is the application of delayed differential
equations. Using partial differential equations for the analysis of vintage capital we were
able to answer Chari and Hopenhayn’s second question, because this allowed us to explicitly
introduce the possibility of investing in older capital goods, thus in non-frontier vintages
(see Feichtinger et al. [16]). In that paper it was found that investing in older technologies
can be preferred because older technologies are cheaper, due to experience effects it is
easier to implement them, and due to learning machines can be more efficiently used in
the production process over the years. As to the third question of Chari and Hopenhayn,
it was found in Feichtinger et al. [16] that the decision to adopt new technologies is not
affected by future technological progress. The reason is that in the model of Feichtinger et
al. [16] the firm exerts no market power. Hence, increasing its own production does not
have an effect on the output prices, so that the NPV’s of capital stocks of different age do
not influence each other. If the firm does yield market power, in contrast, investing today
decreases the output price during the lifetime of the machine in the future. Hence, investing
today reduces the NPV of future investments. Purpose of this paper is to analyze the effect
of future technological developments on the desirability of current technology investments,
while the firm has market power. To do so, we again apply the partial differential equation
approach and we assume for simplicity that the firm under consideration is a monopolist.

However, considering market power makes the mathematical analysis much more compli-
cated. In fact, its study requires the application of a new maximum principle for age-
structured control systems, that was developed in Feichtinger et al. [17]. The reason is
that with market power the output price becomes dependent on production, which in turn
depends on the capital goods of all generations present within the firm. Technically, this
implies that in the objective an integral term within the revenue function occurs.

The bulk of the literature that applies the capital vintage approach to study the implications
of embodied technological progress adopt the dynamic general equilibrium framework. One

3



of the recent papers in this area, Pakko [25], finds that technology shocks are accompanied
by initial declines of investment followed by a long transition period of higher growth. Such
an initial decline of investment is due to increased future economic depreciation of current
investment. That is, an anticipated increase in the rate of future embodied technological
progress increases the anticipated rate of economic depreciation of capital and therefore
decreases the present discounted value of marginal revenue produced with current invest-
ments. In the dynamic general equilibrium set up this economic depreciation is due to the
assignment of labor across vintages. That is, the new vintages will draw more labor away
in the future from the current vintage and therefore reduce its marginal product.

Our partial set up allows us to analyze the implications of market power leading to marginal
revenue being decreasing in production. From an economic point of view this is important,
because oligopolistic market structures become more dominantly present nowadays. For
instance, Pawlina [26] notes that: ”The extensive process of deregulation taking place in the
last decade, combined with a wave of mergers and acquisitions, has resulted in an oligopolistic
structure of a large number of sectors. A shift towards such a structure takes place not
only in traditional markets (telecommunications, energy, transportation) but also in more
competitive industries (fast-moving consumer goods, car manufacturing, pharmaceuticals).”
An oligopolistic market structure also applies to industries like semi conductor (computer
chips) and LCD screens, where the supply side only consists of a few major players and
where technological progress being embodied in new technologies is of prime importance for
investment decision making.

Like Pakko [25], we also found that a technology shock is anticipated on by an investment
decline in new machines before the shock occurs. This is because the firm wants to benefit
as much as possible from this shock by investing in new machines just after the shock has
occurred. The investment decline just before the shock makes that more new capital goods
can be purchased after the shock without reducing the output price too much. So, this
negative anticipation effect is similar to Pakko [25], but while in Pakko [25] this is caused
by a redistribution of labor among the vintages, in our set up the cause is the presence of
market power leading to decreasing marginal revenue.

However, in addition to Pakko [25] we found two more effects. First, this negative anticipa-
tion effect generates a whole wave of alternating positive and negative anticipation effects
taking place backwards in time. This wave is also caused by the presence of market power.
Take for instance the positive anticipation phase occurring just before the last negative an-
ticipation phase. This one is caused by the fact that during this last negative anticipation
phase production is low leading to a high output price. This makes investing more prof-
itable which induces the positive anticipation phase. However, during a positive anticipation
phase production is higher and thus price is lower, which in turn leads to another negative
anticipation phase occurring just before this positive one. In this way the whole wave of
alternating anticipation phases can be explained. In the model we assume that capital goods
have a finite life time (note that this is a disadvantage compared to the delayed differential
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equation approach, where the time to scrap is endogenously determined). The periodicity
of the waves is crucially influenced by the length of this finite life time. Also, we find that
the anticipation waves are a symmetric image of the echo effects found in papers applying
the delayed differential equation approach (Benhabib and Rustichini [3], and Boucekkine et
al. [6]).

Second, contrary to the dynamic general equilibrium literature, in our framework the firm
can also invest in non-frontier vintages. This makes that the negative anticipation phase
occurring just before the technology shock does not necessarily lead to a decline in pro-
duction, as was the case in Pakko [25]. This is due to the fact that the investment decline
in new capital goods is accompanied by increased investments in older capital goods. The
advantage is that older capital goods are cheaper and that their lifetime is shorter, so that
they can be replaced sooner by the new machines that embody the new technology from
after the technology shock. The fact that now the negative anticipation phase does not
lead to a decline in production makes that the wave of anticipation phases disappears when
investments in non-frontier vintages are also possible.

The contents of the paper is as follows. The model and the necessary optimality condi-
tions are presented in Section 2. Section 3 contains the economic analysis, while Section 4
concludes.

2 The Model

Consider a model of a “new firm”, being created at time zero, producing a single good
by means of a continuum of vintage capital technologies, with finite life time. The firm
has some market power and faces an increasing but concave revenue function. At every
period the firm has access to machines in the primary and the secondary market and faces
adjustment costs in both markets. Productivity of these machines is influenced by learning
and technological progress. As a consequence of the adjustment costs and the presence of
learning, the firm adopts the frontier technology slowly.

To analyze the implications of embodied technological progress we have to distinguish be-
tween different generations of machines. To do so we explicitly introduce the age of the
machine, which is denoted by a. Each machine has a fixed maximal lifetime ω, so that
a ∈ [0, ω]. However, the investment can be negative and the firm has the possibility to sell
the machines before the end of the lifetime.

The machines are used to produce goods. The number of goods produced in year t by a
machine of age a is given by f (t− a) v (a). Since people have to learn how to use new tech-
nologies, technological progress must be accompanied by learning (Greenwood and Jovanovic
[20]). Here v (a), with v′ ≥ 0, reflects that due to learning machines can be more efficiently
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used in the production process over the years1. The function f (t− a), with f ′ > 0, captures
the fact that due to embodied technological progress new machines are more productive.

If we denote the stock of capital goods of age a at time t by K (t, a), it follows that production
at time t is given by

Q(t) =
∫ ω

0
f(t− a)v(a)K(t, a) da.

Due to market power the output price decreases with production, which makes that the
firm’s revenue, R(Q(t)), is concavely increasing in production, so that R′ > 0, R′′ < 0.
The results obtained in this paper will also hold if the concavity of the revenue function is
caused by decreasing returns to capital with respect to production (see, e.g. Benhabib and
Rustichini [4]), while the output price is constant2. However, for sake of readability, in what
follows we stick to the market power interpretation.

Capital stock can be increased by investing. Investments in machines of age a in year t are
denoted by I(t, a). In order to invest the firm has to incur acquisition and implementation
costs. Costs of acquisition are given by b(a)I(t, a), where b′ < 0, since older machines
are cheaper. The cost of successful implementation of investments is c(a)

2 (I(t, a))2. Here
it holds that c′ ≤ 0, which exhibits that it is easier to implement older machines because
of experience effects (Stenbacka and Tombak [28]). Including such adjustment costs is
important (cf. Wirl [30]). As a topical example consider the introduction of computers
during the last two decades where possibly the necessary costs of adjusting outweighed so
far the entire associated productivity gain (see, e.g., Kiley [23]).

In the model investments in the newest generation of machines, thus with age a = 0, are
explicitly distinguished and denoted by I0 (t). Analogous to the previous paragraph we get
that b0I0 (t) are the acquisition costs of these investments, and c0

2 (I0(t))2 are the costs of
successful implementation. Of course, the firm has no experience at all with the installation
of the newest generation of machines. Therefore, it holds that c0 > c(a) for a > 0.

Consider at each moment in time, machines of a given age a. It holds that due to embodied
technological progress less investments, leading to lower investment expenditures, are needed
to produce a given amount of output. Then it can be concluded that in our model the relative
price of equipment in terms of output, that is, the cost of investments needed to produce a
given amount of output, declines as f (t− a) increases with time. This is in accordance with
Greenwood et al. [19], who further state that: “Technological advances have made equipment
less expensive, triggering increases in the accumulation of equipment both in the start and
the long run. Concrete examples in support of this interpretation abound: new and more
powerful computers, faster and more efficient means of telecommunication, robotization of
assembly lines, and so on.”

1Our analysis and results do not employ the monotonicity of v, and therefore they are valid also for other
interpretations than learning, where v can be decreasing or non-monotone (see e.g. [16]).

2We thank an anonymous referee for pointing this out to us.
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As another (initial) control we denote by K0 (a) the investments in capital stock of age a in
year 0. The costs are similar to those of I(t, a). If the firm exists already at time t = 0, then
K0(a) can be viewed as an initial condition, in which case the associated costs are zero.

As distinct from the bulk of the literature using delayed-differential equations (e.g., Benhabib
and Rustichini [3], and Boucekkine et al. ([5], [7], [8], and [9]), where it is only possible
to invest in the newest generation of capital goods, we apply a partial differential equation
approach. The main reason is that in this way we can include the possibility to invest in
non-frontier vintages. The evolution law of capital is described by

Kt + Ka = I (t, a)− δ (a) K (t, a) ,K (t, 0) = I0 (t) ,K (0, a) = K0 (a) ,

where the subscripts denote partial differentiation, and δ(a) is the depreciation rate of a
machine of age a. This specification is based on the fact that time and age move together:
machines aged a + dt in t + dt, are those aged a at time t, minus their depreciation, plus
(minus) machines of this vintage bought (sold) in the secondary market at time t. Passing
to a limit with dt, one obtains the above equation.

The firm is assumed to maximize the discounted value of the cash flow over an infinite
planning period. Denoting the discount rate by r, the resulting age specific dynamic model
of the firm is given by3

max
I(t,a),I0(t),K0(a)

{∫ ∞

0
e−rt

[
R(Q(t))−

(
b0I0(t) +

c0

2
(I0(t))2

)
(1)

−
∫ ω

0

(
b(a)I(t, a) +

c(a)
2

(I(t, a))2
)

da

]
dt

−
∫ ω

0

(
b(a)K0(a) +

c(a)
2

(K0(a))2
)

da

}

Kt + Ka = I(t, a)− δ(a)K(t, a), K(t, 0) = I0(t), K(0, a) = K0(a), (2)

Q(t) =
∫ ω

0
f(t− a)v(a)K(t, a) da. (3)

Until now, in the literature only a few papers exist that analyze the vintage differentiation of
the capital goods in a complete dynamic optimization framework. The reason is, perhaps,
that “full dynamics are notoriously difficult in such models” (Jovanovic [22], pp. 523-
524). Contributions offering a full dynamic framework, but then without learning and
technological progress, are Barucci and Gozzi [1], and Feichtinger et al. [15]. The same

3The precise meaning of optimality for the next problem is given in the Appendix.
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holds for Xepapadeas and De Zeeuw [31], in which the composition of capital is studied in
connection with environmental policy and the Porter hypothesis4.

Embodied technological progress is introduced in Barucci and Gozzi [2] and Feichtinger et
al. [16], while in both papers the output price is fixed. Due to the latter feature, different
predictions of future technological progress have no influence on current investments, since
these do not influence the NPV’s of later investments. The current paper extends Barucci
and Gozzi [2] and Feichtinger et al. [16] by introducing market power. Then current
investments increase production which reduces output price and thus the NPV’s of future
investments. In such a setting it is expected that future embodied technological progress
does have an influence on the desirability of current investments. The aim of our paper is
to determine this influence and thus to provide an answer to Chari and Hopenhayn’s third
question: how are decisions to adopt new technologies affected by the prospect that even
better technologies will arrive in the future?

Also mathematically, there is a significant difference between the model in Barucci and
Gozzi [2] and our model, which is caused by the output-dependent price. The former can be
treated by the general maximum principle in Brokate [10] or even by the more specific ones
in Chan and Guo [12]. Our model is more complicated because of the nonlinear dependence
of the objective function on the integral term in expression (3). We apply the general
maximum principle from Feichtinger et al. [17], which, in contrast to that in [10], allows
initial (K0) and boundary (I0) controls.

2.1 Maximum Principle

To solve the model we apply the maximum principle recently obtained in Feichtinger et
al. [17]. The assumptions are stated in a mathematically more precisely manner in the
Appendix. First, we introduce

L(t, a,Q, I, I0,K0) = e−rt

[
1
ω

(
−R(Q) + b0I0 +

c0

2
I2
0

)
+b(a)I +

c(a)
2

I2 + r

(
b(a)K0 +

c(a)
2

K2
0

)]
in order to represent the objective function in the general form

min
∫ +∞

0

∫ ω

0
L(t, a, . . .) dadt.

4In that paper the function v (a) is incorrectly interpreted as technological progress instead of ageing of
the capital good (in their model it was imposed that v′ ≤ 0, rather than v′ ≥ 0 as in our model, where, due
to learning, productivity may increase with age).
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Then the initial, boundary and distributed Hamiltonians, depending on the adjoint variables
ξ(t, a) and ζ(t), which correspond to K (t, a) and Q (t) , respectively, take the form:

H0(a,K0) =
∫ ∞

0
L(t, a,K0) dt + ξ(0, a)K0,

Hb(t, I0) =
∫ ω

0
L(t, a, I0) da + ξ(t, 0)I0,

H(t, a, I) = L(t, a, I) + ξ(t, a)(I − δ(a)K(t, a)) + ζ(t)f(t− a)v(a)K(t, a),

where by convention all arguments of L that are skipped, are evaluated along the optimal
solution. For example, L(t, a,K0) = L(t, a,Q(t), I(t, a), I0(t),K0).

The maximum principle implies that there exists a solution of the adjoint equations

−(ξt + ξa) = −ξ(t, a)δ(a) + ζ(t)f(t− a)v(a), ξ(t, ω) = 0, (4)
ζ(t) = −e−rtR′(Q(t)),

such that each component of the optimal control (I, I0,K0) minimizes the corresponding
Hamiltonian. From equation (4) it is obtained that the co-state variable ξ(t, a), being the
shadow price of capital stock, depends on marginal revenue, e−rtf(t− a)v(a)R′(Q(t)), and
marginal depreciation cost, ξ(t, a)δ(a).

Introducing the new variable λ(t, a) = −ertξ(t, a), and substituting −e−rtR′(Q(t)) for ζ, we
obtain the equation

λt + λa = λ(t, a)(δ(a) + r)−R′(Q(t))f(t− a)v(a), λ(t, ω) = 0, (5)

and the following first-order optimality conditions:

K0(a) =
1

c(a)
(λ(0, a) − b(a)), (6)

I0(t) =
1
c0

(λ(t, 0) − b0), (7)

I(t, a) =
1

c(a)
(λ(t, a) − b(a)). (8)

3 Economic Analysis

From (5), (8), and (7) it is obtained that the amount of investment is given by

I(t, a) =
1

c (a)

[∫ ω

a
e−

∫ s
a (δ(θ)+r) dθR′(Q(t− a + s))f (t− a) v(s) ds− b (a)

]
(9)
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for older machines, and

I0(t) =
1
c0

[∫ ω

0
e−

∫ s
0 (δ(θ)+r) dθR′(Q(t + s))f (t) v(s) ds− b0

]
(10)

for new machines. It follows that the discounted revenue stream over the remaining planning
period due to an extra unit of investment at time t, is equal to marginal investment costs.
The two equations thus indicate that the firm invests according to a net present value rule
such that the net present value of marginal investment equals zero.

The firm disinvests in a situation where the integral in the r.h.s. of (9) is smaller than
b(a). In that case the value of the machine is smaller than its market price b(a), so that
the firm optimally decides to sell it. Since adjustment costs are symmetric for creation and
destruction of capital goods, obsolescence is a gradual process guided by (9). At the moment
this vintage reaches its maximal lifetime ω, the remaining capital stock of this vintage is
scrapped.

We are primarily interested in how investments in machines of a given age develop over time.
As to a first investigation consider investments in new machines, thus with age equal to zero,
and obtain from (10) that (for machines with age greater than zero a similar expression is
obtained):

c0
dI0(t)

dt
=
∫ ω

0
e−

∫ s
0 (δ(θ)+r) dθR′(Q(t + s))f ′(t)v(s) ds

+
∫ ω

0
e−

∫ s
0 (δ(θ)+r) dθR′′(Q(t + s))Q′(t + s)f(t)v(s) ds.

So, there are two effects. The first effect is positive, and shows that embodied technological
progress (f ′ (t) > 0) induces delay of the adoption of new technologies, since the productivity
of machines increases over time. The second effect reflects that the NPV is dependent on
output: during a growth phase the NPV of marginal investment decreases over time because
marginal revenue decreases with production. Hence, due to the latter effect investments in
machines of a given age reduces over time during a growth phase, while the first effect says
that investments should increase because at a later point of time machines will be more
productive. Note that during a contraction phase both effects result in postponement of
investments.

Our ultimate aim is to provide an answer to the question: how are decisions to adopt new
technologies affected by the prospect that even better technologies will arrive in the future?
To do so, we analytically investigate whether an expected increase in technological progress
at some moment of time t̂ influences the optimal investment policy prior to this moment.
Numerical results are provided in the next subsection. In Feichtinger et al. [16] we show
that future technological developments have no effect at all on current investments if the
firm has no market power. The situation changes, however, in the case of a firm with market
power.
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We compare two scenarios for technological progress: the first scenario is described by
a given technology function f(t) (the benchmark case), while in the second scenario the
technology function is f̂(t), where

f̂(t) = f(t) for t ≤ t̂, and f̂(t) > f(t) for t > t̂. (11)

That is, in the second scenario a technological breakthrough takes place at t̂. The value

liminf
t→t̂+0

f̂(t)− f(t)
t− t̂

(12)

is a measure for the level of the technological breakthrough relative to the benchmark f(·).

We compare the behavior of the firm for these two scenarios. This comparison is aimed to
establish how the expectation of a technological breakthrough at a certain time t̂ influences
the investment behavior of the firm prior to t̂, versus the case where such a breakthrough
is neither expected nor occurring5. To make the model more tractable, we only consider
investments in new machines, that is, I(t, a) ≡ 0. We again allow for positive I (t, a) in the
next subsection, where numerical results are presented.

Let I0(·) and Î0(·) be the optimal investments in new machines corresponding to the above
two technology functions.

Definition 1. We say that a negative anticipation effect takes place at t̂ if

Î0(t) < I0(t) for some t < t̂.

We make the following assumptions:

(S1) b0 > 0, t̂ > 3ω, and I0(t̂) > 0;

(S2) the learning function v(·) is continuous and v(s) > 0 for s ∈ (0, ω); the technology
function f(·) is positive, Lipschitz continuous and non-decreasing.

Proposition 1 A sufficiently strong technological breakthrough at time t̂ creates a negative
anticipation effect at t̂.

5An alternative scenario was suggested by an anonymous referee: compare two firms, one of which antic-
ipates the breakthrough at t̂, that is, knows f̂ in advance, while the other has the same technology function,
but is not aware of the breakthrough at t̂ beforehand. This implies that before time t̂ the latter firm fixes
its investment policy as if the breakthrough at t̂ will not take place. The investment behavior of these two
firms is expected to be different after t̂, because the second one has to adjust to the unexpected change of
technology. Figure 3 in the next section illustrates this scenario. However, before time t̂ — and this is the
main concern in the paper — the investment paths of the two firms will be exactly the same as in the two
scenarios considered in the main text.
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In the Appendix we give a mathematically strict formulation of this and of the next propo-
sition and provide proofs.

Remark. If a technological breakthrough would lead to a jump of f̂ at t̂, then the negative
anticipation effect will take place, no matter how small is the jump. The computational
results presented in the next subsection register the negative anticipation effect also in the
case where only the steepness of f increases at t̂ (without jump). This, however, need not
be the case in general, unless the change in the steepness is sufficiently large, as indicated
in the formulation of the proposition (see also the mathematically strict formulation in the
Appendix).

Economically the occurrence of the negative anticipation phase can be explained by the fact
that, given the faster increase of future technological progress, it becomes more attractive
to wait for new technologies. As a consequence of this result, the next proposition shows
that the anticipation of higher technological progress starting from a point t̂ not only leads
to underinvestment before the moment t̂, but creates a whole wave of alternating negative
and positive anticipation phases backwards in time.

Proposition 2 A sufficiently strong technological breakthrough at time t̂ creates a whole
wave of alternating positive and negative anticipation phases before the moment t̂.

This backward anticipation wave can be economically explained as follows. Let [t̂− β, t̂] be
the time interval at which the anticipation effect defined in Definition 1, the existence of
which is proved in Proposition 1, takes place. This anticipation effect implies that invest-
ments in new machines are reduced during this interval. Therefore, output reduces during
the interval

[
t̂− β, t̂

]
, so that the output price increases there. This raises the NPV of in-

vestments in machines from which the lifetime includes this interval, which implies that the
incentive to invest in these machines goes up. Then the firm increases investments in those
machines that are scrapped somewhere in the neighborhood of t̂, so that these machines can
be replaced at that time by the more modern machines that arise due to the technological
breakthrough taking place at t̂. Since here we only consider investments in new machines
that have lifetime ω, investments, and thus also production, go up during a time interval
containing t̂− ω, and this results in a price dip during this interval. This price dip in turn
results in less investments before this “price-dip-interval”, and in this way a whole wave of
anticipation phases arises.

The above suggests that the scrapping time has an influence on the anticipation wave. Since
for Propositions 1 and 2 the analysis is restricted to I(t, a) = 0, equation (2) collapses to

Kt + Ka = −δ(a)K(t, a),

for a ∈ [0, ω], and capital jumps to zero at age ω. This is a more general definition of the
one-hoss shay assumption than in, e.g., Benhabib and Rustichini [3], in the sense that it
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allows for some continuous depreciation δ(a) 6= 0. By putting δ(a) = ∞ for a ≥ ω, one can
avoid the explicit involvement of the maximal life-time ω. That is, in general, the frequency
of the anticipation wave depends on the shape of the depreciation function δ, and this applies
also to the case ω = ∞, thus where we have no exogenous scrapping age.

The backward anticipation waves are another example of the fact that vintage-specificity
may generate oscillatory dynamics. This traces back to Solow et al. [27], in which it was
argued that obsolescence of the oldest vintages and their replacement over time may generate
persistent fluctuations in investment, and thus in output. These fluctuations may follow the
echo principle in the sense that episodes of high (low) investment reproduce themselves in
the future at their replacement time. In the literature this is called ”replacement echoes”.
Although Solow et al. [27] did not find these replacement echoes in the model they studied,
they were in fact detected in Benhabib and Rustichini [3] and Boucekkine et al. [6]. The
difference with our finding is that replacement echoes are everlasting, while our anticipation
waves mainly concentrate around the point where the technological breakthrough occurs:
the farther away from this point, the smaller the amplitude is.

3.1 Numerical results

Here we provide a numerical analysis6 departing from the scenario depicted in Table 1.

R(Q) = p0Q− m
2 Q2 p0 = 1

m = 0.00008
ω : economic lifetime of the machine ω = 10

f (t− a) = π + t−a+ω
n log 2

π = 1
n = 6

δ (a) = 2a
ω2 ln 1

κ κ = 0.2
r : discount rate r = 0.03

v(a) =
{

2
√

a
ν − a

ν for a ∈ [0, ν)
1 for a ∈ [ν, 1]

ν = 5

b0 : unit acquisition cost of new machines:
25% from the expected total return b0 = 4.931

b (a) = 0.8ω−a
ω b0 : unit cost of a machine of age a

c0
2 I2

0 : adjustment costs of investments in new machines c0 = 1
c(a)
2 [I (t, a)]2 : adjustment costs of investments c (a) = 1.2c0e

−a/ω

Table 1. Parameter values and functional specifications to be used for the numerical anal-
ysis.

6To solve the problem (1)-(3) numerically we employ the general approach developed recently by the
fourth author and presented in Veliov [29], where more bibliography concerning the numerical analysis can
be found.
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The learning function v(a) increases steeply at the beginning, reaching the level one (full
efficiency) when the age of the technology becomes equal to ν. Then the value one is
sustained over the rest of the life time of the technology.

The technological progress function f (t− a) is based on “Moore’s law” which says that the
memory and arithmetic power of micro-chips develop in an exponential way over time. If
the efficiency of a technology doubles every n years (for micro-chips the value of n is about
3 at the moment), and the efficiency parameter of a technology equals 1 at time zero, the
efficiency parameter of a particular machine of age a at time t is 2(t−a)/n. Recently a Philips
manager7 argued that utility (or production) is a logarithmic function of technology in the
sense that production increases with one unit in case technology power becomes ten times as
large. Or, in other words, production increases with the technology-efficiency parameter in
a logarithmic way with base 10. If we further impose that the productivity of the machines
build at time −ω equals π, the following functional form is obtained (cf. Huisman and Kort
[21]):

f (t− a) = π +
t− a + ω

n
log 2.

First, consider the situation where the firm can only invest in new machines (thus I(t, a) =
0). Two pictures are shown in which the backward anticipation wave occurs, see Figures
1 and 2. For this particular case we choose a specification of f, where f(t − a) = 3 as
long as vintage t − a is less than 100, while f(t − a) = 4 for t − a > 100. The economic
intuition for the occurrence of this wave is as follows. Just before the technology shock
the firm cuts down on investments in new machines, because it becomes more attractive to
wait for new generations when future technologies are more efficient. This is the ”negative
anticipation phase”. Since only investments in new machines are allowed, this results in
a drop of production, and thus a higher output price. The latter raises the profitability
of investments in capital stock for which the lifetime contains the period where we have
this higher output price. Therefore, the firm will increase these investments, leading to a
positive anticipation phase. However, increased investments imply more production, and
thus a lower output price in that interval. This reduces investments in the period just
before. Hence, in this way the whole wave of anticipation phases arises. As it can be seen in
Figure 1, the anticipation wave is a symmetric image of the echo effects previously discussed
in the literature on vintage capital (Benhabib and Rustichini [3] and Boucekkine et al. [6])
in the sense that they are ”turned upside down” after the occurrence of the technological
breakthrough.

It is clear that the presence of market power, thus implying that the firm’s production level
influences the price of output, is crucial for the occurrence of this result. This explains
why the anticipation wave does not appear in the case of perfect competition (see, e.g.,
Feichtinger et al. [16]).

7Theo Claassen in the Dutch magazine Elsevier (January 24, 1998).
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[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Figure 3 shows the difference in investment behavior between an anticipating and a non-
anticipating firm, while a technological breakthrough takes place at time t = 30. One of
the firms anticipates the shock and reduces the investment beforehand in order to invest
more after the shock. Also, the backward anticipation wave can be observed. The non-
anticipating firm expects that the technological progress will stay as it is, and realizes that
a technological breakthrough happens only just at t = 30 (see footnote 5). The investment
increase after the shock is very modest, since the firm has not reduced its investments
before the shock. In this plot we have used a function R(Q) as in the benchmark case, but
then with the bigger value m = 0.001. After t = 30, investments decrease, since, due to
the technological breakthrough, keeping the capital stock at the same level leads to more
production, and thus to a lower output price.

Next, consider the situation where the firm can invest in different vintages at the same time.
From now on we apply the specification of f(t−a) as presented in Table 1. Figure 4 depicts
investments in new machines over time for the case that during the first 30 years technology
doubles every six years, while after year thirty this happens every three years (n = 3 in the
specification of f (t− a)). Clearly the difference is seen between the cases where the firm
has no market power (m = 0) and where it has market power (m = 0.00008). In the first
case the investment rate in the first thirty years is the same as when also after year thirty
technology doubles every six years. Hence, no anticipation takes place, because due to the
absence of market power the firm’s behavior has no effect on the output price, which implies
that the NPV’s of capital stocks of different generations do not influence each other.

In the market power case we observe a negative anticipation phase: just before year thirty
the firm cuts down on investments in new machines, because it becomes more attractive to
wait for new generations when future technologies are more efficient. Then just after year
thirty the firm benefits from increased technological progress by buying extra new machines.
Due to the negative anticipation phase taking place before the technological progress starts
to accelerate, the increased production caused by these extra machines does not lead to a
too low output price. In addition to Proposition 1, we now have shown that the anticipation
effect is also present in case investments in older machines are also possible.

[Figure 4 about here.]
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The conclusion of Figure 4 is confirmed in Figure 5. Here we see that just before year thirty
the market-power-firm begins to purchase, on average, older machines. These are cheaper
and need to be replaced sooner. Then after year thirty the firm switches to buying younger
machines. First, some extra ones are bought, which is reflected by the large reduction of the
average age just after year thirty, because the firm needs to replace the older capital goods.

The firm without market power still buys the same machines before year thirty, so that
before year thirty it does not adjust its investment policy in case technological progress will
go faster after year thirty. After year thirty the firm increases size as a reaction to the
accelerated technological progress (note that here the firm’s increased production does not
reduce the output price). This leads to extra investments in new machines, which results in
an initial temporary reduction of average age after year thirty.

[Figure 5 about here.]

Figure 6 shows that, despite the reduction of investments in new machines just before year
thirty, for the firm with market power production does not decrease at that time. This
implies that extra investments in older, and thus cheaper, machines must have taken place
there. These machines will be scrapped soon after the time at which technological progress
increases, so that they also can be replaced by the very modern machines that will become
available after year thirty. This more or less confirms Figure 5 where it can be seen that the
average age of machines purchased is large just before year thirty. Since Figure 6 shows that
for the case that also older machines are bought production, and thus output price, is not
influenced just before year thirty, this anticipation wave (Figure 2) does not occur there.

[Figure 6 about here.]

4 Conclusions

By now we are ready to answer Chari and Hopenhayn’s third question: how are decisions to
adopt new technologies affected by the prospect that even better technologies will arrive in
the future? The answer differs for the scenarios where only investments in new technologies
are possible, or where also investments in older machines are allowed. When approaching
a period of rapid embodied technological progress the firm cuts down on investments in
new machines in order to wait for the new inventions. In case only investments in new
machines are possible, this leads to a fall in production, which in turn creates a whole
wave of alternating positive and negative anticipation phases. When also investments in
older machines are possible the drop in production does not occur, because the decrease of
investments in new machines is compensated by extra investments in older machines. Older
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machines are cheaper and also their lifetime is shorter so that they can be scrapped at the
moment that the more modern machines are invented. So, like in Chari and Hopenhayn
[13], also here the firm continues to invest in old technologies when apparently superior
technologies are available.

Most contributions adopting a vintage capital goods structure, like the work of Boucekkine
et al. ([8], [9], [5], [7]) and Benhabib and Rustichini [3], only allow for investments in new
machines. As it became clear from the previous paragraph, including the possibility to
invest in older machines in a dynamic model of the firm changes results considerably. The
recent maximum principle for age structured control problems in Feichtinger et al. [17] was
employed in the analysis and facilitated obtaining new results regarding the firm’s capital
accumulation, and the effect of embodied technological progress on that.

Further research should explore the robustness of the anticipation effects. However, it can
be expected that they will also occur when other production functions or non-stationary
demand are considered.
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5 Appendix

Everywhere in the paper we assume that all exogenous functions involved in the model
are continuous. The revenue function, R(Q), is nonnegative, strongly concave, and has a
Lipschitz continuous and bounded derivative8. Examples of such functions are ln(1+Q) and
(1 + Q)α − 1 with α < 1. Furthermore, it is assumed that r, c0, c(a), and f(s) are strictly
positive, while b0, b(a), and v(a) are nonnegative. The strict mathematical meaning of the
control and state functions (K0, I0, I and K,Q, respectively) is standard, but can also be
found in [17].

For some controls the value of the objective function could be +∞ (especially in the case
of technological progress). Therefore, the optimal value could be +∞, too. Since in this
paper we are interested in the immediate effects of change in the data of the problem (rather
than in the asymptotic behaviour), the consideration relies on the following property of the
optimal solution9: (Î0, Î) is an optimal investment control for the problem on the infinite
horizon [0,+∞) if and only if for every T̄ > 0 and for every ε > 0 there exists a T ∗ > T̄
such that for every T > T ∗ it holds that if (ÎT

0 , ÎT ) is an optimal control for the problem on
the finite horizon [0, T ], then

|Î0(t)− ÎT
0 (t)|+ |Î(t, a)− ÎT (t, a)| ≤ ε for every t ∈ [0, T̄ ] and a ∈ [0, ω].

This implies that the solution of the infinite horizon problem can be approximated (uniformly
on any compact interval) by the solution of a finite horizon problem, given that the time
horizon is sufficiently large. The existence of a solution to the finite horizon problem follows
in a standard way from the linear-concave structure of the problem. The maximum principle
for the infinite horizon problem in Section 2.1 is derived by applying the general result from
[17] to the approximating finite horizon problems.

Everywhere in the paper it is assumed that the optimal capital stock, K(t, a), and the
optimal investment in new machines, I0(t), are nonnegative, and therefore the constraints
K(t, a) ≥ 0 and I0(t) ≥ 0 are not explicitly involved in the formulation of problem (1)–(3).

Proposition 1 (Strict formulation) Suppose that conditions (S1) and (S2) hold for the
problem with technology function f(·). Let D be a given positive number. Then there exists a
number M such that the negative anticipation effect takes place for every technology function

8The quadratic function R(Q) used in the numerical illustration may take negative values, but obviously
it remains positive along the optimal path, thus in the region of interest.

9This property can be derived from weakly overtaking optimality (see [11]), provided that the technology
function f satisfies an appropriate growth condition. In the stationary case (no technological progress), the
property holds even with ε = 0 and T ∗ = T̄ + ω.
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f̂(·) which satisfies the relations

(i) f̂(t) = f(t) on [0, t̂], f(t) ≤ f̂(t) ≤ D on (t̂, t̂ + 2ω],
(ii) the corresponding optimal control Î0(t) satisfies 0 ≤ Î0(t) ≤ D and K̂(t, a) ≥ 0,

(iii) liminf
t→t̂+0

f̂(t)− f(t)
t− t̂

≥ M.

Proof. Step 1. From the model formulation and the necessary optimality conditions
presented in Section 2.1 we obtain the following relations for t ≥ ω

K(t, a) = e−
∫ a
0 δ(θ)dθI0(t− a),

I0(t) =
1
c0

(λ(t, 0)− b0) ,

λ(t, 0) =
∫ ω

0
e−

∫ s
0 (δ(θ)+r)dθR′(Q(t + s))v(s) dsf(t),

Q(t + s) =
∫ ω

0
f(t + s− a)v(a)K(t + s, a) da.

Substituting successively, we obtain the integral equation

I0(t) = −b0

c0
+
∫ ω

0
e−

∫ s
0
(δ(θ)+r)dθR′

(∫ ω

0
f(t + s− a)v(a)e−

∫ a
0

δ(θ)dθI0(t + s− a) da

)
dsf(t)

Changing the variable a in the inner integral we present this equation in the form

I0(t) = −α + f(t)
∫ ω

0
β(s)R′

(∫ t+s

t+s−ω
γ(t, s, τ)f(τ)I0(τ) dτ

)
ds, (13)

where

α = b0/c0, β(s) = e−
∫ s
0 (δ(θ)+r)dθ , γ(t, s, τ) = e−

∫ t+s−τ
0 δ(θ)dθv(t + s− τ).

Notice that according to (S2) for every t ≥ 0 the functions β(·) and γ(t, ·, ·) are strictly
positive almost everywhere in their domains of definition. Moreover, γ is a locally Lipschitz
functions of t, uniformly with respect to the rest of the variables belonging to a bounded
set.

Step 2. Contrary to the claim of the proposition assume that

Î0(t) ≥ I0(t) for all t ∈ [t̂− 2ω, t̂]. (14)

In particular, according to (S1) it holds that

0 < I0(t̂) ≤ Î0(t̂) = −α + f̂(t̂)
∫ ω

0
β(s)R′

(∫ t̂+s

t̂+s−ω
γ(t̂, s, τ)f̂(τ)Î0(τ) dτ

)
ds,
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so that, ∫ ω

0
β(s)R′

(∫ t̂+s

t̂+s−ω
γ(t̂, s, τ)f̂(τ)Î0(τ) dτ

)
ds ≥ α

f(t̂)
> 0. (15)

Step 3. Using (13) we estimate for t ∈ (t̂, +̂ε0] the difference

Î0(t)− Î0(t̂) = f̂(t)
∫ ω

0
β(s)R′

(∫ t+s

t+s−ω
γ(t, s, τ)f̂ (τ)Î0(τ) dτ

)
ds

−f̂(t̂)
∫ ω

0
β(s)R′

(∫ t̂+s

t̂+s−ω
γ(t̂, s, τ)f̂(τ)Î0(τ) dτ

)
ds

= (f̂(t)− f̂(t̂))
∫ ω

0
β(s)R′

(∫ t̂+s

t̂+s−ω
γ(t̂, s, τ)f̂(τ)Î0(τ) dτ

)
ds

+f̂(t)
∫ ω

0

[
β(s)R′

(∫ t+s

t+s−ω
γ(t, s, τ)f̂(τ)Î0(τ) dτ

)
− β(s)R′

(∫ t̂+s

t̂+s−ω
γ(t̂, s, τ)f̂(τ)Î0(τ) dτ

)]
ds.

Moreover, condition (iii) of the proposition implies the existence of numbers M and ε0 > 0
such that

f̂(s) ≥ f(s) +
M

2
(s − t̂) for s ∈ (t̂, t̂ + ε0]. (16)

Using (15) and the Lipschitz continuity of γ in t, as well as the bounds f̂(t) ≤ D and
Î0(t) ≤ D, we obtain that

Î0(t)− Î0(t̂) ≥ α

f(t̂)
(f̂(t)− f̂(t̂))− C1(t− t̂)

=
α

f(t̂)
(f̂(t)− f(t)) +

α

f(t̂)
(f(t)− f(t̂))− C1(t− t̂)

≥ α

f(t̂)
M

2
(t− t̂)− C2(t− t̂)

= (C3M − C2)(t− t̂),

where C1, C2, . . . are constant depending on the benchmark data and on the number D, but
not on the particular function f̂ .

Step 4. Take an arbitrary ε ∈ (0,min{ε0, ω}). Then t∗ = t̂ − ω + ε < t̂ and according to
assumption (14) it holds that

0 ≤ Î0(t∗)− I0(t∗).
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Utilizing the formula (13) for f and for f̂ , and the equality f̂(t∗) = f(t∗) we obtain that

0 ≤ f(t∗)
∫ ω

0
β(s)

[
R′
(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f̂(τ)Î0(τ) dτ

)
(17)

−R′
(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f(τ)I0(τ) dτ

)]
ds.

Notice that if s < ω−ε then the upper bound of the inner integration is t∗+ε = t̂−ω+ε+s <
t̂. Therefore within the interval of integration it holds that f̂(τ) = f(τ) and Î0(τ) ≥ I0(τ).
Since R′ is monotonically decreasing, for such s the first value of R′ is not greater than the
second one in the above expression. Thus

0 ≤ f(t∗)
∫ ω

ω−ε
β(s)

[
R′(. . .)−R′(. . .)

]
ds.

For s ∈ (ω − ε, ω) we have that t̂ ∈ (t∗ − ω + s, t∗ + s) and

R′
(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f̂(τ)Î0(τ) dτ

)
= R′

(∫ t̂

t∗−ω+s
. . . +

∫ t∗+s

t̂
. . .

)
.

Concerning the first integral on the right-hand side we have that f̂(τ) = f(τ) and Î0(τ) ≥
I0(τ). For the second integral we obtain that

f̂(τ) = f̂(τ)− f(τ) + f(τ) ≥ M

2
(τ − t̂) + f(τ)

and use the inequality obtained in Step 3:

Î0(τ) ≥ Î0(t̂) + (C3M − C2)(τ − t̂) ≥ I0(t̂) + (C3M − C2)(τ − t̂).

Thus, for s ∈ (ω − ε, ω) it holds that

R′
(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f̂(τ)Î0(τ) dτ

)
≤ R′

(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f(τ)I0(τ) dτ + Γ(t, s)

)
,

where

Γ(t, s) =
∫ t∗+s

t̂
γ(t∗, s, τ)

[
M

2
Î0(t̂) +

M

2
(τ − t̂)(C3M −C2) + f(τ)(C3M − C2)

]
(τ − t̂) dτ.

Apparently, the constant M in the formulation of the proposition can be chosen in such a
way that C3M − C2 > 0, and since for almost every s the values of γ(t∗, s, τ) are strictly
positive almost everywhere in τ , we get that Γ(t, s) > 0 for almost every s ∈ (ω − ε, ω).
Since R′ is strictly monotonically decreasing, we obtain that

R′
(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f̂(τ)Î0(τ) dτ

)
< R′

(∫ t∗+s

t∗−ω+s
γ(t∗, s, τ)f(τ)I0(τ) dτ

)
,
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Having in mind the strict positivity of β and f(t∗) we come to a contradiction with (17).
This contradiction was caused by assumption (14). Therefore this assumption is false, which
proves the proposition. Q.E.D.

Proposition 2 (Strict formulation) For every t ∈ [2ω, t̂] for which the difference I0(t)−Î0(t)
is nonzero, there exists a point s ∈ (t− 2ω, t), such that the difference I0(s)− Î0(s) is also
nonzero and has the opposite sign.

Proof. Let t ∈ [2ω, t̂] be a point where, for example, I0(t) > Î0(t). Assume that
I0(s) ≥ Î0(s) for all s ∈ [t− 2ω, t]. Then, from the integral equation (13), and since f and
f̂ coincide at t− ω and at τ below, we have that

0 ≤ I0(t− ω)− Î0(t− ω) = f(t− ω)
∫ ω

0

[
R′
(∫ t+s−ω

t+s−2ω
γ(t− ω, s, τ)f(τ)I0(τ) dτ

)

−
(∫ t+s−ω

t+s−2ω
γ(t− ω, s, τ)f(τ)Î0(τ) dτ

)]
ds.

We have I0(τ) ≥ Î0(τ) in the interval of integration and the inequality is strict in a left
neighborhood τ = t , which intersects (t + s − 2ω, t + s − ω) if s is close to ω. From the
positivity of γ and β and the strict concavity of R′ we obtain a contradiction. Thus there
must be a point τ ∈ (t− 2ω, t) where I0(τ) < Î0(τ). Q.E.D.
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Figure 1: Investment in new machines in case that the technology function f(t)
jumps from 3 to 4 at year 100.
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Figure 2: Magnification of a part of the above picture that shows the backward
anticipation wave. Without the change of f at time 100, the optimal investment
would have a constant value.
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Figure 3: Optimal investment in new machines of a firm that anticipates the technological
breakthrough at t = 30 (thin solid line), and of a firm that does not anticipate it (bold-
dotted line).
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Figure 4: Optimal investment in new machines in the monopolistic (m > 0) and in the
non-monopolistic (m = 0) case. The bold line represents the benchmark case, while the
thin line corresponds to the technological breakthrough at t = 30.
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Figure 5: Average age of purchased machines in the monopolistic (m > 0) and in the
non-monopolistic (m = 0) case. The bold line represents the benchmark case, while the
thin line corresponds to the technological breakthrough at t = 30.
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Figure 6: The revenue in the monopolistic (m > 0) and in the non-monopolistic (m = 0)
case. The bold line represents the benchmark case, while the thin line corresponds to the
technological breakthrough at t = 30.
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