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Chapter 1

Introduction

1.1 Motivation

By the time this thesis was started in 2000, six companies vesponsible for the
social security payments in the Netherlands. Togethey, paed more thar€ 22
billion a year on sickness and unemployment benefits, aniikéneAlthough they
were, to a large extent, independent and self-regulatimay, were under twofold
inspection: they were subject to external auditoassessments of their annual
financial statements, and a supervising institution - datllee CTSV (nowadays
the IWI) - produced annual assessments of the legality of gagiments on behalf
of the Department of Social Security. Furthermore, inteealit departments
performed extensive tests on randomly selected paymdmsesults of which
were shared with both external auditors and CTSV.

These checks were useful, since Dutch social security anésregulations
were (and are) notoriously complicated. Mistakes and rragimetations therefore
were easily made, even by experts in the field. According ¢oahnual report
2003 of IWI , the incorrect payments in that year - althoughydnb% of the
total sum paid - amounted to a huge365 million. Table 1.1.1 - taken from the
annual report 2002 of IWI (in Dutch) - contains some detailddrmation about
social security payments in earlier years. The first coluinin® table mentions

Throughout this thesis we use the term “audit” (and simjléaliditor”) in its general meaning
of inspections (executed for example by controllers, sgox&or accountants)’.

1



2 CHAPTER 1. INTRODUCTION

different kinds of social security payments; for example YWajong was meant
for disabled adolescents and students.

Payments 2002 Percentage errors
(in million €) 2002 2001

WAO 12011 0.2 0.2
WAZ 584 45 1.2
Rea 693 54 1.9
ZA 1124 9.1 2.0
BIA 8 7.0 2.0
Wajong 1584 0.9 0.7
Wazo 856 3.8 4.2
TW 287 6.3 2.1
ww 3939 4.6 2.9

Table 1.1.1: Social security payments

One of the methods that the CTSV used to check for incorreanpays and
incorrect assessments of the internal auditors, is doui®eking. So, after the
auditors had checked the book values of a large number ofledmgcords, this
supervising organization double checked a subsample eétrexords to assess
the quality of the auditors’ work. For some records the CTSMgement would
differ from the auditors’. Although this did not necessampiy an auditor’s er-
ror since the difference maybe caused by different intéagicen of the payment
rules, we will use the term “error” throughout this thesisncg the CTSV had
great expertise, it assumed that their own check is faglti®s we ended up with
a sample of single checked records (with only the fallibkeasment) plus a sam-
ple of double checked records from which we can compare th&bruand size
of the errors found by the auditor with the true errors disted by the expert.
The guestion remained how to combine the information froh liwe fallible au-
ditor and expert to draw the most accurate conclusions dheudtue errors in the
population.

This thesis tries to answer this question by the statistraadeling and infer-
ence of repeated audit controls. In a formal repeated aadital a fallible audi-
tor checks a random sample of records. A subsample of theksady checked)
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records is checked again by another (more skillful) auditdris procedure may
be repeated several times until the final auditor, consterée infallible, gives
the true values of some sampled records which have alreadydiecked by all
previous auditors.

Repeated audit controls are related to missing data problgtasdard statis-
tical methods usually analyse a number of variables, obséior a fixed number
of cases. However, it frequently occurs that not all of theadantries are ob-
served for all cases, implying that some data entries arsimgisthese missing
data problems occur frequently in practice and have redeavet of attention in
the literature. Repeated audit controls can be regardedsssngidata problems.
For example, in case of two rounds, the expert’s judgemeabserved for the
double checked records, but it is missing for the single kbececords for which
only the (fallible) auditor’'s assessment is available.

Though we formulate the problem in terms of a fallible andraallible au-
ditor, it is important to note that our analysis is also vdtidthe general quality
control problem in which objects are classified by a (cheamrerone device
and a random subsample is classified again by a precise (bemsixe) device to
adjust for misclassification. Finally, it is also importaninote that the problem of
fallible auditors is not only relevant for the Dutch sociatarity payments. The
last couple of years this has been shown only too often byde) cases like
Enron and Worldcom which made it into the global news.

1.2 Outline

In this thesis several models for repeated audit contrdisbeidiscussed. They
differ with respect to the number of fallible auditors and kind of variables (cat-
egorical, continuous or a mixture). Chapter 2 starts withctiee from which our
research originated: the repeated control of the Dutchabseicurity payments
(involving only one fallible auditor plus the expert). Sethe parameter of inter-
est is the fraction of incorrect payments, the auditor anmbebclassify a record as
either correct or incorrect, leading to dichotomous vdeabThe corresponding
classification probabilities are important additionalgraeters.
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The model of Chapter 2 was first introduced by Tenenbein (18@0)has re-
cently also been studied by Barnettal. (2001). Both papers mainly focussed
on point estimation (and in particular maximum likelihoatimation). Since in
auditing practice upper limits usually are at least as irtgouras point estimates,
we discuss two approaches to determine upper limits forrdetion of incorrect
records in the population: a numerical procedure to detezrliassical upper con-
fidence limits (which is a generalization of Moasal. (2000)) and the Bayesian
approach. Itis shown that the classical approach leadsyocemservative upper
limits; the Bayesian upper limits are in general lower.

Chapter 3 presents a general framework for repeated audiotowith cat-
egorical variables and/or several fallible auditors; thedel of Chapter 2 is the
simplest situation within this setting. We study two di#fat sampling methods:
stratified and random sampling. In stratified sampling, joev classification re-
sults determine the next sample sizes for all classificatsgparately, while in
random sampling they only determine the total sample sizéhi® next auditor.
Stratified sampling is often applied in practice. We derive maximum likeli-
hood estimators for both methods and propose a solutiondarmmum likelihood
estimators which are not uniquely defined, a frequently ooy problem in prac-
tice. We compare three different approaches to derive uppés, including the
Bayesian approach. Our Bayesian model deviates essentattyd previously
adopted Bayesian model: the prior distributions are fortedldor a different,
more natural, set of parameters. The underlying indepardassumptions of our
approach seem to be more realistic than the usual ones. diordeé the Bayesian
upper limit, we make use of the data augmentation algorithfiaoner and Wong
(1987) for determining Bayesian posterior distributionmissing data problems.

So, in these two chapters models for repeated audit contiitiiscategorical
variables were analysed; in the remaining chapters modelsdntinuous vari-
ables, and a mixture of categorical and continuous varsabik be treated. These
models are highly relevant in practice, since often one i®nty interested in the
fraction of errors in the population, but also in the totaksof the errors.

Chapters 4 and 5 discuss multivariate linear regressionmithotone miss-
ing observations of the - continuous - dependent varialthes|atter means that
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the dependent variables can be ordered in such a way thatabservation of
a dependent variable for a record is missing, the obsensat all subsequent
dependent variables for the same record are also missiegSSwfer (19978.9.
for a more extensive discussion about monotone data pattdime explanatory
variables are assumed to have been completely observethefse variables no
missing observations occur. This model is an important ggization of the case
with just the constant as explanatory variable, which hesived a lot of attention
in the literature (see Bhargava (1962y). Note that the multivariate regression
model with monotone missing observations is widely appliearepeated audit
controls being only one example. In case of a repeated aonital, the depen-
dent variables are the (fallible) auditors’ and the expgrttigement; the known
book value (and the constant) act as the explanatory vasabl

In Chapter 4 we derive closed form expressions for the leastreg and max-
imum likelihood estimators using projections, these estars get a clear geo
metrical interpretation. The existing iterative method ¢alculating maximum
likelihood estimates in missing data problems, is the widesled EM-algorithm,
which numerically converges to the maximum likelihood msties. In compar-
ison, our method has two advantages: the easy interpretatio the direct cal-
culation which of course is much faster and more precise. Mkide (sets of)
MANOVA-tables enabling us to perform exact likelihood catiests on the coeffi-
cients. They lead to a new type of distribution, a generibmnaof the well-known
Wilks’ distribution. Similar to the approximations for tWilks’ distribution for
complete data (see Bartlett (1947)y), several approximations for this general-
ized Wilks’ distribution are derived and compared by sintiola

In Chapter 5 we look at several additional features of the ivaulaite regres-
sion model. First of all, we prove that the estimators of thejpus chapter - and
a more general class of estimators - are consistent. Thidt issused to prove
the consistency of the iterative weighted least squaremidign. For the sake of
completeness the EM-algorithm for our model is given; itimsikr but not iden-
tical to the one of Meng and Rubin (1993). A generalizationhaf tnodel with
just the constant as explanatory variable is obtained ase@arase: one-way
MANOVA.
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It would not be realistic to assume a continuous model forettiers of the
records since, in auditing practice, the errors often eqaed. However, if the
errors are not zero they can take on a lot of different vallreshe final Chapter
6 we use the models of the previous chapters to construct @ realistic model
for repeated audit controls with a mixture of discrete andtiomous variables.
This model consists of a discrete submodel for the classtic@robabilities and
a continuous submodel for the non-zero errors using camditiregression. We
present the maximum likelihood estimators for the modehpeaters, and a new
estimator for the mean size of the errors in the populatiomuftion shows that
this last estimator outperforms the estimators proposesidogettet al. (2001).

1.3 Publication background

The chapters in this thesis are chronologically ordereayTdre based on previ-
ous publications which (almost all) have been written ingEration with B.B. van
der Genugten and J.J.A. Moors. Chapters 2, 3 and 4 can be cigukimdently;
Chapter 4 is necessary for understanding Chapter 5, while @h&pdemands
knowledge of Chapter 2, 3 and 4.

The contents of Chapter 2 are derived from my Master’'s thekisiwwas
written during an internship at Deloitte and Touche. Thesith&vas converted
into research report Raats and Moors (2000) and published @s Bad Moors
(2003). Chapter 2 coincides with Raats and Moors (2003) asghaal, except
for the shortened introduction and some minor layout chenge

Chapter 3 has been published as Raatd. (2004b) (with some minor layout
changes) and consists of research report Reatk (2002a) and, additionally, the
Bayesian approach for determining upper limits.

Chapter 4 is based on research reports Raatk (2002b) and Raats (2004). It
is essentially a revised version of Raatsl. (2002b) with two additional sections:
Section 4.4 about relative efficiency and Section 4.10 atheuapproximations of
the generalized Wilks’ distribution (which is a curtaileersion of Raats (2004)).

Chapter 5 consists of Raatsal. (2004a) and two additional sections: Section
5.4 about the EM-algorithm and Section 5.5 about one-way O&A.
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Chapter 6 is based on Raatal. (2004). To avoid needless repetitions,
the two underlying research reports of the last two chaptave been shortened
considerably.






Chapter 2

Dichotomous data, two rounds

2.1 Introduction

As mentioned in Section 1.1, six companies are responsiblkaé social security
payments in the Netherlands. For one of these six compaamesiernal auditor
reported 16 errors in a random sample of 500 payments, lgadian estimated
error rate of 3.2% and a 95% upper confidence limit of 4.8%. Juygervising
CTSV decided to double check this result. Of the 500 paymerdkiated by
the auditor, a random subsample of 53 was checked once modependently
and error free - by an external auditor of the CTSV. The subsaogntained two
errors found by the auditor; both appeared to be true errateeid. However,
among the remaining 51 payments, approved by the interrthlcauthe CTSV
auditor found one additional error. The question now is howlérive from the
information in both sample and subsample, point and intessamates for the
population error rate.

The problem recently received attention from two sidesjdess we found
that it was discussed much earlier. A brief review of thevahe papers follows,
going back in history; to present a detailed overview of néckevelopments, not
only published papers, but also research reports are nmewtiorhe most recent
published contribution is Barnett al. (2001), based on the research report Bar-
nettet al. (2000). It discusses the two type of mistakes an auditor mae:

e evaluating an incorrect payment as ‘correct’ (missing aargrand

9



10 CHAPTER 2. DICHOTOMOUS DATA, TWO ROUNDS
e evaluating a correct payment as ‘incorrect’ (making up aargr

and presents the maximum likelihood estimator (MLE) for plogulation error
rate. (Besides, a quantitative approach is followed: threthods are proposed
to estimate the total population error from tbiee of the observed errors. The
guantitative approach will be discussed in Chapter 6; forntoenent, we will
only be concerned with qualitative variables.)

The same MLE was derived in Moors (1999), and applied to thielbsocial
security example in Raats and Moors (2000). The latter waescoais the Master’s
thesis Raats (1999); it is a generalization of Moetral. (2000) where only one
type of auditor’'s mistake was considered: since no maderopwas found in the
CTSV subsample, the corresponding probability was put equa& priori. Fur-
ther, a numerical method was given to find confidence interfealithe population
error rate.

But neither Barnetet al. (2000) nor Moors (1999) can claim priority. Near the
end of 2001 we discovered that the same MLE was already deirvéenenbein
(1970). Compare also Tenenbein (1971) and Tenenbein (1Bé2)des, we found
that this estimator can be easily derived as well from theeng@neral monotone
sampling approach, discussed by Little and Rubin (2002) (2887), the earlier
edition).

This chapter is organized as follows. Sections 2.2 - 2.4udis¢he classi-
cal approach of repeated audit controls. Section 2.2 desxcthe repeated control
model and sets out our notation. Section 2.3 briefly disaussgeMLE'’s, in partic-
ular for the population error rate. In Section 2.4 a numénuoathod to determine
a classical upper confidence limit for the error rate is press the method is
illustrated by means of the CTSV example. However, we showtkis classical
confidence limit is very conservative, due to the presenceisance parameters;
consequently, it is of limited practical use.

Therefore, it seems logical to follow the Bayesian approa8ection 2.5
presents a Bayesian model for the situation of just one plesailditor’s mis-
take: (s)he may miss errors, but never makes them up. Se&ttiotontains the
Bayesian approach for the extended model where both typesldabds mistakes
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may occur. The final Section 2.7 discusses the main resultgiaas some con-
clusions. Also, extensions in two different directions larefly discussed.

2.2 The model

The model which we consider in this paper, coincides withntioelel which first
was considered by Tenenbein (1970) and more recently by Batal. (2001).
However, we introduce another, more intuitive, notaticat tten easily be gener-
alized for extended audit controls with categorical dathmaore than two rounds;
see Chapter 3.

In the following notation the subindex O stands for incotraed subindex 1
for correct. Consider a population in which a fractignof the records is incor-
rect. The (internal) auditor decides a randomly drawn r¢ore ‘incorrect’ or
‘correct’. The quotation marks indicate a decision; thesg@mrases without them
indicate the true situation. So we take the possibility thatauditor misclassifies
the record into account: with (conditional) probability, an incorrect record is
(erroneously) judged to be ‘correct’ and with probability; a correct record is
misclassified as ‘incorrect’.

From the three error probabilities

po = Pr(random record is incorrect

pip = Pr(auditor misses an errpr (2.2.1)

pop = Pr(auditor makes up an errpr
other probabilities as the joint probabilips, (of a random record being correct
and being misclassified as ‘incorrect’) can be derived. Tiler of records
found to be ‘correct’ and ‘incorrect’ by the auditor in a ramd sample of size,
will be denoted byC; andCy, respectively.

Now, an external auditor who is assumed to be faultless {tper® checks
a subsample of the records, of sizg once more. In this subsample the expert
determines the true numbét,, of incorrect records{y, of these errors were
already found by the first auditor, bGt, were missed. Of thé€', ; correct records
in the subsample,’y; were misclassified as ‘incorrect’ by the first auditor, while
the remaining”; were correctly classified.
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Then; — n, remaining records are checked only on€g; andC;_ denote
the number of ‘incorrect’ and ‘correct’ values among therabl€ 2.2.1 shows the
complete information obtained from both checks.

Total Single checked sample Double checked sample
Expert
First auditor Total correct incorrect
‘correct’ Ch Ci_ Chy Ch Cho
‘incorrect’” () Co_ Coy Co Coo
Total nq ny — N2 N9 O+1 C+0

Table 2.2.1: Classification frequencies

It will appear to be helpful to introduce some more notatiamparticular error
probabilities, based on the auditor’s judgements; comfleenonotone missing
data approach in Little and Rubin (2002). These inverse enayabilities are

o

= Pr(‘incorrect’)

myo = Pr(correct ‘incorrect’)
mon = Pr(incorrect ‘correct’).

(2.2.2)

Figure 2.2.1 shows both sets of parameters in the doubl&ketdeample.

Population

correct

First auditor

‘correct’
1 —po1

1 —po

incorrect

‘incorrect’

Pon

‘incorrect’

1 —p1p0

bo

‘correct’
Pijo

Figure 2.2.1:

Number
Cu
Ci1
Co
Co+
Coo
Cio
Cio |

First auditor

‘correct’

1—mg

‘incorrect’

o

Expert  Number

correct C11
1-— 7T0|1
incorrect  Cyg

o1
incorrect  Cyg
1 — 7T1|0
correct Co

10

Classification frequencies and probabilities
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Joint probabilities a%,; (a random record being classified as ‘incorrect’ by
the auditor and as correct by the expett)p;, follow from these. Besides, the
following one-to-one relations exist between (2.2.1) ah@.Q):

;

po = (1 —mo)mop + mo(1 — o), 70 = (1 — po)poj + po(l — pijo)
Pilo = (1 - 7T0)7T0|1 S (1 —po)pou
110 — ) 110 —
| (1 = mo)mop + mo(1 — m1j0) | (1 = po)po + po(1 — p1po)
Do = ToT1)0 - PoP1jo
0|1 — 3 - .
| (1 = mo)(1 — mop1) + om0 | (1 = po)(1 = popr) + Popijo

\

(2.2.3)

Under the assumption of random sampling with replacemdhtaadom vari-
ables in the model have (conditional) binomial distribosavith the probabilities
(2.2.2) as parameters:

£(Co) = B(mim)
£(00+|00 = CQ) = B(ng;co/nl)

2.2.4
L(Coi|Coy = coy) = B(CO+§7T1\0) ( )

L(C|Cry =c1y) = Blery;mop)-

The likelihood is the product of these conditionally indegent binomial distri-
butions.

2.3 Estimation

From (2.2.4), MLE’s for the parameter set (2.2.2) are founthediately; for the
original set (2.2.1), they then follow directly from (2.2.3

D C'1 CIO + C’0 C'00

P, = — —
0 ny Crt ny Coy

= Cy Cyo (Cl Cro , Co Coo)

Py = ——— /| ——+—=7 2.3.1
Ho ny Ciy ni Ciy ny Coy ( )

5 _ GCn (g@&@)
ot ny Cot ny Ol+ ny Co+ .
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The same expressions can be found in Tenenbein (1970), Nit@®9) and Bar-
nettet al. (2001). The MLE’s have clear interpretations, based a8, further-
more, it is straightforward that the moment estimators cidi@ with the MLE'’s.
Note that forCy; = 0, the formulae forﬁo and ]31|0 reduce to expression (6) in
Moors (1999), treating the one error type situation with = 0.

The estimator for our main paramejgrbreaks down when eithér,, = 0 or
Co+ = 0. Though this situation can be avoided by using stratifiedpsizugn such
as Tenenbein (1970) remarked and the next chapter discinssese detail, in
case of random sampling these events can occur. In casg cf 0 or Cy, = 0,
the likelihood does not lead to a unique MLE and somewhatrarlyivalues have
to be chosen. Heuristic arguments (details can be found ior$1@d.999)) lead to
the following MLE for p, (compare also (3.5.2)):

C1o for Cor =0
no
~ Cl 010 CO COO
P={ ——— 4+ =" for0<Ci.<n 2.3.2
0 ni Ciy ni Cot " ’ ( )
% for ¢, = 0.
\ T2

Appendix 2.8.1 shows that the distribution of (2.3.2) is syetrical with respect

to the point 19, poj1) = (0.5,0.5). The intuitive explanation is that for high val-
ues of the misclassification probabilitieg, andpy,, all the auditor’s judgements
should be reversed: ‘correct’ is better interpreted asolirect’, andvice versa

2.4 Upper limits

Following the argumentation of Cox and Hinkley (1974) Chagtep. 229, it is
straightforward that afil —«)) upper confidence limit fap,, given a point estimate
Po, can be obtained from

Py = H}%X{poypuo,pou : Pr(Py < polpo, prjo; poj) > b (2.4.1)



2.4. Upper limits 15

The calculation of the upper limit (2.4.1) is illustrated means of the CTSV-
example. Table 2.4.1 contains the numerical data of thistioed example which
was presented in Mookt al. (2000) and described in Section 2.1.

Total Single checked Double checked sample
sample Expert
First auditor Total correct incorrect
‘correct’ c1 = 484 ci— =433 ci+ =51 ¢1=50 «cpp=1
‘incorrect’ co =16 co— = 14 co+=2 ¢1=0 cop = 2
Total n1 = 500 ny — ng = 447 no = 53 c+1 =950 cyo=3

Table 2.4.1: CTSV example

For this example, (2.3.1) results in the ML estimates
]/9\0 = 0051, ﬁ”o - 0372, ﬁo“ = 0.000.

To determine the accompanying 95% upper confidence pfhin (2.4.1), the
quantity

P6|P1j0s Poj1 = H}%X{po : Pr(ﬁo < 0.051|po, p1jo; Pojr) = 0.05}

has to be calculated for all possible valuep @f andp,|;. Thanks to the symmetry
of ﬁo with respect to the pointpijo, poj1) = (0.5,0.5), the calculations may be
limited to thep,; interval [0, 0.5]. Figure 2.4.1 gives a 3-dimensional itlasion.

Subsequently, the maximum gf |p0,po;1 Over all possible values of;, and
po;1 has to be determined. This maximum was found to be 0.121;strealized
for (p1jo, poj1) = (0.914,0.000) and - because of the symmetry - @# o, poj1) =
(0.086,1.000). Note that thep,; value 1 is inconsistent with the sample result
ci1 = 50 in Table 2.4.1; however, this is irrelevant since we arereg&d in
the final p, value 0.051 and not in the individual classification numbefie
solid curve in Figure 2.4.2 showg|p:0,po1 fOr poi = 0 and the accompanying
maximumpyg; for comparison, this function is shown as well fay; = 0.3 (the
dotted curve).
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Figure 2.4.1p§|p1j0, poj for pp = 0.051

n n
Pr(P, < p,)> 0.05

oA A
Pr(Plo <py) =0.05

L
0.05 0.1 0.15
Po Po

Figure 2.4.2;p5|p1j0, poj1 for po = 0.051; popp = 0 @andpg; = 0.3
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It is interesting to compare these results with the numeEfiledings in Moors
et al. (2000). In the reduced model, the maximum likelihood (MLjjreates for
po andp, o are still determined according to (2.3.1) and thereforacde with
the ML estimates of the extended model such as determinédre&towever, a
slightly 95% lower upper confidence limig = 0.120 was calculated.

In the present model - as in the reduced model - the upperismatalized for
a very high value op, |y or pg;. In reality, such high values will not often occur
and the upper limit (2.4.1) can be very conservative. Thisalao be concluded
from Appendix 2.8.2, which contains the coverage of the 95$beu limits for
different sets of parameters. The error probabilities dredfirst three sets of
sample sizes coincide with the ones analysed by Baetedt. (2001). In all
these cases, the coverage of the classical upper limitLljdglat least 95%. The
coverage is higher for the loweg-value. Furthermore, the results indicate that
p1jo has a considerably larger impact on the coverage phanThe latter part of
Appendix 2.8.2 is included to enable a comparison betweertdrerage of the
Bayesian and classical upper limits in Section 2.7. In alesathe coverage is
calculated from simulation runs with 10,000 iterationsheac

2.5 Bayesian approach for one error type

Different authors already discussed the Bayesian approaédllible audits. Viana
(1994) analysed a model with possible misclassificatiorisaitinout a double
check. Yorket al. (1995) presented the Bayesian approach for a double sam-
pling scheme with two fallible auditors. Geng and Asano @98oked in more
detail at the Bayesian model where some classifications dfibléaauditor are
checked again by an infallible expert. However, they cagrgd the situation with
two dichotomous variables in each audit round, whereas aatehonly consid-
ers one dichotomous variable per round (the classificatiomméct’ or ‘incorrect’).
Moreover, Geng and Asano (1989) used Dirichlet priors feritirerse error prob-
abilities (2.2.2) rather than for the (natural) model pagtars (2.2.1). The latter
was also done by Schafer (1997) who discussed the Bayesianaapgfor gen-
eral multinomial, monotone missing data problems. In timd the next section
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we will formulate the Bayesian model in terms of priors for fla@gameters (2.2.1).
For simplicity, first the one error type model is considered.

In the one error type situation wheyg; (the probability of making up an
error) isa priori set to zero as in Moorst al. (2000), the model contains two un-
known parameters. In the Bayesian approach these two paamgandp, |, are
viewed as realizations of random variablgsand P, ,. Their prior distribution
represents the researcher’'s knowledge before the sansuiésrare obtained. A
logical choice for the marginal prior distributions & and P, is the beta dis-
tribution, as the conjugated distribution of the binomiahgple results. Further,
independence oF, and P, (the quality of the population is independent of the
quality of the auditor) seems reasonable, so that the joiat gdistribution of I,
andPy, is the product of two beta distributions:

al‘o—l

L(Fy, Pijp) o p8°‘1(1 — po)al_lplm (1 —p1|0)a0'0_1.

The prior knowledge abouy, (p)0) is reflected by the parameters anda; (a4
andayo).

In combination with the binomial sample results (2.2.4} tleads to the fol-
lowing joint posterior distribution of £, Py o):

L(Fy, Pijp|sample resulisc
21;0 (_1)k:(C};)pgm-i-t?of—i-ao—i-k—l(l . p0>c+1+a1—1'

crotagp—1 coo+co—+agp+k—1
110 (1= pip) ol :

Integrating overP,|, gives the marginal posterior distribution of the main param
eterFy:

L(Py|sample resulisc
o [(FDE B (1 e, (25.)
B(cio + aupo, coo + co— + agjo + k)].

with B(a,b) = fol %7 1(1 — z)*~dz. Note that (2.5.1) is a weighted average of
beta distributions with signed weightts 1)* (') B(c10+ a0, coo+co— +opp+k).

As point estimaté, for p, in the Bayesian approach we take the mode of the
marginal posterior distribution af, since, in general, this corresponds to the ML
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estimate when the prior distribution is uniform (see Li@&ubin (2002), p. 105
e.g); the 0.95-quantile of the marginal posterior distribatis the Bayesian 95%
upper limitbg. Note that by integrating oveP,, all different values op,|, are
taken into consideration, and not only the worst values #ssiclassical approach.
Hence bg will be lower thanp in general.

An important feature of the Bayesian approach is the choitieeoprior distri-
bution parameters. In practice, prior information abgutould be obtained from
previous audits of the same population. To get an idea ofuléty of the fallible
auditor, one could look at education, years of experienedppmance in similar
previous audit®t cetera However, since we do not have such information, the
CTSV example will be analysed for the non-informative, orfarm, prior and
some other hypothetical priors.

If no specific prior knowledge is available, all possibleuesd of (), ;) can
be considered as equally probable; this leads to the nannirative prior, defined
by ap = a1 = a0 = agp = 1. The choicen; > ay e.g.reflects the researcher’s
belief that lower values of, are more likely. For simplicitygy = a0 = 1 will
be chosen throughout; far, andayg, the values 1 and 5 will be considered. The
choice of this latter value is based on the following argutaton. If a record
is randomly classified, the probability of a misclassificatis 0.5. For a beta
prior with parameters 1 and 5 the 95% upper limit is about B&bthe probability
of misclassification is less than 0.5 with probability 0.98deed, it seems not
unreasonable to assume that classifications by a qualifaitbawill outperform
random classifications.

The Bayesian approach is now applied to the practical CTSV pkarkor the
data in Table 2.4.1 and the non-informative prior, the pust€2.5.1) becomes

433
L(Py|sample resulfss » {(—1)’“ (4;;3)19})”’“(1 —po)B(2,17+ k)| .

k=0

Figure 2.5.1 shows this distribution; the Bayesian estisvat@ndb; are shown
as well.
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density

0.02p

0.015

0.01F

0.005

Figure 2.5.1: Marginal posterior distributidfy; one error type

Table 2.5.1 summarizes these Bayesian estimates for fdaratit priors; for
comparison, the classical estimates, mentioned in Se2tdrare added.

Parameters prior  Bayesian estimates

(0751 Oé()‘o b() bg

1 1 .050 .105

5 1 .048 101

1 5 .042 .075

5 5 .042 .073
Classical estimates .051 120

Table 2.5.1: Point estimates and upper limitsgfor ag = oo = 1

All Bayesian estimates are lower than the correspondingiclalsresults. For
the upper limits, this is caused by the additional informattepresented in the
prior. Especially prior knowledge about the quality of theda&or has a large
impact on the estimates; the researcher’s belief ghatis low (oo, = 5) leads
to a considerable reduction af andbi. The reason is that there is less sample
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information concerning,|, thanpy.

2.6 Bayesian approach for two error types

The model with two error types contaipg, as a third unknown parameter. In-
dependence aF, and (P10, Foj1) seems reasonable (the quality of the population
is independent of the quality of the auditor), but indepeweeof P, and I, is
questionable. Nevertheless, this assumption is made dismplify the calcula-
tions. Starting from marginal beta distributions, the jginior distribution of P,

Pyjp and P, then reads:

a0|1—1

o — ar—1, @1jo—1 ap|0— o1 —
L(FPy, Prjo, Poj1) o< py° 1(1—190) 1]?1\10‘0 (1—=pyjp) ol 1p0|1 (1—=poj1 )™ L
(2.6.1)

In combination with the binomial sample results (2.2.4ig thads to the following
joint posterior distribution
L(Fy, Pyjo, Poj1|sample resultsocc

c1— co—

cro+arp—1 oo o—+J NP A
pl‘lg 1]0 (1—p0‘1) 11ty 1;} ’;:0 [(_1)](})(ok+3)p0+o++o .

_4j—k+a;—1 tk+agg—1,,c01Fco—+i—k+ag—1
(1 — po)eria ol (1 — py e shban-1, -

Integrating over the nuisance variablgs andF; leads to the marginal posterior

distribution of the main parameté, :

L(P,|sample resuliscx

c1— co—~+j

Z Z [(_1)3 (01{) (Co—k‘i‘j)pg+0+k+0071(1 _ po)c+1+co+j—k+a1—1_
7=0 k=0
B(cio + aijo, coo + k + o) B(cor + co— +j — k + agp, e11 + Oé1|1)] .

(2.6.2)

Again, the marginal posterior distribution is the weightegrage of beta distri-
butions.

The Bayesian approach is applied to the example of Sectianl2sihg the
non-informative prior in combination with the sample résuh Table 2.4.1, (2.6.2)
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can be simplified to:

L(Py|sample resulisx
433 14+j , A A
> > CUIP) ()P (L = po)® R B(2,3 4 k) B(16 + j — k, 50).

=0 k=0 J

Figure 2.6.1 shows the marginal posterior distribution gredBayesian estimates
by andby.

density

0.015

0.005

Figure 2.6.1: Marginal posterior distributidn; two error types

Table 2.6.1 contains the classical results calculated oti®e 2.4 and the
Bayesian results for eight different priors.

As in the situation with one error type, all Bayesian estirmatee lower than
the corresponding classical results and again prior kragdeaboutp;, has a
larger impact on the results than prior knowledge abpguPrior knowledge about
po;1 hardly has any impact although this parameter, just fikg, concerns the
quality of the auditor. The explanation is that there is mondre sample informa-
tion onpy;: this parameter is estimated from the = 50 correct records in the
double-checked sample, apgd, from only thec,, = 3 incorrect values.
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Parameters prior  Bayesian estimates

aq Qoo a1 bo b%f

1 1 1 .042 .098

1 1 5 .042 .098

5 1 1 .041 .093

5 1 5 .041 .093

1 5 1 .036 .068

1 5 5 .036 .068

5 5 1 .035 .066

5 5 5 .035 .067
Classical estimates .042 .0116

Table 2.6.1: Point estimates and upper limitspfgrag = a0 = agp =1

As shown earlier the coverage of the classidal «) upper limit often is
(much) higher thai — «. Since the Bayesian upper limit is based more on the
sample estimates of the nuisance parameters than thecelaspper limit that
considers the worst-case situation, the Bayesian coverageomexpected to be
closer tol — a. Due to numerical difficulties caused by the signed weights,
only calculated Bayesian coverage for relatively small damjzes. The last part
of Appendix 2.8.2 shows our numerical results for non-infative priors. For
these small sample sizes, there is not much difference kettie coverage of the
classical and the Bayesian upper limits.

2.7 Conclusions and further research

In this chapter both the classical approach and the Bayeg@woach of two mod-
els for the repeated audit control have been discussed.alt@ations were illus-
trated by means of the actual data from the Dutch CTSV-ingatin. Table 2.7.1
shows some more results, for slightly different sample autes; the Bayesian re-
sults are based on the non-informative prior.
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Classical Bayesian
Model ny M2 Co Co— Cio Clo Co1| Po Py | bo  bf
Single check | 500 -| 16 - - - -/ .03 .048 .035 .048
Double check| 500 53 4 14 2 C 4 .032 .092 .038 .Q77
oneerrortype| 500 53 - 14 3 1 4+ .081 .120 .050 .105
Double check| 500 53 4 14 3 1 Q0 .081 .121 .042 .098
two error types| 500 53 - 14 3 1 1 .042 .116 .037 .094

Table 2.7.1: Classical and Bayesian point estimates and lipper

The most striking feature of this table is that all doubleathmodels lead to
increased upper limits; even if the expert finds not a sindiiteonal error (line
2) ps andby are 90 and 60%, respectively, larger than when the audismssmed
to be infallible (line 1).

Lines 3 an 4 represent the empirical data found in Dutch &eeizurity pay-
ments, where the first auditor made up no errors, but missecoor. In line 3
the model includes only the possibility of missing errorslime 4 the possibility
of making up errors is considered as well. Extending the etk this second
error type has not much influence on the classical resultde wie Bayesian es-
timates decrease. Of course, if the auditor made up one @frtbes (line 5), all
estimates decrease.

Appendix 2.8.3 contains some additional results for theedbht models. In
this appendix the upper limits are only calculated for smathple sizesr(; =
50, no = 20), since the calculations of the upper limits are rather thmiesuming
and dramatically increase with sample sizes. The Bayesi#mgiper limits are
calculated for the non-informative prior, as well as for phner with one parameter
setto 5 (and the other parameters set to 1).

Note that the Bayesian upper limits are generally smallen tha classical
ones, although Table 2.8.4 shows two exceptions. This caxplained as fol-
lows, for example for the one error type situation. Introgltite Bayesian upper
limit b |p1 o for a given value op, o, analogously te,|pijo. Thenbi|pio < pg|p1jo
will hold, unless the prior distribution of, is concentrated around (much) higher
values than the sample information. Nay,s obtained by averaging|p,|, with
respect t; ), while pff = rzrgllzlaBX(pglpqo) considers the worst case. Consequently,
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only exceptionallyy will exceedpy; for the cases considered here, this will occur
in particular for the non-informative prior.

Generalizations of the present model which are discusséaeimext chap-
ter, concern more audit rounds, categorical data, andf&dainstead of random
sampling.

The models discussed in this chapter consider rather elanyesituations,
that deviate from practical auditing conditions in two messpects.

e In practice, the total size of all errors will be of even gegamportance than
the error ratepy: hence the size of individual errors will have to be taken
into account. Barnett al. (2001) presented a classical estimator for the
mean size of the errors with a double sampling design. Chdpteesents
estimation methods and algorithms for monotone missingimoous data
which will be applied to repeated audit controls in Chapter_&ws and
O’Hagan (2000) discussed the Bayesian model for a flawlesplsarheck
with taintings. A similar approach could be followed for tleuble sam-
pling scheme.

e The previous research started from random sampling. Hawievauditors’
practices, selection with probabilities proportional e recorded values
('monetary unit sampling’ or MUS) is applied frequently. e, it would
be interesting to investigate this sampling method as well.

In the Bayesian approach it was assumed that the probaliilityssing an error
is independent of the probability of making up an error. 8itlis assumption
is questionable, it would be interesting to repeat the almxestigations without
assuming independence. Following Gunel (1984), Dirichigt priors could be
used to incorporate dependence.

Finally, a number of more theoretical issues remain. Fomgta, according
to Lehmann and Casella (1998), p. 176, no uniformly most atewonfidence
set will in general exist in the presence of nuisance pararseds in our case, but
perhaps our method of constructing upper limits can be ingao
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2.8 Appendices

2.8.1 Symmetry of the MLE

In case of two possible error types, it will be shown here banseof three consec-
utive lemmas that the distribution of the MLE; for po IS symmetric with respect

to (pijo, poj1) = (0.5,0.5), thatis: £(Po|po, pijo, popr) = L(Polpo, 1—pijo, 1—pop)-
IntroduceV =(C.q, C1o, Co1, Co_), define the functiong : R* — R* and
h:[0,1]* — [0,1]® by
f(v) = f(cto,c10, Co1, Co—) = (€405 C40 — €10, M2 — C4o — Co1, M1 — Ny — Co—)
and
h(p) = h(p07pl|0ap0\l) = (p07 1- P1jo, 1- p0|1)7
and define the set, for all ¢ € [0, 1] by
A, ={v :po(v) = c}.
Note thatf = f~' andh = h~L.
Lemma 2.8.1. f(A.) = A..
Proof. The special case= (c., c10,0, co—) impliesf(v) = (c10,0, n2—c10,n1—
. . c ~ .
ny — o) andpo(v) = po(f(v)) = nLQO- In the general casey(v) = po(f(v))
can be proved similarly. Heneec A, implies f(v) € A., and vice versa. [
Lemma 2.8.2. Pr(V =v|p) = Pr(V = f(v)|h(p)).
Proof. By direct verification, using (2.2.4). O
Lemma 2.8.3. Pr(P, = c|p) = Pr(Py = c|h(p)).

Proof. R
Pr(Py=clh(p)) = Pr(V € Alh(p)) = Pr(V e f(A)lh(p))
Pr(V e A.|p) = Pr(P,=c|p)

where the second equality follows from Lemma 2.8.1 and thrd from Lemma
2.8.2. H
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2.8.2 Simulated coverage

Table 2.8.1 contains the simulated coverages of the 95%icésipper limits. In
the last column, coverage of the Bayesian upper limit withraindormative prior
is given in parentheses.

Probabilities | n; = 1000, n; = 3000, n; =3000, : ny =50,

po Do Pop | ma=100 my=100 ny=300 |, ny=20

10 .20 .011 99.8 99.9 99.7 | 100.0(99.3)
10 .20 .033 99.5 99.5 99.0 ' 100.0(99.6)
10 .20 .056 99.2 99.2 98.3 ' 100.0(99.8)
10 .60 .011 98.6 98.7 97.6 1 100.0 (98.6)
10 .60 .033 98.2 98.3 96.6 , 100.0(98.8)
10 .60 .056 97.9 98.0 96.1 | 100.0(99.4)
20 .20 .025 99.6 99.6 99.6 1 97.1(97.2)
20 .20 .075 98.6 98.8 98.7 | 97.1(97.2)
20 .20 .125 97.9 98.0 98.0 |, 96.9(97.2)
20 .60 .025 97.0 97.3 97.4 ' 95.0(94.8)
20 .60 .075 96.2 96.2 965 ' 95.0(95.4)
20 .60 .125 95.7 95.8 95.9 | 95.1(96.5)

Table 2.8.1: Coverage of the upper limits

2.8.3 Estimates and confidence limits fop, (n; = 50)

Sample results Classica Bayesian
non informative  onlyy; =5
n Co Do Po bo by bo by

50 4 .080, .174 .080 71 .074  .139
50 5 .100] 199 .115 195 .098 182
50 6 120|223 .135 219 110 204

Table 2.8.2: Estimates for a single sample check
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Sample results Classica Bayesian
non informative  onlygy = 5

ng M2 C Cor Co| Po Py bo by by

50|20, 4, 2| 0] .080 .222 .093 213  .087 .189
50|20 4| 2| 1| .131 .289 .132 278 117 237
50120, 3| 1| O] .06eq .216 .071 186  .065 .11
50| 20| 3| 1| 1| .106 .283 .109 250 .094 .208
50| 20| 2| 0| O .040 .160 .049 A57  .044  .1B2
50| 20| 2| 0| 1| .088 .22¢6 .085 221 .071  .1y78
50120, 6/ 3| O] .120 .283 .136 262 129 .240
50|20 6| 3| 1| .172 .344 .176 32% .11 .289
50|20, 5| 2| O] .100 .283 .114 236 .108 .214
50| 20| 5| 2| 1| .150 .344 .153 298 138 .261
50| 20| 4| 1| 0| .08Q .222 .092 210 .086 .188
50| 20| 4| 1| 1| .128 .289 .130 271 116 .234
50|20, 3| 0| O] .06Q .216 .070 182  .065 .160
50|20, 3| O| 1| .107 .283 .107 243 .093  .206

Table 2.8.3: Estimates for a double check with one error type
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Sample results Classical Bayesian
non informative  onlygy = 5

Ny Mg Cy Cor Cio Co1 | Do Py bo bg bg

50| 20| 4| 2| 0] O| .080 .228 .081 204 .075  .179
50| 20| 4| 2 1| 0] .131 .291 .122 21y .107  .229
50( 20| 4, 2| O] 1| .040 .164 .043 163  .040 .139
50| 20| 4| 2 1| 1| .091 .238 .085 234 073 .191
50( 20| 4, 2| 0] 2| .000 .139 .000 114 .000 .091
50| 20| 4| 2 1| 2| .051 .216 .046 198 .038 .148
50| 20| 5| 2| O] O| .100 .283 .096 222 .091 .200
50| 20| 5| 2 1| 0] .150 .344  .137 287  .124 .250
50| 20| 5| 2| O] 1| .050 .216 .051 176 .049 156
50| 20| 5| 2 1| 1| .100 .283 .094 244 085 .209
50( 20| 5| 2| O] 2| .000 .139 .000 121 .000 .103
50| 20| 5| 2 1| 2| .050 .216 .049 A97  .044 162
50( 20| 6/ 3| O] O| .120 .286 .122 252 116 .230
50 20| 6 3| 1| O .178 .347 164 318 .150 .280
50( 20| 6/ 3| O] 1| .080 .228 .085 213 .080 .191
50( 20| 6 3| 1| 1| .132 .295 .128 281 115 .243
50( 20| 6/ 3| O] 2| .040 .164 .044 A70 .041  .148
50| 20| 6| 3| 1| 2| .092 .239 .089 241 .078  .202
50| 20| 6/ 3| O] 3| .000 .169 .000 118  .000 .097
50| 20| 6| 3| 1| 3| .052 .216 .047 197 .040 .160

Table 2.8.4: Estimates for a double check with two error sype






Chapter 3

Categorical data, multiple rounds

3.1 Introduction

Both the problem of missing data and the issue of misclassdita often oc-
cur in practice. Two main causes for missing observatioashanresponse and
incomplete designs. While missing-by-design is due to indete designs and
therefore is intentionally created by the experimentas, ihusually not true for
nonresponse. Misclassifications occur in quality contrioére a checking device
has to classify objects in(> 2) categoriese.g.‘good’ or ‘bad’. Sometimes
it is known that the checking device is fallible, but it mighe too expensive or
just impossible to procure a better one. In many situatiasth fproblems oc-
cur simultaneously: not only some observations are misdagthere may be
misclassifications as well. A practical example of misdnygdesign data with
possible misclassifications is a repeated audit control.

In a repeated audit control one wants to draw conclusionstadhe fraction of
elements in a population which belong to a certain catedormyrder to do this, an
auditor classifies randomly sampled elements. Howeveglassifications may
occur, since the (usual) assumption that the auditor bdibiéis dropped. To
take these possible misclassifications into account, anédhible auditor checks
a subsample of the already checked sample elements agasmprobedure is re-
peated several times until the findl auditor, considered to be infallible, gives
the true classification of some sample elements which ajrbade been classi-

31
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fied by all previous auditors. Conclusions about the poparafiiactions have to
be drawn based on the fallible and infallible audits. Thisckof repeated audit
control was introduced by Tenenbein (1970), who considdieldotomous data
(r = 2) and two audit round$k = 2). This situation was further discussed in
the previous chapter. Tenenbein (1972) extended the modetlude categorical
data(r > 2).

Our Section 3.2 generalizes Chapter 2 into a general corystés for cate-
gorical data{ > 2) with monotone missing observations obtained frore 2
audit rounds. Subsamples for subsequent auditors arenedtaly using either
‘stratified’ or ‘random’ sampling. Though these differeanhspling methods lead
to different probability distributions, it is shown in Sext 3.3 that the MLE'’s for
the main parameters are identical. However, only in casstditified’ sampling
do these MLE's appear to be unbiased. Special attentiondstpahe frequently
occurring situations in which the MLE’s are undefined.

Since in auditing upper limits are very important, Sectiofh &nsiders three
methods to obtain upper confidence limits for the populdtiactions; the Bayesian
approach appears to be the most promising. Section 3.5igei@ practical ap-
plications, revisiting the Dutch social security case fribv@ previous chapter. For
r = 2 andk = 3 the calculation of Bayesian upper limits is presented in sdeie
tail. The final Section 3.6 contains the main conclusionsdisclisses our results.

3.2 A general model

3.2.1 Population model

Define the random variablg as the true classification of a random sample el-
ement. Ther possible classificationg are denoted by, 1,...,r — 1, while
pi, = Pr(Iy = ip) denotes the population fraction of elements with true diass
cationi.

Arandom element s classified by an auditor into one of thegmied), 1, . . .,
r—1, leading to the random variable. Hence a correct classification only occurs
if ; = I,. To find possible misclassifications, the same element egoaized
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once more, now by another auditor. This procedure is regekading to classi-
fication 7; by auditorj, until the k" auditor makes the final classification. Since
this last auditor will be assumed to be an infallible expgesihe will always give
the true classificationf;, = 1.

The following notation will be used in the sequel to describe different

probabilities:
pioil...ij PT<IOZi07II:ila"‘ulj:ij>7 j:07"‘7k7
7'('1'”‘2.”1']. P?”([lzil,...,[j:ij), ]:1,,k'

It seems unrealistic to assume that classifications of suiese auditors are inde-
pendent, even if previous classifications are hidden: iddpeevious classifica-
tions reveal the difficulty of correctly classifying a givefement. For example,
if many auditors judge an incorrect element to be corred,iror in the ele-
ment probably is hard to detect. Hence we will need conditigron previous

classifications, to be denoted as follows:

PT(]j:ij‘lozio,...,jj_l:ij_l), j:]_,...,k',
= PT<[j:Z.ju—l:Z'la--w[jfl:ijfl)a 322,,]{

Pijligin..ij—1

Tqjli1.ij—1

Since the last auditor is infalliblel{ = 1), it follows 7, i, = Pigir.i =
Divir..ix_, TOr 1, = 1o. Other relations between the two sets of parameters are :

(@) Tiyiy...ix = Dio " Pirlio " Pisligir * -+ * Pig_1li0i1..ik—2
(b) Tiyig.. i = Ty " Tgliy ~ Taglivia ~ « + + " Tiglig.ip_1 (3.2_1)
©) pi,=pi, = Do Mgy

1. ik—1

Finally the following shorthand notations are introduced:
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a: one of ther’~! possible classificationsis. . .i;_; by the firstj — 1
auditors,

p© row vector ofr probabilitiesp;, (io = 0,1,...,7 — 1),

TS row vector ofr probabilitiesr,;, (i; = 0,1,...,r — 1),

7). (ri~! x r) matrix with rowsr$’,

7~V row vector ofr probabilitiesr, |, (i; = 0,1,...,r — 1),

7= (=1 x 1) matrix with rowsz{ 7Y,

pglaj_l) : row vector ofr probabilitiesp; ;.. (i; = 0,1,...,7 — 1),

pUli=b . (19 x 1) matrix with rowsp!?? Y

i0a

The matrices are constructed with columnwise and rowwises@sing classifica-
tions. These notations are illustrated below:fer 2.

W(l):(ﬁ Wo), P(O):(]h po),
(2) 7T§2) T1 10 (2]1) T Tof
T — (2) — y T — f
e Tor  Too 7110 7ol
e
g) ™11 7110 Tt 7ol
7].(3) _ T%g) _ 101 77100 ’ 7]_(3‘2) _ T1j10  To|10 ’
To1 To11 7010 Tijor  Tojo1
W(()?(’]) 001 7000 T1j00  70J00
(2[1)
p%21|1) P11 Poji1
p(zu) _ P1o _ P10 Pojio p(l‘o) _ ( Pin Popn ) .
péﬁ:l) Pijo1  Pojo1 ’ Pijo Pojo
2|1)
Poo P1joo  Pojoo

Consider a population which consists of incorregt 0) and correct elements
(1o = 1). In order to draw conclusions about the population fractbincorrect
elements, a repeated audit control with three rounds i®pagd of which the last
is infallible. Figure 3.2.1 gives an overview of the relevprobabilities; see also
Figure 3.2.2.
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True classification Auditor 1 Auditor 2  Auditor 3
‘correct’ correct g

‘correct’ D111 P =1
Pip incorrect  correct g
correct Po|11 P10 = 1
m ‘correct’ correct o1
‘incorrect’ P10 Pijpor =1
Poj ‘incorrect’”  correct  myg

Pojo P1j100 = 1

‘correct’”  incorrect o

‘correct’ Dijo1 Pojo1r = 1
P1jo ‘incorrect’ incorrect g
incorrect Pojo1 Pojoro = 1
Do ‘correct’ incorrect w0
‘incorrect’ D100 Pojoor = 1
Pojo ‘incorrect’ incorrect myoo
Pojoo Pojooo = 1

Figure 3.2.1: Classification probabiliti¢s = 2, k = 3)

3.2.2 Sample information

Auditor 1 classifies the elements of a random sample (drawn with repiant)
of predetermined size;; a subsample of (possibly random) si2g < n, Is
checked again by auditor 2, and so on: audjtahecksN; < N;_; elements
(j = 3,...,k). Hence, N, elements are classified by all auditors; — N,
elements by precisely the firgtauditors. Such a pattern of observations is called
a monotone missing data pattern; see Little and Rubin (200@xe that here
missing-by-design occurs.

Let C, denote the number of elements classified by the firstl auditors as
a = iy...105_q. Of these,N) < C, are observed by auditgr, the remainder
Co. = C, — Néj) is not further investigated. The classification freques@é
auditorj areC,;, to be combined into the vectﬁ?ff ) Theseri~! vectors can be
collected into the matrixC?), presenting all frequencies, observed by the first
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auditors. These notations agree with the notations for #rarpetersr. The k
matricesC'") summarize the complete sample information; compare Fig2@.

Auditor 1 Auditor 2 Auditor 3
Ci_ Cii-
‘correct’ C'y correctCi1; ™
‘correct’ Cy T 111
3
N® incorrectCy 110
To|11
Cl(),
ny ‘incorrect’ Cy correctCio; mio1
To|1 110
(3)
NlO .
incorrectCiop 100
Tol10
Co_ Cor—
‘correct’ Cy; correctCy;1 mo11
‘incorrect’ Cj 1|0 o1
3
o N(gl)
Né2) inCOfrECtOOl() 010
Tolo1
COO,
‘incorrect’ Cy correctCyo1  moo1
0|0 71100
(3)
NOO )
incorrectCyoy  Tooo
T0]00
Total ny Ny N3

Figure 3.2.2: Classification frequencies and probabilities 2, k = 3)

3.2.3 Sampling methods

An important aspect of a repeated audit control is the wayhiclvit is decided
which sample elements have to be checked again. In generaljow the sample
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sizes to depend on the preceding results. Two different Bagnmethods will

be discussed here: stratified and random sampling. In casteatified sampling,
the sample sizeV? in round j from any given classification is determined
separately, while in random sampling only the ta¥glover all these’~! classi-
fications is prescribed. More precisely, (81 denote the outcome space®f’,
while /) andg; are given functions frone®@ - @ . ... G~V into N U {0}
andIN, respectively, for alk andj. Then the two methods can be described as
follows:

stratified sampling: NY) = féﬂ(c(l)’ ..., 0Dy,
random sampling: N, = g;(CY, ... CU~D)

Hence as soon ast~! is known, theN! and N; are given. Of course, the
realization of the total sample size in roupdlso has to be positive for stratified
sampling:N; = > N > 0.

In most caseg sample sizes will only depend on the previausifsequencies,
so thatN; = g;(CVU~Y), e.g; the simplest situation occurs when all the sample
sizes are fixed predetermined numbers. This is the samplatgad which is
usually assumed in the existing literature on repeated aodtrols.

3.3 Distributions and MLE'’s

3.3.1 Stratified sampling

All the following results are derived under the assumptibsampling with re-
placement. The convention that the multinomial distridati/ (0;.) is concen-
trated in O will be adopted.

Theorem 3.3.1.In case of stratified sampling the joint sample distributi®ohar-
acterized by the following multinomial distributions:

C(C’(l)) = M(ny; 7T(1)>,
LECPIND =ny = M(n$;77571), for all i-1 possiblea, j =2, ..., k.
(3.3.1)
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and the likelihood functiorL(x®, 7V ... 7zHFD. 0 ¢®) is obtained
by multiplying all probabilities corresponding with thié — r*) /(1 — ) multino-
mials in (3.3.1).

Proof. Equation (3.3.1) is obvious. Further, because]ﬂ%éare given functions,
LEPICD,...,C70) = L(CPIND)

holds for alla and j, while these distributions are conditionally independent
differenta. This implies the second statement. O

The corresponding log-likelihood follows at once:

log(L(x™W, 7T§2|1), k=D DRy =
k
> e logm, + > Y cay, log g (3.3.2)
i1 =2 aij

as well as the MLE'’s for all parameters involved:

ﬁ(1) — @
n
| 3.3.3)
o o) . . (
ub-u  — ~ for all 77~! possiblea, j=2,...,k.

These MLE’s are the regular MLE’s for /&way contingency table withh — 1
supplementary marginal tables with MAR (missing at randomaltinominal data
(see Little and Rubin (2002) for more details). Since the mp&tars of interest
i, are functions off;,, m; ) (see (3.2.1)), the MLE's fop;, are functions of the
MLE’s in (3.3.3):

151'0 = ]Szk = Z ﬁilig...ik = Z ﬁil 'ﬁi2|i1 et ﬁikm...ik,l- (3-3-4)
i1 omip_1 g1
However, the MLE's for the conditional classification prbibgies ;,, are not
defined whenVY” = 0. This is asymptotically irrelevant but highly relevant in
practice! Although the probability of undefined ML estimatends asymptot-
ically to zero, practical repeated audit controls usualtlyensmall final sample
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sizes due to the high costs of the last auditor. Undefined Ml=Ee (in gen-
eral) frequently occurring and it is important to have a gestimation procedure
which can handle these situations. Section 3.3.3 examissshge procedures for
undefined MLE’s more closely.

Note that the auditors’ error probabilities can be deriveaf (3.2.1), (3.3.3)
and (3.3.4) as welke.g.

~ ~ ~ ~
-~ Z Hi1i2---ik Z Hi1 ’ HZ'2|i1 et Hik|i1~-~ik—1
= = -Pili 2.9k —1 cell—1
Pil|io = Piﬂik == = = = = = =
P, Z Hiﬂ?mik E I, - Hi2|i1 ) ) Hik|i1~~~ik—1
i1edp1 b1 edp1

3.3.2 Random sampling

Although the N\ are deterministic conditionally on the previous classiiass
in the case of stratified sampling, this is not true for randia”mpling and the
characteristic distributions differ for the two samplingtimods. LetV") denote
the vector of all’—! scalarsV.”.

Theorem 3.3.2.In case of random sampling the joint sample distributiorhiare
acterized by the following multinomial distributions:

c(c<1>> - M(nl; 7(0)

( |C’ cli— 1),Nj:nj>:M(nj; _— ), 1=2,...,k
h

£(CY N =:n$>)::A4<ng%ﬂé”J Dy, for all 7~ possiblea, j = 2, ..., k.

(3.3.5)

and the likelihood inference is the same as for stratifiedanm.

Proof. The conditional multinomial distribution functions (3B3are again straight-
forward. The likelihood is now acquired by multiplying atlet(1 — %) /(1 —r) +
k — 1 conditionally independent multinomial distributions:

L<7r<1>,n§2'1>,..., (=D, () ) @ )

= L(CW)L(N |omnga0% %Lw@|@)”-£m@m9y
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The conditional distribution functions for the classificat quantitiesC™™ and
CY) are identical for random and stratified subsampling. Thoeeethe likelihood
functions of the two sampling methods differ only by the déiddial conditional
distribution functions of the sample siz&%7) in case of random sampling. Since
these distribution functions do not depend on the parametes distributions of
the N can be ignored for likelihood inferences about the pararset!) and
cY are sufficient forr;, andr;,|., respectively. O

3.3.3 Undefined MLE’s

Though the MLE’s have nice asymptotic properties and areétly interpretable,

a major drawback is that they will be frequently undefinedriactice (depending
on the sampling method). The MLE’s for the population fract are undefined
when auditor; does not classify at least one sample element of each psdyiou
occurring classification patterne. n) = 0 while ¢, > 0. The situatiom?) =

0 can be divided into structural zeros and unstructural zéses Bishopet al
(1975)). Unstructural zeros are caused by chance whiletstial zeros are caused
by a priori model restrictions such as, = 0. In this chapter we extend this last
definition to include the situationéj) = 0 whene, > 0, where the elements with
previous classification are intentionally excluded from thg" sample (Véj) =
9, . ct-1) = 0) because another check would not provide additional
information.

Consider for example a population which consists of corrgct(1) and in-
correct elementsi{ = 0). A repeated audit control takes place with only one
fallible auditor(k = 2). The fallible auditor isa priori known never to misclas-
sify correct elementgp,; = 1) but (s)he might make mistakes with incorrect
elements. As a consequence an element which the first actigsifies as incor-
rect is per definition incorrect. An additional check of sahelement does not
provide extra information and is therefore useless. A lalgitoice isNéZ) = 0.
Thoughﬁno is now undefined according to (3.3.3), this is not a problemesit
is a priori known thatry = 0.

In general, structural zeros do not cause problems bechegeate caused
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themselves by model assumptions about the parametersuthusal zeros, how-
ever, are the cause of some problems. Fortunately, unstalicteros can be
avoided completely by using a specific kind of stratified skmgp stratified sam-
pling with N9 >0 whene¢, > 0. In these cases the MLE’s fgr, are always
uniquely defined and are even unbiased.

Theorem 3.3.3.E{P, } = p, if NV > 0 whenC, > 0.

Proof. If Néj) > 0 when(C, > 0, the MLE’s ﬁi]-|a in (3.3.3) can still be un-
defined. However, the preceding 1‘acf<b1rj_l‘Z-l__i]._2 in (3.3.4) is per definition 0
whenNY = 0. Asa consequence, the corresponding tﬁt;mik of EO in (3.3.4)

is zero. So the MLE’SE0 are defined, even in case of undefined MLE’s for the
conditional classification probabilities. From the redas

Cai

Néj)
= E{Ha} *Mijla = E{Hil...z'j,l} CTigli1ij—1o

E{llyy iy = E{l, -1} = E{Il,}E{—=Z|ND}

it follows by repeated application thﬂ{ﬁm_._zj} = Tiyiy..i;» IN cOmMbination
with (3.2.1), this gives

E{Pz'o}: Z E{Hilig‘..ik}: Z Tiyig..4, — Pigs

11 lk—1 i1k —1

which completes the proof. O

A disadvantage of this kind of stratified sampling is thatréguired final sam-
ple size can be quite large since the last sample has to maliéast one element
of all previous realized classifications. This could be ajuarent to apply a dif-
ferent sampling method which could still lead to unstruatzeros. Section 3.5.1
shows that a procedure for handling situations with unddfid&E’s is indeed
important.
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3.4 Upper limits

3.4.1 Classical; finite samples

For a standard audit with an infallible auditor & 1) and dichotomous data
(r = 2) the upper(1 — «)—confidence limit forp;,, denoted by} is the regular
binomial confidence limit

Pi = maz {pio P Pr(Piy < Piolpig) 2 a} : (3.4.1)
i

The generalization for = 2 andk = 2 is given in (2.4.1), which we repeat here
for convenience:

Py = 7”’;@55 {P07P1|0,p0\1 : Pr(Py < Dolpo, p1jo, Pojt) = 04} . (3.4.2)
i0

To determine this upper limit, the maximupj|po, poj1 of (3.4.2) for fixedp; o
andpg; has to be calculated for all possible values of the nuisaacanpeters
p1jo andpg1. Subsequentlyyy is determined as the maximum of @lf|p1jo, popi.-
Compare Section 2.4.

It is straightforward to generalize (3.4.2) for> 2 andk > 2 :

Piy = max {Bos P70 Pr(By < Bialpio #9970, G =1, k= 1) > a .
ig

The determination of} runs as in the case= 2 andk = 2.

A disadvantage of this method is the worst case approachie wlitermin-
ing the upper limit all situationsi.g. all values of the nuisance parameters) are
considered and the most unfavorable one is chosen. Alllplessituations also
include the situation in which each fallible auditor delidsely classifies all ele-
ments in the same category regardless of the true and peeviassificationg, e.
forj =1,..., k — 1the elements 0"~V consist solely of zeros and ones. As
a consequence all elements will be classified in exactly dangesway by the first
k — 1 auditors:ij, ..., i;_,. In this case the MLE’s in (3.3.4) reduce to

Cie st 4
. S _ it i
P, = P, =1 —

I o
0 1145474tk glif iy
Ny,
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The latter is just the estimator in case of an ordinary audit wnly an infal-
lible auditor who checkgn, =)N,, elements. S [pUli-1 is solely based on
the classifications by the last infallible auditor and thiéildke classifications are
disregarded completely. Therefore it coincides with thpardimit (3.4.1) of a
standard audit by an infallible auditor who cheékselements. As a consequence
pY, which is the maximum of alp? [pU/=1 will be at least as high as (3.4.1) and
the repeated audit control is in this sense useless: theléadllassifications cost
money but do not provide more accurate estimates.

So although the described method enables us to find confidlemtsfor finite
samples, these confidence limits will be very high since tfeen unlikely - worst
case is taken to be reality. This conclusion is in line witatbsults of the previous
chapter.

3.4.2 Classical; limit distributions

A widely applied approach to construct confidence interisatsased on the limit
distribution of the MLE’s.

Theorem 3.4.1.Under the assumptioVs” /n; — %) if n; — oo, with 8¢’ a
constant depending an

~

V(P — piy) 5 N(0,02), (3.4.3)
with

y . . . .
on =0 = Y Var(lly_i )+ > Cov(I, iy i iy iy _yin)-

1.0k 1 il---ik—lfii---i}c_l

Definew = min{j : i; # i; for4; ... i, andij .. .4} } then

Cov(Ily, iy, iy i) =
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Ty, Ty iy, ifw=1

Ty iy TViy.4)
ﬂ_——ﬂ'“(l - 7Ti1)+
i1 i1
—1 . . . — . . . . .
w Ty .ig 7Tz‘1...1}c '/sz\a(l ’/sz\a) WzlA..zkﬂzi...z}C

0 — @ ifl<w<k
i=2 Tijla  Tijla by bil...iw,l
2 2
i1...1 i1...1 Tisla 1— Tila
(Wll...lk) 7_(_11(1 o ﬂ'il) + Z (ﬂ-zl...lk) ‘7‘ ( ( _7‘ ) else.
\ i, =2 \ Tijla b
Proof. See Appendix 3.7.1. O

Now the standard techniques can be applied to constructemde intervals.
Tenenbein (1970), Tenenbein (1971), Tenenbein (1972) teedariance of the
limit distributiono? as a measure of accuracy of the repeated audit control. How-
ever, as mentioned before, asymptotics are often not metidga these types of
controls.

Neither of the two methods for constructing confidence raksr which are
discussed so far, appears to be very useful. Therefore, msdmy the Bayesian
approach as well.

3.4.3 Bayesian

In the Bayesian approach for monotone missing multinomitd,daior distribu-
tions can be chosen for either the set of parametefall =) and7Uli-), or
all parameterg (p® andptli-1): of course these parameters now are seen as
random variables (which will be denoted by the correspondipper cases.g.
the two sets of parameters will be denotedaand P). The first choice is the
simplest; in that case independent Dirichlet distributiaften are taken as pri-
ors. Combined with the data, they lead to a simultaneous pastistribution for
the variabledI which is the product of independent Dirichlet distribusofsee
e.g.Schafer (1997)). Our parameter of interéstis a known function oflI and
its marginal posterior distribution can be straightforvdetermined by means of
simulation from the posterior distribution &f. The mode andl — «)-quantile
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from the marginal distribution can be taken as point eseénaatd upper limit,
respectively.

However, since our parameter of interesipisand our model is originally
formulated in terms op, a more logical choice is to formulate priors férin
stead oflI. Moreover, independent (Dirichlet) priors féfseem reasonable since
the quality of the population and the different auditorsléely not to depend on
each other. This argumentation for independence does tebfdroll. Therefore
the product of the following independent Dirichlet distrilons is taken as prior:

LPO)Y = D(ay_1, 003, ..., 00)
{ E(PQU_I)) = D(—1}igar Cr—2igas - - - » Xligas ) V@, Vig, V7.

i0a

(3.4.4)

Since the data are missing at random (see Rubin (1976))ibdistm (3.3.1) suf-
fices for the Bayesian inference, regardless whether randstnatified sampling
is applied. The simultaneous posterior distributionfois the product of (3.4.4)
and (3.3.1). The marginal posterior distributionffis obtained by integration.
This is analytically rather complicated but can also be doypeneans of simu-
lation or numerical integration, as in Chapter 2 foe= 2 andk = 2. However,
instead of integrating the simultaneous posterior distidmn, it is also possible to
determine the marginal posterior distribution by meansefdata augmentation
algorithm of Tanner and Wong (1987).

Data augmentation is an iterative method of simulating tbstexior distri-
bution for missing data problems. The basic idea is that ¢agiired posterior
distribution would be straightforward to determine if thevere no missing ob-
servations. For our model it is easy to verify thatwould have the following
Dirichlet posteriors in case of the Dirichlet priors (3. ¥ahd complete data:

L(PY|datg = D(a® + k)
{ (P9 datg = D@V + 1Y g, vig, 5,

00 aig

(3.4.5)
0a
where

a0 . vector of exponents;, corresponding with the vecta@©®,

a1 vector of exponents;, ;,, corresponding with the vectd?’’/ ",
Ejo vector of the numbers,;, ..., Of classificationsii; by the first;
auditors,iy by the last (and any classification by auditors

j+ 1. k—1).

c
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Each iteration of the data augmentation procedure cor@ists imputation step
and the posterior step. Start with an initial draw of the pegters from an ap-
proximation to the posterior distribution. In the imputatistep the missing data
are drawn from the appropriate distribution (with the drgvamameters) to get a
(simulated) complete dataset. In the subsequent possteprthe parameters are
drawn from the complete data posterior. Given the newly drparameters the
imputation step is again executed cetera

For our model, the imputation step consists of drawing thesmg observa-
tions from a multinomial distribution:

A)y _ @ :
£(gié‘)) — e ) dy (3.4.6)
L(CG) = M(co— + Co; 4 ), VYa, j=3,... k.
Thep are drawn from posterior distributions which are simila3at.5):
{ L(PY|(simulated) data= D(a(® + ¥ + ¢kl
Gli=1) (i _ (Jli-1) bl Al ~ :
L(P,’7~"|(simulated) data= D(o;); " + cgi, + ), Va, Vi, Vj.
(3.4.7)

The 7, which are required for the subsequent imputation step,ncan be de-
termined from (3.2.1). In Section 3.5.2, the data augmemtatigorithm will be
applied to an example with= 2 andk = 3.

3.5 Applications

3.5.1 Case=2, k=2

A population consists of correciy(= 1) and incorrect4, = 0) elements. In order
to estimatep,, a repeated audit control is performed by two auditors. Rando
sampling is applied with, being a fixed numberN,(Cy, Cy) = ny. There are
no prior assumptions about the quality of the first auditerabout the misclassi-
fication probabilities. The characteristic sample disttidns (3.3.5) are reduced
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to:

L(Cy,Cy) = M(ny;m,m0)

LINP|C| = ¢1,Cy = ¢g) = M(ny; c1/n1, co/ny)
L(Cyy, C'10|N1(2) = n§2)) = M(ngz);m‘l,wou)
L(Cor, Coo| N§ = nf) = M(nf 3110, m0),

- compare (2.2.4) - and the MLE’s (3.3.4) follow.

Both Tenenbein (1970), Moors (1999) and Barme¢tal. (2001) derived these
MLE’s. Tenenbein (1970) noted that the MLE fgg is undefined when either
NSQ) or Nl(z) equals 0, but he concluded that the probability of this adagris
quite small unless, is small andr; or 7y is close to zero. However, these cases
are of importance for calculating upper confidence limitsodw (1999) derived
the MLE’s independently from Tenenbein (1970) and paid spextention to
the cases of undefined MLE’s. To determine the MLE’s in theses with only
‘correct’ or ‘incorrect’ sample records in the second rouhd made the extra
assumption, o = 1 —po|:. This resulted in estimator (2.3.2), which in the present
notation reads:

( Cho

; (2 _
e if Ny” =0
T Cw O, C
N Co Coo 1 Cio . (2)
P = ——+ ——= fO0< N <n 3.5.1
0 n, N(gQ) n, N1(2) ‘ ’ ( )
00 ; (2)
- if N = Ny.
N® '

The main expression consists of two terms which have a lbgitarpretation.
The first term is the fraction of elements which are classiéisdincorrect’ by
the first auditor times the estimated probability that theyiadeed incorrect. The
second term is the fraction of elements which are classiBédarect’ by the first
auditor times the estimated probability that they are dlgturacorrect. If either
N or N® equals 0, all information of the fallible auditor is disced

Table 3.5.1 contains the numerical data (in the presentionjaof the CTSV
example of Chapter 2 (compare Table 2.4.1).
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Total Single checked Double checked sample
sample Second auditor
First auditor Total correct incorrect
‘correct ¢ =484 ¢ =433 P =51 ;=50 cp=1
‘incorrect’ co =16 co— = 14 néQ) =2 ¢ =0 cop = 2
Total ny =500 ng—ny =447 ny=53 41 =50 cr0=3

Table 3.5.1: CTSV example

For this practical example, estimator (3.5.1) leads to atmstimate of 0.0510;
the 95% upper confidence level was 0.121 - obtained fromZB.th the next sec-
tion, this CTSV example will be used again.

The major disadvantage of Moors’ estimat@y is that it does not coincide
with the MLE for the reduced models. In a reduced model, orszlassification
probability, eithem; |, or py)1, is a priori set to zero. It can be shown that Moors'’
estimator does not coincide with the MLE of the two reducedlel® if either
Néz) or Nl(z) equals 0. Therefore, a slightly modified estimator is prepos

¢ C c, C .
=2 if Ng¥ =0
n1 ni Ny

o Co Coo  Ci Cro . )
C .
—O% if N(()Q) = No.

\ ny No

This is the only estimator which coincides with the MLE of tteeluced models.
In order to see whether the differences between (3.5.1) 2/ad2) are relevant,
a comparison is made based on the bias. By taking conditiompaictations (see
Appendix 3.7.2) it follows:

Bias(Py) = (1_n_Q)(W12(7To|1—7T00—7T10)+7T02(7To\0—7T00—7Tlo))7
1

Bias(ﬁ;) = (1- %)(W{”Wm — T2 T10)-
1

The bias of both estimators depends on the classificatiobapitities and the
sample sizes. The bias is reduced by increasingr decreasingi,/n;. This
means that the bias is smaller if more infallible informatie acquired or if the
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fraction of fallible information decreases. The biasfgfdecreases when the first
auditor is more accurate; it is even unbiased in the caseiofaltble first auditor.
The latter is not true for,. Figure 3.5.1 shows that the difference between the
estimators can be quite substantial.

0.3f
0.25F
0.2}

S oA
0.15F = Py

bias

01f

0.05F

0 \

) ) ) ) ) ) ) ) ) )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Po

-0.05

Figure 3.5.1: Bias of%, andﬁg

This graph shows the bias of estimators (3.5.1) and (3.6r2),f = 50, n, =
10, p1jo = 0.05 andpo;; = 0.10. In particular for low values of,, use of the
modified estimatoﬁg leads to a generally much smaller bias.

Forr = 2 andk = 2 an analytical expression for the posterior distribution ca
be given; analysis and results are presented in Chapter dicAppn of the data
augmentation procedure leads to identical results.

3.5.2 Casea=2, k=3

In the previous subsection, we discussed the CTSV exampléichva repeated
audit control with two rounds was applied. However, the CT386 applied
repeated audit controls with three rounds. In the first twonds (fallible) internal
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auditors of the six companies classified the (sub)sampledrisg payments as
correct or incorrect. In the third and final round an auditothe CTSV checked
a subsample of the twice checked payments. Again, the awafithe CTSV is

considered to be flawless.

Since we do not have access to data of the three rounds, wieeugeetiously
analysed data of the repeated audit control with two rouses Table 3.5.1), but
extend it with fictitious data for the third round.

In this third check, the infallible expert once more clagsifa subsample of
sizens = 20 of the 53 double checked payments; all payments consideoed-i
rect by at least one of the two internal auditors are includBas results in the
following (stratified) sample sizes:

(3)

3
N = o

ng = 207 né%) = Cop — 27 Cig = 1, nOl = Cp1 — 0, nﬁ) = ]_7

For the outcomes of this third check, the four different gmsges in Table 3.5.2
are considered.

Possibility 1 Possibility 2
correct incorrect| correct incorrect
ciin =17 ¢110=0 cr1 = 16 cr10 = 1
cio1 =0 cioo=1 | cio1 =0 cro0 = 1
co11 =0 co10 =0 | cor1 =0 co10 =0
coor = 0 Cooo = 2 | o1 =0 Coop = 2
Cyp1 =17 cpp0=3]cip1 =16 cy9=4

Possibility 3 Possibility 4
correct incorrect| correct incorrect
cin =17 ¢110=0 |11 =17 ¢110=0
cro1 = 1 c100 =0 | cro1 =0 c1o0 = 1
co11 = 0 coro =0 | co11 =0 cor0 =0
coor = 0 Cooo = 2 | coo1 = 1 Cooo = 1
Cy1 =18 cyp0=2 | cy1 =18 cyq0=2

In Possibility 1, the expert fully agrees with the secondi@mudin Possibility
2, one error is missed by both fallible auditors; furtherekpert fully agrees with

Table 3.5.2: Fictitious data third round
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the second auditor. In the third option, the expert fullyssgrwith the first auditor
implying that the second auditor missed one incorrect paynie Possibility 4,
the expert finds that one error is made up by both auditorthdufindings are in
agreement with the second auditor.
The general MLE (3.3.4) reduces in this case=(2, k = 3) to:
B, = A/

This estimator is defined for all possibilities of the nurnatiexample. The point
estimates for the’s andp’s - if defined - are shown in Table 3.5.3.

o Tojo Toj1 Tojoo | Tojor | Tojo | 7o
Possibility 1| 0.0320 1.0000 0.0196 1.0000 - 1.0000 0.0000
Possibility 2| 0.0320 1.0000 0.0196 1.0000 - 1.0000 0.0588
Possibility 3| 0.0320 1.0000 0.0196 1.0000 - 0.0000 0.0000
Possibility 4| 0.0320 1.0000 0.0196 0.5000 - 1.0000 0.0000

Do Pojo Pon Pojoo Pojo1 Poj1o Dol
Possibility 1| 0.0510 0.627y 0.0000 1.0000 1.0000 0.0000
Possibility 2| 0.1068 0.2996 0.0000 1.0000 0.2537 0.0000
Possibility 3| 0.0320 1.0000 0.0000 1.0000 - - 0.0196
Possibility 4| 0.0350 0.4574 0.0166 1.0000 1.0000 1.000000m0

Table 3.5.3: Point estimates

The point estimate (0.051) of Possibility 1 equals the vétue: = 2. This
is logical since in this possibility the expert fully agreegh the second auditor
(who was the expert in the example with two rounds).

In audit controls, the accuracy (and distribution) of theneator ]30 are usu-
ally at least as important as the point estimates. Here,liheg to be determined
by means of simulation, since there are no analytical espyes available. The
parameters are assumed to have the estimated values of3TaldeIn the simu-
lation (of 100,000 runs), stratified sampling is applieduntsa way thahgf) >0
if ¢;, > 0. Just as in the example, all possible previously classifrembfrect’ el-
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ements are included in the third round. The simulation tesulthe distributions,
presented in Figure 3.5.2.

q
frequency

0.08

(a) Possibility 1 (b) Possibility 2

10000 Bm

8000

ooooo

L3 B

(c) Possibility 3 (d) Possibility 4
Figure 3.5.2: Histograms of simulated distributionspf
Possibility 3 leads to a fairly symmetrical distributiorhet other ones are

skewed to the right. The (simulated) standard deviationB,cdre presented in
the first line of Table 3.5.4.

Possibility 1| Possibility 2 Possibility 3 Possibility 4
Three rounds 0.0203 0.0574 0.0079 0.0233
Omission auditor 1 0.0302 0.0591 0.0306 0.0310
Omission auditor 2 0.0320 0.0598 0.0079 0.0350
Omission auditor 1 and 2 0.0490 0.0691 0.0394 0.0409

Table 3.5.4: Standard deviations]?tjc
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The standard deviation is the smallest for Possibility B¢eithis is the only
case in which no mistakes are found among the classificabiothe first auditor.

It is also interesting to look at the accuracy of the estimgtaith respect to
the design of the repeated audit control. What is the impacinafting one or
several auditors on the accuracy of the estimators? If tee(§econd) auditor is
omitted, the estimator is based on the 53 (500) observatibtisee second (first)
auditor and the 20 observations of the expert. If both ireanditors are omitted,
only the 20 flawless observations of the expert are inclu8atte stratified sam-
pling was used, the estimat@ﬁ is unbiased for all designs. Hence the simulated
expectations equal the valugsin Table 3.5.3. The standard deviations are shown
in the last three lines of Table 3.5.4.

Including the observations of all the auditors leads to timalkest standard
deviation, while including only the flawless observatiofsh® expert gives the
largest standard deviation. Including only one fallibleidor, gives a standard
deviation which lies between the previous ones. Omissioeitber the first or
second auditor leads to approximately the same standardtidevfor all possi-
bilities, except the third one. In this case, the experyfaljreed with the first
auditor: the second did not contribute at all. In the renmgjréases, omitting the
first auditor leads to a somewhat higher accuracy.

For the Bayesian approach, priors are formulatedd@uch as described in
Section 3.4.3. For our example, the general priors (3.4dlice to the beta dis-
tributions

L(Py) = Beta(ay, ap)
£(P1‘i0) = Beta(amo, O‘O\ig); io = 0, 1
L(Piiyi,) = Beta(aaigi, Qjigir), %0,%1 =0, 1.

To determine the marginal posterior distribution/Qf the data augmentation pro-
cedure is used. For= 2 andk = 3, the implementation step (3.4.6) consists of
drawing from binomial distributions:

LCIY) = Bl 7)), i =0,1
L) = Bleyysy— + il ), gy =0, 1.

11921 1192 0 T 1|i14
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The posterior step (3.4.7) reduces to drawing from betailoligions

( ﬁ(Pl(tH)|(Simu|ated)dat)a: Beta(on + ciq1 + Csfﬁ)a Qg+ Cyqo0 + Cgﬁril)))
£(P{|(simulated) data=

)

(t+1 (t+1) .
Beta(awo + C144g + ClJﬂ-O y Al + Co+ig + COJriO ), 190 = 07 1

£(P{! V|(simulated) data=

(t+1) Dy .
Beta(aujiiy + Cirtig + Ciy1ig » Qjioin + Ciroio + Ciyoig ) %0581 = 0, 1.

\

The speed of convergence of the described procedure isddlathe fraction of
missing observations; since this fraction is very high in @ample which has a
high dimensionality, the rate of convergence is rather low.

For Jeffrey’s noninformative prior (all the’s are 0.5), Figure 3.5.3 shows the
marginal posterior distributions for our example, obtdity data augmentation
with 1,000,000 iterations:

(a) Possibility 1 (b) Possibility 2

(c) Possibility 3 (d) Possibility 4

Figure 3.5.3: Histograms of simulated posterior distiig of 7,
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The mode and 0.95-quantile of the posterior distributiom taken as point
estimate and 95%-upper limit. They are presented in theplngtof Table 3.5.5.

Jeffrey’s noninformative prior

Possibility 1| Possibility 2 Possibility 83  Possibility 4
mode 0.043 0.070 0.031 0.029
0.95-quantile 0.121 0.212 0.082 0.107

oo = a1 = 1.5, agjor = aqji0 = 2.5, agpoo = a1 = 3.5, otherar are 0.5
Possibility 1| Possibility 2 Possibility 3 Possibility 4
mode 0.039 0.055 0.030 0.027
0.95-quantile 0.089 0.137 0.057 0.075

Table 3.5.5: Bayesian point estimates and upper limitgfor

For Jeffrey’s prior, the Bayesian point estimates are alllemthan the corre-
sponding classical point estimates (see first column Tabl83

The second part of Table 3.5.5 contains the estimates fdfematit prior. The
prior parameters are chosen in such a way that the error Ipiities of the sec-
ond fallible auditor are likely to be smaller than those d fiist fallible auditor.
Moreover, it is more likely that the second auditor’s missiéication probabilities
are higher if the first auditor has erred previously thaneffihst auditor gave the
correct classification. The impact of this different prisconsiderable: especially
the upper limits are a lot smaller than for Jeffrey’s noninfative prior.

3.6 Conclusions

A general framework for repeated audit controls was intoedufor categorical
data withr > 2 levels. Monotone samplingf. Little and Rubin (2002)) is ap-
plied, implying that non-increasing numbers of records @recked byt > 2

subsequent auditors; the last of these is assumed to bbhiefalTwo sampling
methods were discussed, called random and stratified sagnri stratified sam-
pling, previous classification results determine the nart@e sizes for all clas-
sifications separately, while in random sampling they ordyednine the total
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sample size for the next auditor.

It was shown that both sampling methods lead to essentlalgame MLE’s
for ther population fractiong;,. However, if unstructural zeros occur, the MLE’s
are not uniquely defined. Since unstructural zeros are muxk fikely to occur
in case of random sampling, we advise stratified samplingfactical use. A
further advantage is that the MLE’s in this case are unbiased

A new solution to the unstructural zeros problem was progpdee/ing two
advantages: it leads to a MLE with a smaller bias, and encesgsahe solutions
for the reduced models, where only one error type can occur.

Three different methods to determine upper limits for treetion incorrect
elements in the population were discussed. Of these, thesiayapproach ap-
peared to be the most satisfactory.

In case error sizes, or relative error sizes (taintingsphserved instead of just
error rates, continuous data are obtained. The speciabtasemally distributed
observations witht: subsequent auditors is analysed in more detail in the next tw
chapters. Note that a distribution-free solution can bevddrfrom the present
chapter by discretization of the continuous variable intategories.
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3.7 Appendices

3.7.1 Limit distribution
Write

$® = Cov(CW)/n,
nUli=1 COU(C((ljlj—l))/n((Lj)

with elementsf,g =1,...,r

== { "

and

jli— r—flall — T fla if f=
(g = { ' —fm<_f|a7r7:_g£| " iizy

Then the asymptotic distributions of the MLE’s (3.3.3) amaightforward:

Vrrvee(ITW — 110 N N(0,21),
£

ny )vec(ngU—l) — Gli-) N(0, 56D,

If N9 /ny -2 b5 with b$) a constant depending an
Vree(TIV6=D — 16li-0y £ N0, 20— /p0)).

SinceTI™ and TI{" " are independent, they have an asymptotic multivariate
normal distribution with a block-diagonal covariancematiThe MLE for ;, ;,

is a function of the preceding estimators (see (3.2. ]IED;,) H szm o
H,m._,%_l Application of the deltamethod (see Lehmann and Casella80199
results in the asymptotic distribution ﬁ\lfz’l...ik~ Relation (3.2.1(c)) and applying
the deltamethod once more result in the asymptotic digtabuof EO in (3.3.4).
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We only illustrate the whole procedure for the special casek = 2:

— ﬁl . 7_‘_1 —
Iy — 7o
N p=mp | £ N(0,X%)
1;[0\1 — Tonn
1:\[1\0 — 710
L H0\0 — Tolo
with
[ 170 —T1 T 0 0 0 0 T
—T Ty WMo 0 0
0 0 7T1|1(;T)0|1 _71—1(\;)7T0\1 0
by by
—T111T0)1 111701
Y= 0 0 Ne) Ne) 0 0
; ; T11070|0 T110770]0
110 -
0 0 0 0 e @
0 0
—T1j070l0 T11070l0
0 0 0 0 @ @
L 0 0 .

The deltamethod applied to relation (3.2.1(b)) results in

1:\_{11 — 11
Jir | Bo=mo £ v A), with A = B'SB,
l;[01 — To1
oo — moo
[ i1 Top 0 0
0 0 710 oo
wherep=| ™ 0 0 0 So,

1 0 0




59

3.7. Appendices

711710

(2)
by
T1i710
TUToRT0 = — 5y
by

T11T1170 +

—7117T01

—T11700

11710
B.HH\E.D_HS.O — va
®H

T11710
2
b

To[171070 +
—710701

—710700

—T11701

—710701

017700

T1)0T0171 +

017700

To|07017TL —

by

by

—T11700

—710700

Toj0T01T1 —

TojoT0071 +

017700

1)
o Hoﬁ.oo
b

Applying the deltamethod once again but this time to refa{®2.1(c)) leads

Pi-p

£ N(0, B'AB) where

~

to the asymptotic distribution oP,,

Py-po
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OFr OPFr
R OPrFr O

3.7.2 Bias

Derivation of the bias of the modified estimator (3.5.2):

BE{F;} = B{E{F;IN;"}}

2) Co  C1 Cio |\
r(No ) {n1+n1N1(2)| 0 }
no—1
Co Coo  C1 Cio 20
négl 0 0 {nl Nég) ny Nl(z)’ 0 0 }
(@ _ Co Coo \r(2) _
+ Pr(Ny —”2)E{n1 Nég)|N0 = na}f
Ny — Ng )T Ny —MNo )T +n
_ PT(NéZ):())(( 1 2) 0+( 1 2) 1 271_0‘1)
n1 nq
na—l 2)
— +n
Pr(N@ — @y = n2)mo + ng
+ Z r(No ngy)( n o0
néQ):l
(2)
ny—ng)m +n N1 —Ng)To + N
+ ( ! 2) ! L 7T0|1)+P7"(Né2) :ng)(< ! 2) 0 27T0|0>
ni nq
n n
= Pr(N® =0)(1 = 2w — Pr(NP = no)(1 — 2)myg
ny ny
ny—n 7T—|—N(2) N —n 7T+N(2)
n E{( 1 27)1 0 0 7To\o+( 1 2; 1 1 7T0\1}
1 1

n
:pﬁﬂ—fmﬁm—ﬁ%ﬁ
1

The bias ofP, (3.5.1) can be derived in a similar way.



Chapter 4

Multivariate regression

4.1 Introduction

In this chapter - and the next - the perspective broadenseadsof categorical
variables, continuous variables will be considered. Beside temporarily leave
the specific auditing problem and direct our attention torg general situation:
we consider multivariate regression where new dependeiablas are consecu-
tively added during the experiment (or in time). Since, noogpective observa-
tions are assumed to be possible, the number of observatemmsases with the
added variables. The explanatory variables are observedghout.

Two examples will illustrate this set-up. The first consglerale patients who
receive a new cholesterol decreasing medicine. The explansariables are
age, weight and medication. First, only the decrease ineshelol is observed;
for later patients, pulse and blood pressure as well, alhdébséir haemoglobine is
measured. The second example relates to a chemical pradesg, the quantities
of three main ingredients are used as the explanatory Vesialm the beginning,
the only variable observed on consecutive days is the gyartproduced mate-
rial. Later the production of two by-products is measuredials, and finally also
the CQ emission.

In Section 4.2 the model is presented in detail and illustratith a numer-
ical example. In Section 4.3, four classical estimatiorcpaures are discussed:
O(rdinary) L(east) S(quares), G(eneralized) LS, E(stadptGLS and ML. For

61
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LS estimation, only assumptions about the first two momergsrequired; for
ML estimation, we assume normality. As to all regressiorffa@ents, it is shown
that a specific choice of EGLS coincides with ML. All estimatappear to have a
clear geometric interpretation. Section 4.4 discussesdaéve efficiency of the
OLS estimators in relation to the (E)GLS estimators.

The model with complete observations follows as a specis¢.cdhe same
holds for the model with the constant term as one of the exbtap variables,
leading to centered variables. Both cases are treated iio8ech. Section 4.6
describes estimation under linear restrictions and givedMVA-tables to per-
form exact L(ikelihood) R(atio) tests on the coefficientsct®m 4.7 reviews the
Wishart and Wilks’ distribution and introduces a geneediaVilks’ distribution
that gives the exact distribution of our test statistics @ctibn 4.8. In Section
4.9 the presented estimation and testing techniques ate@dpp a numerical
example. In Section 4.10 severg—approximations of the generalized Wilks'’
distribution are derived and compared by means of simulafitne final Section
4.11 contains the main conclusions and ideas for futurexrebe

The perspective of the problem can be reversed: insteadyafdig the ob-
servations of the newly added variables as additional m&dion, the lacking past
observations of these new variables can be regarded asqidgata. Practical
examples of this type of monotone missing data patterns amelsurveys with
either drop outs or new members. However, the linear regressodel and its
analysis only hold under very strict conditions for the nmgsdata mechanism;
an example of this is missing completely at random, see RUSIG).

To solve missing data problems, general techniques arepheultnputation,
data augmentation and the E(xpectation)M(aximizatidgpr@dhm. The EM-algo-
rithm is a widely used technique to determine ML estimatesigsing data prob-
lems. Although this algorithm converges to ML estimateslogés not give ana-
lytical closed-form expressions for the estimators, nocedib lead to exact dis-
tributions of test statistics. Therefore, our approach igimsimpler and more
straightforward.

The model with only the constant term as explanatory vagiaibls received a
lot of attention in the missing data literature; see Littleld&Rubin (2002) for an



4.2. The model 63

overview. Under the assumption of normality, observationssing at random,
and distinctness (see Rubin (1976)), several authors dettieMLE’s by means
of factorization of the likelihood or tedious matrix difesmtiation. Our formulae
contain these previous results as a very special case, sBer5&5.2.

Finally, we mention that our general case of multivariaggession with miss-
ing observations of the dependent variables was considerBdbins and Rot-
nitzky (1995), who discuss semiparametric asymptoticiefficy.

4.2 The model

Consider the multivariate linear regression model witldependent variables and
k (deterministic) explanatory variables; observationgatbered forV cases. Let
X,; € IR be the observed value of th& explanatory variablej(= 1, ..., k) for
the t'* case; complete data are available for the explanatory blasasot =
1,..., N forall j.

The observations of the dependent variables are incompletedependent
variables are ordered such that later added variables cashe3o their data are
divided intor ordered groups according to the pattern of increasinglysimis
data. Group containsmn; variables for which exactly the first; observations are
available:

N=N>No>...>Ny; M;=>» m; (i=1,..r, M,=M).
j=1
The vectorY;; € IR™: contains the values of these dependent variables for case
t. SoY;; is observable fot = 1,..., N; and missing fot = N; + 1,..., N. The
special cas&v = N; = ... = N, gives the usual complete model.
Ther (multivariate) regression equations can be written as

k
Yii = pi + vy pi = - XgBju, i=1,...,m, t=1,...,N;; (4.2.1)
j=1

where3;, € IR™ denotes a vector of unknown regression coefficiefts the
errors we assume

E{gti} = 0, COU(&}@',ES]’) = 51530'2‘3', (422)
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with (completely unknown) non-singulat = (o;;) € IRM*M not depending on
the 3,;. We write X > 0 for positive definiteness. If normality of the errors is
assumed, it will be mentioned explicitly.

The union of the groups up to ¢ will be denoted by(:), henceY;; =
(Y, ...V, e R™ i=1,...,rand similarly foru,, ande;

The OLS criterion is simply minimizing the sum of squares loé errors,
which can be written as\(.; := 0) :

T N;
Z Z €0 Et(i)- (4.2.3)
i=1 t=N;;1+1
The solution of this minimization problem w.r.t. thg; will be given in Section
4.3.2.

The GLS criterion is minimizing the weighted sum of squaréh the inverse
of the covariance matrix of all errors as weight matrix. ®imerors of different
cases are uncorrelated, it can be written in a more simpie.f®he error covari-
ance matrixz; ;) of 4;) can be partitioned as follows

Et(i—1) _ E(i—l)(i—l) E(z 1)i
E(Z)(l) = COU(Z—:t ) COU( - ) = |: Ei(z‘—l) En (4 2. 4)
So, E(i)(i) e IRMixM: E(, 1)(i-1) € IRMi—1xMi E(Z 1) € RMi-1xmi gnd in
particulary .,y = X andX(y1y = X11. Then, using (4.2.4), the GLS criterion
can be written as

Z Z Et( l)(’L gt OF (425)

=1 t= NL+1+1

This minimization problem w.r.t. thg;; will be treated in Section 4.3.3. In con-
trast with the complete model GLS and OLS no longer coinciliece GLS is
BLUE, it outperforms OLS.

Of course, in practic& is unknown and GLS cannot be applied. In Section
4.3.4 we therefore consider EGLS estimation, wherns replaced by some es-
timator. We discuss shortly several possible estimatonse §pecific choice is
analysed in detail. In Section 4.3.5 we consider ML estiaratinder normality;



4.2. The model 65

it will be shown that the specific form of EGLS estimation aades with ML
estimation.

Numerical illustration

The notations are illustrated by means of the following tilmtis data, related to
the examples of Section 4.1 with four dependent and threlaeafory variables
(excluding the constant). As usual, columns¥®fandY’) refer to variables and
rows to cases. Not observed valuesirare denoted by parentheses. We never-
theless give these values to compare the results obtaioedtire incomplete data
with the results for the complete data.

r=3
[1 5 5 7] (7 5 6 1] k=4
11 3 1 5 9 2 4
1 3 31 7 5 10 6 Ny =12
1 31 3 1 1 2 5 Ny =11
1 55 7 4 2 0 4 N3 =10
1131 5 9 8 4
X=l1331| Y=|7 8 4 s my = 1
1 3 1 3 4 1 8 2 mo =2
1 4 45 3 2 4 1 mz =1
1 2 3 2 5 7 5 4
1 3 3 2 6 8 6 (5 M; =1
|1 3 2 3 | 6 (3) (5) () ] M, =
So, for example,
5 7
Xia=7 Yii=7 Yio= { 6 ] , Yigg=1| 95|, Yiz=1,
6

and (4.2.1) reads far= 2 :
Yio= B2+ XioBoo+ Xi3Bso+ Xiafao+er2, t=1,...,1L

Note that suffices are separated by a comma whenever contihseatens.
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4.3 Estimation

4.3.1 Notation

We introduce some column- and matrix-notation for the olesstvariables and
regression coefficients. The indéxrefers to group and(i) again to the union of
the groupd,, 2, ..., 1.

[ X110 Xio2 o Xig
X = XN X2 0 XNk
| Xnva Xno oo Xy
7
[ Xi ]

| B o B | By e O]

ﬁ — / R / / . /
- j71 j)i_l jvi jvr

i ﬁllc,l 5}21'71 5121 ﬁllc,r .
T T T
H 6(i—1) ’ ﬁz e ﬂr ]
SoX; € IRYM** is the matrix with the firstV; observations of all explanatory vari-
ables. The submatrices,;_;) € R**i- andj; € IR¥*™i of 3 € IR¥*M contain
the regression coefficients corresponding to groiips 1) andi of dependent
variables, respectively. Thé, can be grouped in a corresponding way:

N Yi, - Y i, - Y, ]
. . . Y,
Y](/i,l e YJ(fi,zel Y]<711
: J</i,1,7;71

L Y 1

1 7 7
[ Yii-1) | Y Y, ]
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The matrixY; € IRY*™: contains all observations of group But the matrix
Y1y € RN*Mi-1 containsonly the firstV; observations of the foregoing groups
(i — 1) (with Y{o) = 0). We use similar definitions for the,; andey;.

4.3.2 OLS estimation
From (4.2.1)wegeti = 1,...,7)

Y1) = t-1) +€a-1), H-1) = XiBi-1)-

Then the OLS criterion (4.2.3) can be written as
Z tr(cie;). (4.3.2)
=1

So the OLS estimates can be found by columnwise orthogoog@giions. We
define the following relevant spaces and accompanying cterstics:

R(X;) : the space spanned by the columnskof
RY*Ni - the orthogonal projection matrix df;,
In, — H; : the orthogonal projection matrix df;-,

7

Im

Lz
H;
Ui
lz

Clearly each column of; is element of.;. To indicate this property, we will use
the (short) notatiom; € L;.

Theorem 4.3.1.The OLS estimator fop; (i = 1,...,r) is the (columnwise)
orthogonal projection of; ontoR(X;):

Z; = H,Y,. (4.3.3)

Proof. The OLS criterion (4.3.2) is the sum ofsquared lengths of the error
terms. Since the meam only appears in thé term, (4.3.2) is minimized by
minimization of these terms separately. With respect tmtewe can write

e =Y, — i = Hy(Yi — i) + Us(Yi — i) = (Zi — i) + U;Y;.

Clearly, the minimum is attained for, = Z;. O
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The OLS estimator foe; (i = 1,...,r) follows from relations (4.3.1) and
(4.3.3):

OLS estimator$; for the regression coefficients are given by

where a g-inverse is denoted by It is clear that the OLS estimatobsare unbi-
ased in case of non-collinearity.

We use the notatiolv;_;), for the columns\M,_, + 1 throughM, of E;_y
i.e.the first/V; rows of OLS residuals corresponding to groufa similar notatlon
is used for the error-terms, (E)GLS residua@sceterd. Similarly to (4.3.4), we
have

UZE( = UZ(Y — Z(z 1) ) (]YVZ 1)g = U€ (i—1)g- (436)
We propose the following estimator for the covariance matri
Sii = E{El/rz, Sig = Ez{E(i—l)g/'ri for g = 1, e ,i — 1. (437)

This estimatorS is unbiased fo because’S;; and S;, are unbiased fos;; and
gig, respectively. Without loss of generality we take = 1 for all 4, so the
unbiasedness df;, follows from

E{EE-)}/ri = tr (UiB{e(;_1ei}) [1i = thT(U) = Tig,
where the second equality is based on (4.3.4) and (4.3.6).

WhetherS is positive semidefinite depends on the relative differdveteeen
the group sample sizes;. If the relative difference is smally will tend to be
positive semidefinite. To ensure that a positive semidefisiiis even positive
definite, we impose the regularity conditiofy > M, + [,.
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4.3.3 GLS estimation

GLS estimation is usually only of theoretical interest, duese in practice the co-
variance matrix is unknown. However, GLS estimators are BLUE and outper-
form the OLS estimators in this sense. So we may hope to derktbtin OLS
by replacing® in the formulae for GLS with a suitable estima@r(EGLS, see
Section 4.3.4).

We rewrite the GLS criterion (4.2.5) in a form more suitalderhinimization.
Let

P -1 M;_1xXm;
QG = 2(z’—l)(z‘—1)2(i—1)i e RM¥
Cui = aley—1) € R™X!
M i= €t — G € R™!

Vii o= i + G € R™

(4.3.8)

Note thatY; ) = c40) = 0,S0¢1 = 0, 9y = e @andyyy = pyr. Thenn,, ..., n,
are uncorrelatedy; andy;; are uncorrelated and

E{Gi} = E{mu} =0
Aii = CO’U(Cn') = @;E(ifl)(ifl)ai (439)
Ly = COU(ﬁti) =2 — Ay

In case of normality we have the interpretation

Vg = E{Yiiu/t(ifl)}
4.3.10
{ Ly = COU(KJ}Q@A))- ( )

From (4.3.8), (4.3.9) we get

ot

(22

2&1—1)(1'—1) + ol —a !
I S Y,

-1 —1 -1
52(1‘)2@)@)&(0 = ellﬁ(i—l)Z(i—l)(ifl)st(ifl) + 1L -

Therefore, the GLS criterion (4.2.5) can be rewritten as

r N;
SO nnli (4.3.11)

i=1 t=1
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For the(;, n;; andyy,; we use the same block notation as for the(andy,; and
£4; see Section 4.2). So from (4.38)=1,...,7)

Yi=vi+mn
Vi = i+ G

4.3.12
G = Ei-1)0 = Y(z'—l)Oéz' — H(i—1)0% ( )
€ =G+

The GLS criterion (4.3.11) can be written as

Soitr(T ). (4.3.13)
This form leads to the solution in Theorem 4.3.2.

Theorem 4.3.2.The GLS estimator fqu; (i = 1,...,7)is
Ei = Hi(Yz' - Y(i—1)0ﬁ + ﬁ(i—l)@i)a with E(O) = 0. (4.3.14)

Proof. The GLS criterion (4.3.13) is a summation over all groups. a@ethe
meany,; not only appears in thé”" term but also in all subsequent terms-
1,...,r. So minimization of (4.3.13) has to take place in an seqabwhy, start-
ing with groupr. Sincey;, j;—1y € L; we get with (4.3.12):

i = Yi—v; =Y, — Yr(z 1)Q; +,u(z 1) — Wy

= H, (Y Yv(z 1) + K- Mz) + Ui (Y Yv(z 1) + K- ;uz)

= [H;(Y; — Yi—nou + ,u(i—l)ai) — i) + Ui(Yi = Ynyo).
Regardless of the value &f.,. and givenu,_y), the first term of this orthogonal
decomposition of), is zero foru, = H,(Y, — Y_1oy + pip—1y0). After sub-
stituting this minimum into (4.3.13)y,_, only appears in thér — 1) term, et
cetera SinceY(;_1) = uu—1) = 0 fori = 1, repeated application of the preceding
argumentation results in the closed form GLS estimator.14)3 O

Relation (4.3.1) and., given by (4.3.14) lead to the GLS estimatorfor «;.

Next, the GLS estimators;, v; andy; for ¢;, v; andn;, respectively, follow from
relation (4.3.12).
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From expression (4.3.14), it is clear that the GLS estimh#e® to be deter-
mined sequentiallyi.e. only after the GLS estimates for group- 1 are deter-
mined, it is possible to determine the estimates for griog the GLS estimators
in the proof of Theorem 4.3.2 are derived sequentially istgsvith the last group,
while the actual estimates are determined sequentialtyregavith the first group.

The definitions (4.3.3) and (4.3.14) immediately imply tlextCorollary.

Corollary. The GLS estimatorg, and ¢, can be written in relation to the OLS
estimatorsZ; and E; as

pi=Zi— HiCiy With €= 2o (4.3.15)

Slnce the GLS estimators; are the (columnwise) orthogonal projections of
Y, — C ontoR(X;), it follows thatX; ﬁz = p; = Hy(Y;— gz) So, GLS estimators
ﬁi for 5; (i =1,...,r) are given by

B, = GXI(Y:— (). (4.3.16)

The GLS estimatorg, are BLUE. So thegi are BLUE for estimables;.
The achieved minimum of the GLS criterion (4.2.5), (4.3.44§4.3.13) is

ST, (4.3.17)
=1

4.3.4 EGLS estimation

In the more common situation in which both the regressiorffictents and the
covariance matrix are unknown, EGLS is often applied. FoL.E®e have to
minimize (4.2.5), where the covariance-mat¥ixs replaced by an estimate, for
example the OLS estimatdt of (4.3.7). We will consider here another, more
implicitly defined estimator foE as well. (In Section 4.3.5 we will see the relation
with ML.)

Note that estimation of. is equivalent to estimation of,I';;)i = 1,...,r
From the expressions (4.3.14) for the GLS estimajori is clear that they de-
pend on they; but not on thd’;;. So only the EGLS estimators for the o; are
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relevant for the EGLS estimatofs for 1;; they do not depend on the choideés
for I';;.

Now we take a very specific choice of thg leaving thel';; undetermined for
the moment. We define oax as minimizing (4.3.17). Clearly, this is equivalent to
minimizing (4.3.13) simultaneously ®; and3;. For this minimization problem,
we consider orthogonal projections onto extended sphAgeS L;. We define

Hg e RN : orthogonal projection matrix af ),
Up = In—Hgy . orthogonal projection matrix dté),

dz’m(L(i)), @) = dz’m(Lé)) = Ni — l(i).

o~

—~
.

~

SinceR(X;) N R(Y,-1) = {0} a.s., anyy; € L(; can be uniquely written as
v, = j; + G, with 1, € R(X;) and(; € R(Y{(;—1)). Note thaty, is the (oblique)
projection ofy; ontoR (X;) alongR(Y|;_1), and that; is the (oblique) projection
of v; ontoR(Y{;—1)) alongR(X;). We call shortlyu,; the R(X;)-projection ofy;,
and¢; theR(Y(;_1))-projection ofy;.

Theorem 4.3.3.The EGLS estimator fqu; is the R (X;)-projection ofr;, where
v; is the EGLS estimator far; given by

D= HuyYi. (4.3.18)

Proof. The EGLS estimator for; follows straightforwardly from orthogonal de-
compositions (compare the proof of Theorem 4.3.2). Sinee L;) we have:

ni=Yi—vi=HyYi—v)+Uy(Yi—vi) = (HpY; — vi) + Uy Y.

So, the EGLS estimator faf; is given by (4.3.18) regardless bf;. Sincey; €
Ly, i € R(X;) and¢; € R(Y-1)), we see thafi; is the R(X;)-projection of
;. O

Note that the proof implies that is theR(Y(;_1))-projection ofz;. Relation
(4.3.12) and’; lead to the EGLS estimatofs for 7;, andg; for «;.

The propertyH;n; = H;(Y; — G — ;) = 0 immediately gives the next Corol-
lary.
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Corollary. The EGLS estimatorg; and &; for u; and ¢;, respectively, can be
written in relation to the OLS estimatots and E; as

fi = Zi = HiG, (4.3.19)
g = E; + H(.

SinceY(;_1) = JiG—1) + Eu—1) andjig_1y € R(X;), we haveL := R(X;
Yi-1) = R(X; Et-1)) and so@ is the R (€(;—1))-projection ofv; = H(;Y;. To
obtain simple expressions, we will make use of projectionte ® (¢(;_1)) instead
of R(Y(;-1)). Since

Vi = i + Ez = Xi@ + Ei—1) 0 = [Xi 5(#1)} [ gi } )

EGLS estimatorsf(i, a;) for (6;, «;), are given by

B; X! : X!X; XlEi -
[ g } — G [ o } Y;, with Gy = [ . 5’(“)(5@1_)” } . (4.3.20)
Sinceg () = 0, we can always takgl = by given by (4.3.5).

In case of normally distributed errof{Y;| Y1)} = v;, hencels {7;|Y(;_1)} =
HyE{Y|Yi—)} = Huyvi = v Sincej;, (1;) is an (oblique) projection of;
(v;) onto L;, it follows that E{ji;|Y;—1)} = u; (see Malinvaud (1970.9). If
r(X;) = k, there is a one-to-one linear relationship betwgeand j;, so@- is
unbiased as well.

The geometric interpretations and the underlying relatiohthe OLS and
EGLS estimators are shown in Figure 4.3.1.

The fit Z; and the residual®&; of OLS are the (columnwise) orthogonal pro-
jections ofY; on R(X;) andR(X;)"*, respectively. In our specific EGLS, the fit
v; is the orthogonal projection df; on R(X; £;—1)) with residualsy);, L R(X;
Ei-1)). Figure 4.3.1 illustrates thaf; andji; (and therefore; andg;) coincide
whenR(£(;-1))C R(X;)*. So the equality; = E; only holds if X; and&;_, are
orthogonal; this is in general not the case.

We can distinguish several approaches for the construofithe EGLS es-
timator for X. First of all, it is possible to use the OLS estimatrcomplete
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Figure 4.3.1: Geometric interpretation

ignoring all EGLS estimators. Secondly, it is also possioldase the EGLS
estimator for: on the derived;, while further ignoringx;. This approach is fol-
lowed to construct the EGLS estimator in this section. S&intib OLS, we build

the EGLS estimato¥ for the covariance matrix as the sample variance corrected
for degrees of freedonge.

{

Similar to OLS £(;_1), denotes the column¥/,_, +1 through)M, of €,_,), i.e.the
first V; rows of EGLS residuals corresponding to gragupAgain, the estimator
S is not necessarily positive semidefinite. As a consequehdbeoregularity
conditionN, > M, + [, we haver(g;_1)) = M;—, a.s.,l; = l; + M;_, a.s. and
the estimate&; for the regression coefficientgs are unique a.s..

[

(4.3.21)

) CQ)
Il
m) My

1Ei/ri
i€ (i—

ig = ne/ri forg=1,..,i—1.

Thirdly, and more logical, we could speciﬁqi since we already derived,
(and (;;, ;) completely specifyt); we will discuss this approach in Section 4.3.5
in the context of ML.
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4.3.5 Maximum likelihood

For ML estimation we make the additional assumption thaéther terms;; have
(simultaneously for alt andi) a normal distribution. It follows that

Yi(i-1) HiGi-1) X(i-1)(i-1)  B(i-1)i
E — N . 7 , 7 1 7 7 .
( Yy Mi i Yi(i-1) Yii

The distribution of the observations is characterized leyuhknown parameter
6= (8,%) € ©. We write|A| =det(A).

Theorem 4.3.4.The likelihood of the observations = {Y;} = {Y};} is given by

T

LB:Y) = [[Hen™

=1

= exp{—3 Z”(Fﬁl(ﬁi — ) (Vi — i)}
=1

r

i} ™2 exp{—itr(T; nin}] (4.3.22)

13

.H[{(gw)mi T}~ exp{—itr(T;'AA)}].  (4.3.23)
Proof. -
L(6:;Y) = ﬁf[lpmim(u))
2 f[l[{(%)mqriiu—% exp{—% tﬁ;(Yt —vi) T3 (Yii — vi)}]
5 f{l[{m)w Lal) ™% exp{—5tr(T (Y = 0 (Y = )]
@Y

1

1 - - 1 RPN
exp{—5tr (T (7 — 1) (7 — ) — 5tr (T3 A7) )

Equality 1 holds by conditioning; note thEf,, = 0. GivenY;;_,), v is fixed and
(4.3.10) impliesC(Yy;|Yii-1)) = Nm, (v4,1'i). Because of the row independence
the conditional densities can be substituted into theihkeld which results in
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equality 2. Equality 3 is obtained by writing the likelihoadterms of matrices
Y; instead of the columng;;; this proves (4.3.22). The fourth equality is based
on the orthogonal decomposition Bf in ; andn; (according to (4.3.18)). Since
n; is the orthogonal projection df; onto Lé), 7; is orthogonal to botly; andv;.
This proves (4.3.23). O]

In case of knowrk, it is clear from equality (4.3.22) that maximization of the
likelihood coincides with minimization of the GLS criteriq4.3.13) and that the
MLE’s will coincide with the GLS estimators. So in case of madity, the GLS
estimators are MVUE.

In case of unknownX, minimization of (4.3.23) leads to Theorem 4.3.5.

Theorem 4.3.5.The MLE foru; coincides with the EGLS estimatoy as defined
in Theorem 4.3.3. Moreover, the MLE By; is

S
N (4.3.24)
The maximized likelihood is given by
—1 S Nymy
supL(6;Y) = (2me) * = H 75 /N T (4.3.25)

IS

Proof. The MLE is obtained by maximization of the likelihood (4.3)2v.r.t. all
v; andl';, respectively. Now (4.3.23) is maximized by = 7;, regardless the
value ofI';;. Thereforey; is the MLE forv;, even in case of unknowh;;. The
estimators for the other parameters follow from (4.3.12)nakhe case of EGLS
estimation (see Section 4.3.4).

Substitution of7; in (4.3.23) gives

T

supL(0: ) = [J({(2m)™

i=1

Pal} ™ exp{—4tr(T; 7)})

This has to be maximized w.r.t. tHg,. The separate factors of this maximized
likelihood have the same structure as the expression fardimplete multivariate
linear model. So, in the same way we see ﬁﬁabf (4.3.24) is the MLE forl’;.
Substitution of the; andfii into (4.3.23) results in (4.3.25). O
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In case of identifiabley; and j3;, the EGLS estimatorﬁ and a; equal the
MLE’s. Though the coefficients; are identifiable, this is not true fgt;. In case
of non-unique@- we choose the MLE equal to the EGLS estimatordpr

The MLE £ for the covariance matrix follows sequentially from theat&ns
(4.3.8) and (4.3.9), and from the MLE (4.3.24):

211 — FHAand fors f 2, SELE - o R R (4.3.26)
Z(i—l)i = E(z’—1)(¢—1)041‘, Ay = aiz(i—l)(i—l)aia Yii = Ly + Ay

Note that the difference between the estimatrand S of (4.3.21) is not just
caused by the introduction of the number of degrees of fnr@edBor example,
from the expressions

Sy = s/ No + Q4818182 / N1, Sop = Myifa/ra + AYE}\E (1) Ba /T2

we see that the difference is caused by taking other resicisalvell.

Note that we can usE in EGLS (regardless of normality). It is not straight-
forward which one of the covariance matrix estimatsss or . has the smallest
bias. The bias of will probably be decreased by correcting for the degrees of
freedom. ReplacingV; by r(; in (4.3.24) gives an unbiased estimator fgf;, X
can still be estimated according to relation (4.3.26). Aanajrawback of this
correction is that the estimator fardepends on the particular division of the data
into groups, even in case of the complete model (with no mgsebservations).
This problem is solved by substitutingfor V; in (4.3.24) and still estimating.
by relation (4.3.26). Though this does not result in an usdxleestimator for’;;,
the estimator fok is unique in case of complete data and the bias of this esirmat
is probably smaller than the bias of the MBE

The analysis of the bias of the current covariance estimatos andS is left
for future research. A similar approach as the one of Kristmarthy and Pannala
(1999) or Kanda and Fujikoshi (1998) for the model with orilg tonstant term
could be followed. It would also be interesting to look aeattative estimators for
the covariance matrix such as for example presented by kaisloorthy (1991)
for the model with only the constant term. In this chapterresdrict ourselves to
(4.3.7), (4.3.21) and (4.3.26).
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4.4 Relative efficiency

We compare the performance of the discussed LS estimatonehys of the rela-
tive efficiency of the estimators for the regression coedfits under the normality
assumption. The relative efficiency of estima%tin relation to estimato@ can
be expressed as the determinant of the following functidgh@M(ean) S(quared)
E(rror)s:

MSE(#,) 2 MSE(8;)MSE(8,) 2, (4.4.1)

other possibilities are the maximum eigenvalue or the trace

Throughout this section we assume without loss of gengrtdatm,;, = 1
for all i. In case of normality all LS estimators for the regressioefiicients are
unbiased and their MSE’s coincide with their variances. Vaeance of OLS
estimatomn; follows directly from its definition in (4.3.5):

Var{b;} = o4(X/X;) . (4.4.2)
The variance of the GLS estimanris more complicated.

Theorem4.4.1.Fori=2,...,r,

Var{B,} = Var{B,_na:} + (X,X:) ™ XI5 X (X/X;) ™ (4.4.3)

Proof. We determine the variance by the relation

Var{8,} = Var{B{B,Y}} + E{Var{3[Y 1}
For the variance of the conditional expectation we have

Var{ B{B:[Yi-v}} = Var{f + (XIX) ' Xl(ea-n) — 2o}
Var{(X!X:) " X!(X;8_1) — XiBun)ou}

2 Var{B; 1o}
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The first equality follows from (4.3.16) anb{Y;|Y;_1)} = Xi0; + €u-1)as; the
second frome;_;) — E(i_l) = XiB_1) — XiBu-1) andVar{s;} = 0. Rewriting
andVar{3;-1)} = 0 gives the last equality.
For the conditional variance we have
Var{3[Yiy} = Var{(X[X,) XYYy}
= (X{X) ' XTuXi(X( X)),
where the first equality follows from (4.3.16) afthr{ s ;_1)a:|Y;—1)} = 0; the
second one from (4.3.12). O

Corollary. If My = 2, then

Var(By) = praoe (X1 X1) ™ + (1 — piy) oo (X5 X0) 7", (4.4.4)
J12
wherep;s = )
P12 V011022

This corollary follows from Theorem 4.4.;Iv3’,1 = by and (4.4.2).

We look into more detail at the relative efficiency for theguently occurring
situation M, = 2. Substituting (4.4.2) and (4.4.4) into (4.4.1) gives thiatiee
efficiency ofb, in relation toE2

(1= p2) + poa(X5X5)7 (X]X1) T (X5 X)2. (4.4.5)

It is clear that (4.4.5) is always smaller (or equal) to cirtez,B2 always outper-
formsb, in terms of variance (as can be expected). GLS is relativelerafficient

for high values of;» and small X} X,)(X|X;)~!; the latter usually corresponds
with a high fraction of missing observatione. ny/n, is small. This seems to
be quite a logical result: GLS makes use of the sample infoomaf preceding
dependent variables in contrast to OLS. If there is reltigelot of additional
information availablei(e. n; /ns) is high) and the preceding dependent variable
is highly correlated with the current one, the additiondbimation concerning
the preceding dependent variable will result in more adeueatimates. Figure
4.4.1 plots the relative efficiency @f in relation toE2 as function ofp,, for



80 CHAPTER 4. MULTIVARIATE REGRESSION

several combinations of; /n, (under the assumption thak; X,)(X;X;)" is
equivalent tony /n;).

1
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Figure 4.4.1: Relative efficiency & in relation toﬁ}

It is quite hard to derive a closed form expression me{@}. However,
(4.4.3) will give a good approximation for large sample siznce EGLS is
asymptotically equivalent to GLS. In Chapter 6 we will corsithe relative effi-
ciency of OLS in relation to EGLS for a practical example.

4.5 Special cases

4.5.1 No missing observations

In the model formulation of Section 4.2 the restrictiods ; > N; are imposed
instead ofN;,_; > N;. In case of the last restrictions the division of the data into
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different group is always unique, while this is not true foe first restrictions: if
there are several variables with the same number of obsamsastll the variables
together can be defined as one group, but it is also possildefine multiple
groups. In case of different groups with the same number sénfations, the;
of the previous dependent variables with the same numbdrs#reations as the
dependent variables of grodpare orthogonal toX;. Since the regression of
onto theX; and&;_,) coincides with partial regression (seg.Green (1993)),
the estimatorg; andz; will not depend on the group composition.

The situation with no missing observations & N; = ... = N,) is a special
case of the presented model. By constructing just one groigstraightforward
that the OLS and (E)GLS estimators for are identical: Z; = j1;. As a conse-
guence the covariance estimators (4.3.7) and (4.3.21¥angical and unique.

The uniqueness and equality of the OLS and EGLS estimatoralsa be
shown sequentially by the estimation procedure. From bar€ 4.3.1 and for-
mula (4.3.20) for the regression coefficients, we can seghibaOLS and EGLS
estimators are identical wheR((;_1)) € R(X;)*. That this is true for the sit-
uation with no missing observations can be directly deddicad the estimation
procedure. In case of complete data, we have- X; = X, = ... = X, and
R(X;) = R(X) fori = 1,...,r. The iterations in the EGLS estimation procedure
show

Step 1: i € R(X), & €RX)*:
Stepi (i = 2,...,7) : Eu1) = [F1 8 ... Eia] € R(X)*
= G =Zina € R(Ei_y) € R(X)* ands; € R(X)*
— a:a’—i-ﬁiER(X)J‘
— R(Ey) =R(EE ... &) CR(X)™

S0&(;_1) € R(X)*, Z; = 1i; and as a consequenfe= S.

For the case of complete data, the MLE in Theorem 4.3.5 musgidygical
to the standard result known from literature, as well as thgimized likelihood
(4.3.25). To show the latter we make use of the following twaperties:

(@)1, ms,...,n, are orthogonal,
L) Eyy=[E1 Ey...E]l=[& &...§]=[m n...0]A
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with A an upper triangular invertible matrix with unit diagonaémlents. The
existence of such a matrix follows form (a slightly modifi€@iR-factorization of
Ey. Hence,

SupL(6;Y) = (2re)
JeEO i=1
2 @ue) NM|[E By Gl B /N|E
= (2re) MG By A ([ .. BJA/N|TE
= (2me) :NM|E( B, /N|7%.
The first equality follows fromV = N; = ... = N, andX = X; = ... = X,. The

second and third equality are based on property (a).dhe- 1. The last equality
follows from (b). The final expression can be found in Seb&8&), p. 407. A
general approach for complete data can be found in Van deugem (1997g.9,
emphasizing a geometrical approach.

45.2 The constant term

Often the first explanatory variable is the constant term. d&ote the corre-
sponding regression coefficients By € IR'*M (¢ = constant); the regression
coefficients of the other explanatory variables are denbie@d, € R*-D*xM
(v = variable) Expanding this notation we can write

with X, € RN =1 The subindices and(i — 1) have a similar meaning as in
the preceding sections, so for examptg, contains the firsfv; rows of X,,.

LS estimation with the constant term corresponds to orthabgrojections on
R(1y,) and the centered spacksand L, defined as

L(i) ©® R<1Ni) = Ly and L(i) L R(lNi), l(i) = dim(L(i)) = l(i) — 1.

The mean and centered observations coincide with orthogoogections of the
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observations ofR (1y,) and the centered spaces:

X = +10 Xy € RM>GD, X; = Xy — 13, X; € RNx(k=D),
?i = NLlE\QK - Rlxmi, Y=Y, — 1Nz?7' S RNixmi,
?(i—l) = %Mviy(i—l) € RlxMi_l; Y( Y(i—l) - 1Ni?(i—1) € BN"XMi—l,

i-1) =
(-1) = 3 I Ey € RUM & =

Q!

Ei—1) — LN E(i—1) € RNixMi-1

Note thatY";_1) # [Y1 Y,... Y, 4] andg;_y) # 0.

The LS estimators can be expressed in terms of the means arnetered
observationse.g.the EGLS estimators (or equivalently the MLE’s in case of nor
mality and unknowrk) read

5 . 2 PR X'X, XZ&.
[ b } =G [ ~7Xl ] Y;, with G(i):[ R €61

~

Eli—1)Xi g1(171)6(@'*1)

(4.5.1)

We now turn to the very special case that the constant terne isrily explanatory
variable: X; = 1y,. This model has received considerable attention in liteeat
especially ML estimation under the normality assumptiomdérson (1957) de-
rived the MLE’s forr = 2 andm; = my = 1 and suggested an approach to
determine the MLE'’s for general Bhargava (1962) derived the MLE’s for gen-
eralr. Following the approach suggested by Anderson (1957), AfdiEBlashoff
(1966) confirmed the findings of Bhargava (1962) for the regjoescoefficients,
but presented a different, incorrect MLE for the covarianmrix. Jinadasa and
Tracy (1992) derived the correct MLE’s for generaby matrix differentiation
which resulted in rather complicated expressions. Fups@®95) presented the
MLE’s for generalr in recursive form, which coincide with the MLE’s given by
Bhargava (1962) and Jinadasa and Tracy (1992).

For the model with only the constant term;_;y ande; coincide Witth/(i_l)
andy; respectively, and the MLE’s (4.5.1) for the regression fioents reduce
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to the same expressions as found by Fujisawa (1995):

Bcl = //}11 = ?17 . _
Q; = (Y('i,l)_Y(iq))__l(Y(ifl)Y;),

Bei = i = Y3 — (Y(im1) — H—1))q, fori=2,..r.

The MLET;; is determined by substituting the MLE'’s for the regressiogffi-
cients into (4.3.24), leading to the same covariance estimas found by Fuji-
sawa (1995):

Du=YV/N

Fii = (Y; — Yiz—l)&z)/(ifz — Y(,_l)az)/N, for: = 2, e T

4.6 Restricted models

So far we just have considered (unrestricted) models inhwhjce L; andy; €
L. In arestricted modep; linear constraints are imposed on the parametgers
Ci3; = 0with C; € IRP**¥fori = 1,...,r. Sofori = 1,...,r the unknown3
are restricted tdV'(C;), the null space of’;. We assume that the restrictions are
monotone (decreasing) in the sense tWadt>;) C NV (Cy) C ... C N(C,). This
includes the usual cagg = ... = C,.

Similar to the unrestricted model, we can distinguish be®LS , (E)GLS
and ML estimation. We will only discuss the specific EGLS esponding to ML
under normality.

For two matricesP € IRP*‘and(@ € IR?*¢ we will write { g }

[P; Q. Now v; = [X; Y;_1)][6;; o] Is restricted toR (X;(N(C;)) Y(;—1)), where
X;(W(C;)) is the image ofV(C;) under the linear transformatioX;. The linear
spaceL( = R(X; Y(;—1)) can be split into two orthogonal subspacésg;;, and
Ly, which (with some additional characteristics) are defined as
Loy = R(X;(N(Ch)) Yiieny), Ly ® Loy = Ly, Lig) L Lo,
Hy;y: projection matrix ofLgg), Iy = dim(Log
H,;): projection matrix ofL, ), [y = dim(L
Uo(sy: projection matrix ofLg.,), Lo ® Ly

shortly as
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So Ly, = Lis @ Lg;- Quantities relating td.;) and Ly, are denoted by a
primary subindex 0 and 1, respectively. The following t@gtproblem will be
considered (for identifiablé€’; 3;):

H() : {VZ . Czﬁz = 0} againstHl : {ElZ : Czﬁz 7é 0},
or equivelantly,
H() : {VZ Y € LO(z)} againstHl : {HZ Y € L(Z) — L()(Z),VZ S L(z)}
(4.6.1)

The relevant test statistics for (4.6.1) can be based owogotial projections onto
the Ly and L.

The whole procedure for EGLS estimation for the restrictextleh is similar
to the one described in Section 4.3.4 for the unrestrictedainoonly the sub-
spaced. ;) have to be replaced by ;). This is due to the fact that the restrictions
are monotone, implying that;, i.;_1) € Log). Formulae (4.3.18), (4.3.19) and
(4.3.21) through (4.3.26) still hold for the restricted nebd we add a subindex
0. The estimators!%i and ay, for 5; and «; respectively, are given (similar to
(4.3.20)) by

( Bor = Go1 X1 Y4, with Go1 € IRF*
. Gor * X!'X,, 01
defined by{ . . } = [ _(1?1_ _;_0_1 :
1=2,...,7r:
Bo; X! . ,
Qi 0(i—1)
Garn  * XiX; Xz{go(ifl) | cl
defined by{ $O } = | Coen X Eopnfoi-n , O
C; 0 10
(4.6.2)

The required statistics for the LR test (based on EGLS) casubemarized into
a collection of non-centered MANOVA-tables for= 1, ..., r. In the tables the
abbreviations SS, DF and R stand for Sum of Squares, Degféaserdom and
Restricted, respectively.
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Model | Space| SS | DF Testing
R. model LO(i) 7//\(/)1/7/\& lo(i)

. o~ _ |70
Difference| L.y | V)V | lig) | Aoi = m
Model L(i) /V\Z/I/J\z l(,-)

Error Ly | T | re
Total RN | Y/Y; | N;

Table 4.6.1: Collection of non-centered MANOVA-tablgs=2,...,r)

The column Testing will be used in case of normality in Set#d; note that
Noi = Uo»)Ys = V1 + ;.

If the constant term is included as an explanatory variaiften the centered
MANOVA-tables are presented, provided that no restrictiare imposed on the
constant term. The abbreviation C stands for Corrected (oreGaat):

Model Space SS DF Testing

C.R. model LO(z) ;62501 lO(z)

Difference Ly VU L = m—m
A e M R D R

C. model L(i) IA/Zgz l(i)

Error Ly i 0

C. total R(x)t | Y'Y | N, —1

Mean R(ly) | NYY, | 1

Total RN Y'Y; N;

Table 4.6.2: Collection of centered MANOVA-tablgs= 2, ..., r)

The inner products in the non-centered MANOVA-tables atpiaed by adding
the inner products of the corresponding means to the cehiremer productse.g.
Vv, = Ui+ N,-?é?i. Since the termg;; and the errorg); in the non-centered
MANOVA-tables are centered if a constant is included in thedel, they are
identical to the corresponding inner products in the cedtdANOVA-tables.

Now suppose that (not necessary identifiable) linear cgins C;3; = 0
have already been imposed and thatadditional linear constraints are consid-
ered of the formD;3;, = 0 with D; € IR%**.Then the unknowrp; is restricted
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to NV ([C;; D;]), the null space ofC;; D;]. This double restricted model (with
[Cy; D;]B; = 0) is discussed here, since this model enables us to formafate
solve the most general case; there is no need for additiopkd tonstraints.

Again, we assume that the additional restrictions are nwm@t\ (D;) C
N(Dy) C ... € N(D,). Similar to the (single) restricted model, the linear
spaceLg; can be split into the subspacégy;, = R(X;(N([C;; Dy])) Yi-1))
and Ly, ;), the orthogonal complement @;) w.r.t. Ly;. We will consider the
following testing problem (for identifiablg”;; D;]3;):

H()O : {VZ : Czﬁz == O,Dlﬁl = O} againStH()l . {Ell : Dzﬁz 7é O,VZ : Czﬁz = 0}
or equivalently,
Hy : {VZ NZES LOO(Z)} againsth : {3@ 2N LO(z) — L()()(Z),VZ N ZAS L()(Z)}
(4.6.3)

The test statistics for (4.6.3) can be based on orthogongdgiions onto the.; ;)
andLg(i). The estimation procedure of the preceding sections can dgapplied
to the double restricted model similar as to the restrictedeh For estimation
under the (not necessarily identifiable) double restndify’;; D;]5; = 0 Vi, we
can use again (4.6.2) with; replaced by ;; D;].

All information of the unrestricted, restricted and doutdstricted models re-
quired for the described tests can be summarized in combargdred MANOVA-
tables fori = 1,...,r, assuming that the model contains the constant as an ex-
planatory variable and that no restrictions are imposedha donstant. This
combined centered MANOVA-table can be obtained by addirierd.6.3 to the
top of the centered MANOVA-table in Table 4.6.2. Here D stafa double:

Model Space SS DF Testing
C. D. Restricted mode|l Loou) | YoiPooi | loogs)

|70:0i |
|[MhiTos + Vo Voui|

Difference Loy | YoriVoui | loigy | Moo =

Table 4.6.3: Double restricted centered inner prod(icts 2, . . ., r)

From Tables 4.6.1, 4.6.2 and 4.6.3 relations between tlestriated, restricted
and double restricted statistics can be deduced sugh.a5;: = 7h;7o; + Vo1;Vori-
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The related testing procedure will be discussed for the abcase in Section 4.8.

4.7 Some distributions and orthogonal projections

We define the Wishart distributior, as follows: letY = [Y;...Y,] andu =
(1 - . .y with independent; ~ Ny(p;, %), X > 0. Then

W =YY =Y VY] ~Win,S;A) (with A= pi'pn),
=1

where W, (n, >; A) denotes the noncentral Wishart distribution with dimensio
d, degrees of freedom, dispersion matrix> and non-centrality matrix\. The
central Wishart distribution i$V,(n,¥) = Wy(n,3;0). The standard Wishart
distribution isW,(n) = Wy(n, 1;). Our notation is the same as the one of Gupta
and Nagar (2000), except for the non-centrality matrix \Whieey define a® =
Y ~1A for ¥ > 0. We prefer to include singulat as well.

The properties of the projections follow from the followipgpjection theorem
(compare Gupta and Nagar (2000), Theorems 7.8.3 and 7.8.5).

Theorem 4.7.1.Let L, and L, be linear subspaces dk"™ with L, 1. L. Denote
the orthogonal projection matrices @f, and L by P, respectively?; and letl, =
dim(Ly). Then, forY” = [Y; ...Y,] € R¥" with uncorrelatedy;, Cov(Y;) = X
and E{Y'} = p,

PyY and P, Y are uncorrelated,

E{Y} = Pop,

Cov(vecf,Y)) = ¥ ® P,.

If in addition theY; are normally distributed, then

PyY and PY are independent,
Y/P()Y ~ Wd(lo, E, ﬂlpoﬂ)

In the next section a generalization of the Wilks’ distribatis used. For the
(usual) Wilks’ distribution we follow the same notation @g. Rencher (1998):
let B ~ Wy(s,X), C ~ Wy(t,X), BandC independent. Then

_ 1B
|B + C|

~ Ad,t,s 5
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whereA,, ; denotes the Wilks’ distribution with parametets ands. We define
the generalized Wilks’ distributioA 4 p 1 s with parameter vectord, D, T and
S € IR'"as follows: letA; ~ Ay, ;, ., be independent and € [0, 1] with a; = 1.

Then, by definition,

T
a;
[[A ~ Aapars.

=1
The vectorA contains the exponenis of the separate factors as elememighe
d;, T thet; andS thes; (i =1,...,7).

4.8 Testing

We assume normally distributed errors now. From the prigectheorem 4.7.1
(applied toL andLé)) we get the following conditional properties givép_,):

v; andg); are independent, normally distributed conditional urider,

E{vi|Yi—1} = Huyvi = v, E{nilYi-n} = Uayvi =0
COV(VeC@)\Y(i,l)) = Fu (024 H(Z), COV(VGC@)D/(Z‘,U) = F” & U(z)
L@i|Yi1) = Win, (i), Tissvivi), L@ Yi-1) = Wan, (), Tao).

(4.8.1)

Here we have used thatH ;) v; = vjy; andv;Ug v; = 0. These properties permit
us to give confidence intervals for (identifiabl€)s;. We omit the details and
concentrate on testing.

The following unconditional properties also hold

Y(i—1), v; andn; are normally distributed

L) = Wiy (i), Tit) (4.8.2)

(Yi—1), ;) and?)n; are independent

U1, 1, DT, ..., 1.1 @re independent.
The first three properties follow directly from (4.8.1); tlaest from the fact that
n; (7 < i) is afunction ofY{;_y andY; and therefore o¥{;_,y and the individual
observations;), t = N; +1,..., N;. The latter are independent gf because
of the row independence of the observations (see (4.2.2)).
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Now consider the likelihood ratio test for the hypothesi$ (#). Denote the
restricted parameter spacetof= (3, 3) by ©4. From (4.3.25) the likelihood ratio
LR, for (4.6.1) is given by

a LX) gl E L A\
LRy, = e ( il ) < v It )
0 zugL supL(0;Y) H |MiT0i] Pl i + V1]
S
_ HAO?‘ (4.8.3)
1=1

For the model with only the constant term as explanatoryatéei L R, reduces
to the test statistic which Bhargava (1962) derived. Hao anidhiiamoorthy
(2001) discussed that test statistic in more detail; in lpatpers its distribution
was approximated.

Sincev;Hy;v; = 0 under H, of (4.6.1), applying Theorem 4.7.1 1§, €
Loy, v1i € Ly andi); € Lé) leads to the conclusion th@, vy, 7}, 01a, - - . , U}, Vi,
i, e, - . ., 0.0, are independent undéf, (compare (4.8.2)). Now Theorem
4.8.1 follows directly.

Theorem 4.8.1.Under Hy, : {Vi : C;3; = 0} :

(LRO)% ~ AA,D,T,S; with a; = Nz/Nl dl =m;,

4.8.4
ti:ll(i)a Si = T'(), fOI’iZl,...,T ( )

Denote the double restricted parameterspace-of(3, 3) by Oq. The likeli-
hood ratioL Ry for (4.6.3) becomes

sup L(6;Y) ; 77 N
_ 0€6qp _ 77017701 2
LBw = T H ( ) HAOOz (4.8.5)

‘770@7701 + V01z’/01z
[AS(SH)

Sincev, Hy ;v; = 0 underHy, applying Theorem 4.7.1 t@y; € Loo), Yo1i €
Lo1;) andmy, € Lé(i) leads to the conclusion tha,, Vo11, V12V012; - - - s Y1, Yotrs

T o1, ThaTloz, - - - » Ty, Tor @re independent undéky, (compare (4.8.2)). This proves
the following generalization of Theorem 4.8.1.
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Theorem 4.8.2.Under Hy : {Vi: C;5; =0, D;3; = 0} :

(LROO)% ~Aaprs, With a; = N;/Ny, d;=my, (4.8.6)

ti:l()l(i)7 Si = To(i); fori=1,...,r.

Note that in both (4.8.4and (4.8.6 T contains the degrees of freedom of the
null hypothesis, while5' contains the degrees of freedom of the error terms under
the alternative hypothesis.

4.9 A numerical illustration

We now apply the estimation and testing procedures to theenuoal example
described in Section 4.2. All the tests are performed on aig#tficance level.

The OLS estimation is straightforward by columnwise regjas of the de-
pendent variables on only the explanatory variables. Taiokbiur EGLS esti-
mates, the orthogonal projections described in Sectio ©8ve to be sequen-
tially performed for groups = 1,2, 3. For: = 1 this givesu, = 71, &1 = E
while 51 coincides with the OLS estimate (4.3.5). Foe 2, 3, ; follows from
(4.3.18), and the EGLS estimat@sandai are sequentially determined according
to (4.3.20). The EGLS estimate follows from (4.3.21) and the ML estimate
is determined according to (4.3.24) and (4.3.26).

We will discuss four tests, of which one in more detail; Tah® 1 contains the
hypotheses and results for these tests. Assume that werdirilaaly interested
in the testing problem (4.6.1) with; = [0 00 1]Vi, and in (4.6.3) withD; =
[0010]¥i. The estimates for the corresponding restricted and daelskeicted
model are given in Appendix 4.12.2 and 4.12.3. The resultsfe complete
data are presented in Appendices 4.12.6 and 4.12.7 for auopa Neither the
estimation technique nor the missing observations regsulerge differences in
the estimates. The latter phenomenon seems logical in Viglaeaelative small
number of missing observations.

Appendix 4.12.4 contains the combined centered MANOVAdslwith the
required statistics to perform the two LR tests discusseyab For testing the
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significance of the fourth explanatory variable, the LRista&tis determined ac-
2

cording to (4.8.3); we found R} = 0.3070. From the MANOVA-tables and the

structure of the dataset, it follows that

=

(LRo)N ~ Ap11/1210/12],[12 1,11 11,86 3]-

Since we do not have an analytical expression availableoyé¢hé quantiles of the
generalized Wilks’ distribution, the critical values wetetermined with simula-
tion (runsize 1,000,000). In Section 4.10 we discuss thmaleapproximations
for the generalized Wilks’ distribution, not based on siatign.

Table 4.9.1 gives the main results for this test (in row 3) dredthree other
tests. The table contains the null and alternative hypethethe values of the
corresponding test statistics and the critical values tiergerformed tests on a
5% significance level. The tests are performed for both thasega with missing
observations and the complete data. In tests 1 throughﬁeﬂ%, IS the test statistic;
in the last tesER(%.

For the complete data, these test statistics coincide Wlusual test statistic
Wilks’ lambda. (The corresponding critical values are giby e.g.Kres (1983),
p. 32.) In Table 4.9.1 the abbreviations TS and CV stand fot $e&stistic and
Critical Value.

Null hypothesis Alternative hypothesis  Incomplete data  Complete data
TS CcVv TS Ccv
1.Vi:3,=0 Fi: B3 £0 0.0019 0.0148 0.0018 0.0249
2.Vi: By =0 Ji: By 0 0.0240 0.0262 0.0229 0.0432
3.Vi: B4 =0 Fi: By #£0 0.3070 0.1348 0.3061 0.1940
4.Vi: B3 =04 =01 3i:03 #0Vi: [y =0 04474 0.2053 0.3156 0.2486

Table 4.9.1: Tests for the numerical example

From the results in Table 4.9.1 it can be concluded that,Xangle, the null
hypothesis 3 of an insignificant fourth explanatory vamsais! not rejected. The
conclusions for all the tests are identical for the compéatd incomplete data.
This seems (again) logical in view of the relative small nemf missing obser-
vations.
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4.10 Approximating generalized Wilks’ distributions

4.10.1 Box transformations

Our approximation for the generalized Wilks’ distributiemformulated for the
choiceM = r. This gives no loss of generality because we identify eaohgto
consist of one dependent variable.

In Theorem 4.8.1 we saw that our test statis[tiRo% in (4.8.3) has a gener-
alized Wilks’ distribution undei,. In case of complete data, this distribution
coincides with the (usual) Wilks’ distribution. For thetkt two approximations
are well known: they2-distribution of Bartlett (1947) and the F-approximation
of Rao (1952). In this section we will approximate the geneea Wilks’ distri-
bution by means of?-distributions and compare the different approximations b
means of a simulation study.

The approximations can be derived by means of transformatihich were
introduced in Box (1949); we have used the main result of tesfiormations as
presented in Muirhead (1982) Section 8.2.4. Recallfhatenotes the dimension
of Ly = R(X; Y(;—1)), whilea; = N;/N.

Theorem 4.10.1.Under the null hypothesiHQO in (4.6.1) a second order approx-
imation of the distribution of) = —2log(LR}"), is

P(Q <q) = (1 —w)P(x} < pq) +w2P(xF14 < pg) + O(NT°) (4.10.2)

with
M
fo="> ke
=1
N N 1 <l
P o= 2Nfz a B3y + 2l + 2
— (1—/)0)2
wy = 12N2poz @)+ (hay +2)(he + D] - 7 f.

Proof. Since M = r we havem,; = 1 and soAy; ~ Beta(3r(), slow)). The
moments of. R, follow from its definition (4.8.3) and from the independe el
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the moments of\;:

1 + h) l(i)}
(14 1) = §lo@)]

E{LR"} = E{H A } KH (4.10.2)
whereK is a constant not involving. Box transformations applied tbR, lead,
after algebraic manipulations, to the approximating thation (4.10.1) with pa-
rametersf, po andw, (see Appendix 4.12.8). Sindeg(LRO%) = %log(LRo),
the approximating distribution of the logarithm of the tstitistic is identical to
the one of the logarithm of the likelihood ratio, except thele parametes. The
scale parameter of the test statistic%’isimes,oo. O

In case of only the constant as explanatory variablg & 1 andly;) = i—1),
our parameters reduce to the ones derived in Bhargava (19%2)xall (4.10.1)
the Box approximation.

An approximation of the distribution of the test statisﬁﬁ%(i can be derived
in a similar way.

Corollary. Under Hy, in2 (4.6.3) the second order approximation of the distribu-
tion of Q@ = —2log(LRJ)) is equal to (4.10.1) with the parametels and l;;
replaced byiy;) andly;, respectively.

From (4.10.1) the first order approximation follows

P(Q < q) = P(X} < pg) + O(N?). (4.10.3)

Since (4.10.3) coincides with Bartlett’s approximation ase of complete data,
we will call (4.10.3) Bartlett’s approximation even in thione general situation.

4.10.2 A simulation study

We compare approximations (4.10.1), (4.10.3) and the atandpproximation
(i.e. —2log(LR,) ~ x7) by means of simulation (with runsize 1,000,000). First
the critical value of our test statistic (with significanesél «) is determined by
means of simulation. Then the probability that our tesistiatexceeds this criti-
cal value is determined according to the three different@pmations. This has



4.10. Approximating generalized Wilks’ distributions 95

been done under the assumption that there are four expignatoables, three
groups andp linear constraints per group;( = p for all 7). The simulations
have been performed for different values of the significdegel o, number of
cases {V), number of constraintg, fractions of missing dataA = [a; a5 a3] with
a; = N;/N) and different number of variables per group & [m; ma m3)).
Table 4.10.1 contains the results for= [1 2 1].

D=[1 2 1] A=[1 09 0.8] A=[1 08 0.6
a=0.05 Standard Bartlett Box Standard Bartlett Box
p=1 .009 .047 .050 .004 .040 .048
N =20 p=2 012 .047 .050 .007 .042 .049
p=4 .037 .047 .050 .032 .045 .049
p=1 .044 .050 .050 .044 .050 .050
N=200 |p=2 .045 .050 .050 .044 .050 .050
p=4 .049 .050 .050 .048 .050 .050
p=1 .049 .050 .050 .049 .050 .050
N =2000 | p=2 .049 .050  .050 .049 .050  .050
p=4 .050 .050 .050 .050 .050 .050
a=0.10
p=1 .026 .096  .100 .015 .085  .098
N =20 p=2 .031 .095 .100 .020 087 .098
p=4 .078 .095 .100 .070 .092 .099
p=1 .091 .100 .100 .090 .100 .100
N=200 |p=2 .092 .100 .100 .090 .100 .100
p=4 .098 .100  .100 .097 100 100
p=1 .099 .100 .100 .099 .100 .100
N =2000 | p=2 .099 .100 .100 .099 .100 .100
p=4 .100 .100 .100 .100 .100 .100

Table 4.10.1: Simulated approximations for=[1 2 1]

As can be expected, the accuracy of the approximationsasesewith the
sample sizes. Approximation (4.10.1) outperforms the rotimes. The standard
approximation is quite bad for small sample sizes. Only for= 2000, this
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approximation gives good results. Approximation (4.1@&)forms well for big
sample sizesN = 200(0)), but is not as accurate as approximation (4.10.1) for
small sample sizes\[ = 20). All the approximations seem to improve with the
number of constrainty]. As the fraction of missing observations increases, the

approximations become less accurate.

To study the effect of the number of variables per group orgtredity of the
approximations, we also did a simulation for= [1 3 2]. Table 4.10.2 contains

the results.
D=[1 3 2 A= 09 0.8 A=1[1 08 0.6]

a = 0.05 Standard Bartlett Box Standard Bartlett B
p=1 .003 .040  .049 .000 022 .040

N =20 p= .003 .041 .049 .001 027 .043
p=4 017 042 .049 .001 035  .046

p=1 .042 .050  .050 .040 .050  .050

N=200 |p=2 .046 .050  .050 .041 .050  .050
p=4 .049 .050  .050 .045 .050  .050

p=1 .049 .050  .050 .049 .050  .050

N =2000 | p=2 .049 .050  .050 .049 .050  .050
p=4 .049 .050  .050 .050 .050  .050

a=0.10

p=1 .009 .085  .098 .002 .054  .086

N =20 p=2 .011 .086  .099 .003 063  .091
p=4 .041 087  .099 .026 077 .096

p=1 .088 100 .100 .085 100 .100

N=200 |p=2 .087 100 .100 .085 100 .100
p=4 .094 .100 .100 .092 .100 .100

p=1 .098 100 .100 .098 .100  .100

N =2000 | p=2 .098 .100  .100 .099 .100  .100
p=4 .100 100 .100 .099 100 .100

Table 4.10.2: Simulated approximations for=[1 3 2]

The previous conclusions about the effect of the differemameters still re-



4.11. Conclusions and further research 97

main valid. However, in comparison to Table 4.10.1, the ipaf the approxima-
tions is worse if there is only a small number of observatigvis= 20) available.

4.11 Conclusions and further research

This chapter discussed estimation and testing for a liregression model with
complete observations for the explanatory variables andexutively added de-
pendent variables, leading to a specific incomplete datatstre. For this model,
OLS and GLS do not longer coincide, so we discussed EGLS. Aifspehoice
of EGLS estimation, which coincides with ML estimation, veaslysed in detail.
Exact tests for restricted and double restricted modele \wezsented. Different
approximations of the distribution of the test statistic@&veompared.

The relative efficiency of the OLS estimators in relationtte (E)GLS estima-
tors for the regression coefficients have been discussedia detail. The small
sample properties of the remaining estimators have not bealysed in detail
yet. Especially the first step of EGLS estimatios, the choice of the covariance
estimator, is interesting for further research.

The LR test for linear restrictions on the regression caoeffits under the nor-
mality assumptions has been extensively discussed. Oglekmown test statis-
tics for complete data, are the test statistics of PillaifeHimg and Roy. The
derivation of similar test statistics for incomplete daté&eit for further research. It
could also be interesting to look at a similar test as the dmielwwas constructed
by Krishnamoorthy and Pannala (1998) for the model with dinéyconstant term
as explanatory variable.
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4.12.1 Missing data: the unrestricted model

OLS estimates
2.0000

1.0000

1.0000
-1.0000

b —

[ 2.2500
1.2027
2.4045

| -0.6959

EGLS estimates

[ 2.0000
1.0000
1.0000

-1.0000

3=

[ 2.2500
1.2756
2.5511
| -0.7382

W)
Il

ML estimate

1.5000
1.0227
2.0455
| -0.5480

5=

5.0000

-1.0000

2.0000

-1.0000

1.2027
2.5714
0.0000
-0.0496

5.4091
-1.0000
1.8636
-0.9545

1.2756
2.6246
0.1063
-0.0951

1.0227
1.7758
0.2789
-0.1050

5.0000
1.0000
0.0000
-1.0000

2.4054
0.0000
10.2857
-2.7775

5.8182
1.0000
-0.2727
-0.9091

2.5511
0.1063
10.4982
-2.8377

2.0455
0.2789
7.1033
-1.7858

3.410
0.982
0.196
-1.053

-0.695
-0.049

-2.777
2.196

3.191
0.981
0.269

-1.077

-0.738
-0.095
-2.837

2.213

-0.548
-0.105
-1.785

1.316
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4.12.2 Missing data: the restricted model

OLS estimates
40000 7.0769 7.0769 5.483
-0.3333 -2.3187 -0.3187 -0.411

bo = 0.6667 1.6374 -0.3626 -0.177
0 0 0 0
[ 3.3333 2.5526 3.6132 0.9083]
g 25526 3.7335 1.4835 1.1833
) =

3.6132 1.4835 10.4835 -0.8794
| 0.9083 1.1833 -0.8794 3.6014

EGLS estimates

[ 4.0000 7.3889 7.5185 5.647]
~ | -0.3333 -2.2593 -0.2346 -0.388
fo = 0.6667 1.5185 -0.5309 -0.223
0 0 0 0

W= =

[ 3.3333 2.6022 3.6835 0.9496
~ 2.6022 3.7762 1.5439 1.2442

So = 3.6835 15439 10.5690 -0.8337
| 0.9496 1.2442 -0.8337 3.6166
ML estimate
2.5000 2.0278 2.8704 0.7295
$ 2.0278 2.7629 1.1464 0.9570
O f—

2.8704 1.1464 7.7199 -0.5300
0.7295 0.9570 -0.5300 2.4869
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4.12.3 Missing data: the double restricted model

OLS estimates
5.0000 9.6818 6.5000 5.200
by = 0.0000 -1.5000 -0.5000 -0.500
0 0 0 0
0 0 0 0

4.0247 7.0152 0.5000 0.612
2.8460 0.5000 9.5000 -0.683

| 0.6037 0.6128 -0.6835 3.200
EGLS estimates

[ 5.0000 9.7813 6.5703 5. 137?

[ 3.6000 4.0247 2.8460 0.603
Soo =

~ 0.0000 -1.5000 -O. 5000 -0.500
/600 = 0 0

0 0

[ 3.6000 4.0352 2.8535 0.589
§oo _ 4.0352 7.0272 0.5085 0.584
2.8535 0.5085 9.5060 -0.696
| 0.5898 0.5848 -0.6961 3.204

ML estimate
3.0000 3.2812 2.3203 0.387
ioo _ 3.2812 5.5320 0.2623 0.239

2.3203 0.2623 7.6689 -0.618
0.3876 0.2392 -0.6188 2.570

L 0o PO
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4.12.4 The collection of centered MANOVA-tables

Group 1 Group 2
Space | SS| DF Space SS
~ ~ 82.2614 43.0313
Loy | 0 | 1 Loocz) | 43.0313 25.3828 2
9.0750 -12.0313
Loy | 6 | 1 Loiz) 12,0313 15.9505 | *
= = 91.3364 31.0000
Loay | 6 | 2 Lo) 31.0000 41.3333 | °
0.4364 -0.7273
Lyqy |12 1 Lipy -0.7273  1.2121 1
- ~ 91.7727 30.2727
Loy | 18] 3 Ly 30.2727 425455 | | °
"~ 11.8636 -12.2727
1 €
Iy |18 8 Ly -12.2727 47.4544 6
103.6364 18.000
1 1
RiLiz)™ | 36 | 111 R(Lu)™ | | “180000 90.0000 | 1°
295.3636 285.000
R(1) | 300] 1 R(111) 285.0000 275.000 1
399 303
12 11
R 336 12 R 303 365 11
Group 3
Space SS DH
Looisy | 9.0849 | 4
Lowsy | 25022 | 1
Lo | 11.5872| 5
L) 9.8462 | 1
L) 21.4333| 6
L, 8.6667 | 3
R{110)* | 30.1000| 9
R(1) | 136.9000 1
RO 167 10
LRy = 0.3070, LRy = 0.4474.
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4.12.5 Complete data: the unrestricted model

LS estimates
2.0000 5.0000 5.0000 4.0000
1.0000 -1.0000 1.0000 1.0000
1.0000 2.0000 0.0000 0.0000
-1.0000 -1.0000 -1.0000 -1.0000

b:

[ 2.2500 1.1250 2.2500 0.0000
1.1250 2.2500 0.0000 0.0000
2.2500 0.0000 9.0000 -2.2500
| 0.0000 0.0000 -2.2500 2.2500]

ML estimate
[ 1.5000 0.7500 1.5000 0.0000]
0.7500 1.5000 0.0000 0.0000
1.5000 0.0000 6.0000 -1.5000
| 0.0000 0.0000 -1.5000 1.5000]

5=

4.12.6 Complete data: the restricted model

LS estimates
4.0000 7.0000 7.0000 6.0000
-0.3333 -2.3333 -0.3333 -0.3333

bo = 0.6667 1.6667 -0.3333 -0.3333
0 0 0 0

3.3333 2.3333 3.3333 1.3333
g 2.3333 3.3333 1.3333 1.3333
07 ] 3.3333 1.3333 9.3333 -0.6667

1.3333 1.3333 -0.6667 3.3333
ML estimate

2.5000 1.7500 2.5000 1.0000
S 1.7500 2.5000 1.0000 1.0000
0=

2.5000 1.0000 7.0000 -0.5000
1.0000 1.0000 -0.5000 2.5000
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4.12.7 Complete data: the double restricted model

LS estimates
5.0000 9.5000 6.5000 5.5000
0.0000 -1.5000 -0.5000 -0.5000

boo = 0 0 0 0
0 0 0 0
3.6000 3.6000 2.7000 0.9000
g 3.6000 6.7500 0.4500 0.4500
0= 1 27000 0.4500 8.5500 -0.4500
0.9000 0.4500 -0.4500 3.1500
ML estimate
3.0000 3.0000 2.2500 0.7500
S 3.0000 5.6250 0.3750 0.3750
00 —

2.2500 0.3750 7.1250 -0.3750
0.7500 0.3750 -0.3750 2.6250

4.12.8 Box transformations

To approximate the generalized Wilks’ distribution, we éaged the main result
of Box transformations as presented in Muirhead (1982) Se&i2.4:

Consider a random variable (0 < Z < 1) with moments:
h

v | [T e+ ) + &)
BE{Z"} = K |- - :
;}1 Ty 1;[1 I'y;(1+h) + ny]

where
p q
D_ui=) m
j=1 k=1

and K is a constant such thaf E°}=1. Then
P(=2plog(Z) < ) =

P(x3 < a)+wy [P(x3.4 <) = P(X3 <) + O(N7?),
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where

f=-2 [Z&—Zm—%(q—p)}

and
e eend) S o
and
wo {Zx [ﬁk+€k _g(ﬁk+fk)2+%(ﬁk+§k)}
- éyjz l(€j+7h)3—;(€j+ﬂj)2+%(€j+ﬁj)]}v
with

Br=(1—=plr, € =(1-py;.

Since the moments of our test statisti®, have that specific shape (see (4.10.2)),
Box transformations can be applied and give

f:_2[i<_%l( —10] le

i=1

and

T

1 2 1 1 1 1 1 1
= 1—= — S DU Sl DR G [ G SO ATl A
Po f; , H( 92 (1)) +2 (Z)JFG} {( 5 0(1)) +2 0(z)+6H

=

<

—
==

1 1
2 2 2
H 2(1 + Uy + 2loeyhig ) — 2lo(i) + ill(i)}}

—

=1

1 Lig

i=1

<
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and
1 « 4 1 3 1
= —= ~2 i i — =he)® — =(& i — =l
ws 6[%;]\[3 [{(6 7= he)” — 5la+7 = She) ™+
1 1 3 1
5(61' + % — 511(1')) — (e +m)° — 5(61 +7)? + 5(@ + %)}}
— _L - ll(i) [—6(6»_|_,Y)2—|—3(e+7')l 4—}—6(6--1-7)_
6p(2) - NE i ) i 1)U1(3) i i
1, 3
§l1(i) - §l1(i) - 1]
_ oyl 3(ei 4 1) (=206 + 1) + o +2) — (P + 3y +2)
60(2) - ng i T Vi i T Vi 1(2) 9 1(4) 1(4)
1 < o

i)
= 1= po)Ni = logiy) (2 + Ly — (1 = po) Ny) —

(liy + 2) (i 1)}

1 i)
= _ 12,0% [ 3(1 = po) le(z +3(1 — po) Z N, [ll(i) + 2lp) + 2]

=1 =1

_ Z L y) + () + 2)(hiy + 1>]

- (1 — po) A0

@2 +1w) + (ha +2)(he +1)] -






Chapter 5

Additional topics of multivariate
regression

5.1 Introduction

The previous chapter introduced the model for multivarragression with con-

secutively added dependent variables. Several estimatrespresented and the
distribution of the test statistic (based on the likelihoatio) was derived. Some
additional features of this model will be discussed in timapter.

In Section 5.2 we will introduce new classes of covariandemegors and
prove consistency of these estimators and of the estimptesented in Chapter
4.

We further discuss two, widely used, alternative estinmatézhniques for our
model: iterative EGLS (in Section 5.3) and the EM-algoritfim Section 5.4).
Unlike the estimation procedure of Chapter 4, these itexgtiocedures do not
result in closed form estimators for the coefficients.

In Section 4.3.4 it was shown that for EGLS estimation theedejnt vari-
ables are used in a well-structured way. For the model wihctinstant term as
the sole explanatory variable, this resulted in nice exgpoes for the EGLS es-
timators (see Section 4.5.2). In Section 5.5 we look at a Isigpneralization:
one-way MANOVA. For this model, the usual MANOVA-tables (foomplete
data) must be adapted in a non-trivial way.

107
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The final Section 5.6 reviews and discusses our results.

5.2 Consistency of estimators

5.2.1 Introduction

We consider the asymptotic behavior f§f — oo. SinceN; > N1, this implies
N; — oo for all 7. Without loss of generality, we take, = 1 for all 7 throughout
this section.

In the notation of random variablés, depending onV,., we omit the subindex
N, for greater readability. As usual the notatign= Op(N,.) for a random vector
Z means tha¥ is of order/V, in probability:

sup P(N; ' Z] > z) — 0 asz — oo.
N,
To enhance the readability of the proofs, we will sometimgs the additional

notationZ = op(N,) for =2 = 0.
We make the following three assumptions

N, = O(N,), (5.2.1)
thee,, are i.i.d, (5.2.2)
(X/X,)™" —0. (5.2.3)

The first assumption implies th&at(N,.), Op(N,) andop(NN,) are equivalent to
O(N;), Op(N;) andop(N;), respectively. So all samples sizes increase in more
or less the same way to infinity.

As a consequence of (5.2.1) and (5.2.2), the law of large eusntan be ap-
plied to all groups:

Nh
1
Fh Z 5t(i)5::(i) L Z(i)(z’), for h = Ty, T, (5.2.4)
t=1
1 Nh
N > i LT, forh=i,...m (5.2.5)
t=1

Np,

1

—NhE;gﬁg;i LNy, forh=i,....r. (5.2.6)
t=1
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We only prove consistency of the unrestricted estimatdrh@previous chapter),
since the proofs for the restricted estimators are quitéasinin the proofs we will
extensively use the following properties:

Lemmas5.2.1.Fori=1,...,r
|Ei —&i| = Op(1), (5.2.7)
1
leil, |¢;] and|n;| are Op(N?). (5.2.8)

Proof. SinceE{|Hi5i]2} = tr(E{engel}) = tT(HZE{EZ&“;}) = lLioy < koy
ande; — E; = H,e;, Wwe have|lE; — ;| = Op(1). SinceE{|s;|*} = N;oi;, we
havele;| = Op(N,?). Similarly, E{|(;|*} = N;A;; and E{|n;|*} = N.,T;; (since

Omitting a finite or even infinite number of vector elementkilevstill keeping
an infinite number, does not invalidate the lemma. More gedgi let us define

a™ : the first N, elements of the vectar.
Since

[a®| < |al, (5.2.9)
the following Lemma results directly from (5.2.1) and Lem&a.1.
Lemmab5.22.Fori=1,...,r

|Ez‘(h) _ 8§h)| = 0p(1), (5.2.10)
1 16" L and ]| are Op(N?). (52.11)

N[

5.2.2 OLS

In discussing the consistency of estimators for the regresoefficients, we as-
sume that(X,) = k. As a consequence X;) = k for all i. For the consistency
of the covariance estimators, this assumption is not nacgss

We will denote the matrix of all OLS estimatobsin (4.3.5) byb. A more
precise notation would bfey, but we drop the subindex (see Section 5.2.1).
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Theorem 5.2.3.b — 0.
Proof. From (4.3.5) it follows that
bi — B = (X/ X)) ' X[ (XiB3; + &) — B = GiXe.
We haveG; = (X/X;)™! < (X/X,)™! — 0 by (5.2.3). Therefore
EA{(b; — 8;)(bi = 3)'} = 0uGi — 0,
which completes the proof. O

In discussing the consistency of covariance estimators fare do not assume
thatr(X,) = k. We look at a broad class of estimators based on the OLS @dsidu
In this class, the estimators fdrhave entries
Ei(h)’ Eéh)

N,
The covariance estimators differ in the number of residoalsvhich they are
basedﬁf:) is based on the firsy,, OLS residuals of dependent variableandg.

In practice there are two often used estimators in this clasg of these uses
all available residuals&(f;) for all 7), the other uses only the firét{, residuals
(Si(;") for all 7) and discards all the residuals of incomplete observatidirese
estimators differ in efficiency and positive definitenesttba next theorem states
that both are consistent.

SRR g=1,....i, i=1,...,r, withhe{i... r}

Theorem 5.2.4.5}:) i Tig-

Proof. We have

BN P el = B (B — o) + (B —e) el

g ? g g 9 ?

1
< [EPNED — M|+ | — P)|e®] = 0p(N?),

where the last equality follows from (5.2.10) and (5.2.1A§cording to (5.2.4),

we havel-e{"'c{") = 5;,. Together this impliest- £ E§" = o, O

Corollary. S - 3.

This corollary forS in (4.3.7) follows directly from Theorem 5.2.4, since
Sig = 2251 and 2 — 1.
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5.2.3 GLS

In this (and next) subsection we present direct proofs oftimsistency of (E)GLS
estimators instead of verifying the general regularityditons for consistency of
(E)GLS (see Mittelhammest al. (1996) p. 347 and p. 37d4.g). We assume
non-collinearity (see Section 5.2.2). Denoting the matfiall GLS estimator:;éi
in (4.3.16) byB, we will show thatﬁ is consistent fop3.

Theorem 5.2.5.5 £, 0.

Proof. We prove this theorem by using an induction argument. iFerl, GLS
and OLS estimation coincide. So according to Theorem 562.3L B1. For
generali (= 2,...,r), the induction assumption i$; ;) N Bai-1)- We have

Bi — GiX,((Y;' - Cz) = Gin((Ci - Q) = GiXZ((E(iq) - ,U(ifl))ai
= (5(171) — Bi-1))u 0.

The first equality follows from (4.3.16), the second fron(4) and (4.3.12). The
convergence in probability follows from the induction asgion.
Furthermore, relations (4.3.1) and (4.3.12) give

GiXI(Yi = G) = B = GiX/(e: = G) = GiXp = 0

sinceE{|G;X/n;|*} = Tutr (G;) — 0. Together, the consistency property
Bi= = (Bi= GXI(Yi = 0)) + (GX[(¥i = ) = ) = 0

follows. 0

We will use this theorem in proving consistency of the EGL&neators for
the regression coefficients.

5.24 EGLS

For EGLS we have to minimize (4.2.5) where the covariancéira is replaced
by a starting estimator, usually obtained with OLS. Diffdrstarting estimators
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will in general lead to different EGLS estimators farIn the previous chapter we
looked at two specific kinds of EGLS: OLS (in Section 4.3.2) 81 (in Section
4.3.5). Here we will consider general EGLS estimators olehifrom a starting
estimatorS,; they will be denoted by replacing the (ML) superscfifity -, like /3
andsS.

The starting estimatos$; for ¥ influences the EGLS estimators only through
the resulting starting estimatodig; for «;; the «; are specific functions of,, see
relation (4.3.8), and thé,; are the corresponding functions 8§. (Note that
in this section, the subindex O indicates the starting egbmandnot estimators
under linear constrictions as in Section 4.6.)

The EGLS estimators for the regression coefficients are semlar to the
GLS estimators (4.3.16):

B = G X[(Y; — §) = GiX\(Yi — Ei_1)doi)- (5.2.12)
The EGLS estimatof = [3, ... 3,] turns out to be consistent if thig, are.
Theorem 5.2.6.1f ay; £, o; fori=1,...,r then3 £, 0.

Proof. According to Theorem 5.2.§ i 5. So it suffices to show that —
16 . 0. We use an induction argument. Foe 1, GLS and EGLS estimation
are equivalent because they both coincide with OLS estimatror general(=
2,...,1),

~ ~ ~ ~ 2 ~ - - ~

Bi — ﬁz GZXZ/(CZ - Cz) = Gz’XZ{ (Y(i—l)(ai - 060@') + -1y — /L(i_1)06i>

G XYoo — ao;) + B(i—l)(dOi — ;) + (B(i—l) — By

The first equality follows from the definitions of the (E)GLStienators (4.3.16)

and (5.2.12). The second equation follows by definition from= £ ;_1)a; and

E(i_l) = Y1) — ﬁ(i—l) (and similarly for¢;). Rewriting gives the third equation.
Note thatG; X[Y(;_1) can be considered as an OLS estimatordgr;, based

on the firstV; observations. Sinc&; > N, — oo, a similar proof as for Theorem

5.2.3 givesG; XY(;_1) i Bu-1)- All three terms converge in probability to

zero because of the condition; £, «,; and the induction assumpticﬁ’@i_l) -

3 P
By — 0. O

I~

[[eo
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To prove consistency of EGLS estimatorsYowe need the following Lemma.
Lemma 5.2.7.1f g — a; fori=1,....r, thenl; — T

Proof. We have

1 ~ 1 ~ 1 -
ﬁ|Ui5(i71)(a0i —a))? < ﬁ|Ui5(i71)(aOi —a))* + ﬁlHig(ifl)(CVOi — )|
L 11 ~ P
= ﬁ(am — O{i) €(i_1)€(i,1) (O-/Oi — Ozi) — 0.

The equality follows fromly, = U; + H;, the convergence in probability from
(5.2.4) and the conditiod, £, ;.
We have

Us(Y; — e-1ydos) = Ui(Ys — i — £(-1)0 + -1y (@i — Goi))

~ 1
77i ey
i Uvz(?’]Z + 8(1;1)(0(@‘ — dOz))

An argumentation as in the proof of Theorem 4.3.2 leads térteequality. Since
i € L;, we haveU;u; = 0 and the second equality holds. The third equation
follows from (4.3.12).

As in the proof of Lemma 5.2.1 we haVé&/;n;| = Op(1). Combining this
with the two previous results gives

M=

[ni—1i| = |ni—=Uini—Usei—1y(0—as)| < [Himi|+|Use i—1y (0 —doi)| = op(N7?).

According to (5.2.8)n;| = OP(N,%) so that|i| < |5 — mi| + |ni| = OP(NT%) as
well. This gives

[ = il (sl =+ |7:]) = 0 (Ny).

. ad ~f ~ ~ ~ P
Since|N;Ly; — mimi| = |7 — mimil < i — 7l (Imi| + |7:]) and 5-mimi — T
according to (5.2.5), this proves the lemma. O

Similar to OLS estimation, we define a class of EGLS estinsafor > in
which each estimator has entries

~(h) ~(h

i N, g=1,...04, i=1,...;r, withhe {i,...,r}.
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Theorem 5.2.8.1f dg; —— o; fori=1,...,r, thenSi(;’) L o4

Proof. We prove the theorem by induction. Fot 1, EGLS and OLS estimation
coincide and@ﬂ‘) Lo according to Theorem 5.2.4. For generék 2, ..., r),
the induction assumption implies thgt(, &1 £ ¥(i-1)@i-1)- In combina-
tion with the conditionay; 2, «;, this leads to the following convergence in

probability
1 5» I, . O
ﬁé}@ = 7 Q0i€(i-1) (-1 G0i — QX 3-1) (-1 0% = D, (5.2.13)

where the first equality follows frorg, = E(i—1)Co; (Similar to (4.3.12)), and the
last equality follows from (4.3.9).
According to Lemma 5.2.7 we have the following convergemgerobability
1 .

]. ~f ~ ~ ~ /
N = (Gid = Gl = (5.2.14)

where the first equality follows from = (;+1; and the orthogonality af, and7;,
and the last equality by definition from (4.3.9). Combining2(%3) and (5.2.14)
gives

1
s Ty, (5.2.15)

For every matrix2 relation (4.3.15) holds, so also f6F;:
Since E; and H,(; are orthogonal we hav&s; = E!E; + (H;(,)'(H:(;). Sub-
stituting this in (5.2.15) gives-(E/E; + (H:G;) (H;G)) LN According to
Theorem 5.2.%E§Ei £, PIR so|Hi<~“i] = op(N?). We have
/ ! 1 ! I ~
e — e e < B EM — e M| + | B (Hylo) ™|

+|(HiCi)(h)HEg(;h)| + |(HiG) M| (Hy o)™

BB = e+ 1B = el
) R N _ _

HEM | HyGol + [HGIE | + | HiGil [ HyGyl

OP(NT‘)7

[Aw

[les
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where we used (5.2.16) and (5.2.9) to obtain the flrst andnseowquality, re-
spectively. The third relation follows frofd;(;| = op (N, ) (5.2.10) and (5.2.11).

SlnceN—h f ) ag N ;s according to (5.2.4), this completes the proof. [

Similar to S in (4.3.21), we construc§ as

Sig = E€—nyg/mi forg=1,...i—1,

and based on (4.3.8) we construct
= St Sa-nie (5.2.17)

Similar to the MLES in (4.3.26) we construct as

{ 211 = Fll and for; = 2

~ ~ 5.2.18
Si-1yi = S(im1)i-1) % Ai X (i—1)(i-1) Qs Dii = L + Ay ( )

Theorem 5.2.9.If ag; — a; fori = 1,...,r, thenS - Y and® -2 ¥,

Proof. SinceS”,-g =M S( andNL — 1, the consistency of follows directly from
Theorem 5.2.8.

The «; in (4.3.8) are continuous function &f. Since theq; in (5.2.17) are
the same continuous functions of consist&nthe &; are consistent as well. In
combination with Lemma 5.2.7 this proves the consistency uf (5.2.18) since
Y is the same continuous function Bf anda; asY. is of I';; anday. O

According to Theorems 5.2.6 and 5.2.9, a consistent stpesitimatorS, (and
consequently consisteat,;) results in consistent EGLS estimators. In practice it
is common to perform OLS estimation and then to take the tiaguDLS esti-
matorS asS,. SinceS is consistent according to Corollary 5.2.4, this results in
consistent EGLS estimators.

In iterative EGLS, the EGLS estimation procedure is repbatveral times
and the estimate for of an iteration is taken as the starting estimate in the next
iteration. For our model, it is clear that such an iteratix@gedure would result in
consistent estimators in each step, if the initial estim&tds consistent.
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5.25 ML

In Section 4.3.5, the MLE’s were derived in case all errors mormally dis-
tributed: from general theory it is known that these MLE’s aonsistent under
certain regularity conditions. Here we will prove congim& if the normality
assumption is dropped.

In Section 4.3.5 we have seen that ML estimation coincidel wispecific
type of EGLS estimation. The estimatars andB in (4.3.20) were derived by
simultaneously minimizing the GLS criterium w.rd; and . However,B (and
consequentIySA’ in (4.3.21) and® in (4.3.26)) can also be derived by means of
EGLS estimation with; as starting valué,,;. For this, a closed form expression
for a; is required, which we derive by means of partial regresdiothe first step
we regress; ande(;_,) onto X;. In the second step we regress the residuals of
onto the residuals af;_y. This results in

(/)é\i = (/g\/(iil)Ui&/f\(i_l))ilgl(iil)UiK = (8/(2-71)UiS(i_l))ilé‘/(ifl)Uigi. (5219)
Theorem 5.2.10.¢; 2, o, B 2, 3, f,-,- £, i, Sy and & 5w

Proof. We denotes = [e(;_1) ¢;]. Sinces’H;e > 0 and
tr (E{¢'H;e}) = tr (H;E{ec'}) = tr(H;)) 049 <k Y 0y,
g=1 g=1

we see that-(e'e — ¢'Use) = -¢'Hze . 0. In combination with (5.2.4), this
gives

_ 1 1
a; — (€(i—1)€-1)) 15(i—1)5i = _<ﬁgl(i—l)Ui€(i—1)) 1ﬁ€/(i—1)Hi€i
P

Z| =

1 _ 1 _

From (5.2.4) we also get

1 a1 P w1
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Together this implies

~ ~ — — P

Since ML estimation is a specific kind of EGLS estimation calhvergence prop-
erties of Section 5.2.4 still hold. Accordingly, the MLE®( 3, I';; andX) are
consistent if they;(= ay,) are consistent. O

5.3 Ilterative EGLS

5.3.1 Introduction

In this section we look in more detail at the iterative EGL®gadure and the
properties of the estimators in each iteration. We condiderspecific EGLS
procedure where in each iteration the estimatorsifand are the conditional
MLE’s under the normality assumption in the following sendeach iteration
consists of two steps: first the ML estimate fbis determined given a previously
determined estimate fat, secondly the ML estimate fot is determined given
the previous estimate fot.

There are different ways to determine these conditionahesbrs. Srivastava
(1985) used matrix differentiation to derive the first ordenditions for multivari-
ate regression with@eneralmissing data pattern. These first order conditions can
also be used for a monotone missing data pattern. Howewssrcthnsist of non-
linear matrix equations which have to be solved numericdflyr the numerical
example of Chapter 4 (which has a small number of observatitins caused
problems for the iterative algorithms which we used.

In order to construct the EGLS algorithm in an alternativg,wee first discuss
ML estimation ofX with known regression coefficients in Section 5.3.2. This
technique is used in the iterative EGLS procedure whichesgmted in Section
5.3.3.
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5.3.2 ML estimation of > with known j

We assume the model of Section 4.3.5 but with known regresiefficientss.
Similar to Chapter 4, the MLE's are derived by means of ortmadprojections.
We introduce the following additional notation

Loy = R(gu-1),
H.py € RN : orthogonal projection matrix af. ),
Uiy = In,— H.; - orthogonal projection matrix oltg(z.).

Theorem 5.3.1.The MLE forq; is
a; = (gh_1yEa-1)  e=nEs;
and the MLE forl';; is
- 5§Ua(i)€i
N;
Proof. The likelihood reads

fn’ (5.3.1)

1 [ e N _
L(z:8,Y) £ TT[{@m)™ I}~ exp{~3tr(T; nini}]

i=1

2 T s _nN; _

= ] {em)™ T} eXp{_%tr(Fii1<n£Ua(i)nz‘+77;H5(i)77i)}}
=1

2T H@ry™Taly == exp{—tr(T5 Uit
i=1

UMY — i — e—nyos) Hey (Y — i — ea-new))} . (5.3.2)

See (4.3.22) for the first equality. The second equality hiblelcause the projec-
tion matricesH, ;) andU,; are orthogonal and/.;) + U.;) = In,. The third
equality follows fromn; = Y; — p; — ei—1)as, (4.3.12) andU.yn; = U.pyei
(because(;_1)a; € L.y and thudJ,;)e—1a; = 0).

The MLE's are obtained by maximization of (5.3.2) w.r.t. @JlandT;;, re-
spectively. Regardless of the valueltf, the termH. ;) (Y; — p; — 1)) iS zero
for a; = (8@_1)8(@'—1))_1€(¢—1)€i- Substitution ofa; in (5.3.2) gives

r

supL(%:6,Y) = [ J{(2m)™

(67

N,L- _
Lyl 2 exp{—%tr(FiilggUE(i)ei)}].

i=1
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A similar reasoning as in the proof of Theorem 4.3.5 leadsédMILE for[';;. [

The MLE ¥ for the covariance matrix follows sequentially from theat@ns:

{ Y1y =T andfori =2,...r o (5.3.3)

i1y = D110y i = 061610y S = Lig + Ny
Theorem 5.3.2.5 i o

Proof. We have
nins — NiTss = i, — eU-wes = nimi — mUeqymi = niHeymi = op(N;).
The first equality follows by definition from (5.3.1), the s&d frome; = ¢(;_1ya;+
n; andU.yei—1) = 0, the third fromly, = H.;) + U.;). The fourth relation fol-
lows fromn; .y > 0 andtr(E{ 5 Hewni}) < % — 0.
Since N%ném L, I';; according to (5.2.5), this proveluéii £, ;. From

(5.2.4) it follows thatoy; £, Q;. SinceY in (5.3.3) is the same continuous func-
tion of a; andT';; as¥ is of oy; andT';, this completes the proof. O

5.3.3 The iterative EGLS procedure

In each iteration estimates for and > have to be determined, or equivalently,
the estimates fop, «; andI’;; have to be determined. In the procedure we dis-
cuss here, the estimates in iteratigngs,, Eqi andI';, are the conditional ML

estimates under the normality assumption. [Bois the EGLS estimator fof
with starting valuea, ;; (see (5.2.12)). Similarlya,; and fqii are the MLE’s
for o; andl’;; giveng = Eq (see Theorem 5.3.1). Summarized, iteratjasf the
iterative EGLS procedure consists of the follow three steps

~—

(i) ﬁqi = Gin((Y; - gq—lv(i—l)z)‘/qfl,i)

! — ! —

(i) aqi :(Eq(ifl)8f1(i—1))_184(i*1)8qi

= N7 -
(i) Ty =xequls

EMORKL
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where
H ) € RV, orthogonal projection matrix dR (£ 1)),
€4q(7) a(i—1)
Uz =In—H: ), orthogonal projection matrix oR (€ y(-1))"-

Step (i) could be omitted from the iterative proceduresdugse onlyx,; is used
in the next iteration and n&qii. Only in the last iteration, step (iii) needs to be
executed to determine the final estimateXor

Similar to the MLES. in (4.3.26) we construct the EGLS estimatgin itera-
tion ¢ as

iqll = fqll and fori = 2, R iq(i—l)i = iq(i—l)(i—l)&qia
~ e - ~ ~ % (5.3.4)
Aqii = aqizq(i—l)(i—l)aqh Eqii = Fqii + Aqii-

Theorem 5.3.3.1f ap; —— «; and | X/ X;|| = O(N,), then the estimators are

consistent in each iteration, in particular:

8,58,

s, 2.

Proof. Without loss of generality we take; = 1. The consistency ng follows
directly from Theorem 5.2.6. As a consequence of this ctnvrm:y and the condi-
tion || X7Xi|| = O(N,), we havel i, —u;[* = (84— B:) X{Xi(B ;=) = 0p(N,).
Hence,| e —ei| = |11y — il = op(Nr%). In combination with (5.2.4), this proves
the consistency of;,;.

From the consistency (?qu- and|e, — & = oP(NT%), it follows that

- - 1 — 1
€ qi-1) (g — ;)| = op(N?) and|(€ -1y — €@-1))ci| = op(N;?). Hence
- N N N - 1
€ g(i-1)Qgi — 1) ] <[ € g(im1) (g — i) |+ (€ gim1) —€(i-1)) il = op(N7).
Similarly we have

- - - - - 1
Uz (= 1)l < (1=l < g — pal 4 € gi-1) Qgi —€i—1y0i| = 0p(NZ?),
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where the first inequality follows frorﬁf;q(i) < Iy,. The second inequality fol-
lows from 7, = Vi — [1,; — € -1y g @nd (4.3.12).
Slncetr(E{U;ngq(z)nql‘Y(,_l)}) < Miflru‘ is f|n|te, we hanH\gq(Z)nq,L’ =

op(NZ). So

1

’ U\/ 77qz| — ‘UEQ(Z)O? qu)’ + ’ )77qz| - 0P<N2> (535)
According to (5.2.8)n;| = Op (N, %) SO

U< oy ail < i = Uz il + il = Op(NZ). (5.3.6)
We have

~ N4 —
mini = Nil'gal = nini — iUz iy il
S |771_U T/qz|(|nl|+|Uv 77q1|) :OP(N’V‘)7

where the first equality follows from (5.3.1) aﬁu ;= U?q(i)ﬁi. The second

equality follows from|n;| = Op(N, ) (5.3.5) and (5 3. 6)
This proves that’; is consistent becaugémm i I';; according to (5.2.5).

Sinceiq in (5.3.4) is the same continuous functionfagi andaqi asY is of o
andl’;, this completes the proof. O

Though the estimators in the iterative EGLS procedure amsistent in each
iteration, this does not necessarily mean that they sharsgime asymptotic prop-
erties of the MLE’s, such as asymptotic efficiency. See facime conditions
Magnus (1978), Theorem 4. We leave the verification of theselitions for fur-
ther research.

Numerical illustration

We applied the described iterative EGLS algorithm to the eical example of
Section 4.2. As starting valugo we took the OLS estimat8. The algorithm
only needed 3 (5) iterations to produce the maximum likelthestimates, accu-
rate up to two (four) decimals. However, the numerical exangpncerns only
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a small number of observations with a relatively low frastmf missing obser-
vations. In practical problems the iterative EGLS algaritvill obviously need
more iterations to converge.

5.4 EM-algorithm

5.4.1 Introduction

The EM-algorithm (and generalizations of it, such as the E&@ybrithm, see
McLachan and Krishnan (1997) for an overview) is a widelydusschnique in
missing data problems to determine ML estimates. The EMrdlgn is an iter-
ative procedure which has been proven to converge numigricalhe ML esti-
mates under certain conditions (see Dempstex. (1977) and Wu (19833.9).
In this section we look in more detail at the EM-algorithm foe model of Sec-
tion 4.3.5,i.e. for the multivariate regression model with monotone migsiata
of the dependent variables and normally distributed erfdfs will also give the
EM-algorithm for a general missing data pattern.

The underlying idea of the EM-algorithm is that it might bdfidult to de-
termine the MLE’s from the observed (incomplete) data, butauld be simple
in case of complete data. Therefore the missing obsengatom substituted by
their expected values and subsequently the ML estimateseteemined from the
completed data. Based on these new estimates, the expeltted othe missing
observations are again determineticetera Accordingly, each iteration of the
EM-algorithm consists of an E(xpectation) and a M(axima) step.

In Meng and Rubin (1993) the ECM-algorithm was presented foulivari-
ate regression model which is similar to our model but dsfiertwo aspects:

1. the explanatory variables do not necessarily have icantialues for all
dependent variables,

2. the regression coefficients are identical for all depandariables(s; =



5.4. EM-algorithm 123

Our model considers the special case of identical explaypatriables for all
dependent variables. As a consequence of the identicemejalry variables the
M-step can be simplified considerably.

5.4.2 Additional notation

To describe the EM-algorithm for a general missing dataepattwe need the
following additional notation:

obs; : set of indices of the groups of dependent variables for kwttie
observations are present for case

mis; . setof indices of the groups of dependent variables for vthe
observations are missing for case

obs : setofindices of the observed values of the groups of depr@ndriables,
mis . setofindices of the missing values of the groups of depeid®iables,

Y = (Y;)bm Ymis)
: matrix of all (observed and unobserved) values of the dégetvariables,

Xt c kal
. values of the explanatory variables for observation

— —1
Zmistmistobst - Emistmist - Zmistobst (Eobstobst) Zobstmist
. conditional variance of the missing variables given theested
variables for case

We will denote the estimators for the parameters in iteratiof the EM-algorithm
by the corresponding symbols plus a superscr{ptmilar to the MLE’s) and an
additional subindey.
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5.4.3 E-step

In the Expectation step, the expectation of the sufficieatistics is calculated,
given the (estimated) values of the parameters characigrinze complete data
likelihood. For our model, this comes down to determine tkggeetations of the
missing values themselves and their cross-products.

E-step: general missing data pattern
Expectations missing values:
E{Ki’Y’ob& 6(17 Zq} = }/;]tia

where
Yo — { Yii, 1€ o0bs,
Vgti, 1 € MASy
Y, 1 € obs;
B { Xégqi + iqi,obsti;ibstobst (Ygt,obst - B\é,obstXt> . 1€ misy.
Expectations inner products missing values:

E{YyY}i|Yobs: By Bqt = Yoi (Yors) + cquij, Where

~

0, i € obs; andlorj € obs;
Cotij — . . . .
7t Ygijobs;s € misyandj € misy,

with iqij.obst, the appropriate elements ﬁ@,mistmist.obst-
In case of monotone missing data the previous expectatezhge to

E-step: monotone missing data
Expectations missing values:
v. _ {Yt t=1,...,N;
at Hqti + Qgi€qr(i-1y, t=Ni+1,...,N.
Expectations inner products missing values:

E{YuY{iYorss Ber S} = Yt Yar)' + Caig, Where
{ 0, t=1,...,max(N;, N;)
Cqtij =

~

Eq,ij-obs“ t:max(NZ,N])—l—l,,N
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5.4.4 M-step

In the maximization step of an EM-algorithm, the loglikeldd of the expected
values of all the variables (observed and missing) the completed likelihood,
is maximized w.r.t. the parameters characterizing thdiliked. In case of com-
plete observations and identical explanatory variablealf@ependent variables,
ML estimation and OLS coincide (see Van der Genugten (1988)p,e.g). The
maximization step in iteratiop+ 1 reads

M-step

B = B{X'X)" XY Yo, By B} = (X'X) 7' XY,
~ ~ / ~ ~ o~
Sent = BUY = XBya) (Y = XBan ) /N Yot By 4
E{Y/Y’}/;b57 ﬁqy 2q} - 6(/1+1X,Xﬁq+l

= .

Since the observations for the first group of dependent bimsaare complete, it
is clear that the MLE’s for this group will be obtained aftareoiteration. It is
not clear how many iterations are required for the numegoalergence of the
estimates for the other groups. The rate of convergencendsfma several factors
such as the fraction of missing observations (see McLachdrKaishnan (1997)

e.g).

Numerical illustration

We applied the described EM-algorithm to the numerical gdarof Section 4.2.
As starting value we took the ML estimate based solely onNheomplete ob-
servations. The EM-algorithm needed 10 (20) iterationgdolpce the maximum
likelihood estimates, accurate up to two (four) decimalsisTis considerably
more than the iterative EGLS procedure of Section 5.3.
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5.5 One-way MANOVA

55.1 The model

We look at the model for one-way MANOVA with factol havinga (> 2) levels

Ay, ..., Au withn; (n; > 1) observations of thé” group of dependent variables
on thej" level. Thet'* observation on level of the dependent variables in group
i is denoted by ;. If there arer groups, the regression equations read as follow:

}/;'jt:“ijt+5ijt7 7::1,...,7", jzl,...,a, tzl,,n” (551)
where

Wijt = fhij = Bic + Bij- (5.5.2)

We want to interpres;. as the general level of th& group of dependent variables
and 3;; as the specific contribution of level; for the " group of dependent
variables. One of the following identifiability conditiorsoften imposed:

(unweighted) » " 3; =0, fori=1,....r, (5.5.3)

j=1

(weighted) ) “ny;B; =0, fori=1,...,r (5.5.4)
j=1
By introducing a dummy variable for each lew] of A, (5.5.1) and (5.5.2) can
be written as a linear regression model. Let

A _ 1 if observatiort is performed at level;
% 0 else.

We will denote the observations of the dummy variables feellg¢ by the vector
X = [X4], and for all levels byX 4, = [X{* ... X/]. Similarly, the matrix with
the observations of all the explanatory variabies. the constant and the dummy
variables) is denoted h¥ = [1x X4].

The model assumptions concerning the error terms are tlid3eapter 4 (see
(4.2.2)). A monotone missing data structure is assumed,;s& n,;,; . Note
that V; = 2?21 Nij.
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5.5.2 Notation for averages and covariances

In the remainder of the section we will see that the EGLS exdting and their in-
ner products in the MANOVA-tables can be expressed in tefrearople averages
and (co)variances. Therefore we introduce symbols to @etiese frequently
used sample statistics. We denote the sample means by

_ 1 & ,
Yij = — Z Yiie (€ R™1),
ij i
?iv - [?7,1 ‘e ?ia-] (E Rmixa),
~ 1 o
unweighted) Y;. = - Y, (€ Rmix1)
(unweighted) 22 Y )
1 a N5 a

(weighted) V,. = EZZYW Z”’ZY (e R,

7j=1 t=1

A similar notation is used for the sample means of the ressdua
We denote the sample (co)variances by

_ 1 Ny _
E(i—l)z’ = ﬁ Y Z—]€z 1)j o

1 - N _ _
Z(i—l)(i—l) - ﬁg/(i—l) (i-1) — Z_Jg(i—l)j.gl(i_l)j,.

5.5.3 EGLS estimation

Since EGLS estimation for the first group coincides with Ols8reation, the
EGLS estimators for this group are the usual one-way MAN@#Aimators. Re-
gardless of the specific identifiability constraint for tlegmression coefficients, the
OLS projections are

//let:Ylj andé\ljt:Yljt—Ylj., j=1,...a, tzl,...,nlj.
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The unweighted constraint (5.5.3) leads to the followingSOdstimators for the
regression coefficients

ﬁlc = le )
ﬁlj = 71j~—Y1~ , J=1...,q,

and the weighted constraint (5.5.4) to

B\lc = ?l“ >
ﬁlj = ?U' —?1.. y ] = 1,...7(1.
For EGLS estimation for group(= 2, ..., r) the regression equations read

Yi=Xifi + - + &

Since either constraint (5.5.3) or (5.5.4) holds, dg = R(X;(N(C))) =
R(X4:) = R(X;) = L; for both, we can omit the constant term when calcu-
lating the EGLS estimators for and;;.

The EGLS estimator for; can easily be determined by means of partial re-
gression. First we regress;[ £;_1)] onto X 4,. Since the columns ok 4, are
orthogonal, this is straightforward and leads to the cexteesiduals

Yi = XaiV i &y = XaiE(in)

The second step consists of the regression of these resiofulgl onto the corre-
sponding residuals @f;_,). This leads to the (final) residuals Bf

A= Y XV G~ Xah)
(-1 — XAig,(i—l)v-)/(g(i—l) - XAl‘gl(i—l)%))_1
(Ei-1) — XaiE(_1y) (Y — XAi?’iv-)
= Y~ XaiV5, — (Em1) — XaFliony) -
(ElaBin = D13 Fimy )™ oy Vi = D migBn Y
j=1

/

zy)
j=1

/

J— ~ _ __1 J—
= Yi— XYy — (Euny) — Xa(i 1) Y- 1)6-1) 2 (i-1)i-
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SinceY; = v; + 1;, this leads to

~ - ~ _ =1 =

Vi = XaiY i + (Eli-1) — XAigl(i—l)v)Z(i—l)(i—l)z(i—l)i’ (5.5.5)

or equivalently

—/

~ = =1 _ —~
Dijt =Y 35, — Sit—1) X_1yi-1) (E-1)5- — E-1)5t) -

This expression and relation (4.3.12) lead to the estin@ttre mean of group
for level A,

~ — = =-1 _
Hij = Yij-_Ei(ifl)E(i—l)(i—l)g(ifl)j-

The EGLS estimatof;;; and the constraint (5.5.3) or (5.5.4) give the EGLS es-
timators for the regression coefficients. In case of comgt{®.5.3) the EGLS
estimators for the regression coefficients are

ﬂic 7
ﬁij = ?ZJ - L4 ii(i—l)z(z;l)(ifl)(E(i—l)j - é\(i—l)~~> )

and in case of constraint (5.5.4)

—1

Bic = Yii—Zi-1X5_1)36-1)E6-1)-
~ S — =1

By = Yy —Y. — Yiti-1)X(i—1y (1) (Ei-1)j- — E(i-1)-.)-

The EGLS estimatorg; andB are the usual one-way MANOVA-estimators plus
a deviation. In case of complete datg, ;);. = 0 for all j and thusz(;_).. = 0
andé;_y).. = 0. As a consequence,; and 3 reduce to the ‘regular’ one-way
MANOVA-estimators.

If some observations are missing but not for letteln,;; = ny;), theng;_,;. =
0 buté;_yy.. # 0 andg;_y.. # 0. Henceyi;; = ?Z-j. butﬁ does not reduce to the
‘regular’ one-way MANOVA-estimator.
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55.4 MANOVA-tables

In Section 4.6 we looked at the collection of MANOVA-tables {general) multi-
variate regression with consecutively added dependeiatblas. These MANOVA-
tables (see for example Table 4.6.1) contain the inner mtsdof the uncon-
strained and constrained projections and the correspgraigrees of freedom.
In this section, we only present the MANOVA-tables for thedabtest (.e. the
null hypothesis assumes all regression coefficients to leezeept the constant
term). Table 5.5.1 contains the relevant information fertodel test.

Model Space SS DF
C.model| L U, a—1
Error Lé) s N, —a

C. total R(lNl)J‘ 2/2 N, —1
Mean R(ly) | NY. Y. | 1

Total RN Y'Y, N;

Table 5.5.1: Collection of centered MANOVA-tables£ 2, ..., r)

To determine the exact expressions for the inner productiseoMANOVA-

P

table, we first determing]v;. Sincev; in (5.5.5) is the sum of two orthogonal
terms, its inner product is the sum of the two correspondingii products:

v — = = =-1 ~ _
V;Vi = (XAZ‘Y;U.)/(XAZ‘Y;).) + Ei(i—l)z(i_n(i_n(5(i—1) - XAig(i—l)v-)/ :
~ _ =1 =

(5(2'—1) - XAiEI(i—l)v-)Z(ifl)(ifl)z(i—l)i

- — 7/ = =1 =

— Z n”YUYU + NZEi(i,l)Z(i_l)(i_l)z(i,m.
j=1
The inner products of the EGLS residuals are
mn = YY1y
a Nij
_— J— p— _71 j—

= > > (Vi = Vi) Vi = Vi) = NS Sy D

j=1 t=1
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Since the EGLS residuals are already centered, the centgredoroducts’v; of
the MANOVA-table can be determined as the difference betié@; and77;.
The inner products of the centered dependent variables are

a Mij

YV, =YY (Vi Vi) (Vi = Vi),

j=1 t=1
which leads to

~y~ - 4 54 = =1 =
V,L{Vi = ZnU(YU - YZ)(Y” - Yz)/ + NzEz(z—l)Z(z—l)(L—l)E(l—l)l
j=1

The first terms of’/7; and7.n; are the inner products between the samples and
within the samples, respectively.

5.6 Conclusions

This chapter discussed several features of the model fotivauite regression
with consecutively added dependent variables. We provadath estimators of
the previous chapter, and new classes of covariance estsrate consistent. In
Section 4.4 we investigated the relative efficiency of therestors for the regres-
sion coefficients, but we have not studied the (asymptoéigtive efficiency of
the estimators for the (co)variances yet. From generakryhies known that the
MLE’s are asymptotic efficient. Are there also asymptotitcednt estimators in
the new classes of covariance estimators? If not, whiclmestirs in the new
classes are the best in terms of efficiency? We leave thesgiopue for further
research.

We also described two alternative, often used, estimagehrtiques. Al-
though these procedures numerically converge to the Mimestis, they do not
result in closed form estimators for the coefficients. Thaes our estimation
technique of Section 4.3 is simpler, more straightforward] much faster.

Finally, we also looked at a special case of the model of Ch&ptene-way
MANOVA. This simple generalization of the model with onlyetltonstant term
as explanatory variable, resulted in quite complicatedesgons for the EGLS
estimators.






Chapter 6

Mixed models

6.1 Introduction

The previous chapters discussed models (with applicatmnspeated audit con-
trols) with either categorical or continuous variables.wduer, in audit practice
the records are often correcte( the error is zero); but if they are incorrect, the
errors can take many different values (see Johretaal (1981) or Neteket al.
(1985)e.g.for a more detailed discussion). The resulting error heseamixed
distribution; we therefore will call models for this frequé/ occurring situation
mixed models.

The model with continuous errors and a probability massiio has been dis-
cussed in literature. Cox and Snell (1979) derived Bayesitimars and upper
limits for a model with non-negative errors and a probapititass in zero. Moors
(1983) and Moors and Janssens (1989) expanded on this. distarior contin-
uous, but not necessarily positive, errors with a point nagero were derived
by Fienberget al. (1977), Tamura and Frost (1986), Tamura (1988) and Laws
and O’Hagan (2000). However, they all assume one audit radttcan infallible
auditor. This in contrast to Barnett al. (2001) who discussed a repeated au-
dit control with two rounds. First a model for the classifioatfrequencies was
presented and MLE’s for the classification probabilitiesevderived. Further,
based on the observed errors, several estimators for the vadze of the errors
in the population were proposed; no relation was specifiédden the size of the

133
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non-zero errors and the (registered) values of the records.

Section 6.2 introduces our mixed model for a repeated aodiral with two
rounds. In Section 6.2.2 the model of Chapter 2 for the classifin probabilities
is extended slightly; the resulting model is identical te thodel of Barnetét al.
(2001). Conditional on the classification of a record, we gpeegression models
for the non-zero error in Section 6.2.3. These conditianalr regression models
are similar to the one of Chapter 4.

In Section 6.3 the estimation techniques of Chapters 2 ané 4ised to de-
termine estimators for the classification probabilitied aggression parameters,
respectively. The OLS estimators and MLE’s for the paramsaithe conditional
regression models are compared by means of simulationo8éct discusses es-
timators for the mean value of the errors in the populatioe. pAésent the MLE
for our model and briefly discuss the estimators of Baree#l. (2001). All the
estimators are compared by means of simulation. The findld®e8.5 contains
our main conclusions and ideas for further research.

6.2 The model

6.2.1 Notation

Define the random variablé, as the registered value (or the so called book value)
of a random record. The random variablesand A, are defined as the values of
a random record according to the first auditor and the expespectively. Since
the expert is assumed to be infalliddg is the true value. We denote the book and
audit values of recordby A;y, As;, andA,,, respectively.

As in Chapter 2 the first auditor checks the records of a randonpke (drawn
with replacement) of predetermined sizg a subsample of (possible random)
size N, < n, is checked again by the expert. Now the valuesAf, A, Ap)
are available for theV, double checked sample records, while for the— N,
single checked sample records oy, A;) are available. Since in practice the
book values are known for all records of the population, wikagisume thatd,,
is known for the whole population.
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In Section 3.2.3 we discussed two different approachestermeeN,: ran-
dom and stratified sampling. Both methods can be applied snctiapter. How-
ever, we will not elaborate on this difference since the damgpnethod does not
influence the MLE's (see Theorem 3.3.2).

Our model is constructed from an absolute model for the ifieason proba-
bilities and a conditional model for the audit values. Faistecords are classified
into five groups, based on the question whether the two aallieg and the book
value are identical. In Section 6.2.2 we give our model ferdbrresponding clas-
sification probabilities. If all three values coincide, mwother steps are necessary.
In the four other cases, we still need to specify models ferafrthe audit values,
or both. Section 6.2.3 describes these conditional reigressodels.

6.2.2 Classifications

As in Chapter 2,7, (m) is the probability that the auditor classifies a random
record as ‘incorrect’ (‘correct’). With conditional probidity 7oy (7)1) the ‘in-
correct’ (‘correct’) record is indeed incorrect (correctyith conditional proba-
bility 7)o (7o)1) the ‘incorrect’ (‘correct’) record was misclassified byetauditor
and is correct (incorrect) after all. Joint probabilitiesmg, = 7o (@ random
record being classified as ‘incorrect’ by the auditor andasect by the expert)
follow from these; compare Figure 2.2.1.

So far our model for the classification probabilities is itieasd to the model
of Chapter 2. However, now we are interested not only in thetifsa errors but
also in the size of the errors; an additional subdivisiorhexéfore necessary. If
the auditor correctly concludes that a record is in errog, pwssibilities remain:
(s)he is correct about the size of the error, or not. Accaigirwe introduce the
probabilitiesm.|o (moup0) for the events that the error size indicated by the auditor
is equal Unequal) to the true error. Sy = moe|o + Toujo ANATe0 = Tooe + To0u-

The foregoing classifications and probabilities can be esg®d in terms of
book and audit values. For example

Toul0 = PT(AO # Ay, Ay # A2|A0 # A1)~
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Table 6.2.1 gives an overview of the five possible classiboatand their proba-
bilities.

Classification Probability
1. Ag=A, A=A, T,
2. Ag= Ay, Ay # A 10
3. Ag# A, Ag= A To1
4. Ag# Ay, Ay # Ag, Ay = Ay T00e
5. Ag# Ay, Ay # Ay, Ay # Ay T00u

Table 6.2.1: Classifications and probabilities

As in Chapter 2, we denote the sample classification freqasrimi the sym-
bol C with the same subindices as the corresponding probabititiesee Table
6.2.1). Figure 6.2.1 gives an overview of the sample freqgigsrand probabilities
(compare Figure 2.2.1).

First auditor Expert
Cl_
Chi (- Ay = Ay) 11
C1 (- Ag = Ay) Tin
1
Ciy
ny Cho (- Ag # As) 10
Ton
Co_
Co1 (0 Ag = Ay) o1
C() (3 A[) 7é A1> 10
o
Coy | Cooe (- Ag # Ay, Ay = Ay)  Toge

T0e|0

Coou (0 Ao # Aa, A1 # As)  Toou
Tou0

Total nq N,

Figure 6.2.1: Classification frequencies and probabilities
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6.2.3 Conditional regression

Since the book value is available for each record, it is olgassary to specify
a conditional model ford;; given A;; # A,. Whether this is the case follows
from the classification of record If the book and audit value do not coincide, it
seems reasonable to assume that the book value influencasdibhealue. So we
assume

1 . :
Atl = 56 |: Ato :| + Et, W|th E(€t|At0) =0 glvenAtO 7£ At17

for some (regression) coefficiefif. Here we omit in our notation for the expecta-
tion (and in the following for the variance) the conditidp, # A;;. Moreover, we
assume a constant variandé(¢;|Ay) = o2) and no correlation between records.

We only need to specify a model fot;, if the true value does not coincide
with the book or previous audit value. This is the case fordlassifications 2
and 5in Table 6.2.1. For both classifications we assumerlmegaession models,
which are not necessary identical: after all, the first auditissing an error might
indicate that the error is quite small, while the first audftading an error (but
not the true one) might indicate a large or complicated ekt assume

Ao = An
AtO 3& At2 ’
for some (regression) coefficiedt. Again we assume that the variance of the
error terms is constant/((;| Ay) = o) and that there is no correlation between
records.

Similarly, we assume

Ay = [ { 141150 } + &, With E(g;|A;0) = 0 given {

1 ) ] AtO 7é Atl
Ap = 5, { A } + &, With E(g4]Ay) =0given { Ay # Ay
An # Ap
for some (regression) coefficiefi§,. Although we assume again a constant vari-
ance ¥ (s¢|Aw) = o2,) and no correlation between different records, we do not
impose restrictions on the correlation between the auditiare value per record
(or equivalently, the covarianes,).
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Table 6.2.2 gives an overview of the explanatory and depengeiables of
the conditional regression models in the notation of Chagter

Parameters B, 03 | Po, o8 Bous Toys O12
dependent variables; Ay Ap Ao
explanatory variablegXs Xio| | [1 Asw] | [1 Aso [1 Ay]
. T
previous error terms;;_p) - - An — 5§ A
t0
number of observationy; Cho Co Coou

Table 6.2.2: Explanatory and dependent variables

In all our conditional regression models, the explanat@wgables consist of
the constant and the book value. The conditional model gign= A;;, has
the true value as dependent variable. The other two conditimodels (given
Ay # Ap) form a bivariate regression model with monotone missingeola-
tions: for the first dependent variable (the value accordm¢he first auditor)
(), observations are available, while for the second dependeigble (the true
value) onlyCy,, observations are available.

We will use the estimation techniques of Chapter 4 to detegragtimators for
the parameters of the conditional regression models.

Table 6.2.3 gives an overview of the conditional regressiodels for all clas-
sifications. This overview will be especially useful for testimation of the mean
true value in Section 6.4.
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Classification Conditional regression model
Ag = A1, A = Ay -
T 1
Ao = A1, Ao # As Ap = Ay J + &, E(et]Aw) =0,
Cov(et|As) = 0%,
1
Ag # A1, Ag = Ay Ay =) { Ao J e E(g¢|Ay) =0,
Cov(et|As) = 02,
1
Ag # Ay, Ag # As, Ay =0 Ay J + &, E(e¢|Aw) =0,
Ay = A Cov(et|As) = 03,
An | B4 1 |0
AO 7é A11 AO # A21 \> AtQ J — \> Béu AtO + Ety E(Et‘AtO) - 0 1)
Jg g192
A1 7é A2 COU(€t|At0) = 2
012 Ogy

Table 6.2.3: Conditional regression models

6.3 Estimation of the model parameters

6.3.1 Classification probabilities

The classification frequencies have binomial and multirbmistributions sim-
ilar to (2.2.4). So the MLE’s for the classification probdieks are the sample

fractions (compare (3.3.3)):

~ 4 ~ Cy
1= H0 -
n ny
ﬁ Cll ﬁ CIO
11 = . 01 Cr.
1+ 1+
ﬁ COI o~ C()Oe = COOu
110 — ) 0e|0 ) 0ul0
\ CO+ CO+ CO+

These MLE’s can be found in Barneitt al. (2001) as well.

(6.3.1)

If Cy,. orCy, is zero, not all MLE’s in (6.3.1) are defined. See Section3.3.

for a more detailed discussion of this situation and possblutions.
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6.3.2 Regression parameters

The estimators for the regression parameters of the conditregression mod-
els in Section 6.2.3 can be determined by means of the egimatocedures in
Section 4.3.2. In terms of general dependent variabllaad explanatory variable
X, the OLS estimators for the regression coefficients andé&i@nces are (4.3.5)
and (4.3.7), respectively; under the normality assumgtierMLE s are (4.3.20)
and (4.3.26). Table 6.2.2 gives an overview of the deperatehexplanatory vari-
ables for the parameters in our conditional regression leo#f@r completeness,
we include the OLS estimators and MLE’s in terms of the boak andit values
in Appendix 6.6.1.

The MLE’s for 3; and 3, coincide with the OLS estimators. The MLE’s for
o? ando? differ from the OLS estimators solely by the denominatoe MLE'’s
are the inner products of the residuals divided by the nurob@&bservations,
while the OLS estimators are the same inner products divigetthe degrees of
freedom. Only with respect t6,,, o2, ando,, the MLE's differ essentially from
the OLS estimators. In the next subsection we study thevelafficiency of the
OLS estimators and MLE's for these parameters by simulation

6.3.3 Practical example

As in Chapter 2, the practical example concerns the Dutchakeecurity pay-
ments. However, now we consider another case study wheyeealsr sizes are
observed. The population consists of 587 social securigyneats with mean
9.0418 and standard deviation 8.5726 (both in 1000’s of bgtdlders). An in-
ternal auditor checks all 587 social security payments;dareal auditor (the
expert) checks a subsample of size 60 once more. We will assame that the
587 payments checked by the first auditor constitute a safmgptea large popula-
tion. In this context the variabld, is the social security payment which actually
has been paid4; (A.) is the social security payment which should have been
paid according to the first auditor (expert). Table 6.3.1taims the classification
guantities of the control.
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Total Single checked Double checked sample
sample Expert
First auditor Total correct incorrect
‘correct’ c1 = 551 c1— =493 Cly = 58 ¢11 =55 cio =3
‘incorrect’ co = 36 co— = 34 co+ =2 ¢1=0 Cope = 2
Total ni = 587 ny — ng = 527 ng = 60 Cy1 = 55 Cyro = 5

Table 6.3.1: CTSV example

In the double checked sample the first auditor did not makerngrse missed
three errors and found two (true) errors; the expert confirthe size of the latter
errors.

For these classification frequencies, (6.3.1) resultsérMh estimates

w1 = 0.8901, 7 =0.0486, 71 =0, Tooe =0.0613, 7oy = 0.

The ML estimates for the regression parameters are detednfiom the sample
observations ofd,y, A;; and A;,. Since there are no sample records With,
A, A # Ap, An # Ap} (€. coon = 0), the parameters,,,, o2, ando, can
not be estimated. The ML estimates for the other regressicempeters are

—0.6807

A _ -~ o /\2 .
—0.8275 } , 01 =535911, fo = { 0.8808 } , 05 =17.3533.

~ —14.7107
e |

These ML estimates are used in our simulations to study thavwe efficiency of
the OLS estimators and MLE'’s fat,, 02, andos.

The difference between OLS and ML estimation mainly steroshfthe treat-
ment of theC\,, observations where the auditor correctly identifies anrglmat
errs in its size. Hence in the simulation study, we use a \ailtlee classification
probability moq,, Which is unlikely to lead to zero observations in this catggo

11 = 710 = To1 = Tooe = 0.1, ooy = 0.6.

We take the regression parameters equal to the corresgphinestimates of
the practical example; in addition we assume that(o02,) is equal toj3, (o7).
Since we expect the correlation betweén and A;; (given{ A,y # Ay, Ay #
An, An # Agp}) to be important for the relative efficiency, we look at diéfat
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values for the correlation coefficient); this determines as well the covariance
012 = P120000u-

We simulate the book values from a normal distribution witbam 9.0418
and standard deviation 8.5726 from the practical examplee dudit values are
also drawn from (multi)normal distributions. To determihe effect of the sam-
ple sizes, we have simulated data (each with runsize 10,@00hree differ-
ent situations: (ap, = 100,n; = 1000, (b) no = 100,7; = 3000 and (c)
ny = 300,n; = 3000. Figure 6.3.1 contains the smoothed curves of the relative
efficiency for the different parameters as functionpgf. Note that each graph
contains three curves, which however often partly coincide

relative efficiency
relative efficiency

°2f{ __"n,=100, n,=1000 o2ff — n,=100, n,=1000
o r\2=100, n1=3000 - o n2=100, n1=3000
- n2:300, n1=3000 - n2=300, n1=3000

0.2 0.4 0.6 0.8 1
P,

(a) 60u(1) (b) 60u (2)

relative efficiency

=100, n,=1000
+++ n,=100, n,=3000
- n2:300, n1=3000

02 —_"n_=100, n,=1000 R o2 n,
.. n,=100, n;=3000 R
- . n,=300, n,=3000

0.2 0.4 0.6 0.8 1

o 0.2 0.4 0.6 0.8 1 0
Piz

P12

(c) o3, (d) 012

Figure 6.3.1: Relative efficiency of OLS in relation to ML

The first and second graph show the relative efficiency fofiteeand second
component of3,,, respectively. These graphs show the same pattern as Figure
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4.4.1 and hence confirm our findings of Section 4.4. For loweslof the cor-
relation coefficient, there is hardly any difference in eéicy between the two
estimators; for high value§0u is much more efficient thahy,,. This difference in
efficiency increases with the missing data ratio. Note tmatlifference seems not
to depend on the absolute sample sizes themselves, onlysaatio 1 — 75 /n;.
The third and fourth graph, far2, andes;2, show a similar picture as the first
two. This is understandable since the MLEX anda, are functions of2 which
is based on alh; observations.

6.4 Estimation of the mean true value

6.4.1 Notation

In a repeated audit control, the main parameter of intesestten the mean true
value in the population or equivalently the total true valuéhe population. The
mean population error size is the difference between thenrpepulation book
value o and the mean population true valug; o — po. Since we assume that
the book values are available for all population elemeris, éstimator for the
mean error size is obtained by subtracting the estimatopfdrom the known
parametey..

In Section 6.4.2 we propose an estimator/gmased on our model. Section
6.4.3 discusses several estimators of Baretedd. (2001). All four estimators are
compared by simulation in Section 6.4.4.

We use the following notation for sample averages and regnesoefficients

C

A) Ly A
g - . tg>
ij
Cij —(Cij) —(Cij)
/\(CU) _ Z ]<Atg - Ag ! )(Ath - Ah ’ )
gh EPINND)
3 (4~ A)

The symbob will denote all model parameterisg. all classification probabilities
and regression parameters; the MLE flas denoted bﬁ.
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6.4.2 A new estimator

A new estimator foy; is the average of the observed and predicted true values of
all population elements:

SO
fio=— Y Ap, (6.4.1)
L
with
Atg, |ft:].,,N2
3. ) E{Awldw, A, Aw = An, 0}, ift=No+ 1. mandAyg = Ay
2 E{Ap|Aw, An, A # An, 0}, ift = No+1,...,n and Ay # Ay
E{A;| A, 0}, else.

Each missingd,, is estimated by its conditional expectation (under the raditgn
assumption) given the observations and the (estimatedper values. The
conditional expectations differ per classification (sekl@%.2.3) and are given in
Appendix 6.6.2.

The advantage of this estimator is that it distinguisheglifierent classifica-
tions and it uses all available sample and population in&tion. It also shares
some nice properties with the MLE’s which have been derime@hapter 5.

6.4.3 Estimators Barnett

Although Barnetiet al. (2001) did not specify a model for the size of the errors,
several estimators far, (or ug — p2) were proposed: the regression estimator, the
post-stratification estimator and the estimator from neerapping samples.

Similar to (6.4.1), the regression estimator igiis the average of the observed
and predictedi;, of all population elements. However, the predictions fer Ay,
differ from ours. The regression estimafoy,., used by Barnetet al. (2001)
equation (17), equals

Ao = Ay 7 4 (A = ATNA0Y + (uo - AY M@ Valh?. (6.4.2)
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This estimator is quite logical in case of the following mbde

Ao 0 oo 001 0
Atl = 5,+5t7 with E{éft} = 0 , VCLT{&}} = Jo1 011 O12
A 0 0 012 022

Note, however that this model contradicts the model for thesification proba-
bilities, since it does not distinguish the different clisations. This in contrast
to the post-stratification estimator fos (See Barnetét al. (2001) equation (21))

1) N2)

T11 o + 7T10A + To1lto + 7TooeA( + 7T00uA(

This estimator is the sum of the MLE’s for the classificationhabilities times
the estimator for the mean true value of elements with thegsification. The
disadvantage of this estimator is that the estimators ®nikan values per clas-
sification can be quite biased. Therefore we propose amattee estimatofis,
with the same structure but with different estimators fer skratum means

Hop = 7Tl1A () 10A (C1o) + aT\01Zéc01 + 7TooeA(COOS) + Toou A Coou (6.4.3)

(although it is not mentioned explicitly in their paper,diieems to be the esti-
mator which Barnetet al. (2001) used in their simulations). The disadvantage of
this post-stratification estimator is that it uses the sarmgbrmation of the single
checked elements solely for the estimation of the classidicgrobabilities; the
estimation of the stratum means is only based on the doulklekeld sample.

The last estimatofi,,, uses information from both single and double checked
sample elements (see Barnettal (2001) equation (25))

~ Ny —(N. —(N
How = Ho — —2(A(o ) Ag 2))
ni
ny — Ny Co—Toj0 + C1—Toj1 —(M
- C (AO
nq 0—
This estimator isuy minus the weighted average of the mean error size of the
double checked elements and, the mean error size of theesihgkked sample
elements according to the auditor multiplied by a correctactor for the mis-

classifications. Theorem 6.4.1 shows tha is not always consistent.

—N2) (N1—N2)

_Zl

). (6.4.4)
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Theorem 6.4.1.1n case of random sampling., £, we if and only if E{A;p —
AnlAw # An} = E{Aw — Ap|Aw # An}.

Proof. As in Chapters 2 and 3 we denote the fraction incorrect elesnanhe
population byp, (= 710 + 700)-

Since sample means converge to their expectations in cassddm sam-
pling, it follows that

Z(()N2) ZéN2) P Z(Nl*NQ) . Z(leNz) P

— — [o — M2, 0 1 7 Ho — M1,
~ ~ Co— =~ Ci_. ~
Co-Topp + C1-Ton = M0lo + 7 =30t p - ToTojo + T1To1 _ Po
Co_ Co— o 71'0.
ni1—Na

From this anduy — p1 = moE{Aw — Au|Aw # An), it follows that

ny — Ny

N,
— (ko — H2) —
1 ny

ﬂ2w L Ho — poE{Ato - At1|At0 7"é Aﬂ)-

Only |f E{AtO_AtlyAtO 7£ Atl} - E{Ato _AtQ‘AtO 7£ AtQ}a we haVQ)()E{AtO—
—~ P

AnlAw # An) = (poE{Aw — Aw|Aw # Aw} =)uo — 12 and henceis, —

2. O

6.4.4 A simulation study

We compare the performance of the estimators of this sebyi@imulation. The
simulation procedure we use is almost identical to the orzaohettet al. (2001)
Section 5.

The simulations (runsize 10,000) are performed for ses&isl of given clas-
sification probabilities and sample sizes; see Table 6 hén, book values are
drawn from the following distribution:

book value| 100 50Q 1000 2000 5000
probability | 0.9| 0.05 0.03 0.015 0.005

The classifications of the items are drawn from multinomiatributions. The
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fractional error sizes have the following uniform distrilouns:

Ay — A .
D" L U(0,1), if Ap # Ap,
Ao
Ap— A .
toA 2 U0,1),  if Ay = Ap, Ay # Ap,
10
Ay — A A .
0 2o Ay # An, Ay # A, An # A
At() AtO

So far the simulation procedure is identical to the one of Bt al. (2001).
However, to avoid not uniquely defined parameter estimates Section 3.3.3),
we apply stratified sampling instead of random sampling §esstion 3.2.3).

From the described simulation procedure, the mean populatiror size can
be determined analytically for each set of classificatioobpbilities. In each
simulation runug — u» is estimated using the four discussed estimators. Note that
E{Aw — AnlAw # An} = E{Aw — Aw|Aw # A} in the described simulation
procedure. Table 6.4.1 contains the results of the sinausti

From the four studied estimators;, has the largest bias; the other three es-
timators have a small bias (if any at all). The small biagQf (never exceeding
0.1) is caused by the fact thBY A;o— A1 | Ay # An} = E{Aw—Aw|Aw # Awp}
for the simulated data.

Higher sample sizes in the first and second round lead to ar leargance
for all estimators excepi,,; the variance ofi,, decreases for higher,, butn,
hardly seems to have an impact. See for example the first ehting second half
of the table: the standard deviationjef, is 11.9, 12.0 and 7.0 fdm,, n,) equal
to (1000,100), (3000,100) and (3000,300), respectively.

We see that the variances of all estimators are lower forriredl snean error
size (10) than for the high mean error size (20). For exanfplep; = 1000
andn, = 100 the standard deviation ¢f; is 3.1 for the first set of probability
parameters with, — ps = 10; for the first set of parameter values wijth— o =
20 the standard deviation is 4.1.

In every second line of the table the probability of an audidssing an error
is higher, and the probability of an auditor finding the rigite of an error is
lower than in the previous line. Comparing two subsequemslinve see that a
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Probabilities n1 = 1000 andny = 100 n1 = 3000 andny = 100 n1 = 3000 andns = 300

11

T00e  T00u H2 H2r H2p M2 K2 M2y H2p M2 K2 Har H2p  H2w

.89

.89

.87

.87

.85

.85

.78

.78

74

74

.70

74

Mean error size = 10

710 701
.02 .01
.06 .01
.02 .03
.06 .03
.02 .05
.06 .05

Mean error size = 20

.04

A2

.04

A2

.04

12

.02

.02

.06

.06

.06

.06

06 .02 101 101 99 100 100 101 99 100 100 101 10.1 10.0
(3.1) (6.3) (8.7) (34) (24) (6.0) (85 (24) (1.7) (3.8 (5.0) (1.9)
02 .02 100 100 100 99 100 102 101 100 100 102 10.1 10.0
(38) (7.9) (9.1) (45) (35) (8.2 (9.1) (34) (2.3) (4.9) (5.0) (2.6)
06 .02 100 102 99 1000 100 103 99 100 100 10.1 9.9 10.0
(3.1) (6.8) (8.7) (3.4) (27) (6.8) (8.8 (2.6) (1.8) (42) (5.0) (1.9)
02 .02 101 103 100 100 101 103 100 100 10.0 101 9.9 10.0
(38) (8.9) (8.8) (42) (35) (8.6) (8.7 (33) (24) (5.4) (5.0) (2.4)
06 .02 101 104 101 100 10.0 103 100 10.0 100 102 10.0 10.0
(33) (7.7) (9.0) (3.4) (28) (7.6) (8.8 (27 (1.8) (4.7) (5.1) (1.9)
02 .02 100 103 100 100 100 104 101 100 100 104 10.1 10.0
(38) (9.4) (8.8) (400 (3.6) (95 (9.0) (3.3) (24) (5.8) (5.1) (2.3)

12 .04/ 200 202 198 200 201 202 199 201 200 201 19.9 200
(4.1) (8.8) (11.9) (47) (3.3) (85) (12.0) (3.3) (25 (5.3) (7.0) (2.7)
04 .04 200 203 201 200 200 203 200 200 201 202 201 200
(5.4) (11.5) (12.2) (6.3) (5.1) (11.4) (12.4) (4.F) (35) (7.0) (7.2) X3.6
12 .04 199 202 199 200 200 204 201 200 200 203 200 =200
(42) (9.9) (12.2) (4.6) (3.6) (10.1) (12.5) (3.6) (2.6) (6.1) (6.9) (2.7)
04 .04 200 204 200 200 200 205 19.9 200 200 203 200 =200
(55) (12.5) (12.3) (5.9) (5.2) (12.3) (12.5) (4B) (3.6) (7.6) (7.2) X3.3
12 .04 200 206 201 200 200 204 199 200 200 204 200 =200
(4.4) (10.9) (12.6) (4.7) (3.8) (10.7) (12.2) (3.F) (26) (6.8) (7.1) X2.7
04 .04 200 205 199 200 201 209 202 200 200 204 200 =200
(55) (13.7) (12.3) (5.6) (5.3) (13.5) (12.7) (4B) (35) (8.1) (7.2) X3.2

Table 6.4.1: Simulated means (and standard deviationBeastimators
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higherr, and a lowerryo. cause an increase in the variance of the estimators. For
example, in the first two lines of the table the standard diewiaof /i, increases
from 3.1 to 3.8 form; = 1000 andn, = 100.

Based on the results of Table 6.4.1, we can conclude thatagstign, andiz,,
have comparable variances and outperfpsrandjis, (in terms of variance). The
simulations in this section were constructed such B¥atl,) — Ay | Ay # An} =
E{A;0 — A|Aw # A}, which is a necessary condition for consistencyigf.
This is not an essential condition for the consistencyiof Moreover,ji,,, does
not outperformi, even under this condition and with a model for the simulated
data which deviates from our model in Section 6.2. Henpgeseems to be the
preferable estimator.

6.5 Final remarks and conclusions

We introduced a mixed model for a repeated audit control twilhrounds. This
model consists of a submodel for the absolute classificatiobabilities and an-
other submodel in terms of conditional regression for thditaralues. The gen-
eralization to a repeated audit control witliounds is quite straightforward. The
basic variables of the general model ag A4, ..., Ay, whereA; (i =1,....,k)

is the value according to auditorof a random record. The records can be clas-
sified based on the question whether some ofithedit values and book values
coincide; note that the number of classifications increatesply ink. Next,
similar to Section 6.2.3, conditional regression models loa specified for the
audit values which do not coincide with the book value or fes audit values
according to the classification.

As mentioned previously, repeated audit controls can bardegl as a missing
data problem (or more specific: as a monotone missing datagm). In the
missing data literature, Olkin and Tate (1961) have alraattpduced a model
with a mixture of both categorical and continuous variabtae general location
model. In this modelK categorical variables are classified, anditheontinuous
variables have a\(/-variate) normal distribution conditional on this clagsation.
The model in this chapter differs essentially from the gehlecation model: the
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classifications are not based on separate categoricablesibut on the equality
of the continuous variables, and the dimensionality of tredational models may
be lower thanV/. For example, the conditional regression models in Tat#e26.
are uni- and bivariate.

We derived estimators for the model parameters and the naaammeter of
interest: the mean true value. In a simulation study ounegtr for the mean true
value outperformed several other estimators introduceBadipettet al. (2001),
although the underlying model of the simulation study détkfrom our model in
Section 6.2.

So far we have only discussed point estimators for the pams)ebut con-
fidence limits are at least as important in auditing practioeauditing practice,
selection with probabilities proportional to the recordedue (‘monetary unit
sampling’) is applied frequently instead of the discussed@ing techniques. It
would be interesting to investigate this sampling methodi@lé We leave these
topics for further research.
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6.6 Appendices
6.6.1 Estimators for the regression parameters
We use the following notation for sample averages and vegisin
() 1 &
—C”
A7 = 5D Ay,
ij
( 1 & () ()
Cl]) CZJ Cij
Sgh - C. Z(Atg - Ag )(Ath - Ah )
ij
OLS-estimators
_(010) (010) —1 (010)_(010) ZClO(AtZ - b/ |:‘A]_ :|)2
by = Ay = (S0 ") S0 M Ay R t0
(St0"”) ™" S Cro — 2
A Co)—(C0) Z(An b { 1 ])2
- (S5 Ay o Ao
0 ( Co)) 19 Co) ' 0 Co— 2
o = | A = (g (A
(S5 i
COOu / 1 2
£ (et | 4
32 _ Ato
Ou C’ODu -2

1 Coou 1 1
12 = COOu -2 Z(Atl B bo |: AtO :|)(At2 B b[)u |: AtO :|)
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ML estimators

B_b A2_010_22 B_b AQ_CO_QQ
1 = 01, o] = Cro 51, o = bo, 0g = Co S0
1
Coou Coou =~ -1 Coo:
~ Coou >0 Ay > En > Ay
5
Ou _ Coo Coo 2 Coo -~ Coo
| g Sy S || S A
u o~ ~ /\2 o~
Z 00w 5t1 Z 00u AtOEtl Z 00w gtl Z 00w gtlAtQ

COOu

1 -~ 1
~N2 . N2A2 7 ~ \2 ~ A2
0u = 0000, + 7 — E (A — By, A | QouEn ), O12 = 0400,
00w t0

wheres;; = Ay —B{) { 141150 }

6.6.2 Conditional expectations

0 pas ~ D 1
E{Aw|Aw, An, A = An, 0} = Tap A + Top o l Ao ]

E{Aw|Aw, An, Aw # An, a} = T1joAsw0 + ToejoAn
o~ 1 S
+70ul0(Bo Ay + QouEnn)
~ ~ ~ ~ 5 1
E{Aw|Avw, 0} = (T11 + To1) Aw + T1004 { Ao }

~ 5 1 ~ 5 1
+7TOOeﬁ(/J l: AtO :| + 7T-OOUﬁ(/)u |: AO

.|
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Samenvatting (Summary in Dutch)

Statistische modellen voor steekproefcontroles zijn na¢gebaseerd op de (im-
pliciete) veronderstelling dat de controleur geen foutaakt. Echter, controleurs
zijn menselijk en dus feilbaar.

Eéen manier om rekening te houden met mogelijke fouten van eetrateur
is het toepassen van een herhaalde steekproefcontroldelHegmalde steekproef-
controle bestaat uit twee of meer ronden. In de eerste rondden posten uit de
boekhouding steekproefsgewijs gecontroleerd door eéyafei controleur. In de
daaropvolgende ronde wordt een deelsteekproef van detenpuasymaals gecon-
troleerd, ditmaal door een meer bekwame controleur. Dité@tele malen her-
haald worden totdat de laatste controleur, een feillozeegxple juiste waarde
geeft voor een deelsteekproef van posten die door alle saodg (feilbare) con-
troleurs al gecontroleerd zijn.

Herhaalde steekproefcontroles zijn gerelateerd aan ekghde data proble-
men. Standaard statistische methoden analyseren meattalah een aantal
variabelen, waargenomen voor een vast aantal cases. Hétvaak voor dat
voor enkele cases niet alle variabelen zijn waargenomedtatzenkele obser-
vaties ontbreken. Deze ontbrekende dataproblemen zgehrigid in de litera-
tuur bestudeerd. Herhaalde steekproefcontroles kunnechbewd worden als
ontbrekende data problemen. Neem bijvoorbeeld de herhatdekproefcontrole
met twee ronden: het oordeel van de expert is slechts bédxarikoor de dubbel
gecontroleerde steekproefposten, maar ontbreekt voardealig gecontroleerde
posten.

Dit proefschrift behandelt de statistische modelleringealyse van herhaalde
steekproefcontroles. De modellen verschillen met betngkiot het aantal feil-
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bare controleurs en het soort variabelen (categorisctiijneoaf een combinatie
van beide). Hoofdstuk 2 behandelt de modellering en analysale meest een-
voudige situatie meten feilbare controleur en alternatieve variabelen; ddstaa
wil zeggen dat de controleur en expert de posten slechteaksat dan wel incor-
rect classificeren. Het model van Hoofdstuk 2 is al eerdectivesen in de litera-
tuur, maar de aandacht is tot nu toe voornamelijk uitgegaan puntschattingen
voor de fractie incorrecte posten in de hele boekhoudingng&aien bovengren-
zen in de praktijk vaak minstens zo belangrijk zijn als pangtingen, bespreken
we twee methoden voor het bepalen van bovengrenzen: deaamele klassieke
methode en de Bayesiaanse methode. Het verschil is dat dei&@ayss methode
gebruik maakt van eventueel aanwezige (subjectieve) eomik omtrent de po-
pulatie en de kwaliteit van de controleurs. De klassiekehoa blijkt te leiden
tot erg hoge betrouwbaarheidsbovengrenzen; de Bayesiaanpak geeft in het
algemeen lagere bovengrenzen.

In Hoofdstuk 3 presenteren we een algemeen kader voor heenstaekproe-
ven; er kan meer dagén feilbare controleur bij betrokken zijn en bovendien be-
schouwen we categorische variabelen: er kunnen meerfadatisinogelijkheden
zijn dan alleen correct en incorrect. Het model van het vaangle hoofdstuk is
hiervan dus het meest eenvoudige geval. We bespreken twsehikende me-
thoden voor het trekken van de steekproefposten. Voor lstégddkproefmethoden
bepalen we de meest aannemelijke schatters en geven welessing voor het
probleem van niet uniek bepaalde schatters. We vergeligkséndrie verschil-
lende methoden voor het bepalen van bovengrenzen, waardaedgayesiaanse
aanpak. Ons Bayesiaans model verschilt van het gangbarenijzgewaarop we
de voorkennis formuleren.

In de laatste drie hoofdstukken bespreken we modellen \artiraie variabe-
len of een combinatie van categorische en continue. Hdddstu4 en 5 behande-
len multivariate lineaire regressie met een monotone ttatasur voor de afhan-
kelijke variabelen. In multivariate regressie wordt eemtabafhankelijke variabe-
len beschreven met behulp van een aantal verklarende ghetalEen monotone
datastructuur voor de afhankelijke (continue) variabddetekent het volgende:
de verklarende variabelen kunnen zodanig geordend worakealsleen waarne-
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ming van een verklarende variabele ontbreekt voor een dasepntbreken ook
de waarnemingen van alle daaropvolgende verklarendebedeia voor dezelfde
case. De waarnemingen voor de verklarende variabelen ampleet. Een zeer
speciaal geval is het model met slechts de constante tenar&larende variabele
dat al uitvoerig in de literatuur besproken is.

In Hoofdstuk 4 bepalen we analytische uitdrukkingen vodteds schatters
door middel van projecties; deze schatters hebben eenlgkedameetkundige
interpretatie. Voor het bepalen van schattingen wordt itbrekende data pro-
blemen vaak gebruik gemaakt van een iteratief algoritmezaljenaamde EM-
algoritme convergeert numeriek naar de meest aannemstifkatingen. In ver-
gelijking hiermee, heeft onze methode twee voordelen: deafi&elijke inter-
pretatie en de directe berekening die natuurlijk nauwlgguren sneller is. We
bespreken ook in detail een toets voor de regressiecoeticie de zogenaamde
likelihood ratio test De toetsingsgrootheid wordt afgeleid, alsmede de bijbe-
horende kansverdeling, die een generalisatie van reetisinele kansverdelingen
is. Voor deze nieuwe kansverdeling worden verschillenadeberingen afgeleid
en vergeleken door middel van simulatie.

In Hoofdstuk 5 komen verschillende aspecten van het multit@aregressie-
model aan de orde. We laten zien dat de schatters van hegVarajdstuk consis-
tent zijn, dit wil zeggen dat het verschil tussen de schaitarde parameters naar
nul gaat voor grote steekproeven. Voor de volledigheid wordok twee alter-
natieve schattingsmethoden gegeven voor het bepalen vaeelst aannemelijke
schatters; beide methoden zijn veelgebruikte iteratiégeriaimes die numeriek
convergeren naar de meest aannemelijke schattingen. s Isékijken we ook
een generalisatie van het model met slechts de constanerkllarende variabele:
one-wayMANOVA.

In de praktijk is men vaak geteresseerd in de totale grootte van fouten in de
populatie; in geval van bekende populatie-omvang is diivedgnt aan de gemid-
delde grootte van de fouten. De fout bij de meeste postenhteegelijk aan
nul, zodat het niet realistisch is een continu model voorrdette van de fouten
te veronderstellen. In Hoofdstuk 6 construeren we eenstesdher model voor
de grootte van fouten door de modellen van de voorgaandel$iniken te com-
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bineren. Voor de classificatiekansen gebruiken we de merdedin Hoofdstukken
2 en 3. Als uit de classificatie van een post vervolgens hbfigitter echt sprake is
van een fout, dan wordt de grootte van deze fout gemodeliaetdehulp van een
conditioneel regressiemodel (vergelijkbaar met dat vaoftisiuk 4). De schatters
voor de modelparameters en voor de gemiddelde grootte véouten in de po-

pulatie zijn nu eenvoudig te bepalen door combinatie varctatingstechnieken
van de voorgaande hoofdstukkken. Simulatie toont aan dag schatter voor de

gemiddelde grootte van de fouten nauwkeuriger is dan eakalere schatters die
eerder in de literatuur besproken zijn.



