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ON THE APPROXIMATION OF AN INTEGRAL
BY A SUM OF RANDOM VARIABLES
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MARTIEN C.A. VAN ZUIJLEN
University of Nijmegen
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(Received October, 1996; Revised September, 1997)

We approximate the integral of a smooth function on [0,1], where values
are only known at n random points (l.e., a random sample from the uni-
form-(0,1) distribution), and at 0 and 1. Our approximations are based
on the trapezoidal rule and Simpson’s rule (generalized to the non-
equidistant case), respectively. In the first case, we obtain an n2-rate of
convergence with a degenerate limiting distribution; in the second case, the

rate of con-vergence is as fast as n31/2, whereas the limiting distribution is
Gaussian then.

Key words: Numerical Integration, Order Statistics, Spacings.
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1. Introduction and Main Results

Suppose we (can) only observe the values of a smooth function f:[0,1]—R at the
points Uy, Uy,..., U, U, 4 q, where Uy, Uy,..., U, are the order statistics (U) <U, <
... <U,) of n independent uniformly-(0,1) distributed random variables and Uy: = 0,
Up 417 =1 It is our aim to estimate the integral

1
I = [ f(2)da (1)

from these observations, i.e., by only using (U, f(U;)), i=0,1,...,n+1. The first

1Research partially supported by European Union HCM grant ERB CHRX-CT
940693.
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108 J.H.J. EINMAHL and M.C.A. VAN ZULJLEN

estimator we will employ is constructed by using the ‘trapezoidal rule’ on each sub-
b

interval [U;_{,U;], i=1,..,n+1. This rule approximates an integral [ g(z)dz
a

simply by 5( —a)(g(a) + g(b)) and it can easily be shown (see, e.g., Isaacson and

Keller [2], p. 304) that
b

Yb-a)(o(@) + 98D~ [ g(o)dz = 750~ 05" (), @)

a

where n € (a,b). Writing D;=U;-U,;_,, i=1,..,n+1, for the spacings of the
U,’s, our estimator of I becomes

L= Z FDF U1+ 1T, ®)
1= 1
Using (2), we will prove the following limiting result for the standardized difference of

I_and I
Theorem 1: If | f''| is bounded, then

n(I,-1) & Lr)-F(0),  es noo. (4)

A much better and probabilistically more interesting estimator is obtained by
applying a 3-points formula, i.e., for a given ¢ € (a,b), we approximate [ g(z)dz by
a

wyg(a) + wyg(c) + wag(b) in such a way that the approximation error is zero in the
case g is a polynomial of second degree. If the 3 points are equidistant, this approxi-
mation is known as Simpson’s rule. It is not hard to show that

w=jo-2-48) wm=f il melo-o-520) ®

and it follows (see again Isaacson and Keller [2], p. 304) that

b b
wyg(a) + wyg(e) + wyg(d) — / g(z)dz = ——%/ (z—a)z—c)(z— b)g(B)(n)d:c, (6)

where 1 = n(z) € (a,b). Hence, our estimator of I in (1), again denoted by I,, be-

comes nt1

2
Z% (Dgi _1+ Dy {(2 -

D,
P Uy )

(7)
_(._I_)_ZD_‘__.1_+_'D2.‘_)...f(U21__1)+(2__ 21_1)f(U21)},

where, for convenience, n is taken to be odd. Formula (6) will be used to prove our
main result:
Theorem 2: Let n be odd. If |f(5)| is bounded, then

21—1

1
1
HSQ(In—'I) ? \J%i/ (f(3)(m))2dm Z, asn—oo, (8)

0
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where Z is a standard normal random variable.

Remark 1: The present techniques can be easily adapted to cover the situation
where the U,’s are the order statistics of n independent random variables with com-
mon distribution function G (on (0,1)) having a smooth density g. The adaptation is
based on the quantile transform, transforming a uniform random variable V into a
random variable G ~ (V) with distribution function G. In this case, under regularity
conditions on g, we obtain that the weak limit in Theorem 1 becomes

%—z(f”(m)/g2(:z:))d:c instead of %Z F'(z)dz =3(F(1) = /(0)). In Theorem 2, the

limiting random variable is again centered normal but now the standard deviation
becomes

35 / (O a)? %))2

On the other hand, the uniform distribution seems very relevant because of the
following. Since }f(:c)dz can be considered as the mean ‘output’, given that the z-
values are equal?y important’, it seems desirable to estimate }f(m)g(x)dac =
ff 1(y) dy in the case the random variables are distributed accordmg to G. But

1f G is known, we can replace the pairs (U;, f(U;)) (just below (1)), with U.’s being
the order statistics from G, by (G(U,),f(U,)) =(G(U,), f(G~YG(U,)))). This
brings us back to the ‘uniform distributlon setup’ with f replaced by foG ™!, but
that is just the function whose integral we wanted to estimate as argued above!

This idea leads to possible ways of applying the results. Suppose U; represents
some uncontrollable physical random quantity, like temperature, humidity or light
intensity with a known distribution function G having density g. Suppose also that
we can measure f (the 1output or yield) only at the U, and that we are interested in

the mean output I, = f f(z)g(z)dz. Then one can use our theorems to obtain rapid-

ly convergmg estlmators of I In particular, when measuring the f-values is hard or
expensive, one can get good estlmators based on a few observations.
Also note that for the trapezoidal rule in Theorem 1 and f” being constant, the

uniform distribution is optimal, since _f g~ ¥z)dz > f lde =1. (This can be easily
seen by using Jensen’s inequality: 0

1

1
| Farte= | e i (50)

where X 1s a random variable with density g.) A similar remark applies to Theorem
2 with f belng constant.

Remark 2: There are various other ways to extend our results, which we will not
pursue here, e.g., applying m-points formulas for m > 3 (Simpson’s rule is ‘by far the
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most frequently used in obtaining approximate integrals’, Davis and Rabinowitz [1],
p. 45), combining trapezoidal rules to eliminate the bias 3(f'(1) — £'(0)), proving a
‘second order’ limit result for n?(I,, — I) ~(f'(1) - f(0)) in Theorem 1, or treating
the case n ‘even’ in Theorem 2. We are not pursuing these extensions because we
believe they are not very interesting and/or they do not give good results.

Remark 3: We briefly compare our results with the deterministic, equidistant
case, i.e., U; :;1—‘_‘_—1—, i=0,1,..,n+1. It is well-known that the limit in Theorem 1

is $5(f'(1) — f(0)) in that case, which means that we loose a factor of 6 by having
random U/’s. (Essentially, this 6 is coming from the third moment of a standard ex-
ponential random variable.) From Theorem 2, it is well-known that in the equidis-
tant case (Simpson’s rule), the rate is n41. So, there our loss is of order nl/?. Never-

. . . 35 .
theless, from statistical point of view, n 2 is a remarkably fast rate of convergence.

2. Proofs

The following well-known lemma will be used frequently; it can be found in, e.g.,
Shorack and Wellner [3], p. 721.

Lemma 1: Let Ey,...,E, | be independent ezponential random variables with
mean 1 and S,y be their sum. With D, i=1,...,n+1, as before, we have

d El En+1
Dy,...D. . )& 21 .
D, nt1) <Sn+1’ Sn+1)

Proof of Theorem 1: Using (3), (1) and (2) we see that
n+1

2 ~
AI,-D =2 S D)
i=1
for some U; € (U; _1,U;), and hence,
2 n+41 . 2 n+1 s ~
2 _n 3enf_a n 317 (77
n(I,-1)=15 {Zl Dif (m)*‘ﬁ .ZlDi(Ui_ﬁT)f U5, (9)

with T ; between ﬁ,- and n_’i_l. From the boundedness of | f""’| (by M, say) and the
weak convergence (to a Brownian bridge) of the uniform quantile process (see, e.g.,
Shorack and Wellner (3]}, it is readily seen that
n+1

2 ~ . ~
n 3 7
LU D(U_. )f“I(U~)
12 Z i\Yi 1 i
=1 " (10)
n? ~ ; n41l 3 1L n41 3
S"’_M sup 'U.— D,_=O Tl2 D3
But n+1 d 1 n+41
3 & 3
Z by = g3 Z E% (11)
1=1 n+l 1=1

by Lemma 1, and by two applications of the weak law of large numbers, this last ex-
pression is Op(n“2). Combining this with (10) and (11) yields that the second term
on the right in (9) converges to zero in probability. Hence, it remains to consider the
first term
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%2()

By Chebysev’s inequality, it follows that

or, since (n/S,, 1) 3B

n+1

1_%'5 1.; f”(n-;-1> ' f (n—ln-l) 0.

i=1

The proof is complete by noting that

™ ’,Zf”(n;l —3 / F'(2)dz = 5(F (1) = £(0))- O

The proof of Theorem 2 is heavily based on the following two lemmas.

Lemma 2: Let Ey,..,E, |, n odd, be independeni ezponential random
variables with mean 1. Write

, n+1
Xi=(Bpi oy + Byl (Byi = Eyi 1), i=12...55
22

Yi=X; Y (E;-1), i=2,3,...,”‘2”.
2

Then,
EX; =0, VarX, =120960, EY, =0, Var Y, = 120960(2i — 2),

Cov (YY) =0, for i # k.

Proof: By symmetry, we see that EX; = 0; a straightforward computation yields
Var X, = [EX2 = 120960. For the Y,’s we ha.ve

2i—2
EY;=EXE) (E;-1)=0,
i=1 .
VarY; =EY? = EX’E ( Z -1))
2i—2
= Var X, Var ( > Ej)z 120960(2i — 2),
i=1

and for 7 < k,

. 2k =2 212
_uzxk( > (Ej—l))x,. (E (Ej—l))

1=1 3=1

2k—2 2i— 2
:EXkE( Z (Ej—1)> X, (Z (EJ--—l))
J=1

7=1

= 0. O
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Lemma 3: Under the conditions of Theorem 2, we have, as n—00,

n+1
1 3
"Sz(In"I)—T},——; 121#3)( ) _1+D21-)3(D21~—D2,-_1) =o0,(1).
Proof: By (7), (1) and (6) we have
3L
n¥(I,-1) L onil O,
3 T2 ! ~
i) W (G AE CEU AN G R U I

Ugi_2

for some 52, = ﬁm( €U,y 2,U2‘) and hence for some [721‘ = szi(-’”) €
(Uqg; - 2,U21), the rlght-hand side of (12) is equal to
31n+1 []21
2
- 6 Z/ (8 =Usi_g)(& =Uy; _1 Nz —Uy;)
=1
m-z

) (SO0 i o)+ (Tgi = Ugi - ) F T )i

)
=77 Zl £V ) (Dai 1 + Dy)*(Dgi — Dyi 1)

b

ol 1_/ m—UQi—z)(m“Uzi—l)(fC"Uzi)(iji"U% STARIUANEY

Let M be a bound on | f(" | and all lower order derivatives of f. Then the abso-
lute value of this last term is bounded from above by

3k 37 u
2
Mns Z / (z—Ugi_a) e —Up 1 [ (Ugi —2)(Up; = Ugy _p)da
Uy,
nt1 n+1
ﬁ 2 d 3
S%{nz > (D Dy &ML
i=1

6" 55 Z(Ezz 1+ By =o0,(1),
n+l i=1

due to Lemma 1 and two applications of the weak law of large numbers
H

So, it suffices to show the convergence to zero in probability of

n+t1l
i3 )
K 22 i}_;l(f(s)(Uw ~2)= f(?’)(%:T—%)) (Dai 1+ Dy)*(Dgy = Dy; 1)
3l ng—l
=l ,.;2(”?‘-2"?:;12)f( (E=2) (Dy; _; + D3 (D= Dy )
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31 n-2i-1
+1a (Uzl—z— 1) FOUT i ) (D 1 + Dy (Dyi~ Dy 1)
1 =2
- Tl n+T2 nt

for some U,; o between Uy, _, and n+12 By the weak convergence of the uniform
quantile process,

3
| Ty, | <144M sup (U21—2
i€ {23,240

1 n+4+1

p
) Z (Dgi_q+ Dyp)*

TL
1 2 4
2 Z(D2i——1+D2i) .
1= 2
By Lemma 1 and twice the weak law of large numbers, this last expression is easily

seen to be 0,(1). Hence, the proof of Lemma 3 is complete if we show Ty , = 0,(1).
From Lemma 1 we obtain

. n+1 21'X—:'2E
33 ST, - Ey 1 +E,NYE,, —E,;
T dn? z j= 212 f(4)(27.—2) 2i—1 2i 2i 2i—1
R n+1 Sht1 Snt1
1 n+1
nZo_5 v (4)(2 =2
=7—25n+1z Z(E'“l) f ( )(Eih 14+ Ey)* (g — Eg; )
i=2 \j=1
1 n+1
%2 Sn+1 (4) 3
+857 801 Z(2—2>f (B2 ) B -1 + B2 (Byi— Fai 1)
::TS,n+T4,n‘

It is immediate from the central limit theorem for S, | ;/(n +1) that
n + 1

=0 (n_z)Z(Zz 2)f (22 )x,,

where the X;’s are as in Lemma 2. Now using that lemma in conjunction with

Chebysev’s inequality, it readily follows that T, ,, = o (1) Finally, in the notation
of Lemma 2,

1 n+1
L ) T
From Lemma 2, we have - n g1 B
Erer
ntl n+1
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Now, Chebysev’s inequality yields T3 , = 0,(1) and hence T , = = o0,(1). a
Proof of Theorem 2: leen the lemmas, especially Lemma 3, the proof of Theo-

rem 2 is rather easy. If f(f z))2dz = 0, then f( (z) =0 for all z €[0,1] and
hence terlally I, =1, because f is a polynomial of second degree. Therefore, we

assume now f (f(3 (z))*dz > 0. Using Lemma 1 we have
0

n+1
3l 3
2 -
) Zf(3)(%lz+ 12)(92;—1 + Dy’ (Dgi ~ Dy; 1)
1i=1

2 — —_— .
72\/‘\Sn+1) n/2)1/2 Z f (,:4.1) (Eqi_ 1+E21) (Bgi— Egi 1)

i=1
7 4
=:=—\VW._.
(o)™

By the weak law of large numbers and Lemma 3, it now remains to show Theorem 2

with n 2 (I,,—1I) replaced by W . By Lemma 2, we see that EW = 0 and

n+1
2
VarW, = Z( 3)(21‘ )) 120960 — 32 / ( f(3)(m))
= 0
Now the Lindeberg central limit theorem applies, because of the boundedness of
lf ! and it yields the resnlt. 0
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