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Abstract: In this paper we confront sensitivity analysis with diagnostic test-
ing. Every model is misspecified, but a model is useful if the parameters of
interest (the focus) are not sensitive to small perturbations in the underlying
assumptions. The study of the effect of these violations on the focus is called
sensitivity analysis. Diagnostic testing, on the other hand, attempts to find
out whether a nuisance parameter is ‘large’ or ‘small’. Both aspects are im-
portant, but traditional applied econometrics tends to use only diagnostics
and forget about sensitivity analysis. We develop a theory of sensitivity in
a maximum likelihood framework, propose a sensitivity test, give conditions
under which the diagnostic and sensitivity tests are asymptotically indepen-
dent, and demonstrate with three core examples that this independence is the
rule rather than the exception, thus underlying the importance of sensitivity
analysis.
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1 Motivation and background

Suppose we wish to estimate β from the linear regression model

y = Xβ + θz + ε, ε|(X,z) ∼ N(0, In),

where the regressor z may or may not be included in the model. In the
restricted model (where θ = 0), we estimate β by β̃ = (X ′X)−1X ′y, while
the least-squares estimators for β and θ in the unrestricted model are

β̂ = β̃ − (X ′X)−1X ′z(z′Mz)−1z′My, θ̂ =
z′My

z′Mz
,

where M := In − X(X ′X)−1X ′. The difference between β̂ and β̃ is thus
given by

β̂ − β̃ = −(X ′X)−1X ′zθ̂. (1)

Now consider the function β̃(θ) := (X ′X)−1X ′(y − θz), which estimates β

for each fixed value of θ. In particular we have β̂ = β̃(θ̂) and β̃ = β̃(0). A
Taylor expansion gives

β̂ − β̃ = β̃(θ̂) − β̃(0) =
∂β̃(θ)

∂θ

∣∣∣∣∣
θ=0

θ̂ + Op(1/n), (2)

where — in this simple case — the remainder term is identically zero. We see
from (1) and (2) that the difference between β̂ and β̃ factorizes as β̂−β̃ = Sθ̂,
where S denotes the sensitivity

S :=
∂β̃(θ)

∂θ

∣∣∣∣∣
θ=0

= −(X ′X)−1X ′z.

We may think of θ̂ as the ‘magnitude’ and of S as the ‘direction’ of the impact
of the misspecification on β̃. Seen in this light it is reasonable to investigate
the conditions under which θ̂ and S are independent. If our focus is not to
estimate β but, say, to forecast y, then the magnitude of the impact does
not change, but the direction does change. This simply reflects the fact that
a model may be a good approximation for one focus, but not for another.

In applied econometrics the choice between β̂ and β̃ is almost always
based exclusively on the t-statistic tθ := (z′Mz)−1/2z′My or on a simple
transformation thereof, such as the Wald statistic W = t2θ. In other words,

the choice is based on a diagnostic, answering the question whether θ̂ is ‘large’
or ‘small’. Since θ is a nuisance parameter, we are not primarily interested
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in whether θ̂ is large or small; our interest is in β. It may very well be that
θ̂ is large, but that nevertheless the difference between β̂ and β̃ is small, a
frequent observation in econometric practice, which occurs if the sensitivity
is small. A proper choice between the estimators should therefore be based
on both factors: the diagnostic and the sensitivity. If the diagnostic and the
sensitivity would be highly correlated, then ignoring the sensitivity might
not matter. However, as we shall demonstrate, the more common situation
is that the sensitivity and the diagnostic are (asymptotically) independent.
Then sensitivity analysis matters.

The current paper is motivated by the above highly stylized and simpli-
fied example. Sensitivity analysis matters in this example, and it equally
matters in more complex examples and in other contexts. The aim of this
paper is threefold. First, we develop the theory of sensitivity analysis in
a general maximum likelihood context. Second, we give conditions under
which the sensitivity is asymptotically independent of the diagnostic test.
Third, we demonstrate that these conditions are satisfied in three important
directions: mean misspecification, variance misspecification, and distribution
misspecification.

(Local) sensitivity analysis thus studies the effect of (small) changes in the
underlying assumptions on the output of the system. It plays an important
role in (non)linear programming (Gal and Greenberg, 1997), chemistry and
physics (Saltelli, Chan, and Scott, 2000), and other disciplines (Kleijnen,
1997). In econometrics, the ‘output’ is the statistic of interest, such as an
estimator, a forecast, or a policy recommendation.1

There are two branches of sensitivity analysis: data perturbation and
model perturbation. In data perturbation one may perturb the location of
the regressors, or the location or the scale of the dependent variable in a
regression context. This branch is associated mainly with the work of Huber
(2004, first edition 1980) and Cook (1979, 1986).2 In contrast, model pertur-
bation considers the effects on the parameter of interest (or any other focus)
of small deviations from the hypothesized model, such as the deletion of rel-
evant regressors, the misspecification of the variance matrix, or deviations

1See Chatterjee and Hadi (1988) for an early summary of sensitivity analysis in lin-
ear regression, and Saltelli, Chan, and Scott (2000) for applications in many different
directions.

2See also Cook and Weisberg (1982). Cook’s ‘likelihood displacement’ method has been
applied to elliptical disturbances (Galea, Paula, and Bolfarine (1997) and Liu (2000)),
multivariate regression (Fung and Tang, 1997), growth curve models (Pan, Fang, and von
Rosen, 1997), ridge regression (Shi and Wang, 1999), dropout models (Verbeke, Molen-
berghs, Thijs, Lesaffre, and Kenward, 2001), multivariate elliptical linear regression (Liu,
2002), and prediction (Hartless, Booth, and Littell, 2003). See Liu (2002) for further
references. In Section 3 we shall relate Cook’s method to our definition of sensitivity.
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from normality. This branch plays a role in Bayesian statistics, in particular
the effect of misspecifying the prior distribution (Leamer (1978, 1984), Po-
lasek (1984)), but also in classical econometrics (Banerjee and Magnus (1999,
2000)).

In the current paper, our interest lies in the perturbation of models, and
‘sensitivity analysis’ will be understood to mean the study of the effect of
small changes in model assumptions on an estimator of a parameter of in-
terest. The paper is organized as follows. The formal maximum likelihood
framework and the notation is explained in Section 2, where we state the
assumptions used and obtain two asymptotic results concerning maximum
likelihood estimation and diagnostic tests. In Section 3 we introduce the
sensitivity statistic, derive the sensitivity test, and obtain its asymptotic
distribution. Some often-occurring special cases are considered as well. The
conditions under which the sensitivity test and the diagnostic test are asymp-
totically independent are studied in Section 4. This completes the theoretical
part of the paper. In Sections 5–7 we investigate three important directions
of model misspecification: the mean, the variance, and the error distribution.
The finite sample performance is illustrated with Monte Carlo simulations.
Section 8 concludes.

2 Maximum likelihood and diagnostic tests

The observations consist of the first n terms of a sequence of random vectors
(y1,x1), (y2,x2), . . . , not necessarily independent or identically distributed,
where we think of y as the dependent variable and of x as the vector of
explanatory variables.3 The joint density, denoted by f(·; δ), is assumed to
be known, except for the values of a finite and fixed number of parameters
δ = (δ1, . . . , δp)

′ ∈ D ⊂ R
p. The log-likelihood function is

ℓ(δ) := ℓ(δ; (y1,x1), . . . , (yn,xn)) := log f((y1,x1), . . . , (yn,xn); δ).

We denote the true (but unknown) value of δ by δ0. All probabilities and
expectations are taken with respect to the true underlying distribution. We
impose a set of relatively weak conditions on the data to ensure the existence
of certain expansions and the proper behavior of maximum likelihood (ML)
estimators. All limits are taken for n→ ∞.

Assumption 1:

(a) the parameter space D is a compact subset of R
p,

3We follow the notation proposed in Abadir and Magnus (2002).
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(b) δ0 lies in the interior D0 of D,
(c) ℓ(δ) is continuous on D,
(d) ℓ(δ) is two times continuously differentiable on D0.

Assumption 2: Let k := k(δ, δ0) := −E (ℓ(δ) − ℓ(δ0)) denote the absolute
value of the Kullback-Leibler information. Then,
(a) k(δ, δ0) → ∞ for every δ 6= δ0,
(b) (1/k2) var(ℓ(δ) − ℓ(δ0)) → 0,
(c) for every δ 6= δ0 ∈ D there exists a neighborhood N(δ) of δ such that

Pr

(
(1/k) sup

φ∈N(δ)

(ℓ(φ) − ℓ(δ)) < 1

)
→ 1.

Assumption 2(c) ensures that the normalized log-likelihood ratio is locally
equicontinuous in probability. This condition is weaker than the more com-
mon condition that (1/n)ℓ(δ) converges uniformly in probability. Assump-

tions 1(a), 1(c), and 2 together guarantee that the ML estimator δ̂ of δ exists
and is consistent, see Heijmans and Magnus (1986a).

We now define the score and the Hessian matrix as

q(δ) :=
1√
n

∂ℓ(δ)

∂δ
, H(δ) :=

1

n

∂2ℓ(δ)

∂δ ∂δ′
,

where we note that these are normalized in order to ensure stable variates.

Assumption 3:

(a) q(δ0)
d−→ N(0,I(δ0)),

(b) H(δ0)
p−→ −I(δ0),

(c) I(δ) is continuous on D0 and I(δ0) is positive definite,
(d) for every ǫ > 0 there exists a neighborhood N(δ0) of δ0 such that

Pr

(
sup

δ∈N(δ0)

|Hij(δ) + I ij(δ)| > ǫ

)
→ 0 (i, j = 1, . . . , p).

We notice that condition 3(d) is weaker than the more common assumptions
requiring uniform convergence in probability of H(δ) or uniform boundedness

of third-order derivatives. Under Assumptions 1–3 the ML estimator δ̂ is
first-order efficient and asymptotically normal in the sense that

√
n(δ̂ − δ0)

d−→ N
(
0,I(δ0)

−1
)
,

see Heijmans and Magnus (1986b). Other sets of assumptions, such as those
of Andrews (1998, p. 170), are of course possible.
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We wish to think of the parameter vector δ as consisting of two parts,
namely a focus parameter β ∈ R

k and a nuisance parameter θ ∈ R
m, where

k +m = p. Our interest lies in the estimation of the focus parameter β. In
the unrestricted model both β and θ are estimated, and the ML estimators
are denoted β̂ and θ̂, respectively. In the restricted model we impose the
restriction θ = 0, so that only β is estimated; the restricted ML estimator is
denoted β̃.

The score, Hessian, and information matrix can be evaluated at δ = (β,θ)

(generic), at δ̂ = (β̂, θ̂) (unrestricted ML estimator), at δ̃ = (β̃,0) (restricted
ML estimator), or at δ0 = (β0,θ0) (true value). We follow standard notation

by writing I , Î, Ĩ, and I
0 to indicate at which point the information matrix

is evaluated; similar notation is adopted for the score and Hessian matrix.
We partition

q =

(
qβ

qθ

)
, H =

(
Hββ Hβθ

Hθβ Hθθ

)
,

and similarly for the information matrix I. Then, the unrestricted ML esti-
mators β̂ and θ̂ satisfy the first-order conditions

qβ(β̂, θ̂) = 0, qθ(β̂, θ̂) = 0, (3)

while the restricted ML estimator β̃ satisfies

qβ(β̃,0) = 0. (4)

To test the null hypothesis H0 : θ = 0, several statistics are available. The
three classical tests are the Wald (W), the likelihood ratio (LR), and the
Lagrange multiplier (LM) test. The latter, also known as the score test, is
the most natural diagnostic in our context, and takes the form

LM = q̃ ′

θ

(
Ĩθθ − ĨθβĨ

−1

ββ Ĩβθ

)
−1

q̃θ. (5)

The W and LR tests are asymptotically equivalent to the LM test, and hence
all asymptotic results hold for these two tests as well.

In order to establish asymptotic behavior, we need the first-order expan-
sions:

0 = q(δ̂) = q(δ0) + H
0
√
n(δ̂ − δ0) +Op(1/

√
n), (6)

0 = qβ(β̃,0) = qβ(β0,0) + H
0
ββ

√
n(β̃ − β0) +Op(1/

√
n), (7)

and
q̃θ = qθ(β̃,0) = qθ(β0,0) + H

0
θβ

√
n(β̃ − β0) +Op(1/

√
n). (8)
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The following theorem can then be established and will serve as our point of
departure.

Theorem 1 (Asymptotic distribution of ML estimators and LM test): Given
Assumptions 1–3,
(a) the unrestricted ML estimator β̂ is consistent and asymptotically normal
such that

√
n(β̂ − β0)

d−→ N
(
0,Vbβ) , Vbβ =

(
I

0
ββ − I

0
βθ(I

0
θθ)

−1
I

0
θβ

)
−1
,

(b) the restricted ML estimator β̃ is consistent and asymptotically normal
with asymptotic variance (I0

ββ)−1,
(c) under the null hypothesis H0 : θ = 0, the LM statistic (5) follows asymp-
totically a χ2(m)-distribution.

Proof: We use the expansions (6), (7), and (8), which give

√
n(δ̂ − δ0) = (I0)−1q(δ0) +Op(1/

√
n)

d−→ N(0, (I0)−1),

√
n(β̃ − β0) = (I0

ββ)−1qβ(β0,0) +Op(1/
√
n)

d−→ N(0, (I0
ββ)−1),

and

q̃θ = q0
θ − I

0
θβ(I0

ββ)−1q0
β +Op(1/

√
n)

d−→ N(0,I0
θθ − I

0
θβ(I0

ββ)−1
I

0
βθ),

and the results follow. ‖

The expansions (6)–(8) also imply the following basic orthogonality result.

Theorem 2 (Asymptotic independence of β̃ and LM test): Given Assump-
tions 1–3 and under the null hypothesis H0 : θ = 0,

√
n cov

(
q̃θ, β̃ − β0

)
→ O,

and hence the restricted estimator β̃ and the LM test are asymptotically
independent.

Proof: For two random vectors z1 and z2, let z1 ≈ z2 denote ‘asymp-
totic equality’ in the sense that z1 = z2 + Op(1/

√
n). Since q̃θ ≈ q0

θ −
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I
0
θβ(I0

ββ)−1q0
β, we obtain

cov
(
q̃θ, q

0
β

)
≈ E

(
q0

θq
0
β

′

)
− I

0
θβ(I0

ββ)−1 E
(
q0

βq0
β

′

)

≈ I
0
θβ − I

0
θβ(I0

ββ)−1
I

0
ββ = O,

using the fact that I
0 ≈ E(q0q0′). Hence, the LM test is asymptotically un-

correlated with q0
β, and, because of the asymptotic normality, asymptotically

independent. In addition, q0
β is asymptotically equal to I

0
ββ

√
n(β̃−β0). The

result follows. ‖

Theorem 2 provides a generalization of the following well-known fact from
least-squares theory. Let y = Xβ + Zθ + ε, where ε ∼ N(0, σ2In). The

estimator of θ in the unrestricted model is θ̂ = (Z ′MZ)−1Z ′My, where
M = In − X(X ′X)−1X ′. Under the restriction that θ = 0, the estimator

of β in the restricted model is β̃ = (X ′X)−1X ′y. Clearly, θ̂ and β̃ are inde-
pendent, because MX = O. Moreover, q̃θ := Z ′My/σ̃2 is also independent

of β̃, because both Z ′My and σ̃2 := y′My/n are independent of β̃.

3 Sensitivity

While a diagnostic test answers the question ‘Is it true?’ (that the nuisance
parameter is not zero), a sensitivity statistic answers the question ‘Does it
matter?’ A diagnostic test such as the LM test may reject the null hypothesis
that θ = 0, but this does not mean that the estimator of the focus parameter
β will be sensitive to deviations of θ from 0. In fact, Banerjee and Magnus
(1999) found in the special case of AR(1) errors that the diagnostic test
tells you very little about the sensitivity.4 The essential difference between
a diagnostic test and a sensitivity statistic is graphed in Figure 1, where we
assume for simplicity that k = m = 1; hence there is one focus parameter β
and one nuisance parameter θ. Figure 1 is a generalization of the well-known
picture of the three classical tests, see for example Ruud (2000, p. 390).

At (β̂, θ̂) we obtain the maximum of the likelihood ℓ̂, while at (β̃, 0), we

obtain the restricted maximum ℓ̃. For every fixed value of θ, let β̃(θ) denote
the value of β which maximizes the (restricted) likelihood. The locus of all

constrained maxima is the curve C :=
(
β̃(θ), θ, ℓ(β̃(θ), θ)

)
. In particular,

the points (β̃, 0, ℓ̃) and (β̂, θ̂, ℓ̂) are on this curve.

4See also Helton and Davis (2000, p. 126).
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ℓ(β, θ)

ℓ̂

ℓ̃

θ

θ̂

β
β̃ β̂

β̃(θ)

ℓ̃(θ)

Figure 1. Diagnostic test and sensitivity

The β̃(θ)-curve is thus the projection of the curve C onto the (β, θ)-plane;
we shall call this projection the sensitivity curve. In contrast, if we project
C onto the (θ, ℓ)-plane, we obtain the curve ℓ̃ defined as

ℓ̃(θ) := ℓ(β̃(θ), θ), (9)

which we shall call the diagnostic curve. The diagnostic curve ℓ̃ in the (θ, ℓ)-
plane contains all relevant information needed to perform the usual diagnostic
tests. In particular, the LR test is based on ℓ̃(θ̂)− ℓ̃(θ̃), the Wald test is based

on θ̂, and the LM test is based on the derivative of ℓ̃(θ) at θ = 0. The last

statement follows from the fact that, at (β, θ) = (β̃, 0),

∂ℓ̃(θ)

∂θ
=
∂ℓ(β̃(θ), θ)

∂θ
=
∂ℓ(β, θ)

∂β

∂β̃(θ)

∂θ
+
∂ℓ(β, θ)

∂θ
=
∂ℓ(β, θ)

∂θ
,

since ∂ℓ(β, θ)/∂β = 0 at the restricted maximum, by (4).

Analogous to the LM test in the (θ, ℓ)-plane, the sensitivity of β̃ is the

derivative of β̃(θ) at θ = 0 in the (β, θ)-plane. The sensitivity thus measures

the effect of small changes in θ on the restricted ML estimator β̃.



11

We now formally introduce the sensitivity statistic. The sensitivity curve
contains all restricted ML estimators β̃(θ) as a function of θ, that is, the
collection of estimators satisfying the first-order condition

qβ(β̃(θ),θ) = 0. (10)

The difference between the two estimators β̂ and β̃ can be approximated by
the first term of a Taylor expansion,

β̂ − β̃ = β̃(θ̂) − β̃(0) =
∂β̃(θ)

∂θ′

∣∣∣∣∣
θ=0

θ̂ + Op(1/n).

Thus motivated we propose the following definition.

Definition 1 (Sensitivity): The (local) sensitivity of an estimator β̃(θ) to
the nuisance parameter θ at the point 0 is

Seβ :=
∂β̃(θ)

∂θ′

∣∣∣∣∣
θ=0

. (11)

Differentiating the first-order condition (10) with respect to θ we obtain

Seβ = −H̃
−1

ββH̃βθ. (12)

In some cases, it is convenient to scale the first-order condition (10) by a
constant c(β,θ). This scaling does not affect the sensitivity.

Our definition should be compared with Cook’s (1986) definition of ‘like-
lihood displacement’. Let us define the likelihood ratio function by

LR(θ) = 2
(
ℓ(β̃(θ),θ) − ℓ(β̃(0),0)

)
,

so that the usual LR-statistic is given by LR(θ̂). Cook’s likelihood displace-
ment is closely related to the LR function. In our context it can be defined
as

LD(θ) = −2
(
ℓ(β̃(θ),0) − ℓ(β̃(0),0)

)
.

The first derivative of the LD at θ = 0 vanishes, because LD reaches its
maximum at θ = 0, and the second derivative (‘Cook’s curvature’) at θ = 0

is

Ceβ :=
∂2LD(θ)

∂θ∂θ′

∣∣∣∣
θ=0

= −2nH̃θβH̃
−1

ββH̃βθ = 2nH̃θβSeβ. (13)
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Cook’s curvature is thus closely related to our sensitivity statistic. Them×m
matrix Ceβ is positive semidefinite, and we can find it largest eigenvalue
and the associated eigenvector. This eigenvector gives the ‘most sensitive
direction’ of the LD-curve. While the LD-curve is a general feature, the
sensitivity is more informative in specific directions such as we are studying
here; see also Cook (1986, p. 136).

The stochastic properties of Seβ (or Ceβ) have not been investigated in the
literature. Neither has the relationship between Seβ (or Ceβ) and diagnostic

testing been investigated.5 To these issues we now turn. We shall need some
further smoothness conditions on the Hessian matrix.

Assumption 4: There exists a finite k(k + m) × k matrix R0 and a fi-
nite k(k +m) × k(k +m) positive semidefinite matrix G0 such that

√
n vec

(
(H̃ββ : H̃βθ) − (H0

ββ : H
0
βθ)
)

= R0
√
n(β̃ − β0) +Op(1/

√
n)

and √
n vec

(
(H̃ββ : H̃βθ) + (I0

ββ : I
0
βθ)
)

d−→ N(0,G0).

We remark that Assumption 4 can be formulated in terms of ‘deeper’ assump-
tions, involving three times continuous differentiability and uniform bound-
edness, as in Assumption 3 of Newey and Smith (2004, p. 226), but there is
no need to do so here.

Theorem 3 (Asymptotic behavior of the sensitivity): Given Assumptions 1–
4 and under the null hypothesis H0 : θ = 0, the sensitivity Seβ satisfies

Seβ p−→ −(I0
ββ)−1

I
0
βθ

and √
n vec

(
Seβ + (I0

ββ)−1
I

0
βθ

)
d−→ N(0,VS),

where

VS =

(
(I0

ββ)−1I
0
βθ ⊗ (I0

ββ)−1

−Im ⊗ (I0
ββ)−1

)′

G0

(
(I0

ββ)−1I
0
βθ ⊗ (I0

ββ)−1

−Im ⊗ (I0
ββ)−1

)
.

In the special case where I
0
βθ = O, we obtain Seβ p−→ O and

√
n vec Seβ d−→

N(0,VS), with

VS =
(
Im ⊗ (I0

ββ)−1
) (

lim
n→∞

var(
√
n vec H̃βθ)

) (
Im ⊗ (I0

ββ)−1
)
.

5The only exception seems to be Schwarzmann (1991) who shows — for the case of
location perturbation of the dependent variable — that the eigenvector associated with
the largest eigenvalue of Cook’s curvature is proportional to the vector of residuals.
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Proof: The first result follows from H̃ββ
p−→ −I

0
ββ and H̃βθ

p−→ −I
0
βθ. In

order to obtain the asymptotic distribution of the sensitivity, we write

√
n
(
Seβ + (I0

ββ)−1
I

0
βθ

)

= (I0
ββ)−1

(
−
√
n(H̃βθ + I

0
βθ) +

√
n(H̃ββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

)

+Op(1/
√
n).

Vectorizing and using the assumed asymptotic distribution of (H̃ββ : H̃βθ),
gives the required result. ‖

In special cases substantial simplifications occur, as we shall see in Sec-
tions 5–7. Theorem 3 allows us to perform a sensitivity test (ST), based
on the fact that

ST := n
(
vec
(
Seβ + (I0

ββ)−1
I

0
βθ

))
′

V +
S

(
vec
(
Seβ + (I0

ββ)−1
I

0
βθ

))

converges to a χ2(r) distribution, where r denotes the rank of VS. In par-
ticular, when VS is nonsingular, this gives us an asymptotic χ2(mk)-test for
sensitivity.

Sometimes we are only interested in a subvector of β or, more generally,
in a function g(β). We can easily extend the definition by defining the

sensitivity of g(β̃(θ)) to the nuisance parameter θ at the point 0 by

S
g(eβ) =

∂g(β̃(θ))

∂β′

∂β̃(θ)

∂θ′

∣∣∣∣∣
θ=0

. (14)

In particular, if we choose g(β) = 2
√
nqθ(β,0), then the sensitivity is equal

to Cook’s curvature of the LD function. Cook’s curvature can thus be inter-
preted as the speed with which qθ(β̃,0) changes along the sensitivity curve.

The special case where the focus parameter is partitioned as β = (β1,β2)

and we are only interested in the sensitivity of β̃1 to the nuisance parameter
θ, is of particular importance as we shall see in Sections 5–7. By (10) we
have

qβ1
(β̃1(θ), β̃2(θ),θ) = 0, qβ2

(β̃1(θ), β̃2(θ),θ) = 0,

and hence, upon differentiating, at θ = 0,

H̃β1β1

∂β̃1(θ)

∂θ′
+ H̃β1β2

∂β̃2(θ)

∂θ′
+ H̃β1θ = O

H̃β2β1

∂β̃1(θ)

∂θ′
+ H̃β2β2

∂β̃2(θ)

∂θ′
+ H̃β2θ = O.
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This gives

Seβ1
= −H̃

−1

β1β1
H̃β1θ,

where
H̃β1β1

:= H̃β1β1
− H̃β1β2

H̃
−1

β2β2
H̃β2β1

,

and
H̃β1θ := H̃β1θ − H̃β1β2

H̃
−1

β2β2
H̃β2θ.

If we define similarly

I
0
β1β1

:= I
0
β1β1

− I
0
β1β2

(I0
β2β2

)−1
I

0
β2β1

,

and
I

0
β1θ := I

0
β1θ − I

0
β1β2

(I0
β2β2

)−1
I

0
β2θ,

then we find Seβ1

p−→ −(I0
β1β1

)−1I
0
β1θ.

In the special case where I
0
β1β2

= O, we obtain Seβ1

p−→ −(I0
β1β1

)−1I
0
β1θ,

and the asymptotic variance of Seβ1
is based on the relationship

√
n
(
Sfβ1

+ (I0
β1β1

)−1
I

0
β1θ

)

= (I0
β1β1

)−1
(
−
√
n(H̃β1θ + I

0
β1θ) +

√
n(H̃β1β1

+ I
0
β1β1

)(I0
β1β1

)−1
I

0
β1θ

+
√
n(H̃β1β2

)(I0
β2β2

)−1
I

0
β2θ

)
+Op(1/

√
n)

together with the joint asymptotic distribution of

√
n(H̃β1θ + I

0
β1θ),

√
n(H̃β1β1

+ I
0
β1β1

),
√
n(H̃β1β2

).

4 Asymptotic independence

We recall from Theorem 2 that the LM test is asymptotically independent
of β̃. This does not, however, imply that the LM test is asymptotically
independent of the direction of β̃(θ) at θ = 0, that is, of the sensitivity. It
is this type of independence that we address in this section.

We already know that the LM test is based on the score,

q̃θ ≈ q0
θ − I

0
θβ(I0

ββ)−1q0
β, (15)

and that the sensitivity statistic satisfies

√
n
(
Seβ + (I0

ββ)−1
I

0
βθ

)

≈ (I0
ββ)−1

(
−
√
n(H̃βθ + I

0
βθ) +

√
n(H̃ββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

)
. (16)
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Based on these facts we wish to demonstrate the following central result.

Theorem 4 (Asymptotic independence of sensitivity and LM test): Let
Assumptions 1–4 hold. Then, under the null hypothesis H0 : θ = 0, the LM
test and the sensitivity statistic Seβ are asymptotically independent if and
only if the correlation between

q0
θ − I

0
θβ(I0

ββ)−1q0
β,

and √
n(H0

βθ + I
0
βθ) −

√
n(H0

ββ + I
0
ββ)(I0

ββ)−1
I

0
βθ

vanishes asymptotically.
In the special case where I

0
βθ = O, asymptotic independence of the LM

test and the sensitivity statistic occurs if and only if the correlation between
q0

θ and
√
nH

0
βθ approaches zero. The latter condition is satisfied if I

0
θθ does

not depend on β and the correlation between q0
β and

√
nq0

θq
0
θ

′

approaches
zero.

Proof: In view of the joint asymptotic normality, the LM test and the
sensitivity statistic will be asymptotically independent if and only if the cor-
relation between

q0
θ − I

0
θβ(I0

ββ)−1q0
β,

and √
n(H̃βθ + I

0
βθ) −

√
n(H̃ββ + I

0
ββ)(I0

ββ)−1
I

0
βθ

vanishes asymptotically. Now write

vec
(
(H̃ββ : H̃βθ) − (H0

ββ : H
0
βθ)
)
≈ R0(β̃ − β0).

Then,

√
n vec

(
(H̃ββ : H̃βθ) + (I0

ββ : I
0
βθ)
)

≈ R0
√
n(β̃ − β0) +

√
n vec

((
H

0
ββ : H

0
βθ

)
+
(
I

0
ββ : I

0
βθ

))

≈ R0(I0
ββ)−1q0

β +
√
n vec

((
H

0
ββ : H

0
βθ

)
+
(
I

0
ββ : I

0
βθ

))
.

Since q0
β is asymptotically independent of q0

θ − I
0
θβ(I0

ββ)−1q0
β, by Theorem

2, the first result follows. In the special case I
0
βθ = O, the result follows

from the fact that

∂

∂β′
vec E(q0

θq
0
θ

′

) =
√
nE

(
(Im ⊗ q0

θ + q0
θ ⊗ Im)H0

θβ

)

+
√
nE((vec q0

θq
0
θ

′

)q0
β

′

). ‖
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The condition for independence is essentially a third-moment condition in
the same spirit as Corollary 4.4 in Newey and Smith (2004, p. 229). We will
see in the examples of Sections 5–7 that the condition is satisfied for a wide
class of situations. The special case where I

0
βθ = O and I

0
θθ does not depend

on β occurs often, for example in the case of variance misspecification; see
Magnus (1978, Theorem 3, p. 288) and Section 6 below. It is not true that
the sensitivity and the diagnostic are always independent. For example, the
sensitivity of σ̃2 is typically not independent of the diagnostic test, as we
shall see in Section 6.

Again we consider separately the important special case where the focus
parameter β is partitioned as β = (β1,β2), and we are only interested in the

sensitivity of β̃1 to the nuisance parameter θ. The condition in Theorem 4
then concerns the correlation between

q0

θ
− I

0
θβ1

(I0
β1β1

)−1q0

β1

, (17)

and √
n(H0

β1θ + I
0
β1θ) −

√
n(H0

β1β1
+ I

0
β1β1

)(I0
β1β1

)−1
I

0
β1θ, (18)

where

q0

β1

:= q0
β1

− I
0
β1β2

(I0
β2β2

)−1q0
β2
, q0

θ
:= q0

θ − I
0
θβ2

(I0
β2β2

)−1q0
β2
.

The special case where β̂1 and β̂2 are asymptotically independent is espe-
cially useful.

Theorem 5 (Asymptotic independence of sensitivity and LM test, special
case): Consider the case where β = (β1,β2) and we are interested in the

sensitivity of β̃1 to θ. Let Assumptions 1–4 hold and let I
0
β1β2

= O. Then,
under the null hypothesis H0 : θ = 0, the LM test and the sensitivity statistic
Seβ1

are asymptotically independent if and only if the correlation between

q0
θ − I

0
θβ1

(I0
β1β1

)−1q0
β1

− I
0
θβ2

(I0
β2β2

)−1q0
β2

and

√
n(H0

β1θ + I
0
β1θ) −

√
n(H0

β1β1
+ I

0
β1β1

)(I0
β1β1

)−1
I

0
β1θ

−
√
nH

0
β1β2

(I0
β2β2

)−1
I

0
β2θ

vanishes asymptotically.
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Proof: If I
0
β1β2

= O, we find I
0
β1β1

= I
0
β1β1

, I
0
β1θ = I

0
β1θ, and q0

β1

= q0
β1

.

In addition,
H̃β1β1

= H̃β1β1
+Op(1/n),

H̃β1θ = H̃β1θ − 1√
n

(
√
nH̃β1β2

)(I0
β2β2

)−1
I

0
β2θ +Op(1/n),

while
q0

θ
= q0

θ − I
0
θβ2

(I0
β2β2

)−1q0
β2
.

is not simplified. The result now follows from (17) and (18). ‖

This completes the theoretical part of the paper. We now turn to three
examples.

5 Misspecification in the mean

Our first example is the linear regression model

y = Xβ + Zθ + ε, ε|(X,Z) ∼ N(0, σ2In),

where we consider (β, σ2) as the focus parameter, and θ as the nuisance pa-
rameter. We are interested in the sensitivity of β with respect to θ. The like-
lihood is the product of the conditional likelihood (conditional on (X : Z))
and the likelihood of (X : Z). The conditional log-likelihood is given by

ℓ = −n
2

log 2π − n

2
log σ2 − 1

2σ2
(y − Xβ − Zθ)′(y − Xβ − Zθ).

The score vector is

q0 =




q0
β

q0
σ2

q0
θ


 =

1√
n




X ′ε/σ2
0

(ε′ε − nσ2
0)/(2σ

4
0)

Z ′ε/σ2
0




and the Hessian matrix is

H
0 = − 1

n




X ′X/σ2
0 X ′ε/σ4

0 X ′Z/σ2
0

∗ (ε′ε − nσ2
0/2)/σ6

0 Z ′ε/σ4
0

∗ ∗ Z ′Z/σ2
0


 .

We notice that H
0
βσ2 and H

0
σ2θ are both of the order Op(1/

√
n), reflecting

the fact that (β̂, θ̂) is asymptotically independent of σ̂2. Hence, according
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to Theorem 5, the LM test and the sensitivity Seβ are independent if the two
expressions

q0
θ − I

0
θβ(I0

ββ)−1q0
β

and √
n(H0

βθ + I
0
βθ) −

√
n(H0

ββ + I
0
ββ)(I0

ββ)−1
I

0
βθ

are asymptotically uncorrelated. Now, the first expression is asymptotically
proportional to Z ′Mε/

√
n, where M = In − X(X ′X)−1X ′. The second

expression depends only on X and Z, and has finite variance by Assump-
tion 4. Hence they are asymptotically uncorrelated due to the regression
condition E(ε|X,Z) = 0.

The restricted estimator is β̃ = (X ′X)−1X ′y, the LM test takes the form

LM =
y′MZ(Z ′MZ)−1Z ′My

y′My/n
,

the sensitivity in this example is Seβ = −(X ′X)−1X ′Z, and we have shown
that Seβ and LM are asymptotically independent. In this case we can prove
a stronger result: Seβ and LM are independent in finite samples as well. This
follows from the fact that the Wald test in this case is proportional to an
F-distribution. As shown by Godfrey (1988, p. 51), the LM and LR tests are
related to the Wald test by

LM =
W

1 + W/n
, LR = n log(1 + W/n),

and hence the distribution of LM (and W and LR) does not depend on
(X,Z). Thus, for any two measurable functions φ and ψ,

E (φ(LM)ψ(X,Z)) = E (E(φ(LM)|X,Z)ψ(X,Z))

= E (φ(LM)) E (ψ(X,Z)) .

Not only are LM and Seβ uncorrelated, but any two measurable functions
of LM and Seβ are uncorrelated as well. Then, by Doob (1953, p. 92), LM
and Seβ are independent, and the same holds for the Wald and LR tests. We
note, however, that q̃θ and Seβ are only asymptotically independent, because
the conditional distribution of q̃θ does depend on (X,Z).

6 Misspecification in the variance

Our second example concerns the linear regression model

y = Xβ + ε, ε|X ∼ N(0, σ2Ω(θ)),
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where Ω(0) = In. Again we regard (β, σ2) as the focus parameter and θ
as the single nuisance parameter. Extensions to more than one nuisance
parameter and to the nonlinear regression model are straightforward.6 We
are interested in the sensitivity of β to θ. The log-likelihood (conditional on
X) is

ℓ = −n
2

log 2π − n

2
log σ2 − 1

2
log |Ω| − 1

2σ2
(y − Xβ)′Ω−1(y − Xβ).

Letting V1 := ∂Ω(θ)/∂θ and V2 := ∂2Ω(θ)/∂θ2, both at θ = 0, the score
vector is given by

q0 =




q0
β

q0
σ2

q0
θ


 =

1√
n




X ′ε/σ2
0

(ε′ε − nσ2
0)/(2σ

4
0)

(ε′V1ε − σ2
0 tr V1)/(2σ

2
0)




and the Hessian matrix is

H
0 = − 1

n




X ′X/σ2
0 X ′ε/σ4

0 X ′V1ε/σ
2
0

∗ (ε′ε − nσ2
0/2)/σ6

0 ε′V1ε/(2σ
4
0)

∗ ∗ ∗


 ,

with

H
0
θθ = − 1

2nσ2
0

(
(2ε′V 2

1 ε − σ2
0 tr V 2

1 ) − (ε′V2ε − σ2
0 tr V2)

)
.

In this example, both H
0
βσ2 and H

0
βθ are of the order Op(1/

√
n), reflecting the

fact that β̂ is asymptotically independent of (θ̂, σ̂2). Hence Theorem 5 implies
that the LM test and the sensitivity Seβ are independent if the correlation
between

q0
θ − I

0
θσ2(I0

σ2σ2)−1q0
σ2

and √
nH

0
βθ −

√
nH

0
βσ2(I0

σ2σ2)−1
I

0
σ2θ

approaches zero. (We could also have employed the fact that I
0
θθ does not

depend on β, and apply Theorem 4.) The first expression depends only on
the two quadratic forms ε′V1ε and ε′ε, while the second expression depends
only on the linear forms X ′V1ε and X ′ε. Hence they are asymptotically
independent if both expressions have finite variances in the limit. This is
guaranteed if tr V1, tr V 2

1 , X ′V1X, and X ′X are all of the order Op(n).
This, in turn, is implied by Assumptions 3(c) and 4.

6Magnus (1978) provides the relevant framework and formulae for this case.
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Letting M := In − X(X ′X)−1X ′, the restricted estimator and the sen-
sitivity are

β̃ = (X ′X)−1X ′y, Seβ = (X ′X)
−1

X ′V1My,

while the LM test takes the form

LM =
n

2 tr V 2
1 /n

(
y′MV1My

y′My
− tr V1

n

)2

,

which confirms that the LM test is a quadratic function of ε while the sen-
sitivity is a linear function.

We notice that LM and Seσ2 are not independent in this case, because
Seσ2 = −y′MV1My/n, which is strongly correlated with LM.

The fact that asymptotically LM and Seβ are independent, does not tell
us how fast the convergence takes place. Thus, we perform a Monte Carlo
experiment in the same spirit as Banerjee and Magnus (1999). For a given
value of n, we generate five regressors: constant, time trend, normal distri-
bution N(0, 9), lognormal distribution log N(0, 9), and uniform distribution
U[−2, 2]. Based upon these five regressors we consider ten data sets: five
with two regressors and five with three regressors, as follows:

1: constant, linear trend 6: constant, linear trend, N(0, 9)
2: constant, N(0, 9) 7: constant, linear trend, log N(0, 9)
3: constant, log N(0, 9) 8: constant, log N(0, 9), U[−2, 2]
4: N(0, 9), U[−2, 2] 9: N(0, 9), log N(0, 9), U[−2, 2]
5: linear trend, N(0, 9) 10: linear trend, N(0, 9), U[−2, 2].

Our assumed alternative is the AR(1) model with parameter θ. Assum-
ing that the null hypothesis that θ = 0 is true, we calculate critical values
ST∗ and LM∗ such that

Pr(ST > ST∗) = Pr(LM > LM∗) = 0.05,

where ST refers to the (one-dimensional) sensitivity test rather than the
multi-dimensional sensitivity statistic S. If ST and LM are independent,
then the conditional probability Pr(ST < ST∗|LM ≥ LM∗) will be equal to
0.95. If, on the other hand, ST and LM are perfectly dependent, then the
conditional probability will be zero.7 We performed 100,000 Monte Carlo
simulations for each of the ten models and for each of n = 25, 50, 100, 250,
500, and 1000. Figure 2a demonstrates that the convergence to independence

7We look at the conditional probabilities rather than at the correlations, because this
combines the convergence of the relevant random variables to normality with the conver-
gence of the correlations to zero. The convergence of the correlations to zero is more rapid
than the converge to normality.
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Figure 2a. Nonscalar variance: independence of LM test and sensitivity

is fast, and that the behavior for each of the ten data sets is similar. Inter-
estingly, the LM test and the sensitivity test are negatively correlated in this
case.8

We have chosen the LM test as our diagnostic test. The LR test and the
Wald tests are asymptotically the same as the LM test, but not in finite sam-
ples. Hence, the LR and Wald tests will also be asymptotically independent
of the sensitivity test, but the speed of convergence could be different. This
is analyzed in Figures 2b and 2c. All three tests converge quickly to the 95%
line; the Wald test is the slowest. The Wald test and the LR test are both
positively correlated with the sensitivity test.

7 Misspecification in the distribution

Our third and final example concerns the linear regression model

y = Xβ + σε, ε|X ∼ D(0, In),

8On average the correlation ρ between the LM test and the sensitivity test is ρ = −0.06
for n = 25, ρ = −0.03 for n = 50, and ρ = −0.01 for n = 100.
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Figure 2b. Nonscalar variance: independence of LR test and sensitivity
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Figure 2c. Nonscalar variance: independence of Wald test and sensitivity
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where the ε1, . . . , εn, conditional on X, are i.i.d. with mean zero and variance
one. We do not assume that the distribution D is normal. Instead we assume
that the εi follow a general Pearson distribution defined implicitly by

dlog f(εi)

dεi

=
θ1 − εi

1 − θ1εi + θ2(ε2
i − 3)

,

see Kendall and Stuart (1976, p. 159). Notice that in our formulation of
the Pearson family the random variable is scaled so that its variance is one.
We regard (β, σ2) as the focus parameter and θ = (θ1, θ2) as the nuisance
parameter. At θ = 0 we obtain dlog f(εi)/ dεi = −εi which defines the
N(0, 1) distribution.

We are interested in the sensitivity of β to θ. The log-likelihood condi-
tional on X is given by

ℓ = −n
2

log σ2 +
n∑

i=1

log f(εi), εi =
yi − x′

iβ

σ
,

where yi denotes the i-th component of y and x′

i denotes the i-th row of X.
The score vector is given by

q0 =




q0
β

q0
σ2

q0
θ


 =

1√
n




X ′ε/σ0

(ε′ε − n)/(2σ2
0)

∗


 ,

where

q0
θ =

1√
n

(
1
3

∑
i εi(3 − ε2

i )
1
4

∑
i(ε

4
i − 6ε2

i + 3)

)
,

and the Hessian matrix is

H
0 = − 1

n




X ′X/σ2
0 X ′ε/σ3

0 ∗
∗ (ε′ε − n/2)/σ4

0 ∗
∗ ∗ ∗


 ,

with

H
0
θβ = − 1

nσ0

( ∑
i(1 − ε2

i )x
′

i∑
i εi(ε

2
i − 3)x′

i

)
, H

0
θσ2 = − 1

2nσ2
0

(∑
i εi(1 − ε2

i )∑
i ε

2
i (ε

2
i − 3)

)
,

and

H
0
θθ = − 1

n

(
1
6

∑
i(3ε

4
i − 6ε2

i + 1) 1
15

∑
i(−6ε5

i + 35ε3
i − 45εi)

∗ 1
6

∑
i(2ε

6
i − 18ε4

i + 54ε2
i − 21)

)
.
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In this example, three blocks of the Hessian matrix, namely H
0
βσ2 , H

0
βθ,

and H
0
σ2θ are all of the order Op(1/

√
n), reflecting the fact that β̂, σ̂2, and

θ̂ are asymptotically independent. (In fact, since −E(H0
θθ) = E(q0

θq
0
θ) =

diag(2/3, 3/2), θ̂1 and θ̂2 are asymptotically independent as well.) Hence
Theorem 5 implies that the LM test and the sensitivity Seβ are independent

if and only if the correlation between q0
θ and

√
nH

0
βθ approaches zero. In

general, this is not the case. We have
√
nE

(
q0

θ1
H

0
βθ1

)
→ 0,

√
nE

(
q0

θ2
H

0
βθ2

)
→ 0,

√
nE

(
q0

θ2
H

0
βθ1

)
→ 0,

but

corr
(√

nH
0
βθ2
, q0

θ1
|X
)

=
1√
n

(X ′X)−1/2X ′ı,

where ı denotes the n× 1 vector of ones. Hence, the LM test and the sensi-
tivity Seβ are independent if and only if

√
nH

0
βθ2

and q0
θ1

are asymptotically

uncorrelated, that is, if and only if ı′X(X ′X)−1X ′ı/n
p−→ 0.

We now distinguish between two cases. First, if the regression contains a
constant term, then there is no loss in generality in taking the other regres-
sors in deviation from their respective means. The sensitivity of the slope
parameters is then asymptotically independent of the LM test. The sensi-
tivity of the constant term itself will be correlated with the LM test because
ı′X(X ′X)−1X ′ı/n = 1 for X = ı.

Second, if the regression contains no constant term, then the sensitivity
of the parameters will in general be correlated with the LM test, unless the
regressors happen to be centered at zero. For example, if x is a sample
from a distribution with mean µ and variance σ2, then ı′x(x′x)−1x′ı/n

p−→
µ2/(µ2+σ2), which is zero if and only if µ/σ = 0. If x is the trend 1, 2, . . . , n,
then ı′x(x′x)−1x′ı/n→ 3/4.

The restricted estimators are

β̃ = (X ′X)−1X ′y, σ̃2 = y′My/n,

where M := In − X(X ′X)−1X ′. Letting ε̃ = My/σ̃, the sensitivity of β̃

to θ1 and θ2 is

Seβ = −σ̃(X ′X)−1

(
n∑

i=1

(1 − ε̃ 2
i )xi :

n∑

i=1

ε̃ 3
i xi

)
+Op(1/n),

while the LM test is the Jarque-Bera test,9

LM = n

(
µ̃ 2

3

6
+

(µ̃4 − 3)2

24

)
,

9See Jarque and Bera (1980, 1987).
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where

µ̃3 =
1

n

n∑

i=1

(ε̃i − µ̃ ′

1)
3, µ̃4 =

1

n

n∑

i=1

(ε̃i − µ̃ ′

1)
4, µ̃ ′

1 =
1

n

n∑

i=1

ε̃i.

Instead of calculating the sensitivities of β̃ with respect to θ1 and θ2, we
can also calculate the sensitivities with respect to the skewness µ3 and the
kurtosis µ4, using the relationships

µ3 =
2θ1

4θ2 − 1
, µ4 − 3 =

6(θ2
1 − 4θ2

2 + θ2)

(4θ2 − 1)(5θ2 − 1)
.

The sensitivity of β̃ to µ3 and µ4 is then

Seβ = −σ̃(X ′X)−1

(
1

2

n∑

i=1

(ε̃ 2
i − 1)xi :

1

6

n∑

i=1

ε̃ 3
i xi

)
+Op(1/n).

In Figure 3 we present the probability that the estimator β̃ is not sensitive
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Figure 3. Nonnormality: (in)dependence of JB-test and sensitivity

to non-normality (ST ≤ ST∗), while the Jarque-Bera test rejects the null
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hypothesis of normality (JB > JB∗). The sensitivity test is for the slope
parameters only. Data sets 1–3 and 6–8 contain a constant term and the
conditional probability therefore converges to 95%. The other four data sets
do not contain a constant term, and indeed the probability in data sets 5 and
10 does not converge to 95%. Data set 4 contains no constant term, but the
two regressors are both centered at zero; hence the probability also converges
to 95%. Finally, data set 9 contains two regressors that are centered at zero,
and one (a sample from the lognormal distribution) which is not centered at
zero. Nevertheless it looks as if the probability converges here also to 95%.
The reason is that for a regressor sampled from the log N(0, 9)-distribution,
the correlation between

√
nH

0
βθ2

and q0
θ1

converges to e−9/2 ≈ 0.01, which
is not zero, but close to zero. A special case of particular importance is
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Figure 4. Kurtosis: independence of JB-test and sensitivity

the case where θ1 = 0, so that there is no skewness. In this case — which
corresponds to the (scaled) t-distribution — we can test for kurtosis. Since√
nE

(
q0

θ1
H

0
βθ1

)
→ 0, the JB-test for kurtosis and the sensitivity test are

asymptotically independent in this case, whether the regressors are measured
in deviations or not. Figure 4 shows that the convergence to independence
is rather slow however.
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8 Conclusion

Sensitivity analysis matters. We argue that the usual diagnostic test provides
only half the information required to decide whether a restricted estimator
is good enough to learn about the focus parameters in the model; the other
half is provided by a sensitivity test.

The results in this paper can be generalized from maximum likelihood
to extremum estimators, and applied to a great variety of situations that
are more complex than the relatively simple ones considered. Also, other
characteristics of the sensitivity curve (apart from the derivative at zero) can
be considered.

Sensitivity analysis is also important for its own sake, not in combination
with diagnostics. It will help to expose the weakest link in a project, be it
the model formulation, the data, the estimation method, or something else.
This is our ultimate goal: to learn from a simple model in which direction
we should generalize. The current paper is just a small step in this direction.
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