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Chapter 1

Introduction

1.1 Motivation

By the time this thesis was started in 2000, six companies wereresponsible for the

social security payments in the Netherlands. Together, they paid more thane 22

billion a year on sickness and unemployment benefits, and thelike. Although they

were, to a large extent, independent and self-regulating, they were under twofold

inspection: they were subject to external auditors1’ assessments of their annual

financial statements, and a supervising institution - called the CTSV (nowadays

the IWI) - produced annual assessments of the legality of their payments on behalf

of the Department of Social Security. Furthermore, internal audit departments

performed extensive tests on randomly selected payments, the results of which

were shared with both external auditors and CTSV.

These checks were useful, since Dutch social security rulesand regulations

were (and are) notoriously complicated. Mistakes and misinterpretations therefore

were easily made, even by experts in the field. According to the annual report

2003 of IWI , the incorrect payments in that year - although only 1.6% of the

total sum paid - amounted to a hugee 365 million. Table 1.1.1 - taken from the

annual report 2002 of IWI (in Dutch) - contains some detailed information about

social security payments in earlier years. The first column of the table mentions

1Throughout this thesis we use the term “audit” (and similarly “auditor”) in its general meaning
of inspections (executed for example by controllers, surveyors or accountants)’.

1



2 CHAPTER 1. INTRODUCTION

different kinds of social security payments; for example, the Wajong was meant

for disabled adolescents and students.

Payments 2002 Percentage errors
(in million e) 2002 2001

WAO 12011 0.2 0.2
WAZ 584 4.5 1.2
Rea 693 5.4 1.9
ZA 1124 9.1 2.0
BIA 8 7.0 2.0
Wajong 1584 0.9 0.7
Wazo 856 3.8 4.2
TW 287 6.3 2.1
WW 3939 4.6 2.9

Table 1.1.1: Social security payments

One of the methods that the CTSV used to check for incorrect payments and

incorrect assessments of the internal auditors, is double checking. So, after the

auditors had checked the book values of a large number of sampled records, this

supervising organization double checked a subsample of these records to assess

the quality of the auditors’ work. For some records the CTSV’sjudgement would

differ from the auditors’. Although this did not necessary imply an auditor’s er-

ror since the difference maybe caused by different interpretation of the payment

rules, we will use the term “error” throughout this thesis. Since the CTSV had

great expertise, it assumed that their own check is faultless. So we ended up with

a sample of single checked records (with only the fallible assessment) plus a sam-

ple of double checked records from which we can compare the number and size

of the errors found by the auditor with the true errors discovered by the expert.

The question remained how to combine the information from both the fallible au-

ditor and expert to draw the most accurate conclusions aboutthe true errors in the

population.

This thesis tries to answer this question by the statisticalmodeling and infer-

ence of repeated audit controls. In a formal repeated audit control a fallible audi-

tor checks a random sample of records. A subsample of these (already checked)
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records is checked again by another (more skillful) auditor. This procedure may

be repeated several times until the final auditor, considered to be infallible, gives

the true values of some sampled records which have already been checked by all

previous auditors.

Repeated audit controls are related to missing data problems. Standard statis-

tical methods usually analyse a number of variables, observed for a fixed number

of cases. However, it frequently occurs that not all of the data entries are ob-

served for all cases, implying that some data entries are missing; these missing

data problems occur frequently in practice and have received a lot of attention in

the literature. Repeated audit controls can be regarded as missing data problems.

For example, in case of two rounds, the expert’s judgement isobserved for the

double checked records, but it is missing for the single checked records for which

only the (fallible) auditor’s assessment is available.

Though we formulate the problem in terms of a fallible and an infallible au-

ditor, it is important to note that our analysis is also validfor the general quality

control problem in which objects are classified by a (cheap) error-prone device

and a random subsample is classified again by a precise (but expensive) device to

adjust for misclassification. Finally, it is also importantto note that the problem of

fallible auditors is not only relevant for the Dutch social security payments. The

last couple of years this has been shown only too often by (extreme) cases like

Enron and Worldcom which made it into the global news.

1.2 Outline

In this thesis several models for repeated audit controls will be discussed. They

differ with respect to the number of fallible auditors and the kind of variables (cat-

egorical, continuous or a mixture). Chapter 2 starts with thecase from which our

research originated: the repeated control of the Dutch social security payments

(involving only one fallible auditor plus the expert). Since the parameter of inter-

est is the fraction of incorrect payments, the auditor and expert classify a record as

either correct or incorrect, leading to dichotomous variables. The corresponding

classification probabilities are important additional parameters.
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The model of Chapter 2 was first introduced by Tenenbein (1970)and has re-

cently also been studied by Barnettet al. (2001). Both papers mainly focussed

on point estimation (and in particular maximum likelihood estimation). Since in

auditing practice upper limits usually are at least as important as point estimates,

we discuss two approaches to determine upper limits for the fraction of incorrect

records in the population: a numerical procedure to determine classical upper con-

fidence limits (which is a generalization of Moorset al. (2000)) and the Bayesian

approach. It is shown that the classical approach leads to very conservative upper

limits; the Bayesian upper limits are in general lower.

Chapter 3 presents a general framework for repeated audit controls with cat-

egorical variables and/or several fallible auditors; the model of Chapter 2 is the

simplest situation within this setting. We study two different sampling methods:

stratified and random sampling. In stratified sampling, previous classification re-

sults determine the next sample sizes for all classifications separately, while in

random sampling they only determine the total sample size for the next auditor.

Stratified sampling is often applied in practice. We derive the maximum likeli-

hood estimators for both methods and propose a solution for maximum likelihood

estimators which are not uniquely defined, a frequently occurring problem in prac-

tice. We compare three different approaches to derive upperlimits, including the

Bayesian approach. Our Bayesian model deviates essentially from a previously

adopted Bayesian model: the prior distributions are formulated for a different,

more natural, set of parameters. The underlying independence assumptions of our

approach seem to be more realistic than the usual ones. To determine the Bayesian

upper limit, we make use of the data augmentation algorithm of Tanner and Wong

(1987) for determining Bayesian posterior distributions inmissing data problems.

So, in these two chapters models for repeated audit controlswith categorical

variables were analysed; in the remaining chapters models for continuous vari-

ables, and a mixture of categorical and continuous variables will be treated. These

models are highly relevant in practice, since often one is not only interested in the

fraction of errors in the population, but also in the total size of the errors.

Chapters 4 and 5 discuss multivariate linear regression withmonotone miss-

ing observations of the - continuous - dependent variables;the latter means that
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the dependent variables can be ordered in such a way that if anobservation of

a dependent variable for a record is missing, the observations of all subsequent

dependent variables for the same record are also missing. See Schafer (1997)e.g.

for a more extensive discussion about monotone data patterns. The explanatory

variables are assumed to have been completely observed: forthese variables no

missing observations occur. This model is an important generalization of the case

with just the constant as explanatory variable, which has received a lot of attention

in the literature (see Bhargava (1962)e.g.). Note that the multivariate regression

model with monotone missing observations is widely applicable, repeated audit

controls being only one example. In case of a repeated audit control, the depen-

dent variables are the (fallible) auditors’ and the expert’s judgement; the known

book value (and the constant) act as the explanatory variables.

In Chapter 4 we derive closed form expressions for the least squares and max-

imum likelihood estimators using projections, these estimators get a clear geo-

metrical interpretation. The existing iterative method for calculating maximum

likelihood estimates in missing data problems, is the widely used EM-algorithm,

which numerically converges to the maximum likelihood estimates. In compar-

ison, our method has two advantages: the easy interpretation and the direct cal-

culation which of course is much faster and more precise. We include (sets of)

MANOVA-tables enabling us to perform exact likelihood ratio tests on the coeffi-

cients. They lead to a new type of distribution, a generalization of the well-known

Wilks’ distribution. Similar to the approximations for theWilks’ distribution for

complete data (see Bartlett (1947)e.g.), several approximations for this general-

ized Wilks’ distribution are derived and compared by simulation.

In Chapter 5 we look at several additional features of the multivariate regres-

sion model. First of all, we prove that the estimators of the previous chapter - and

a more general class of estimators - are consistent. This result is used to prove

the consistency of the iterative weighted least squares algorithm. For the sake of

completeness the EM-algorithm for our model is given; it is similar but not iden-

tical to the one of Meng and Rubin (1993). A generalization of the model with

just the constant as explanatory variable is obtained as a special case: one-way

MANOVA.
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It would not be realistic to assume a continuous model for theerrors of the

records since, in auditing practice, the errors often equalzero. However, if the

errors are not zero they can take on a lot of different values.In the final Chapter

6 we use the models of the previous chapters to construct a more realistic model

for repeated audit controls with a mixture of discrete and continuous variables.

This model consists of a discrete submodel for the classification probabilities and

a continuous submodel for the non-zero errors using conditional regression. We

present the maximum likelihood estimators for the model parameters, and a new

estimator for the mean size of the errors in the population. Simulation shows that

this last estimator outperforms the estimators proposed byBarnettet al. (2001).

1.3 Publication background

The chapters in this thesis are chronologically ordered. They are based on previ-

ous publications which (almost all) have been written in cooperation with B.B. van

der Genugten and J.J.A. Moors. Chapters 2, 3 and 4 can be read independently;

Chapter 4 is necessary for understanding Chapter 5, while Chapter 6 demands

knowledge of Chapter 2, 3 and 4.

The contents of Chapter 2 are derived from my Master’s thesis which was

written during an internship at Deloitte and Touche. The thesis was converted

into research report Raats and Moors (2000) and published as Raats and Moors

(2003). Chapter 2 coincides with Raats and Moors (2003) as published, except

for the shortened introduction and some minor layout changes.

Chapter 3 has been published as Raatset al. (2004b) (with some minor layout

changes) and consists of research report Raatset al. (2002a) and, additionally, the

Bayesian approach for determining upper limits.

Chapter 4 is based on research reports Raatset al. (2002b) and Raats (2004). It

is essentially a revised version of Raatset al. (2002b) with two additional sections:

Section 4.4 about relative efficiency and Section 4.10 aboutthe approximations of

the generalized Wilks’ distribution (which is a curtailed version of Raats (2004)).

Chapter 5 consists of Raatset al. (2004a) and two additional sections: Section

5.4 about the EM-algorithm and Section 5.5 about one-way MANOVA.
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Chapter 6 is based on Raatset al. (2004). To avoid needless repetitions,

the two underlying research reports of the last two chaptershave been shortened

considerably.





Chapter 2

Dichotomous data, two rounds

2.1 Introduction

As mentioned in Section 1.1, six companies are responsible for the social security

payments in the Netherlands. For one of these six companies,an internal auditor

reported 16 errors in a random sample of 500 payments, leading to an estimated

error rate of 3.2% and a 95% upper confidence limit of 4.8%. Thesupervising

CTSV decided to double check this result. Of the 500 payments evaluated by

the auditor, a random subsample of 53 was checked once more - independently

and error free - by an external auditor of the CTSV. The subsample contained two

errors found by the auditor; both appeared to be true errors indeed. However,

among the remaining 51 payments, approved by the internal auditor, the CTSV

auditor found one additional error. The question now is how to derive from the

information in both sample and subsample, point and interval estimates for the

population error rate.

The problem recently received attention from two sides; besides, we found

that it was discussed much earlier. A brief review of the relevant papers follows,

going back in history; to present a detailed overview of recent developments, not

only published papers, but also research reports are mentioned. The most recent

published contribution is Barnettet al. (2001), based on the research report Bar-

nettet al. (2000). It discusses the two type of mistakes an auditor maymake:

• evaluating an incorrect payment as ‘correct’ (missing an error), and

9
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• evaluating a correct payment as ‘incorrect’ (making up an error),

and presents the maximum likelihood estimator (MLE) for thepopulation error

rate. (Besides, a quantitative approach is followed: three methods are proposed

to estimate the total population error from thesizeof the observed errors. The

quantitative approach will be discussed in Chapter 6; for themoment, we will

only be concerned with qualitative variables.)

The same MLE was derived in Moors (1999), and applied to the Dutch social

security example in Raats and Moors (2000). The latter was based on the Master’s

thesis Raats (1999); it is a generalization of Moorset al. (2000) where only one

type of auditor’s mistake was considered: since no made up error was found in the

CTSV subsample, the corresponding probability was put equalto 0 a priori. Fur-

ther, a numerical method was given to find confidence intervals for the population

error rate.

But neither Barnettet al. (2000) nor Moors (1999) can claim priority. Near the

end of 2001 we discovered that the same MLE was already derived in Tenenbein

(1970). Compare also Tenenbein (1971) and Tenenbein (1972).Besides, we found

that this estimator can be easily derived as well from the more general monotone

sampling approach, discussed by Little and Rubin (2002) (and(1987), the earlier

edition).

This chapter is organized as follows. Sections 2.2 - 2.4 discuss the classi-

cal approach of repeated audit controls. Section 2.2 describes the repeated control

model and sets out our notation. Section 2.3 briefly discusses the MLE’s, in partic-

ular for the population error rate. In Section 2.4 a numerical method to determine

a classical upper confidence limit for the error rate is presented; the method is

illustrated by means of the CTSV example. However, we show that this classical

confidence limit is very conservative, due to the presence ofnuisance parameters;

consequently, it is of limited practical use.

Therefore, it seems logical to follow the Bayesian approach.Section 2.5

presents a Bayesian model for the situation of just one possible auditor’s mis-

take: (s)he may miss errors, but never makes them up. Section2.6 contains the

Bayesian approach for the extended model where both types of auditor’s mistakes
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may occur. The final Section 2.7 discusses the main results and gives some con-

clusions. Also, extensions in two different directions arebriefly discussed.

2.2 The model

The model which we consider in this paper, coincides with themodel which first

was considered by Tenenbein (1970) and more recently by Barnett et al. (2001).

However, we introduce another, more intuitive, notation that can easily be gener-

alized for extended audit controls with categorical data and more than two rounds;

see Chapter 3.

In the following notation the subindex 0 stands for incorrect and subindex 1

for correct. Consider a population in which a fractionp0 of the records is incor-

rect. The (internal) auditor decides a randomly drawn record to be ‘incorrect’ or

‘correct’. The quotation marks indicate a decision; the same phrases without them

indicate the true situation. So we take the possibility thatthe auditor misclassifies

the record into account: with (conditional) probabilityp1|0 an incorrect record is

(erroneously) judged to be ‘correct’ and with probabilityp0|1 a correct record is

misclassified as ‘incorrect’.

From the three error probabilities




p0 = Pr(random record is incorrect)
p1|0 = Pr(auditor misses an error)
p0|1 = Pr(auditor makes up an error)

(2.2.1)

other probabilities as the joint probabilityp10 (of a random record being correct

and being misclassified as ‘incorrect’) can be derived. The number of records

found to be ‘correct’ and ‘incorrect’ by the auditor in a random sample of sizen1

will be denoted byC1 andC0, respectively.

Now, an external auditor who is assumed to be faultless (the expert) checks

a subsample of the records, of sizen2, once more. In this subsample the expert

determines the true numberC+0 of incorrect records;C00 of these errors were

already found by the first auditor, butC10 were missed. Of theC+1 correct records

in the subsample,C01 were misclassified as ‘incorrect’ by the first auditor, while

the remainingC11 were correctly classified.
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Then1 − n2 remaining records are checked only once;C0− andC1− denote

the number of ‘incorrect’ and ‘correct’ values among them. Table 2.2.1 shows the

complete information obtained from both checks.

Total Single checked sample Double checked sample
Expert

First auditor Total correct incorrect
‘correct’ C1 C1− C1+ C11 C10

‘incorrect’ C0 C0− C0+ C01 C00

Total n1 n1 − n2 n2 C+1 C+0

Table 2.2.1: Classification frequencies

It will appear to be helpful to introduce some more notation,in particular error

probabilities, based on the auditor’s judgements; comparethe monotone missing

data approach in Little and Rubin (2002). These inverse errorprobabilities are




π0 = Pr(‘incorrect’)
π1|0 = Pr(correct| ‘incorrect’)
π0|1 = Pr(incorrect| ‘correct’).

(2.2.2)

Figure 2.2.1 shows both sets of parameters in the double checked sample.

Population First auditor Number First auditor Expert Number

‘correct’ C11 correct C11

1 − p0|1 1 − π0|1

correct C+1 ‘correct’
1 − p0 1 − π0

‘incorrect’ C01 incorrect C10

p0|1 C0+ π0|1

‘incorrect’ C00 incorrect C00

1 − p1|0 1 − π1|0

incorrect C+0 ‘incorrect’
p0 π0

‘correct’ C10 correct C01

p1|0 π1|0

Figure 2.2.1: Classification frequencies and probabilities
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Joint probabilities asπ01 (a random record being classified as ‘incorrect’ by

the auditor and as correct by the expert)= p10 follow from these. Besides, the

following one-to-one relations exist between (2.2.1) and (2.2.2):




p0 = (1 − π0)π0|1 + π0(1 − π1|0), π0 = (1 − p0)p0|1 + p0(1 − p1|0)

p1|0 =
(1 − π0)π0|1

(1 − π0)π0|1 + π0(1 − π1|0)
, π1|0 =

(1 − p0)p0|1

(1 − p0)p0|1 + p0(1 − p1|0)

p0|1 =
π0π1|0

(1 − π0)(1 − π0|1) + π0π1|0

, π0|1 =
p0p1|0

(1 − p0)(1 − p0|1) + p0p1|0

.

(2.2.3)

Under the assumption of random sampling with replacement, all random vari-

ables in the model have (conditional) binomial distributions with the probabilities

(2.2.2) as parameters:




L(C0) = B(n1; π0)
L(C0+|C0 = c0) = B(n2; c0/n1)
L(C01|C0+ = c0+) = B(c0+; π1|0)
L(C10|C1+ = c1+) = B(c1+; π0|1).

(2.2.4)

The likelihood is the product of these conditionally independent binomial distri-

butions.

2.3 Estimation

From (2.2.4), MLE’s for the parameter set (2.2.2) are found immediately; for the

original set (2.2.1), they then follow directly from (2.2.3):




P̂0 =
C1

n1

C10

C1+

+
C0

n1

C00

C0+

P̂1|0 =
C1

n1

C10

C1+

/(
C1

n1

C10

C1+

+
C0

n1

C00

C0+

)

P̂0|1 =
C0

n1

C01

C0+

/(
C1

n1

C11

C1+

+
C0

n1

C01

C0+

)
.

(2.3.1)
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The same expressions can be found in Tenenbein (1970), Moors(1999) and Bar-

nettet al. (2001). The MLE’s have clear interpretations, based on (2.2.3); further-

more, it is straightforward that the moment estimators coincide with the MLE’s.

Note that forC01 = 0, the formulae forP̂0 andP̂1|0 reduce to expression (6) in

Moors (1999), treating the one error type situation withp0|1 = 0.

The estimator for our main parameterp0 breaks down when eitherC1+ = 0 or

C0+ = 0. Though this situation can be avoided by using stratified sampling such

as Tenenbein (1970) remarked and the next chapter discussesin more detail, in

case of random sampling these events can occur. In case ofC1+ = 0 or C0+ = 0,

the likelihood does not lead to a unique MLE and somewhat arbitrary values have

to be chosen. Heuristic arguments (details can be found in Moors (1999)) lead to

the following MLE forp0 (compare also (3.5.2)):

P̂0 =





C10

n2

for C0+ = 0

C1

n1

C10

C1+

+
C0

n1

C00

C0+

for 0 < C1+ < n2

C00

n2

for C1+ = 0.

(2.3.2)

Appendix 2.8.1 shows that the distribution of (2.3.2) is symmetrical with respect

to the point (p1|0, p0|1) = (0.5, 0.5). The intuitive explanation is that for high val-

ues of the misclassification probabilitiesp1|0 andp0|1, all the auditor’s judgements

should be reversed: ‘correct’ is better interpreted as ‘incorrect’, andvice versa.

2.4 Upper limits

Following the argumentation of Cox and Hinkley (1974) Chapter7, p. 229, it is

straightforward that an(1−α) upper confidence limit forp0, given a point estimate

p̂0, can be obtained from

pu
0 = max

p0

{p0, p1|0, p0|1 : Pr(P̂0 ≤ p̂0|p0, p1|0, p0|1) ≥ α}. (2.4.1)
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The calculation of the upper limit (2.4.1) is illustrated bymeans of the CTSV-

example. Table 2.4.1 contains the numerical data of this practical example which

was presented in Moorset al. (2000) and described in Section 2.1.

Total Single checked Double checked sample
sample Expert

First auditor Total correct incorrect
‘correct’ c1 = 484 c1− = 433 c1+ = 51 c11 = 50 c10 = 1
‘incorrect’ c0 = 16 c0− = 14 c0+ = 2 c01 = 0 c00 = 2
Total n1 = 500 n1 − n2 = 447 n2 = 53 c+1 = 50 c+0 = 3

Table 2.4.1: CTSV example

For this example, (2.3.1) results in the ML estimates

p̂0 = 0.051, p̂1|0 = 0.372, p̂0|1 = 0.000.

To determine the accompanying 95% upper confidence limitpu
0 in (2.4.1), the

quantity

pu
0 |p1|0, p0|1 = max

p0

{p0 : Pr(P̂0 ≤ 0.051|p0, p1|0, p0|1) ≥ 0.05}

has to be calculated for all possible values ofp1|0 andp0|1. Thanks to the symmetry

of P̂0 with respect to the point(p1|0, p0|1) = (0.5, 0.5), the calculations may be

limited to thep0|1 interval [0, 0.5]. Figure 2.4.1 gives a 3-dimensional illustration.

Subsequently, the maximum ofpu
0 |p1|0,p0|1 over all possible values ofp1|0 and

p0|1 has to be determined. This maximum was found to be 0.121; it was realized

for (p1|0, p0|1) = (0.914, 0.000) and - because of the symmetry - for(p1|0, p0|1) =

(0.086, 1.000). Note that thep0|1 value 1 is inconsistent with the sample result

c11 = 50 in Table 2.4.1; however, this is irrelevant since we are interested in

the final p̂0 value 0.051 and not in the individual classification numbers. The

solid curve in Figure 2.4.2 showspu
0 |p1|0,p0|1 for p0|1 = 0 and the accompanying

maximumpu
0 ; for comparison, this function is shown as well forp0|1 = 0.3 (the

dotted curve).
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Figure 2.4.1:pu
0 |p1|0, p0|1 for p̂0 = 0.051
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It is interesting to compare these results with the numerical findings in Moors

et al. (2000). In the reduced model, the maximum likelihood (ML) estimates for

p0 andp1|0 are still determined according to (2.3.1) and therefore coincide with

the ML estimates of the extended model such as determined earlier. However, a

slightly 95% lower upper confidence limitpu
0 = 0.120 was calculated.

In the present model - as in the reduced model - the upper limitis realized for

a very high value ofp1|0 or p0|1. In reality, such high values will not often occur

and the upper limit (2.4.1) can be very conservative. This can also be concluded

from Appendix 2.8.2, which contains the coverage of the 95% upper limits for

different sets of parameters. The error probabilities and the first three sets of

sample sizes coincide with the ones analysed by Barnettet al. (2001). In all

these cases, the coverage of the classical upper limit (2.4.1) is at least 95%. The

coverage is higher for the lowerp0-value. Furthermore, the results indicate that

p1|0 has a considerably larger impact on the coverage thanp0|1. The latter part of

Appendix 2.8.2 is included to enable a comparison between the coverage of the

Bayesian and classical upper limits in Section 2.7. In all cases, the coverage is

calculated from simulation runs with 10,000 iterations each.

2.5 Bayesian approach for one error type

Different authors already discussed the Bayesian approach for fallible audits. Viana

(1994) analysed a model with possible misclassifications but without a double

check. Yorket al. (1995) presented the Bayesian approach for a double sam-

pling scheme with two fallible auditors. Geng and Asano (1989) looked in more

detail at the Bayesian model where some classifications of a fallible auditor are

checked again by an infallible expert. However, they considered the situation with

two dichotomous variables in each audit round, whereas our model only consid-

ers one dichotomous variable per round (the classification ‘correct’ or ‘incorrect’).

Moreover, Geng and Asano (1989) used Dirichlet priors for the inverse error prob-

abilities (2.2.2) rather than for the (natural) model parameters (2.2.1). The latter

was also done by Schafer (1997) who discussed the Bayesian approach for gen-

eral multinomial, monotone missing data problems. In this and the next section
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we will formulate the Bayesian model in terms of priors for theparameters (2.2.1).

For simplicity, first the one error type model is considered.

In the one error type situation wherep0|1 (the probability of making up an

error) isa priori set to zero as in Moorset al. (2000), the model contains two un-

known parameters. In the Bayesian approach these two parametersp0 andp1|0 are

viewed as realizations of random variablesP0 andP1|0. Their prior distribution

represents the researcher’s knowledge before the sample results are obtained. A

logical choice for the marginal prior distributions ofP0 andP1|0 is the beta dis-

tribution, as the conjugated distribution of the binomial sample results. Further,

independence ofP0 andP1|0 (the quality of the population is independent of the

quality of the auditor) seems reasonable, so that the joint prior distribution ofP0

andP1|0 is the product of two beta distributions:

L(P0, P1|0) ∝ pα0−1
0 (1 − p0)

α1−1p
α1|0−1

1|0 (1 − p1|0)
α0|0−1.

The prior knowledge aboutp0 (p1|0) is reflected by the parametersα0 andα1 (α1|0

andα0|0).

In combination with the binomial sample results (2.2.4) this leads to the fol-

lowing joint posterior distribution of (P0,P1|0):

L(P0, P1|0|sample results) ∝
∑c1−

k=0

[
(−1)k

(
c1−
k

)
p

c+0+c0−+α0+k−1
0 (1 − p0)

c+1+α1−1·
p

c10+α1|0−1

1|0 (1 − p1|0)
c00+c0−+α0|0+k−1

]
.

Integrating overP1|0 gives the marginal posterior distribution of the main param-

eterP0:

L(P0|sample results) ∝
∑c1−

k=0

[
(−1)k

(
c1−
k

)
p

c+0+c0−+α0+k−1
0 (1 − p0)

c+1+α1−1·
B(c10 + α1|0, c00 + c0− + α0|0 + k)

]
.

(2.5.1)

with B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx. Note that (2.5.1) is a weighted average of

beta distributions with signed weights(−1)k
(

c1−
k

)
B(c10+α1|0, c00+c0−+α0|0+k).

As point estimateb0 for p0 in the Bayesian approach we take the mode of the

marginal posterior distribution ofP0 since, in general, this corresponds to the ML
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estimate when the prior distribution is uniform (see Little& Rubin (2002), p. 105

e.g.); the 0.95-quantile of the marginal posterior distribution is the Bayesian 95%

upper limit bu
0 . Note that by integrating overP1|0, all different values ofp1|0 are

taken into consideration, and not only the worst values as inthe classical approach.

Hence,bu
0 will be lower thanpu

0 in general.

An important feature of the Bayesian approach is the choice ofthe prior distri-

bution parameters. In practice, prior information aboutp0 could be obtained from

previous audits of the same population. To get an idea of the quality of the fallible

auditor, one could look at education, years of experience, performance in similar

previous auditset cetera. However, since we do not have such information, the

CTSV example will be analysed for the non-informative, or uniform, prior and

some other hypothetical priors.

If no specific prior knowledge is available, all possible values of (P0, P1|0) can

be considered as equally probable; this leads to the non-informative prior, defined

by α0 = α1 = α1|0 = α0|0 = 1. The choiceα1 > α0 e.g.reflects the researcher’s

belief that lower values ofP0 are more likely. For simplicity,α0 = α1|0 = 1 will

be chosen throughout; forα1 andα0|0 the values 1 and 5 will be considered. The

choice of this latter value is based on the following argumentation. If a record

is randomly classified, the probability of a misclassification is 0.5. For a beta

prior with parameters 1 and 5 the 95% upper limit is about 0.5.So the probability

of misclassification is less than 0.5 with probability 0.95.Indeed, it seems not

unreasonable to assume that classifications by a qualified auditor will outperform

random classifications.

The Bayesian approach is now applied to the practical CTSV example. For the

data in Table 2.4.1 and the non-informative prior, the posterior (2.5.1) becomes

L(P0|sample results) ∝
433∑

k=0

[
(−1)k

(
433

k

)
p17+k

0 (1 − p0)
50B(2, 17 + k)

]
.

Figure 2.5.1 shows this distribution; the Bayesian estimates b0 andbu
0 are shown

as well.
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Figure 2.5.1: Marginal posterior distributionP0; one error type

Table 2.5.1 summarizes these Bayesian estimates for four different priors; for

comparison, the classical estimates, mentioned in Section2.4, are added.

Parameters prior Bayesian estimates
α1 α0|0 b0 bu

0

1 1 .050 .105
5 1 .048 .101
1 5 .042 .075
5 5 .042 .073

Classical estimates .051 .120

Table 2.5.1: Point estimates and upper limits forp0 ; α0 = α1|0 = 1

All Bayesian estimates are lower than the corresponding classical results. For

the upper limits, this is caused by the additional information represented in the

prior. Especially prior knowledge about the quality of the auditor has a large

impact on the estimates; the researcher’s belief thatp1|0 is low (α0|0 = 5) leads

to a considerable reduction ofb0 andbu
0 . The reason is that there is less sample
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information concerningp1|0 thanp0.

2.6 Bayesian approach for two error types

The model with two error types containsp0|1 as a third unknown parameter. In-

dependence ofP0 and (P1|0, P0|1) seems reasonable (the quality of the population

is independent of the quality of the auditor), but independence ofP1|0 andP0|1 is

questionable. Nevertheless, this assumption is made here to simplify the calcula-

tions. Starting from marginal beta distributions, the joint prior distribution ofP0,

P1|0 andP0|1 then reads:

L(P0, P1|0, P0|1) ∝ pα0−1
0 (1−p0)

α1−1p
α1|0−1

1|0 (1−p1|0)
α0|0−1p

α0|1−1

0|1 (1−p0|1)
α1|1−1.

(2.6.1)

In combination with the binomial sample results (2.2.4), this leads to the following

joint posterior distribution:

L(P0, P1|0, P0|1|sample results) ∝
p

c10+α1|0−1

1|0 (1 − p0|1)
c11+α1|1−1

c1−∑
j=0

c0−+j∑
k=0

[
(−1)j

(
c1−
j

)(
c0−+j

k

)
p

c+0+k+α0−1
0 ·

(1 − p0)
c+1+c0−+j−k+α1−1(1 − p1|0)

c00+k+α0|0−1p
c01+c0−+j−k+α0|1−1

0|1

]
.

Integrating over the nuisance variablesP1|0 andP0|1 leads to the marginal posterior

distribution of the main parameterP0 :

L(P0|sample results) ∝
c1−∑
j=0

c0−+j∑
k=0

[
(−1)j

(
c1−
j

)(
c0−+j

k

)
p

c+0+k+α0−1
0 (1 − p0)

c+1+c0+j−k+α1−1·
B(c10 + α1|0, c00 + k + α0|0)B(c01 + c0− + j − k + α0|1, c11 + α1|1)

]
.

(2.6.2)

Again, the marginal posterior distribution is the weightedaverage of beta distri-

butions.

The Bayesian approach is applied to the example of Section 2.4. Using the

non-informative prior in combination with the sample results in Table 2.4.1, (2.6.2)



22 CHAPTER 2. DICHOTOMOUS DATA, TWO ROUNDS

can be simplified to:

L(P0|sample results) ∝
433∑
j=0

14+j∑
k=0

(−1)j
(
433
j

)(
14+j

k

)
p3+k

0 (1 − p0)
64+j−kB(2, 3 + k)B(16 + j − k, 50).

Figure 2.6.1 shows the marginal posterior distribution andthe Bayesian estimates

b0 andbu
0 .
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Figure 2.6.1: Marginal posterior distributionP0; two error types

Table 2.6.1 contains the classical results calculated in Section 2.4 and the

Bayesian results for eight different priors.

As in the situation with one error type, all Bayesian estimates are lower than

the corresponding classical results and again prior knowledge aboutp1|0 has a

larger impact on the results than prior knowledge aboutp0. Prior knowledge about

p0|1 hardly has any impact although this parameter, just likep1|0, concerns the

quality of the auditor. The explanation is that there is muchmore sample informa-

tion onp0|1: this parameter is estimated from thec+1 = 50 correct records in the

double-checked sample, andp1|0 from only thec+0 = 3 incorrect values.
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Parameters prior Bayesian estimates
α1 α0|0 α1|1 b0 bu

0

1 1 1 .042 .098
1 1 5 .042 .098
5 1 1 .041 .093
5 1 5 .041 .093
1 5 1 .036 .068
1 5 5 .036 .068
5 5 1 .035 .066
5 5 5 .035 .067

Classical estimates .042 .0116

Table 2.6.1: Point estimates and upper limits forp0; α0 = α1|0 = α0|1 = 1

As shown earlier the coverage of the classical(1 − α) upper limit often is

(much) higher than1 − α. Since the Bayesian upper limit is based more on the

sample estimates of the nuisance parameters than the classical upper limit that

considers the worst-case situation, the Bayesian coverage may be expected to be

closer to1 − α. Due to numerical difficulties caused by the signed weights,we

only calculated Bayesian coverage for relatively small sample sizes. The last part

of Appendix 2.8.2 shows our numerical results for non-informative priors. For

these small sample sizes, there is not much difference between the coverage of the

classical and the Bayesian upper limits.

2.7 Conclusions and further research

In this chapter both the classical approach and the Bayesian approach of two mod-

els for the repeated audit control have been discussed. The calculations were illus-

trated by means of the actual data from the Dutch CTSV-investigation. Table 2.7.1

shows some more results, for slightly different sample outcomes; the Bayesian re-

sults are based on the non-informative prior.
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Classical Bayesian
Model n1 n2 c0 c0− c+0 c10 c01 p̂0 pu

0 b0 bu
0

Single check 500 - 16 - - - - .032 .048 .035 .048
Double check 500 53 - 14 2 0 - .032 .092 .038 .077
one error type 500 53 - 14 3 1 - .051 .120 .050 .105
Double check 500 53 - 14 3 1 0 .051 .121 .042 .098
two error types 500 53 - 14 3 1 1 .042 .116 .037 .094

Table 2.7.1: Classical and Bayesian point estimates and upperlimits

The most striking feature of this table is that all double check models lead to

increased upper limits; even if the expert finds not a single additional error (line

2) pu
0 andbu

0 are 90 and 60%, respectively, larger than when the auditor isassumed

to be infallible (line 1).

Lines 3 an 4 represent the empirical data found in Dutch social security pay-

ments, where the first auditor made up no errors, but missed one error. In line 3

the model includes only the possibility of missing errors, in line 4 the possibility

of making up errors is considered as well. Extending the model with this second

error type has not much influence on the classical results, while the Bayesian es-

timates decrease. Of course, if the auditor made up one of theerrors (line 5), all

estimates decrease.

Appendix 2.8.3 contains some additional results for the different models. In

this appendix the upper limits are only calculated for smallsample sizes (n1 =

50, n2 = 20), since the calculations of the upper limits are rather timeconsuming

and dramatically increase with sample sizes. The Bayesian 95% upper limits are

calculated for the non-informative prior, as well as for theprior with one parameter

set to 5 (and the other parameters set to 1).

Note that the Bayesian upper limits are generally smaller than the classical

ones, although Table 2.8.4 shows two exceptions. This can beexplained as fol-

lows, for example for the one error type situation. Introduce the Bayesian upper

limit bu
0 |p1|0 for a given value ofp1|0, analogously top0|p1|0. Thenbu

0 |p1|0 < pu
0 |p1|0

will hold, unless the prior distribution ofp0 is concentrated around (much) higher

values than the sample information. Now,bu
0 is obtained by averagingbu

0 |p1|0 with

respect top1|0, while pu
0 = max

p1|0

(pu
0 |p1|0) considers the worst case. Consequently,
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only exceptionallybu
0 will exceedpu

0 ; for the cases considered here, this will occur

in particular for the non-informative prior.

Generalizations of the present model which are discussed inthe next chap-

ter, concern more audit rounds, categorical data, and stratified instead of random

sampling.

The models discussed in this chapter consider rather elementary situations,

that deviate from practical auditing conditions in two mainrespects.

• In practice, the total size of all errors will be of even greater importance than

the error ratep0: hence the size of individual errors will have to be taken

into account. Barnettet al. (2001) presented a classical estimator for the

mean size of the errors with a double sampling design. Chapter4 presents

estimation methods and algorithms for monotone missing continuous data

which will be applied to repeated audit controls in Chapter 6.Laws and

O’Hagan (2000) discussed the Bayesian model for a flawless sample check

with taintings. A similar approach could be followed for thedouble sam-

pling scheme.

• The previous research started from random sampling. However, in auditors’

practices, selection with probabilities proportional to the recorded values

(’monetary unit sampling’ or MUS) is applied frequently. Hence, it would

be interesting to investigate this sampling method as well.

In the Bayesian approach it was assumed that the probability of missing an error

is independent of the probability of making up an error. Since this assumption

is questionable, it would be interesting to repeat the aboveinvestigations without

assuming independence. Following Gunel (1984), Dirichlet-beta priors could be

used to incorporate dependence.

Finally, a number of more theoretical issues remain. For example, according

to Lehmann and Casella (1998), p. 176, no uniformly most accurate confidence

set will in general exist in the presence of nuisance parameters, as in our case, but

perhaps our method of constructing upper limits can be improved.
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2.8 Appendices

2.8.1 Symmetry of the MLE

In case of two possible error types, it will be shown here by means of three consec-

utive lemmas that the distribution of the MLÊP0 for p0 is symmetric with respect

to (p1|0, p0|1) = (0.5, 0.5), that is:L(P̂0|p0, p1|0, p0|1) = L(P̂0|p0, 1−p1|0, 1−p0|1).

IntroduceV =(C+0, C10, C01, C0−), define the functionsf : R4 → R4 and

h : [0, 1]3 → [0, 1]3 by

f(v) = f(c+0, c10, c01, c0−) = (c+0, c+0 − c10, n2 − c+0 − c01, n1 −n2 − c0−)

and

h(p) = h(p0, p1|0, p0|1) = (p0, 1 − p1|0, 1 − p0|1),

and define the setAc for all c ∈ [0, 1] by

Ac = {v : p̂0(v) = c}.

Note thatf = f−1 andh = h−1.

Lemma 2.8.1.f(Ac) = Ac.

Proof. The special casev = (c+0, c+0, 0, c0−) impliesf(v) = (c+0, 0, n2−c+0, n1−
n2 − c0−) and p̂0(v) = p̂0(f(v)) =

c+0

n2

. In the general case,̂p0(v) = p̂0(f(v))

can be proved similarly. Hencev ∈ Ac impliesf(v) ∈ Ac, and vice versa.

Lemma 2.8.2.Pr(V = v|p) = Pr(V = f(v)|h(p)).

Proof. By direct verification, using (2.2.4).

Lemma 2.8.3.Pr(P̂0 = c|p) = Pr(P̂0 = c|h(p)).

Proof.
Pr(P̂0 = c|h(p)) = Pr(V ∈ Ac|h(p)) = Pr(V ∈ f(Ac)|h(p))

= Pr(V ∈ Ac|p) = Pr(P̂0 = c|p)

where the second equality follows from Lemma 2.8.1 and the third from Lemma

2.8.2.
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2.8.2 Simulated coverage

Table 2.8.1 contains the simulated coverages of the 95% classical upper limits. In

the last column, coverage of the Bayesian upper limit with a non-informative prior

is given in parentheses.

Probabilities n1 = 1000, n1 = 3000, n1 = 3000, n1 = 50,
p0 p1|0 p0|1 n2 = 100 n2 = 100 n2 = 300 n2 = 20
.10 .20 .011 99.8 99.9 99.7 100.0 (99.3)
.10 .20 .033 99.5 99.5 99.0 100.0 (99.6)
.10 .20 .056 99.2 99.2 98.3 100.0 (99.8)
.10 .60 .011 98.6 98.7 97.6 100.0 (98.6)
.10 .60 .033 98.2 98.3 96.6 100.0 (98.8)
.10 .60 .056 97.9 98.0 96.1 100.0 (99.4)

.20 .20 .025 99.6 99.6 99.6 97.1 (97.2)

.20 .20 .075 98.6 98.8 98.7 97.1 (97.2)

.20 .20 .125 97.9 98.0 98.0 96.9 (97.2)

.20 .60 .025 97.0 97.3 97.4 95.0 (94.8)

.20 .60 .075 96.2 96.2 96.5 95.0 (95.4)

.20 .60 .125 95.7 95.8 95.9 95.1 (96.5)

Table 2.8.1: Coverage of the upper limits

2.8.3 Estimates and confidence limits forp0 (n1 = 50)

Sample results Classical Bayesian
non informative onlyα1 = 5

n1 c0 p̂0 pu
0 b0 bu

0 b0 bu
0

50 4 .080 .174 .080 .171 .074 .159
50 5 .100 .199 .115 .195 .093 .182
50 6 .120 .223 .135 .219 .111 .204

Table 2.8.2: Estimates for a single sample check
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Sample results Classical Bayesian
non informative onlyα0|0 = 5

n1 n2 c0 c0+ c10 p̂0 pu
0 b0 bu

0 b0 bu
0

50 20 4 2 0 .080 .222 .093 .213 .087 .189
50 20 4 2 1 .131 .289 .132 .278 .117 .237
50 20 3 1 0 .060 .216 .071 .186 .065 .161
50 20 3 1 1 .106 .283 .109 .250 .094 .208
50 20 2 0 0 .040 .160 .049 .157 .044 .132
50 20 2 0 1 .088 .226 .085 .221 .071 .178

50 20 6 3 0 .120 .283 .136 .262 .129 .240
50 20 6 3 1 .172 .344 .176 .325 .161 .289
50 20 5 2 0 .100 .283 .114 .236 .108 .214
50 20 5 2 1 .150 .344 .153 .298 .138 .261
50 20 4 1 0 .080 .222 .092 .210 .086 .188
50 20 4 1 1 .128 .289 .130 .271 .116 .234
50 20 3 0 0 .060 .216 .070 .182 .065 .160
50 20 3 0 1 .107 .283 .107 .243 .093 .206

Table 2.8.3: Estimates for a double check with one error type



2.8. Appendices 29

Sample results Classical Bayesian
non informative onlyα0|0 = 5

n1 n2 c0 c0+ c10 c01 p̂0 pu
0 b0 bu

0 b0 bu
0

50 20 4 2 0 0 .080 .228 .081 .204 .075 .179
50 20 4 2 1 0 .131 .291 .122 .217 .107 .229
50 20 4 2 0 1 .040 .164 .043 .163 .040 .139
50 20 4 2 1 1 .091 .238 .085 .234 .073 .191
50 20 4 2 0 2 .000 .139 .000 .114 .000 .091
50 20 4 2 1 2 .051 .216 .046 .193 .038 .148

50 20 5 2 0 0 .100 .283 .096 .222 .091 .200
50 20 5 2 1 0 .150 .344 .137 .287 .124 .250
50 20 5 2 0 1 .050 .216 .051 .176 .049 .156
50 20 5 2 1 1 .100 .283 .094 .244 .085 .209
50 20 5 2 0 2 .000 .139 .000 .121 .000 .103
50 20 5 2 1 2 .050 .216 .049 .197 .044 .162

50 20 6 3 0 0 .120 .286 .122 .252 .116 .230
50 20 6 3 1 0 .178 .347 .164 .318 .150 .280
50 20 6 3 0 1 .080 .228 .085 .213 .080 .191
50 20 6 3 1 1 .132 .295 .128 .281 .115 .243
50 20 6 3 0 2 .040 .164 .044 .170 .041 .148
50 20 6 3 1 2 .092 .239 .089 .241 .078 .202
50 20 6 3 0 3 .000 .169 .000 .118 .000 .097
50 20 6 3 1 3 .052 .216 .047 .197 .040 .160

Table 2.8.4: Estimates for a double check with two error types





Chapter 3

Categorical data, multiple rounds

3.1 Introduction

Both the problem of missing data and the issue of misclassifications often oc-

cur in practice. Two main causes for missing observations are nonresponse and

incomplete designs. While missing-by-design is due to incomplete designs and

therefore is intentionally created by the experimenter, this is usually not true for

nonresponse. Misclassifications occur in quality control where a checking device

has to classify objects in (r ≥ 2) categories,e.g. ‘good’ or ‘bad’. Sometimes

it is known that the checking device is fallible, but it mightbe too expensive or

just impossible to procure a better one. In many situations both problems oc-

cur simultaneously: not only some observations are missing, but there may be

misclassifications as well. A practical example of missing-by-design data with

possible misclassifications is a repeated audit control.

In a repeated audit control one wants to draw conclusions about the fraction of

elements in a population which belong to a certain category.In order to do this, an

auditor classifies randomly sampled elements. However, misclassifications may

occur, since the (usual) assumption that the auditor be infallible is dropped. To

take these possible misclassifications into account, another fallible auditor checks

a subsample of the already checked sample elements again. This procedure is re-

peated several times until the finalkth auditor, considered to be infallible, gives

the true classification of some sample elements which already have been classi-

31
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fied by all previous auditors. Conclusions about the population fractions have to

be drawn based on the fallible and infallible audits. This kind of repeated audit

control was introduced by Tenenbein (1970), who considereddichotomous data

(r = 2) and two audit rounds(k = 2). This situation was further discussed in

the previous chapter. Tenenbein (1972) extended the model to include categorical

data(r ≥ 2).

Our Section 3.2 generalizes Chapter 2 into a general control system for cate-

gorical data (r ≥ 2) with monotone missing observations obtained fromk ≥ 2

audit rounds. Subsamples for subsequent auditors are obtained by using either

‘stratified’ or ‘random’ sampling. Though these different sampling methods lead

to different probability distributions, it is shown in Section 3.3 that the MLE’s for

the main parameters are identical. However, only in case of ‘stratified’ sampling

do these MLE’s appear to be unbiased. Special attention is paid to the frequently

occurring situations in which the MLE’s are undefined.

Since in auditing upper limits are very important, Section 3.4 considers three

methods to obtain upper confidence limits for the populationfractions; the Bayesian

approach appears to be the most promising. Section 3.5 contains two practical ap-

plications, revisiting the Dutch social security case fromthe previous chapter. For

r = 2 andk = 3 the calculation of Bayesian upper limits is presented in somede-

tail. The final Section 3.6 contains the main conclusions anddiscusses our results.

3.2 A general model

3.2.1 Population model

Define the random variableI0 as the true classification of a random sample el-

ement. Ther possible classificationsi0 are denoted by0, 1, . . . , r − 1, while

pi0 = Pr(I0 = i0) denotes the population fraction of elements with true classifi-

cationi0.

A random element is classified by an auditor into one of the categories0, 1, . . . ,

r−1, leading to the random variableI1. Hence a correct classification only occurs

if I1 = I0. To find possible misclassifications, the same element is categorized
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once more, now by another auditor. This procedure is repeated, leading to classi-

ficationIj by auditorj, until thekth auditor makes the final classification. Since

this last auditor will be assumed to be an infallible expert,(s)he will always give

the true classification:Ik = I0.

The following notation will be used in the sequel to describethe different

probabilities:

pi0i1...ij = Pr(I0 = i0, I1 = i1, . . . , Ij = ij), j = 0, . . . , k,

πi1i2...ij = Pr(I1 = i1, . . . , Ij = ij), j = 1, . . . , k.

It seems unrealistic to assume that classifications of subsequent auditors are inde-

pendent, even if previous classifications are hidden: indeed, previous classifica-

tions reveal the difficulty of correctly classifying a givenelement. For example,

if many auditors judge an incorrect element to be correct, the error in the ele-

ment probably is hard to detect. Hence we will need conditioning on previous

classifications, to be denoted as follows:

pij |i0i1...ij−1
= Pr(Ij = ij|I0 = i0, . . . , Ij−1 = ij−1), j = 1, . . . , k,

πij |i1...ij−1
= Pr(Ij = ij|I1 = i1, . . . , Ij−1 = ij−1), j = 2, . . . , k.

Since the last auditor is infallible (Ik = I0), it follows πi1i2...ik = pi0i1...ik =

pi0i1...ik−1
for ik = i0. Other relations between the two sets of parameters are :





(a) πi1i2...ik = pi0 · pi1|i0 · pi2|i0i1 · . . . · pik−1|i0i1...ik−2

(b) πi1i2...ik = πi1 · πi2|i1 · πi3|i1i2 · . . . · πik|i1...ik−1

(c) pi0 = pik =
∑

i1...ik−1

πi1i2...ik .
(3.2.1)

Finally the following shorthand notations are introduced:
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a : one of therj−1 possible classificationsi1i2. . .ij−1 by the firstj − 1
auditors,

p(0) : row vector ofr probabilitiespi0 (i0 = 0, 1, . . . , r − 1),
π

(j)
a : row vector ofr probabilitiesπaij (ij = 0, 1, . . . , r − 1),

π(j) : (rj−1 × r) matrix with rowsπ(j)
a ,

π
(j|j−1)
a : row vector ofr probabilitiesπij |a (ij = 0, 1, . . . , r − 1),

π(j|j−1) : (rj−1 × r) matrix with rowsπ(j|j−1)
a ,

p
(j|j−1)
i0a : row vector ofr probabilitiespij |i0a (ij = 0, 1, . . . , r − 1),

p(j|j−1) : (rj × r) matrix with rowsp(j|j−1)
i0a .

The matrices are constructed with columnwise and rowwise decreasing classifica-

tions. These notations are illustrated below forr = 2.

π(1) =
(

π1 π0

)
, p(0) =

(
p1 p0

)
,

π(2) =

(
π

(2)
1

π
(2)
0

)
=

(
π11 π10

π01 π00

)
, π(2|1) =

(
π1|1 π0|1

π1|0 π0|0

)
,

π(3) =




π
(3)
11

π
(3)
10

π
(3)
01

π
(3)
00


 =




π111 π110

π101 π100

π011 π010

π001 π000


 , π(3|2) =




π1|11 π0|11

π1|10 π0|10

π1|01 π0|01

π1|00 π0|00


,

p(2|1) =




p
(2|1)
11

p
(2|1)
10

p
(2|1)
01

p
(2|1)
00


 =




p1|11 p0|11

p1|10 p0|10

p1|01 p0|01

p1|00 p0|00


 , p(1|0) =

(
p1|1 p0|1

p1|0 p0|0

)
.

Consider a population which consists of incorrect (i0 = 0) and correct elements

(i0 = 1). In order to draw conclusions about the population fraction of incorrect

elements, a repeated audit control with three rounds is performed of which the last

is infallible. Figure 3.2.1 gives an overview of the relevant probabilities; see also

Figure 3.2.2.
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True classification Auditor 1 Auditor 2 Auditor 3
‘correct’ correct π111

‘correct’ p1|11 p1|111 = 1
p1|1 incorrect correct π101

correct p0|11 p1|110 = 1
p1 ‘correct’ correct π011

‘incorrect’ p1|10 p1|101 = 1
p0|1 ‘incorrect’ correct π001

p0|10 p1|100 = 1

‘correct’ incorrect π110

‘correct’ p1|01 p0|011 = 1
p1|0 ‘incorrect’ incorrect π100

incorrect p0|01 p0|010 = 1
p0 ‘correct’ incorrect π010

‘incorrect’ p1|00 p0|001 = 1
p0|0 ‘incorrect’ incorrect π000

p0|00 p0|000 = 1

Figure 3.2.1: Classification probabilities(r = 2, k = 3)

3.2.2 Sample information

Auditor 1 classifies the elements of a random sample (drawn with replacement)

of predetermined sizen1; a subsample of (possibly random) sizeN2 ≤ n1 is

checked again by auditor 2, and so on: auditorj checksNj ≤ Nj−1 elements

(j = 3, . . . , k). Hence,Nk elements are classified by all auditors,Nj − Nj+1

elements by precisely the firstj auditors. Such a pattern of observations is called

a monotone missing data pattern; see Little and Rubin (2002).Note that here

missing-by-design occurs.

Let Ca denote the number of elements classified by the firstj − 1 auditors as

a = i1 . . . ij−1. Of these,N (j)
a ≤ Ca are observed by auditorj; the remainder

Ca− = Ca − N
(j)
a is not further investigated. The classification frequencies of

auditorj areCaij to be combined into the vectorC(j)
a . Theserj−1 vectors can be

collected into the matrixC(j), presenting all frequencies, observed by the firstj
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auditors. These notations agree with the notations for the parametersπ. Thek

matricesC(j) summarize the complete sample information; compare Figure3.2.2.

Auditor 1 Auditor 2 Auditor 3
C1− C11−

‘correct’ C11 correctC111 π111

‘correct’ C1 π1|1 π1|11

π1 N
(3)
11

N
(2)
1 incorrectC110 π110

π0|11

C10−

n1 ‘incorrect’ C10 correctC101 π101

π0|1 π1|10

N
(3)
10

incorrectC100 π100

π0|10

C0− C01−

‘correct’ C01 correctC011 π011

‘incorrect’ C0 π1|0 π1|01

π0 N
(3)
01

N
(2)
0 incorrectC010 π010

π0|01

C00−

‘incorrect’ C00 correctC001 π001

π0|0 π1|00

N
(3)
00

incorrectC000 π000

π0|00

Total n1 N2 N3

Figure 3.2.2: Classification frequencies and probabilities(r = 2, k = 3)

3.2.3 Sampling methods

An important aspect of a repeated audit control is the way in which it is decided

which sample elements have to be checked again. In general, we allow the sample
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sizes to depend on the preceding results. Two different sampling methods will

be discussed here: stratified and random sampling. In case ofstratified sampling,

the sample sizeN (j)
a in round j from any given classificationa is determined

separately, while in random sampling only the totalNj over all theserj−1 classi-

fications is prescribed. More precisely, letC(j) denote the outcome space ofC(j),

while f
(j)
a andgj are given functions fromC(1) · C(2) · . . . · C(j−1) into IN ∪ {0}

andIN, respectively, for alla andj. Then the two methods can be described as

follows:

stratified sampling: N
(j)
a = f

(j)
a (C(1), . . . , C(j−1)),

random sampling: Nj = gj(C
(1), . . . , C(j−1)) .

Hence as soon asC(j−1) is known, theN
(j)
a andNj are given. Of course, the

realization of the total sample size in roundj also has to be positive for stratified

sampling:Nj =
∑
a

N
(j)
a > 0.

In most cases sample sizes will only depend on the previous round frequencies,

so thatNj = gj(C
(j−1)), e.g.; the simplest situation occurs when all the sample

sizes are fixed predetermined numbers. This is the sampling method which is

usually assumed in the existing literature on repeated audit controls.

3.3 Distributions and MLE’s

3.3.1 Stratified sampling

All the following results are derived under the assumption of sampling with re-

placement. The convention that the multinomial distribution M(0; .) is concen-

trated in 0 will be adopted.

Theorem 3.3.1.In case of stratified sampling the joint sample distributionis char-

acterized by the following multinomial distributions:

{ L(C(1)) = M(n1; π
(1)),

L(C(j)
a |N (j)

a = n
(j)
a ) = M(n

(j)
a ;π(j|j−1)

a ), for all rj−1 possiblea, j = 2, . . . , k.

(3.3.1)
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and the likelihood functionL(π(1), π
(2|1)
1 , . . . , π

(k|k−1)
a ; c(1), . . . , c(k)) is obtained

by multiplying all probabilities corresponding with the(1 − rk)/(1 − r) multino-

mials in (3.3.1).

Proof. Equation (3.3.1) is obvious. Further, because thef
(j)
a are given functions,

L(C(j)
a |C(1), . . . , C(j−1)) = L(C(j)

a |N (j)
a )

holds for alla andj, while these distributions are conditionally independentfor

differenta. This implies the second statement.

The corresponding log-likelihood follows at once:

log(L(π(1), π
(2|1)
1 , . . . , π(k|k−1)

a ; c(1), . . . , c(k))) =

∑

i1

ci1 log πi1 +
k∑

j=2

∑

aij

caij log πij |a (3.3.2)

as well as the MLE’s for all parameters involved:




Π̂(1) =
C(1)

n1

Π̂
(j|j−1)
a =

C
(j)
a

N
(j)
a

, for all rj−1 possiblea, j = 2, . . . , k.

(3.3.3)

These MLE’s are the regular MLE’s for ak-way contingency table withk − 1

supplementary marginal tables with MAR (missing at random)multinominal data

(see Little and Rubin (2002) for more details). Since the parameters of interest

pi0 are functions of (πi1 , πij |a) (see (3.2.1)), the MLE’s forpi0 are functions of the

MLE’s in (3.3.3):

P̂i0 = P̂ik =
∑

i1...ik−1

Π̂i1i2...ik =
∑

i1...ik−1

Π̂i1 · Π̂i2|i1 · . . . · Π̂ik|i1...ik−1
. (3.3.4)

However, the MLE’s for the conditional classification probabilities πij |a are not

defined whenN (j)
a = 0. This is asymptotically irrelevant but highly relevant in

practice! Although the probability of undefined ML estimates tends asymptot-

ically to zero, practical repeated audit controls usually have small final sample
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sizes due to the high costs of the last auditor. Undefined MLE’s are (in gen-

eral) frequently occurring and it is important to have a goodestimation procedure

which can handle these situations. Section 3.3.3 examines possible procedures for

undefined MLE’s more closely.

Note that the auditors’ error probabilities can be derived from (3.2.1), (3.3.3)

and (3.3.4) as well;e.g.

P̂i1|i0 = P̂i1|ik =
P̂i1ik

P̂ik

=

∑
i2...ik−1

Π̂i1i2...ik

∑
i1...ik−1

Π̂i1i2...ik

=

∑
i2...ik−1

Π̂i1 · Π̂i2|i1 · . . . · Π̂ik|i1...ik−1

∑
i1...ik−1

Π̂i1 · Π̂i2|i1 · . . . · Π̂ik|i1...ik−1

.

3.3.2 Random sampling

Although theN
(j)
a are deterministic conditionally on the previous classifications

in the case of stratified sampling, this is not true for randomsampling and the

characteristic distributions differ for the two sampling methods. LetN (j) denote

the vector of allrj−1 scalarsN (j)
a .

Theorem 3.3.2.In case of random sampling the joint sample distribution is char-

acterized by the following multinomial distributions:





L(C(1)) = M(n1; π
(1))

L(N (j)|C(j−1) = c(j−1), Nj = nj) = M(nj;
vec(c(j−1))

nj−1

), j = 2, . . . , k

L(C(j)
a |N (j)

a = n
(j)
a ) = M(n

(j)
a ;π(j|j−1)

a ), for all rj−1 possiblea, j = 2, . . . , k.

(3.3.5)

and the likelihood inference is the same as for stratified sampling.

Proof. The conditional multinomial distribution functions (3.3.5) are again straight-

forward. The likelihood is now acquired by multiplying all the(1− rk)/(1− r)+

k − 1 conditionally independent multinomial distributions:

L(π(1), π
(2|1)
1 , . . . , π

(k|k−1)
a ; c(1), . . . , c(k), n(2), . . . , n(k))

= L(C(1))L(N (2)|C(1), n2)L(C(2)
0 |n(2)

0 )L(C(2)
1 |n(2)

1 ) · . . . · L(C(k)
a |n(k)

a ).
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The conditional distribution functions for the classification quantitiesC(1) and

C
(j)
a are identical for random and stratified subsampling. Therefore the likelihood

functions of the two sampling methods differ only by the additional conditional

distribution functions of the sample sizesN (j) in case of random sampling. Since

these distribution functions do not depend on the parameters, the distributions of

theN (j) can be ignored for likelihood inferences about the parameters: C(1) and

C
(j)
a are sufficient forπi1 andπij |a, respectively.

3.3.3 Undefined MLE’s

Though the MLE’s have nice asymptotic properties and are logically interpretable,

a major drawback is that they will be frequently undefined in practice (depending

on the sampling method). The MLE’s for the population fractions are undefined

when auditorj does not classify at least one sample element of each previously

occurring classification pattern,i.e. n(j)
a = 0 while ca > 0. The situationn(j)

a =

0 can be divided into structural zeros and unstructural zeros(see Bishopet al.

(1975)). Unstructural zeros are caused by chance while structural zeros are caused

by a priori model restrictions such asπa = 0. In this chapter we extend this last

definition to include the situationn(j)
a = 0 whenca > 0, where the elements with

previous classificationa are intentionally excluded from thejth sample (N (j)
a =

f
(j)
a (C(1), . . . , C(j−1)) = 0) because another check would not provide additional

information.

Consider for example a population which consists of correct (i0 = 1) and in-

correct elements (i0 = 0). A repeated audit control takes place with only one

fallible auditor(k = 2). The fallible auditor isa priori known never to misclas-

sify correct elements(p1|1 = 1) but (s)he might make mistakes with incorrect

elements. As a consequence an element which the first auditorclassifies as incor-

rect is per definition incorrect. An additional check of suchan element does not

provide extra information and is therefore useless. A logical choice isN (2)
0 = 0.

ThoughΠ̂1|0 is now undefined according to (3.3.3), this is not a problem since it

is a priori known thatπ1|0 = 0.

In general, structural zeros do not cause problems because they are caused
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themselves by model assumptions about the parameters. Unstructural zeros, how-

ever, are the cause of some problems. Fortunately, unstructural zeros can be

avoided completely by using a specific kind of stratified sampling: stratified sam-

pling with N
(j)
a > 0 whenca > 0. In these cases the MLE’s forpi0 are always

uniquely defined and are even unbiased.

Theorem 3.3.3.E{P̂i0} = pi0 if N
(j)
a > 0 whenCa > 0.

Proof. If N
(j)
a > 0 whenCa > 0, the MLE’s Π̂ij |a in (3.3.3) can still be un-

defined. However, the preceding factorΠ̂ij−1|i1...ij−2
in (3.3.4) is per definition 0

whenN
(j)
a = 0. As a consequence, the corresponding termΠ̂i1...ik of P̂i0 in (3.3.4)

is zero. So the MLE’sP̂i0 are defined, even in case of undefined MLE’s for the

conditional classification probabilities. From the relations

E{Π̂i1i2...ij} = E{Π̂a · Π̂ij |a} = E{Π̂a}E{Caij

N
(j)
a

|N (j)
a }

= E{Π̂a} · πij |a = E{Π̂i1...ij−1
} · πij |i1...ij−1

,

it follows by repeated application thatE{Π̂i1i2...ij} = πi1i2...ij . In combination

with (3.2.1), this gives

E{P̂i0} =
∑

i1...ik−1

E{Π̂i1i2...ik} =
∑

i1...ik−1

πi1i2...ik = pi0 ,

which completes the proof.

A disadvantage of this kind of stratified sampling is that therequired final sam-

ple size can be quite large since the last sample has to include at least one element

of all previous realized classifications. This could be an argument to apply a dif-

ferent sampling method which could still lead to unstructural zeros. Section 3.5.1

shows that a procedure for handling situations with undefined MLE’s is indeed

important.
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3.4 Upper limits

3.4.1 Classical; finite samples

For a standard audit with an infallible auditor (k = 1) and dichotomous data

(r = 2) the upper(1 − α)−confidence limit forpi0 , denoted bypu
i0

is the regular

binomial confidence limit

pu
i0

= max
pi0

{
pi0 : Pr(P̂i0 ≤ p̂i0 |pi0) ≥ α

}
. (3.4.1)

The generalization forr = 2 andk = 2 is given in (2.4.1), which we repeat here

for convenience:

pu
0 = max

pi0

{
p0, p1|0, p0|1 : Pr(P̂0 ≤ p̂0|p0, p1|0, p0|1) ≥ α

}
. (3.4.2)

To determine this upper limit, the maximumpu
0 |p1|0, p0|1 of (3.4.2) for fixedp1|0

andp0|1 has to be calculated for all possible values of the nuisance parameters

p1|0 andp0|1. Subsequently,pu
0 is determined as the maximum of allpu

0 |p1|0, p0|1.

Compare Section 2.4.

It is straightforward to generalize (3.4.2) forr ≥ 2 andk ≥ 2 :

pu
i0

= max
pi0

{
pi0 , p

(j|j−1) : Pr(P̂i0 ≤ p̂i0 |pi0 , p
(j|j−1), j = 1, . . . , k − 1) ≥ α

}
.

The determination ofpu
i0

runs as in the caser = 2 andk = 2.

A disadvantage of this method is the worst case approach: while determin-

ing the upper limit all situations (i.e. all values of the nuisance parameters) are

considered and the most unfavorable one is chosen. All possible situations also

include the situation in which each fallible auditor deliberately classifies all ele-

ments in the same category regardless of the true and previous classifications,i.e.

for j = 1, . . . , k − 1 the elements ofp(j|j−1) consist solely of zeros and ones. As

a consequence all elements will be classified in exactly the same way by the first

k − 1 auditors:i∗1, . . . , i
∗
k−1. In this case the MLE’s in (3.3.4) reduce to

P̂i0 = P̂ik = Π̂i∗1i∗2...i∗
k−1ik = Π̂ik|i

∗
1...i∗

k−1
=

Ci∗1...i∗
k−1ik

Nk

.
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The latter is just the estimator in case of an ordinary audit with only an infal-

lible auditor who checks(n1 =)Nk elements. Sopu
i0
|p(j|j−1) is solely based on

the classifications by the last infallible auditor and the fallible classifications are

disregarded completely. Therefore it coincides with the upper limit (3.4.1) of a

standard audit by an infallible auditor who checksNk elements. As a consequence

pu
i0
, which is the maximum of allpu

i0
|p(j|j−1) will be at least as high as (3.4.1) and

the repeated audit control is in this sense useless: the fallible classifications cost

money but do not provide more accurate estimates.

So although the described method enables us to find confidencelimits for finite

samples, these confidence limits will be very high since the -often unlikely - worst

case is taken to be reality. This conclusion is in line with the results of the previous

chapter.

3.4.2 Classical; limit distributions

A widely applied approach to construct confidence intervalsis based on the limit

distribution of the MLE’s.

Theorem 3.4.1.Under the assumptionN (j)
a /n1

P−→ b
(j)
a if n1 → ∞, with b

(j)
a a

constant depending ona,

√
n1(P̂i0 − pi0)

L→ N(0, σ2
i0
), (3.4.3)

with

σ2
i0

= σ2
ik

=
∑

i1...ik−1

V ar(Π̂i1...ik−1ik)+
∑

i1...ik−1 6=i,1...i,
k−1

Cov(Π̂i1...ik−1ik , Π̂i,1...i,
k−1ik).

Definew = min{j : ij 6= i′j for i1 . . . ik andi′1 . . . i′k} then

Cov(Π̂i1...ik , Π̂i,1...i,
k
) =
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



−πi1...ikπi,1...i,
k

if w = 1

πi1...ik

πi1

πi,1...i,
k

πi1

πi1(1 − πi1)+

w−1∑
j=2

πi1...ik

πij |a

πi,1...i,
k

πij |a

πij |a(1 − πij |a)

b
(j)
a

−
πi1...ikπi,1...i,

k

b
(w)
i1...iw−1

if 1 < w ≤ k

(
πi1...ik

πi1

)2

πi1(1 − πi1) +
k∑

j=2

(
πi1...ik

πij |a

)2 πij |a(1 − πij |a)

b
(j)
a

else.

Proof. See Appendix 3.7.1.

Now the standard techniques can be applied to construct confidence intervals.

Tenenbein (1970), Tenenbein (1971), Tenenbein (1972) usedthe variance of the

limit distributionσ2
i0

as a measure of accuracy of the repeated audit control. How-

ever, as mentioned before, asymptotics are often not relevant for these types of

controls.

Neither of the two methods for constructing confidence intervals which are

discussed so far, appears to be very useful. Therefore, we consider the Bayesian

approach as well.

3.4.3 Bayesian

In the Bayesian approach for monotone missing multinomial data, prior distribu-

tions can be chosen for either the set of parametersπ (all π(j) andπ(j|j−1)), or

all parametersp (p(0) andp(j|j−1)); of course these parameters now are seen as

random variables (which will be denoted by the corresponding upper cases,e.g.

the two sets of parameters will be denoted asΠ andP ). The first choice is the

simplest; in that case independent Dirichlet distributions often are taken as pri-

ors. Combined with the data, they lead to a simultaneous posterior distribution for

the variablesΠ which is the product of independent Dirichlet distributions (see

e.g.Schafer (1997)). Our parameter of interestP0 is a known function ofΠ and

its marginal posterior distribution can be straightforward determined by means of

simulation from the posterior distribution ofΠ. The mode and(1 − α)-quantile
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from the marginal distribution can be taken as point estimate and upper limit,

respectively.

However, since our parameter of interest isp0 and our model is originally

formulated in terms ofp, a more logical choice is to formulate priors forP in

stead ofΠ. Moreover, independent (Dirichlet) priors forP seem reasonable since

the quality of the population and the different auditors arelikely not to depend on

each other. This argumentation for independence does not hold for Π. Therefore

the product of the following independent Dirichlet distributions is taken as prior:
{ L(P (0)) = D(αr−1, αr−2, . . . , α0)

L(P (j|j−1)
i0a ) = D(αr−1|i0a, αr−2|i0a, . . . , α0|i0a, ), ∀a,∀i0,∀j.

(3.4.4)

Since the data are missing at random (see Rubin (1976)), distribution (3.3.1) suf-

fices for the Bayesian inference, regardless whether random or stratified sampling

is applied. The simultaneous posterior distribution ofP is the product of (3.4.4)

and (3.3.1). The marginal posterior distribution ofP0 is obtained by integration.

This is analytically rather complicated but can also be doneby means of simu-

lation or numerical integration, as in Chapter 2 forr = 2 andk = 2. However,

instead of integrating the simultaneous posterior distribution, it is also possible to

determine the marginal posterior distribution by means of the data augmentation

algorithm of Tanner and Wong (1987).

Data augmentation is an iterative method of simulating the posterior distri-

bution for missing data problems. The basic idea is that the required posterior

distribution would be straightforward to determine if there were no missing ob-

servations. For our model it is easy to verify thatP would have the following

Dirichlet posteriors in case of the Dirichlet priors (3.4.4) and complete data:
{ L(P (0)|data) = D(α(0) + c[k])

L(P (j|j−1)
i0a |data) = D(α

(j|j−1)
i0a + c

[j]
ai0

), ∀a,∀i0,∀j,
(3.4.5)

where

α(0) : vector of exponentsαi0 corresponding with the vectorP (0),
α

(j|j−1)
i0a : vector of exponentsαij |i0a corresponding with the vectorP (j|j−1)

i0a ,
c
[j]
ai0

: vector of the numberscaij+···+i0 of classificationsaij by the firstj
auditors,i0 by the last (and any classification by auditors
j + 1, . . . , k − 1).



46 CHAPTER 3. CATEGORICAL DATA, MULTIPLE ROUNDS

Each iteration of the data augmentation procedure consistsof an imputation step

and the posterior step. Start with an initial draw of the parameters from an ap-

proximation to the posterior distribution. In the imputation step the missing data

are drawn from the appropriate distribution (with the drawnparameters) to get a

(simulated) complete dataset. In the subsequent posteriorstep the parameters are

drawn from the complete data posterior. Given the newly drawn parameters the

imputation step is again executed,et cetera.

For our model, the imputation step consists of drawing the missing observa-

tions from a multinomial distribution:

{
L(Ĉ(2)

i1
) = M(ci1 ; π

(2|1)
i1

), ∀i1
L(Ĉ(j)

a ) = M(ca− + ĉa; π
(j|j−1)
a ), ∀a, j = 3, . . . , k.

(3.4.6)

Thep are drawn from posterior distributions which are similar to(3.4.5):

{ L(P (0)|(simulated) data) = D(α(0) + c[k] + ĉ[k])

L(P (j|j−1)
i0a |(simulated) data) = D(α

(j|j−1)
i0a + c

[j]
ai0

+ ĉ
[j]
ai0

), ∀a,∀i0,∀j.
(3.4.7)

The π, which are required for the subsequent imputation step, cannow be de-

termined from (3.2.1). In Section 3.5.2, the data augmentation algorithm will be

applied to an example withr = 2 andk = 3.

3.5 Applications

3.5.1 Caser=2, k=2

A population consists of correct (i0 = 1) and incorrect (i0 = 0) elements. In order

to estimatep0, a repeated audit control is performed by two auditors. Random

sampling is applied withn2 being a fixed number:N2(C1, C0) = n2. There are

no prior assumptions about the quality of the first auditor,i.e.about the misclassi-

fication probabilities. The characteristic sample distributions (3.3.5) are reduced



3.5. Applications 47

to:





L(C1, C0) = M(n1; π1, π0)
L(N (2)|C1 = c1, C0 = c0) = M(n2; c1/n1, c0/n1)

L(C11, C10|N (2)
1 = n

(2)
1 ) = M(n

(2)
1 ;π1|1, π0|1)

L(C01, C00|N (2)
0 = n

(2)
0 ) = M(n

(2)
0 ;π1|0, π0|0),

- compare (2.2.4) - and the MLE’s (3.3.4) follow.

Both Tenenbein (1970), Moors (1999) and Barnettet al. (2001) derived these

MLE’s. Tenenbein (1970) noted that the MLE forp0 is undefined when either

N
(2)
0 or N

(2)
1 equals 0, but he concluded that the probability of this occurring is

quite small unlessn2 is small andπ1 or π0 is close to zero. However, these cases

are of importance for calculating upper confidence limits. Moors (1999) derived

the MLE’s independently from Tenenbein (1970) and paid special attention to

the cases of undefined MLE’s. To determine the MLE’s in these cases with only

‘correct’ or ‘incorrect’ sample records in the second round, he made the extra

assumptionp1|0 = 1−p0|1. This resulted in estimator (2.3.2), which in the present

notation reads:

P̂0 =





C10

N
(2)
1

if N
(2)
0 = 0

C0

n1

C00

N
(2)
0

+
C1

n1

C10

N
(2)
1

if 0 < N
(2)
0 < n2

C00

N
(2)
0

if N
(2)
0 = n2.

(3.5.1)

The main expression consists of two terms which have a logical interpretation.

The first term is the fraction of elements which are classifiedas ‘incorrect’ by

the first auditor times the estimated probability that they are indeed incorrect. The

second term is the fraction of elements which are classified as ‘correct’ by the first

auditor times the estimated probability that they are actually incorrect. If either

N
(2)
0 or N

(2)
1 equals 0, all information of the fallible auditor is discarded.

Table 3.5.1 contains the numerical data (in the present notation) of the CTSV

example of Chapter 2 (compare Table 2.4.1).
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Total Single checked Double checked sample
sample Second auditor

First auditor Total correct incorrect

‘correct’ c1 = 484 c1− = 433 n
(2)
1 = 51 c11 = 50 c10 = 1

‘incorrect’ c0 = 16 c0− = 14 n
(2)
0 = 2 c01 = 0 c00 = 2

Total n1 = 500 n1 − n2 = 447 n2 = 53 c+1 = 50 c+0 = 3

Table 3.5.1: CTSV example

For this practical example, estimator (3.5.1) leads to a point estimate of 0.0510;

the 95% upper confidence level was 0.121 - obtained from (3.4.2). In the next sec-

tion, this CTSV example will be used again.

The major disadvantage of Moors’ estimatorP̂0 is that it does not coincide

with the MLE for the reduced models. In a reduced model, one misclassification

probability, eitherp1|0 or p0|1, is a priori set to zero. It can be shown that Moors’

estimator does not coincide with the MLE of the two reduced models if either

N
(2)
0 or N

(2)
1 equals 0. Therefore, a slightly modified estimator is proposed:

P̂ ∗
0 =





C0

n1

+
C1

n1

C10

N
(2)
1

if N
(2)
0 = 0

C0

n1

C00

N
(2)
0

+
C1

n1

C10

N
(2)
1

if 0 < N
(2)
0 < n2

C0

n1

C00

N
(2)
0

if N
(2)
0 = n2.

(3.5.2)

This is the only estimator which coincides with the MLE of thereduced models.

In order to see whether the differences between (3.5.1) and (3.5.2) are relevant,

a comparison is made based on the bias. By taking conditional expectations (see

Appendix 3.7.2) it follows:

Bias(P̂0) = (1 − n2

n1

)(πn2
1 (π0|1 − π00 − π10) + πn2

0 (π0|0 − π00 − π10)),

Bias(P̂ ∗
0 ) = (1 − n2

n1

)(πn2
1 π01 − πn2

0 π10).

The bias of both estimators depends on the classification probabilities and the

sample sizes. The bias is reduced by increasingn2 or decreasingn2/n1. This

means that the bias is smaller if more infallible information is acquired or if the
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fraction of fallible information decreases. The bias ofP̂ ∗
0 decreases when the first

auditor is more accurate; it is even unbiased in the case of aninfallible first auditor.

The latter is not true for̂P0. Figure 3.5.1 shows that the difference between the

estimators can be quite substantial.
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Figure 3.5.1: Bias of̂P0 andP̂ ∗
0

This graph shows the bias of estimators (3.5.1) and (3.5.2) for n1 = 50, n2 =

10, p1|0 = 0.05 andp0|1 = 0.10. In particular for low values ofp0, use of the

modified estimator̂P ∗
0 leads to a generally much smaller bias.

Forr = 2 andk = 2 an analytical expression for the posterior distribution can

be given; analysis and results are presented in Chapter 2. Application of the data

augmentation procedure leads to identical results.

3.5.2 Caser=2, k=3

In the previous subsection, we discussed the CTSV example in which a repeated

audit control with two rounds was applied. However, the CTSV also applied

repeated audit controls with three rounds. In the first two rounds (fallible) internal
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auditors of the six companies classified the (sub)sampled security payments as

correct or incorrect. In the third and final round an auditor of the CTSV checked

a subsample of the twice checked payments. Again, the auditor of the CTSV is

considered to be flawless.

Since we do not have access to data of the three rounds, we use the previously

analysed data of the repeated audit control with two rounds (see Table 3.5.1), but

extend it with fictitious data for the third round.

In this third check, the infallible expert once more classifies a subsample of

sizen3 = 20 of the 53 double checked payments; all payments considered incor-

rect by at least one of the two internal auditors are included. This results in the

following (stratified) sample sizes:

n3 = 20, n
(3)
00 = c00 = 2, n

(3)
10 = c10 = 1, n

(3)
01 = c01 = 0, n

(3)
11 = 17.

For the outcomes of this third check, the four different possibilities in Table 3.5.2

are considered.

Possibility 1 Possibility 2
correct incorrect correct incorrect
c111 = 17 c110 = 0 c111 = 16 c110 = 1
c101 = 0 c100 = 1 c101 = 0 c100 = 1
c011 = 0 c010 = 0 c011 = 0 c010 = 0
c001 = 0 c000 = 2 c001 = 0 c000 = 2
c++1 = 17 c++0 = 3 c++1 = 16 c++0 = 4

Possibility 3 Possibility 4
correct incorrect correct incorrect
c111 = 17 c110 = 0 c111 = 17 c110 = 0
c101 = 1 c100 = 0 c101 = 0 c100 = 1
c011 = 0 c010 = 0 c011 = 0 c010 = 0
c001 = 0 c000 = 2 c001 = 1 c000 = 1
c++1 = 18 c++0 = 2 c++1 = 18 c++0 = 2

Table 3.5.2: Fictitious data third round

In Possibility 1, the expert fully agrees with the second auditor. In Possibility

2, one error is missed by both fallible auditors; further theexpert fully agrees with
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the second auditor. In the third option, the expert fully agrees with the first auditor

implying that the second auditor missed one incorrect payment. In Possibility 4,

the expert finds that one error is made up by both auditors; further findings are in

agreement with the second auditor.

The general MLE (3.3.4) reduces in this case (r = 2, k = 3) to:

P̂0 =
1∑

i=0

1∑

j=0

Ci

n1

· Cij

N
(2)
i

· Cij0

N
(3)
ij

.

This estimator is defined for all possibilities of the numerical example. The point

estimates for theπ’s andp’s - if defined - are shown in Table 3.5.3.

π̂0 π̂0|0 π̂0|1 π̂0|00 π̂0|01 π̂0|10 π̂0|11

Possibility 1 0.0320 1.0000 0.0196 1.0000 - 1.0000 0.0000
Possibility 2 0.0320 1.0000 0.0196 1.0000 - 1.0000 0.0588
Possibility 3 0.0320 1.0000 0.0196 1.0000 - 0.0000 0.0000
Possibility 4 0.0320 1.0000 0.0196 0.5000 - 1.0000 0.0000

p̂0 p̂0|0 p̂0|1 p̂0|00 p̂0|01 p̂0|10 p̂0|11

Possibility 1 0.0510 0.6277 0.0000 1.0000 1.0000 - 0.0000
Possibility 2 0.1068 0.2996 0.0000 1.0000 0.2537 - 0.0000
Possibility 3 0.0320 1.0000 0.0000 1.0000 - - 0.0196
Possibility 4 0.0350 0.4574 0.0166 1.0000 1.0000 1.0000 0.0000

Table 3.5.3: Point estimates

The point estimate (0.051) of Possibility 1 equals the valuefor k = 2. This

is logical since in this possibility the expert fully agreeswith the second auditor

(who was the expert in the example with two rounds).

In audit controls, the accuracy (and distribution) of the estimator P̂0 are usu-

ally at least as important as the point estimates. Here, theyhave to be determined

by means of simulation, since there are no analytical expressions available. The

parameters are assumed to have the estimated values of Table3.5.3. In the simu-

lation (of 100,000 runs), stratified sampling is applied in such a way thatn(2)
i1

> 0

if ci1 > 0. Just as in the example, all possible previously classified ‘incorrect’ el-



52 CHAPTER 3. CATEGORICAL DATA, MULTIPLE ROUNDS

ements are included in the third round. The simulation results in the distributions,

presented in Figure 3.5.2.
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Figure 3.5.2: Histograms of simulated distributions ofP̂0

Possibility 3 leads to a fairly symmetrical distribution; the other ones are

skewed to the right. The (simulated) standard deviations ofP̂0 are presented in

the first line of Table 3.5.4.

Possibility 1 Possibility 2 Possibility 3 Possibility 4
Three rounds 0.0203 0.0574 0.0079 0.0233
Omission auditor 1 0.0302 0.0591 0.0306 0.0310
Omission auditor 2 0.0320 0.0598 0.0079 0.0350
Omission auditor 1 and 2 0.0490 0.0691 0.0394 0.0409

Table 3.5.4: Standard deviations ofP̂0
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The standard deviation is the smallest for Possibility 3, since this is the only

case in which no mistakes are found among the classificationsof the first auditor.

It is also interesting to look at the accuracy of the estimators, with respect to

the design of the repeated audit control. What is the impact ofomitting one or

several auditors on the accuracy of the estimators? If the first (second) auditor is

omitted, the estimator is based on the 53 (500) observationsof the second (first)

auditor and the 20 observations of the expert. If both internal auditors are omitted,

only the 20 flawless observations of the expert are included.Since stratified sam-

pling was used, the estimator̂P0 is unbiased for all designs. Hence the simulated

expectations equal the valuesp̂0 in Table 3.5.3. The standard deviations are shown

in the last three lines of Table 3.5.4.

Including the observations of all the auditors leads to the smallest standard

deviation, while including only the flawless observations of the expert gives the

largest standard deviation. Including only one fallible auditor, gives a standard

deviation which lies between the previous ones. Omission ofeither the first or

second auditor leads to approximately the same standard deviation for all possi-

bilities, except the third one. In this case, the expert fully agreed with the first

auditor: the second did not contribute at all. In the remaining cases, omitting the

first auditor leads to a somewhat higher accuracy.

For the Bayesian approach, priors are formulated forP such as described in

Section 3.4.3. For our example, the general priors (3.4.4) reduce to the beta dis-

tributions





L(P1) = Beta(α1, α0)
L(P1|i0) = Beta(α1|i0 , α0|i0), i0 = 0, 1
L(P1|i0i1) = Beta(α1|i0i1 , α0|i0i1), i0, i1 = 0, 1.

To determine the marginal posterior distribution ofP0, the data augmentation pro-

cedure is used. Forr = 2 andk = 3, the implementation step (3.4.6) consists of

drawing from binomial distributions:

{
L(C(t+1)

i11 ) = B(ci1−; π
(t)
1|i1

), i1 = 0, 1

L(C(t+1)
i1i21 ) = B(ci1i2− + c

(t+1)
i1i2

; π
(t)
1|i1i2

), i1, i2 = 0, 1.
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The posterior step (3.4.7) reduces to drawing from beta distributions




L(P (t+1)
1 |(simulated)data) = Beta(α1 + c++1 + c

(t+1)
++1 , α0 + c++0 + c

(t+1)
++0 )

L(P (t+1)
1|i0

|(simulated) data) =

Beta(α1|i0 + c1+i0 + c
(t+1)
1+i0

, α0|i0 + c0+i0 + c
(t+1)
0+i0

), i0 = 0, 1

L(P (t+1)
1|i0i1

|(simulated) data) =

Beta(α1|i0i1 + ci11i0 + c
(t+1)
i11i0

, α0|i0i1 + ci10i0 + c
(t+1)
i10i0

), i0, i1 = 0, 1.

The speed of convergence of the described procedure is related to the fraction of

missing observations; since this fraction is very high in our example which has a

high dimensionality, the rate of convergence is rather low.

For Jeffrey’s noninformative prior (all theα’s are 0.5), Figure 3.5.3 shows the

marginal posterior distributions for our example, obtained by data augmentation

with 1,000,000 iterations:
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Figure 3.5.3: Histograms of simulated posterior distributions ofP0
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The mode and 0.95-quantile of the posterior distribution are taken as point

estimate and 95%-upper limit. They are presented in the firstpart of Table 3.5.5.

Jeffrey’s noninformative prior
Possibility 1 Possibility 2 Possibility 3 Possibility 4

mode 0.043 0.070 0.031 0.029
0.95-quantile 0.121 0.212 0.082 0.107

α0|0 = α1|1 = 1.5, α0|01 = α1|10 = 2.5, α0|00 = α1|11 = 3.5, otherα are 0.5
Possibility 1 Possibility 2 Possibility 3 Possibility 4

mode 0.039 0.055 0.030 0.027
0.95-quantile 0.089 0.137 0.057 0.075

Table 3.5.5: Bayesian point estimates and upper limits forp0

For Jeffrey’s prior, the Bayesian point estimates are all smaller than the corre-

sponding classical point estimates (see first column Table 3.5.3).

The second part of Table 3.5.5 contains the estimates for a different prior. The

prior parameters are chosen in such a way that the error probabilities of the sec-

ond fallible auditor are likely to be smaller than those of the first fallible auditor.

Moreover, it is more likely that the second auditor’s misclassification probabilities

are higher if the first auditor has erred previously than if the first auditor gave the

correct classification. The impact of this different prior is considerable: especially

the upper limits are a lot smaller than for Jeffrey’s noninformative prior.

3.6 Conclusions

A general framework for repeated audit controls was introduced for categorical

data withr ≥ 2 levels. Monotone sampling (cf. Little and Rubin (2002)) is ap-

plied, implying that non-increasing numbers of records arechecked byk ≥ 2

subsequent auditors; the last of these is assumed to be infallible. Two sampling

methods were discussed, called random and stratified sampling. In stratified sam-

pling, previous classification results determine the next sample sizes for all clas-

sifications separately, while in random sampling they only determine the total
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sample size for the next auditor.

It was shown that both sampling methods lead to essentially the same MLE’s

for ther population fractionspi0 . However, if unstructural zeros occur, the MLE’s

are not uniquely defined. Since unstructural zeros are much more likely to occur

in case of random sampling, we advise stratified sampling forpractical use. A

further advantage is that the MLE’s in this case are unbiased.

A new solution to the unstructural zeros problem was proposed having two

advantages: it leads to a MLE with a smaller bias, and encompasses the solutions

for the reduced models, where only one error type can occur.

Three different methods to determine upper limits for the fraction incorrect

elements in the population were discussed. Of these, the Bayesian approach ap-

peared to be the most satisfactory.

In case error sizes, or relative error sizes (taintings) areobserved instead of just

error rates, continuous data are obtained. The special caseof normally distributed

observations withk subsequent auditors is analysed in more detail in the next two

chapters. Note that a distribution-free solution can be derived from the present

chapter by discretization of the continuous variable intor categories.
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3.7 Appendices

3.7.1 Limit distribution

Write

Σ(1) = Cov(C(1))/n1

Σ
(j|j−1)
a = Cov(C

(j|j−1)
a )/n

(j)
a ,

with elementsf, g = 1, . . . , r:

Σ(1)(f, g) =

{
πr−f (1 − πr−f ) if f = g
−πr−fπr−g if f 6= g

and

Σ
(j|j−1)
a (f, g) =

{
πr−f |a(1 − πr−f |a) if f = g
−πr−f |aπr−g|a if f 6= g.

Then the asymptotic distributions of the MLE’s (3.3.3) are straightforward:

√
n1vec(Π̂(1) − Π(1))

L→ N(0, Σ(1)),√
n

(j)
a vec(Π̂(j|j−1)

a − Π(j|j−1)
a )

L→ N(0, Σ(j|j−1)
a ).

If N
(j)
a /n1

P−→ b
(j)
a with b

(j)
a a constant depending ona,

√
n1vec(Π̂(j|j−1)

a − Π(j|j−1)
a )

L→ N(0, Σ(j|j−1)
a /b(j)

a ).

Since Π̂(1) and Π̂
(j|j−1)
a are independent, they have an asymptotic multivariate

normal distribution with a block-diagonal covariancematrix. The MLE for πi1...ik

is a function of the preceding estimators (see (3.2.1b)):Π̂i1...ik = Π̂i1 · Π̂i2|i1 · . . . ·
Π̂ik|i1...ik−1

. Application of the deltamethod (see Lehmann and Casella (1998))

results in the asymptotic distribution of̂Πi1...ik . Relation (3.2.1(c)) and applying

the deltamethod once more result in the asymptotic distribution of P̂i0 in (3.3.4).
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We only illustrate the whole procedure for the special caser = k = 2:

√
n1




Π̂1 − π1

Π̂0 − π0

Π̂1|1 − π1|1

Π̂0|1 − π0|1

Π̂1|0 − π1|0

Π̂0|0 − π0|0




L→ N(0, Σ)

with

Σ =




π1π0 −π1π0 0 0 0 0
−π1π0 π1π0 0 0 0 0

0 0
π1|1π0|1

b
(2)
1

−π1|1π0|1

b
(2)
1

0 0

0 0
−π1|1π0|1

b
(2)
1

π1|1π0|1

b
(2)
1

0 0

0 0 0 0
π1|0π0|0

b
(2)
0

−π1|0π0|0

b
(2)
0

0 0 0 0
−π1|0π0|0

b
(2)
0

π1|0π0|0

b
(2)
0




.

The deltamethod applied to relation (3.2.1(b)) results in

√
n1




Π̂11 − π11

Π̂10 − π10

Π̂01 − π01

Π̂00 − π00




L→ N(0, ∆), with ∆ = B′ΣB,

whereB =




π1|1 π0|1 0 0
0 0 π1|0 π0|0

π1 0 0 0
0 π1 0 0
0 0 π0 0
0 0 0 π0




. So,
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∆
=



π
1
|1 π

1
1 π

0
+

π
1
1 π

1
0

b
(2

)
1

π
1
1 π

0
|1 π

0 −
π

1
1 π

1
0

b
(2

)
1

−
π

1
1 π

0
1

−
π

1
1 π

0
0

π
1
1 π

0
|1 π

0 −
π

1
1 π

1
0

b
(2

)
1

π
0
|1 π

1
0 π

0
+

π
1
1 π

1
0

b
(2

)
1

−
π

1
0 π

0
1

−
π

1
0 π

0
0

−
π

1
1 π

0
1

−
π

1
0 π

0
1

π
1
|0 π

0
1 π

1
+

π
0
1 π

0
0

b
(2

)
0

π
0
|0 π

0
1 π

1 −
π

0
1 π

0
0

b
(2

)
0

−
π

1
1 π

0
0

−
π

1
0 π

0
0

π
0
|0 π

0
1 π

1 −
π

0
1 π

0
0

b
(2

)
0

π
0
|0 π

0
0 π

1
+

π
0
1 π

0
0

b
(2

)
0



Applying the deltamethod once again but this time to relation (3.2.1(c)) leads

to the asymptotic distribution of̂Pi0 :
√

n1

[
P̂1-p1

P̂0-p0

]
L→ N(0, B′∆B) where
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B =




1 0
0 1
1 0
0 1


.

3.7.2 Bias

Derivation of the bias of the modified estimator (3.5.2):

E{P̂ ∗
0 } = E{E{P̂ ∗

0 |N (2)
0 }}

= Pr(N
(2)
0 = 0)E{C0

n1

+
C1

n1

C10

N
(2)
1

|N (2)
0 = 0}

+

n2−1∑

n
(2)
0 =1

Pr(N
(2)
0 = n

(2)
0 )E{C0

n1

C00

N
(2)
0

+
C1

n1

C10

N
(2)
1

|N (2)
0 = n

(2)
0 }

+ Pr(N
(2)
0 = n2)E{C0

n1

C00

N
(2)
0

|N (2)
0 = n2}

= Pr(N
(2)
0 = 0)(

(n1 − n2)π0

n1

+
(n1 − n2)π1 + n2

n1

π0|1)

+

n2−1∑

n
(2)
0 =1

Pr(N
(2)
0 = n

(2)
0 )(

(n1 − n2)π0 + n
(2)
0

n1

π0|0

+
(n1 − n2)π1 + n

(2)
1

n1

π0|1) + Pr(N
(2)
0 = n2)(

(n1 − n2)π0 + n2

n1

π0|0)

= Pr(N
(2)
0 = 0)(1 − n2

n1

)π01 − Pr(N
(2)
0 = n2)(1 − n2

n1

)π10

+ E{(n1 − n2)π0 + N
(2)
0

n1

π0|0 +
(n1 − n2)π1 + N

(2)
1

n1

π0|1}

= p0 + (1 − n2

n1

)(πn2
1 π01 − πn2

0 π10).

The bias ofP̂0 (3.5.1) can be derived in a similar way.



Chapter 4

Multivariate regression

4.1 Introduction

In this chapter - and the next - the perspective broadens: instead of categorical

variables, continuous variables will be considered. Besides, we temporarily leave

the specific auditing problem and direct our attention to a very general situation:

we consider multivariate regression where new dependent variables are consecu-

tively added during the experiment (or in time). Since, no retrospective observa-

tions are assumed to be possible, the number of observationsdecreases with the

added variables. The explanatory variables are observed throughout.

Two examples will illustrate this set-up. The first considers male patients who

receive a new cholesterol decreasing medicine. The explanatory variables are

age, weight and medication. First, only the decrease in cholesterol is observed;

for later patients, pulse and blood pressure as well, and still later haemoglobine is

measured. The second example relates to a chemical process,where the quantities

of three main ingredients are used as the explanatory variables. In the beginning,

the only variable observed on consecutive days is the quantity of produced mate-

rial. Later the production of two by-products is measured aswell, and finally also

the CO2 emission.

In Section 4.2 the model is presented in detail and illustrated with a numer-

ical example. In Section 4.3, four classical estimation procedures are discussed:

O(rdinary) L(east) S(quares), G(eneralized) LS, E(stimated) GLS and ML. For

61
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LS estimation, only assumptions about the first two moments are required; for

ML estimation, we assume normality. As to all regression coefficients, it is shown

that a specific choice of EGLS coincides with ML. All estimators appear to have a

clear geometric interpretation. Section 4.4 discusses therelative efficiency of the

OLS estimators in relation to the (E)GLS estimators.

The model with complete observations follows as a special case. The same

holds for the model with the constant term as one of the explanatory variables,

leading to centered variables. Both cases are treated in Section 4.5. Section 4.6

describes estimation under linear restrictions and gives MANOVA-tables to per-

form exact L(ikelihood) R(atio) tests on the coefficients. Section 4.7 reviews the

Wishart and Wilks’ distribution and introduces a generalized Wilks’ distribution

that gives the exact distribution of our test statistics in Section 4.8. In Section

4.9 the presented estimation and testing techniques are applied to a numerical

example. In Section 4.10 severalχ2−approximations of the generalized Wilks’

distribution are derived and compared by means of simulation. The final Section

4.11 contains the main conclusions and ideas for future research.

The perspective of the problem can be reversed: instead of regarding the ob-

servations of the newly added variables as additional information, the lacking past

observations of these new variables can be regarded as missing data. Practical

examples of this type of monotone missing data patterns are panel surveys with

either drop outs or new members. However, the linear regression model and its

analysis only hold under very strict conditions for the missing data mechanism;

an example of this is missing completely at random, see Rubin (1976).

To solve missing data problems, general techniques are multiple imputation,

data augmentation and the E(xpectation)M(aximization)-algorithm. The EM-algo-

rithm is a widely used technique to determine ML estimates inmissing data prob-

lems. Although this algorithm converges to ML estimates, itdoes not give ana-

lytical closed-form expressions for the estimators, nor does it lead to exact dis-

tributions of test statistics. Therefore, our approach is much simpler and more

straightforward.

The model with only the constant term as explanatory variable has received a

lot of attention in the missing data literature; see Little and Rubin (2002) for an
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overview. Under the assumption of normality, observationsmissing at random,

and distinctness (see Rubin (1976)), several authors derived the MLE’s by means

of factorization of the likelihood or tedious matrix differentiation. Our formulae

contain these previous results as a very special case, see Section 4.5.2.

Finally, we mention that our general case of multivariate regression with miss-

ing observations of the dependent variables was consideredin Robins and Rot-

nitzky (1995), who discuss semiparametric asymptotic efficiency.

4.2 The model

Consider the multivariate linear regression model withM dependent variables and

k (deterministic) explanatory variables; observations aregathered forN cases. Let

Xtj ∈ IR be the observed value of thejth explanatory variable (j = 1, . . . , k) for

the tth case; complete data are available for the explanatory variables, sot =

1, . . . , N for all j.

The observations of the dependent variables are incomplete; the dependent

variables are ordered such that later added variables come last. So their data are

divided into r ordered groups according to the pattern of increasingly missing

data. Groupi containsmi variables for which exactly the firstNi observations are

available:

N = N1 ≥ N2 ≥ . . . ≥ Nr; Mi =
i∑

j=1

mj (i = 1, . . . , r, Mr = M).

The vectorYti ∈ IRmi contains the values of thesemi dependent variables for case

t. SoYti is observable fort = 1, . . . , Ni and missing fort = Ni + 1, . . . , N . The

special caseN = N1 = . . . = Nr gives the usual complete model.

Ther (multivariate) regression equations can be written as

Yti = µti + εti, µti =
k∑

j=1

Xtjβji, i = 1, . . . , r, t = 1, . . . , Ni, (4.2.1)

whereβji ∈ IRmi denotes a vector of unknown regression coefficients. For the

errors we assume

E{εti} = 0, Cov(εti, εsj) = δtsσij, (4.2.2)
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with (completely unknown) non-singularΣ = (σij) ∈ IRM×M not depending on

the βji. We write Σ > 0 for positive definiteness. If normality of the errors is

assumed, it will be mentioned explicitly.

The union of the groups1 up to i will be denoted by(i), henceYt(i) =

(Y ′
t1 . . . Y ′

ti)
′ ∈ IRMi , i = 1, . . . , r and similarly forµt(i) andεt(i).

The OLS criterion is simply minimizing the sum of squares of the errors,

which can be written as (Nr+1 := 0) :

r∑

i=1

Ni∑

t=Ni+1+1

ε′t(i)εt(i). (4.2.3)

The solution of this minimization problem w.r.t. theβji will be given in Section

4.3.2.

The GLS criterion is minimizing the weighted sum of squares with the inverse

of the covariance matrix of all errors as weight matrix. Since errors of different

cases are uncorrelated, it can be written in a more simple form. The error covari-

ance matrixΣ(i)(i) of εt(i) can be partitioned as follows

Σ(i)(i) := Cov(εt(i)) = Cov

(
εt(i−1)

εti

)
=

[
Σ(i−1)(i−1) Σ(i−1)i

Σi(i−1) Σii

]
. (4.2.4)

So, Σ(i)(i) ∈ IRMi×Mi, Σ(i−1)(i−1) ∈ IRMi−1×Mi−1, Σ(i−1)i ∈ IRMi−1×mi and in

particularΣ(r)(r) = Σ andΣ(1)(1) = Σ11. Then, using (4.2.4), the GLS criterion

can be written as

r∑

i=1

Ni∑

t=Ni+1+1

ε′t(i)Σ
−1
(i)(i)εt(i). (4.2.5)

This minimization problem w.r.t. theβji will be treated in Section 4.3.3. In con-

trast with the complete model GLS and OLS no longer coincide.Since GLS is

BLUE, it outperforms OLS.

Of course, in practiceΣ is unknown and GLS cannot be applied. In Section

4.3.4 we therefore consider EGLS estimation, whereΣ is replaced by some es-

timator. We discuss shortly several possible estimators. One specific choice is

analysed in detail. In Section 4.3.5 we consider ML estimation under normality;
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it will be shown that the specific form of EGLS estimation coincides with ML

estimation.

Numerical illustration

The notations are illustrated by means of the following fictitious data, related to

the examples of Section 4.1 with four dependent and three explanatory variables

(excluding the constant). As usual, columns ofX (andY ) refer to variables and

rows to cases. Not observed values inY are denoted by parentheses. We never-

theless give these values to compare the results obtained from the incomplete data

with the results for the complete data.

X =




1 5 5 7
1 1 3 1
1 3 3 1
1 3 1 3
1 5 5 7
1 1 3 1
1 3 3 1
1 3 1 3
1 4 4 5
1 2 3 2
1 3 3 2
1 3 2 3




Y =




7 5 6 1
5 9 2 4
7 5 10 6
1 1 2 5
4 2 0 4
5 9 8 4
7 8 4 6
4 1 8 2
3 2 4 1
5 7 5 4
6 8 6 (5)
6 (3) (5) (6)




r = 3
k = 4

N1 = 12
N2 = 11
N3 = 10

m1 = 1
m2 = 2
m3 = 1

M1 = 1
M2 = 3
M3 = 4

So, for example,

X1,4 = 7, Y1,1 = 7, Y1,2 =

[
5
6

]
, Y1(2) =




7
5
6


 , Y1,3 = 1,

and (4.2.1) reads fori = 2 :

Yt,2 = β1,2 + Xt,2β2,2 + Xt,3β3,2 + Xt,4β4,2 + εt,2, t = 1, . . . , 11.

Note that suffices are separated by a comma whenever confusion threatens.
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4.3 Estimation

4.3.1 Notation

We introduce some column- and matrix-notation for the observed variables and

regression coefficients. The indexi refers to groupi and(i) again to the union of

the groups1, 2, . . . , i.

X =




X1,1 X1,2 · · · X1,k
...

...
...

XNi,1 XNi,2 · · · XNi,k

...
...

...
XN,1 XN,2 · · · XN,k




↑[
Xi

]

β =




β′
1,1 · · · β′

1,i−1 β′
1,i · · · β′

1,r
...

...
...

...
β′

j,1 · · · β′
j,i−1 β′

j,i · · · β′
j,r

...
...

...
...

β′
k,1 · · · β′

k,i−1 β′
k,i · · · β′

k,r




↑ ↑ ↑[
β(i−1) βi · · · βr

]

SoXi ∈ IRNi×k is the matrix with the firstNi observations of all explanatory vari-

ables. The submatricesβ(i−1) ∈ IRk×Mi−1 andβi ∈ IRk×mi of β ∈ IRk×M contain

the regression coefficients corresponding to groups(i − 1) and i of dependent

variables, respectively. TheYti can be grouped in a corresponding way:



Y ′
1,1 · · · Y ′

1,i−1 Y ′
1,i · · · Y ′

1,r
...

...
... · · · ...

...
...

... · · · Y ′
Nr,r

Y ′
Ni,1

· · · Y ′
Ni,i−1 Y ′

Ni,i
... · · · Y ′

Ni−1,i−1

Y ′
N,1




↑ ↑ ↑[
Y(i−1) Yi · · · Yr

]
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The matrixYi ∈ IRNi×mi contains all observations of groupi. But the matrix

Y(i−1) ∈ IRNi×Mi−1 containsonly the firstNi observations of the foregoing groups

(i − 1) (with Y(0) = 0). We use similar definitions for theµti andεti.

4.3.2 OLS estimation

From (4.2.1) we get(i = 1, . . . , r)
{

Yi = µi + εi, µi = Xiβi

Y(i−1) = µ(i−1) + ε(i−1), µ(i−1) = Xiβ(i−1).
(4.3.1)

Then the OLS criterion (4.2.3) can be written as

r∑

i=1

tr(ε′iεi). (4.3.2)

So the OLS estimates can be found by columnwise orthogonal projections. We

define the following relevant spaces and accompanying characteristics:

Li = R(Xi) : the space spanned by the columns ofXi,
Hi ∈ IRNi×Ni : the orthogonal projection matrix ofLi,
Ui = INi

− Hi : the orthogonal projection matrix ofL⊥
i ,

li = dim(Li) = r(Xi), ri = dim(L⊥
i ) = Ni − li.

Clearly each column ofµi is element ofLi. To indicate this property, we will use

the (short) notationµi ∈ Li.

Theorem 4.3.1.The OLS estimator forµi (i = 1, . . . , r) is the (columnwise)

orthogonal projection ofYi ontoR(Xi):

Zi := HiYi. (4.3.3)

Proof. The OLS criterion (4.3.2) is the sum ofr squared lengths of the error

terms. Since the meanµi only appears in theith term, (4.3.2) is minimized by

minimization of these terms separately. With respect to term i we can write

εi = Yi − µi = Hi(Yi − µi) + Ui(Yi − µi) = (Zi − µi) + UiYi.

Clearly, the minimum is attained forµi = Zi.
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The OLS estimator forεi (i = 1, . . . , r) follows from relations (4.3.1) and

(4.3.3):

Ei = Yi − Zi = UiYi = Uiεi. (4.3.4)

OLS estimatorsbi for the regression coefficientsβi are given by

bi = GiX
′
iYi with Gi = (X ′

iXi)
−, (4.3.5)

where a g-inverse is denoted by−. It is clear that the OLS estimatorsbi are unbi-

ased in case of non-collinearity.

We use the notationE(i−1)g for the columnsMg−1 + 1 throughMg of E(i−1),

i.e. the firstNi rows of OLS residuals corresponding to groupg (a similar notation

is used for the error-terms, (E)GLS residuals,et cetera). Similarly to (4.3.4), we

have

UiE(i−1)g = Ui(Y(i−1)g − Z(i−1)g) = UiY(i−1)g = Uiε(i−1)g. (4.3.6)

We propose the following estimator for the covariance matrix Σ

Sii = E ′
iEi/ri, Sig = E ′

iE(i−1)g/ri for g = 1, . . . , i − 1. (4.3.7)

This estimatorS is unbiased forΣ becauseSii andSig are unbiased forσii and

σig, respectively. Without loss of generality we takemi = 1 for all i, so the

unbiasedness ofSig follows from

E{E ′
iE(i−1)g}/ri = tr

(
UiE{ε′(i−1)gεi}

)
/ri =

σig

ri

tr(Ui) = σig,

where the second equality is based on (4.3.4) and (4.3.6).

WhetherS is positive semidefinite depends on the relative differencebetween

the group sample sizesNi. If the relative difference is small,S will tend to be

positive semidefinite. To ensure that a positive semidefinite S is even positive

definite, we impose the regularity conditionNr ≥ Mr + lr.
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4.3.3 GLS estimation

GLS estimation is usually only of theoretical interest, because in practice the co-

variance matrixΣ is unknown. However, GLS estimators are BLUE and outper-

form the OLS estimators in this sense. So we may hope to do better than OLS

by replacingΣ in the formulae for GLS with a suitable estimatorΣ̂ (EGLS, see

Section 4.3.4).

We rewrite the GLS criterion (4.2.5) in a form more suitable for minimization.

Let




αi := Σ−1
(i−1)(i−1)Σ(i−1)i ∈ IRMi−1×mi

ζti := α′
iεt(i−1) ∈ IRmi×1

ηti := εti − ζti ∈ IRmi×1

νti := µti + ζti ∈ IRmi×1.

(4.3.8)

Note thatYt(0) = εt(0) = 0, soζt1 = 0, ηt1 = εt1 andνt1 = µt1. Thenηt1, . . . , ηtr

are uncorrelated,ηti andνti are uncorrelated and




E{ζti} = E{ηti} = 0
∆ii := Cov(ζti) = α′

iΣ(i−1)(i−1)αi

Γii := Cov(ηti) = Σii − ∆ii.
(4.3.9)

In case of normality we have the interpretation
{

νti = E{Yti|Yt(i−1)}
Γii = Cov(Yti|Yt(i−1)).

(4.3.10)

From (4.3.8), (4.3.9) we get

Σ−1
(i)(i) =

[
Σ−1

(i−1)(i−1) + αiΓ
−1
ii α′

i −αiΓ
−1
ii

−Γ−1
ii α′

i Γ−1
ii

]

and so

ε′t(i)Σ
−1
(i)(i)εt(i) = ε′t(i−1)Σ

−1
(i−1)(i−1)εt(i−1) + η′

tiΓ
−1
ii ηti.

Therefore, the GLS criterion (4.2.5) can be rewritten as

r∑

i=1

Ni∑

t=1

η′
tiΓ

−1
ii ηti. (4.3.11)
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For theζti, ηti andνti we use the same block notation as for theYti (andµti and

εti; see Section 4.2). So from (4.3.8)(i = 1, . . . , r)





Yi = νi + ηi

νi = µi + ζi

ζi = ε(i−1)αi = Y(i−1)αi − µ(i−1)αi

εi = ζi + ηi.

(4.3.12)

The GLS criterion (4.3.11) can be written as

∑r
i=1tr(Γ

−1
ii η′

iηi). (4.3.13)

This form leads to the solution in Theorem 4.3.2.

Theorem 4.3.2.The GLS estimator forµi (i = 1, . . . , r) is

⌣
µi := Hi(Yi − Y(i−1)αi +

⌣
µ(i−1)αi), with

⌣
µ(0) := 0. (4.3.14)

Proof. The GLS criterion (4.3.13) is a summation over all groups. Clearly the

meanµi not only appears in theith term but also in all subsequent termsi +

1, . . . , r. So minimization of (4.3.13) has to take place in an sequential way, start-

ing with groupr. Sinceµi, µ(i−1) ∈ Li we get with (4.3.12):

ηi = Yi − νi = Yi − Y(i−1)αi + µ(i−1)αi − µi

= Hi(Yi − Y(i−1)αi + µ(i−1)αi − µi) + Ui(Yi − Y(i−1)αi + µ(i−1)αi − µi)

=
[
Hi(Yi − Y(i−1)αi + µ(i−1)αi) − µi

]
+ Ui(Yi − Y(i−1)αi).

Regardless of the value ofΓrr and givenµ(r−1), the first term of this orthogonal

decomposition ofηr is zero forµr = Hr(Yr − Y(r−1)αr + µ(r−1)αr). After sub-

stituting this minimum into (4.3.13),µr−1 only appears in the(r − 1)th term,et

cetera. SinceY(i−1) = µ(i−1) = 0 for i = 1, repeated application of the preceding

argumentation results in the closed form GLS estimator (4.3.14).

Relation (4.3.1) and
⌣
µi given by (4.3.14) lead to the GLS estimator

⌣
ε i for εi.

Next, the GLS estimators
⌣

ζ i,
⌣
ν i and

⌣
ηi for ζi, νi andηi, respectively, follow from

relation (4.3.12).



4.3. Estimation 71

From expression (4.3.14), it is clear that the GLS estimateshave to be deter-

mined sequentially,i.e. only after the GLS estimates for groupi − 1 are deter-

mined, it is possible to determine the estimates for groupi. So the GLS estimators

in the proof of Theorem 4.3.2 are derived sequentially starting with the last group,

while the actual estimates are determined sequentially starting with the first group.

The definitions (4.3.3) and (4.3.14) immediately imply the next Corollary.

Corollary. The GLS estimators
⌣
µi and

⌣
ε i can be written in relation to the OLS

estimatorsZi andEi as
{

⌣
µi = Zi − Hi

⌣

ζ i, with
⌣

ζ i :=
⌣
ε (i−1)αi

⌣
ε i = Ei + Hi

⌣

ζ i.
(4.3.15)

Since the GLS estimators
⌣
µi are the (columnwise) orthogonal projections of

Yi−
⌣

ζ i ontoR(Xi), it follows thatXi

⌣

β i =
⌣
µi = Hi(Yi−

⌣

ζ i). So, GLS estimators
⌣

β i for βi (i = 1, . . . , r) are given by
⌣

β i = GiX
′
i(Yi −

⌣

ζ i). (4.3.16)

The GLS estimators
⌣
µi are BLUE. So the

⌣

β i are BLUE for estimableβi.

The achieved minimum of the GLS criterion (4.2.5), (4.3.11)or (4.3.13) is
r∑

i=1

tr(Γ−1
ii

⌣
η
′

i

⌣
η i). (4.3.17)

4.3.4 EGLS estimation

In the more common situation in which both the regression coefficients and the

covariance matrix are unknown, EGLS is often applied. For EGLS we have to

minimize (4.2.5), where the covariance-matrixΣ is replaced by an estimate, for

example the OLS estimatorS of (4.3.7). We will consider here another, more

implicitly defined estimator forΣ as well. (In Section 4.3.5 we will see the relation

with ML.)

Note that estimation ofΣ is equivalent to estimation of (αi, Γii) i = 1, . . . , r.

From the expressions (4.3.14) for the GLS estimators
⌣
µi it is clear that they de-

pend on theαi but not on theΓii. So only the EGLS estimatorŝαi for theαi are
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relevant for the EGLS estimatorŝµi for µi; they do not depend on the choicesΓ̂ii

for Γii.

Now we take a very specific choice of theα̂i, leaving theΓii undetermined for

the moment. We define our̂αi as minimizing (4.3.17). Clearly, this is equivalent to

minimizing (4.3.13) simultaneously toαi andβi. For this minimization problem,

we consider orthogonal projections onto extended spacesL(i) ⊇ Li. We define

L(i) = R(Xi Y(i−1)) = Li ⊕R(Y(i−1)), (with Y(0) := 0),
H(i) ∈ IRNi×Ni : orthogonal projection matrix ofL(i),
U(i) = INi

− H(i) : orthogonal projection matrix ofL⊥
(i),

l(i) = dim(L(i)), r(i) = dim(L⊥
(i)) = Ni − l(i).

SinceR(Xi) ∩ R(Y(i−1)) = {0} a.s., anyνi ∈ L(i) can be uniquely written as

νi = µi + ζi, with µi ∈ R(Xi) andζi ∈ R(Y(i−1)). Note thatµi is the (oblique)

projection ofνi ontoR(Xi) alongR(Y(i−1)), and thatζi is the (oblique) projection

of νi ontoR(Y(i−1)) alongR(Xi). We call shortlyµi theR(Xi)-projection ofνi,

andζi theR(Y(i−1))-projection ofνi.

Theorem 4.3.3.The EGLS estimator forµi is theR(Xi)-projection ofν̂i, where

ν̂i is the EGLS estimator forνi given by

ν̂i := H(i)Yi. (4.3.18)

Proof. The EGLS estimator forνi follows straightforwardly from orthogonal de-

compositions (compare the proof of Theorem 4.3.2). Sinceνi ∈ L(i) we have:

ηi = Yi − νi = H(i)(Yi − νi) + U(i)(Yi − νi) = (H(i)Yi − νi) + U(i)Yi.

So, the EGLS estimator forνi is given by (4.3.18) regardless ofΓii. Sinceν̂i ∈
L(i), µ̂i ∈ R(Xi) and ζ̂i ∈ R(Y(i−1)), we see that̂µi is theR(Xi)-projection of

ν̂i.

Note that the proof implies that̂ζi is theR(Y(i−1))-projection ofν̂i. Relation

(4.3.12) and̂νi lead to the EGLS estimatorŝηi for ηi, andε̂i for εi.

The propertyHiη̂i = Hi(Yi − ζ̂i − µ̂i) = 0 immediately gives the next Corol-

lary.
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Corollary. The EGLS estimatorŝµi and ε̂i for µi and εi, respectively, can be

written in relation to the OLS estimatorsZi andEi as
{

µ̂i = Zi − Hiζ̂i,
ε̂i = Ei + Hiζ̂i.

(4.3.19)

SinceY(i−1) = µ̂(i−1) + ε̂(i−1) and µ̂(i−1) ∈ R(Xi), we haveL(i) := R(Xi

Y(i−1)) = R(Xi ε̂(i−1)) and soζ̂i is theR(ε̂(i−1))-projection ofν̂i = H(i)Yi. To

obtain simple expressions, we will make use of projections ontoR(ε̂(i−1)) instead

of R(Y(i−1)). Since

ν̂i = µ̂i + ζ̂i = Xiβ̂i + ε̂(i−1)α̂i =
[
Xi ε̂(i−1)

] [
β̂i

α̂i

]
,

EGLS estimators (̂βi, α̂i) for (βi, αi), are given by

[
β̂i

α̂i

]
= G(i)

[
X ′

i

ε̂′(i−1)

]
Yi, with G(i) =

[
X ′

iXi X ′
i ε̂(i−1)

ε̂′(i−1)Xi ε̂′(i−1)ε̂(i−1)

]−

. (4.3.20)

Sinceε̂(0) = 0, we can always takêβ1 = b1 given by (4.3.5).

In case of normally distributed errorsE{Yi|Y(i−1)} = νi, henceE{ν̂i|Y(i−1)} =

H(i)E{Yi|Y(i−1)} = H(i)νi = νi. Sinceµ̂i, (µi) is an (oblique) projection of̂νi

(νi) onto Li, it follows thatE{µ̂i|Y(i−1)} = µi (see Malinvaud (1970)e.g.). If

r(Xi) = k, there is a one-to-one linear relationship betweenµi andβi, so β̂i is

unbiased as well.

The geometric interpretations and the underlying relations of the OLS and

EGLS estimators are shown in Figure 4.3.1.

The fit Zi and the residualsEi of OLS are the (columnwise) orthogonal pro-

jections ofYi on R(Xi) andR(Xi)⊥, respectively. In our specific EGLS, the fit

ν̂i is the orthogonal projection ofYi on R(Xi ε̂(i−1)) with residualŝηi ⊥ R(Xi

ε̂(i−1)). Figure 4.3.1 illustrates thatZi andµ̂i (and thereforeEi and ε̂i) coincide

whenR(ε̂(i−1))⊆ R(Xi)
⊥. So the equalitŷεi = Ei only holds ifXi andε̂(i−1) are

orthogonal; this is in general not the case.

We can distinguish several approaches for the constructionof the EGLS es-

timator for Σ. First of all, it is possible to use the OLS estimatorS, complete
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µ̂iZi

η̂i

ζ̂i ν̂i

ε̂i Ei Yi

R(Xi)

R(ε̂(i−1))

R(Xi Y(i−1)) =
R(Xi ε̂(i−1))

R(Xi)
⊥

Figure 4.3.1: Geometric interpretation

ignoring all EGLS estimators. Secondly, it is also possibleto base the EGLS

estimator forΣ on the derived̂εi, while further ignorinĝαi. This approach is fol-

lowed to construct the EGLS estimator in this section. Similar to OLS, we build

the EGLS estimator̂S for the covariance matrix as the sample variance corrected

for degrees of freedom,i.e.

{
Ŝii = ε̂′iε̂i/ri

Ŝig = ε̂′iε̂(i−1)g/ri for g = 1, ..., i − 1.
(4.3.21)

Similar to OLS,̂ε(i−1)g denotes the columnsMg−1+1 throughMg of ε̂(i−1), i.e. the

first Ni rows of EGLS residuals corresponding to groupg. Again, the estimator

Ŝ is not necessarily positive semidefinite. As a consequence of the regularity

conditionNr ≥ Mr + lr, we haver(ε̂(i−1)) = Mi−1 a.s.,l(i) = li + Mi−1 a.s. and

the estimateŝαi for the regression coefficientsαi are unique a.s..

Thirdly, and more logical, we could specifŷΓii since we already derived̂αi

(and (Γii, αi) completely specifyΣ); we will discuss this approach in Section 4.3.5

in the context of ML.
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4.3.5 Maximum likelihood

For ML estimation we make the additional assumption that theerror termsεti have

(simultaneously for allt andi) a normal distribution. It follows that

L
(

Yt(i−1)

Yti

)
= NMi

((
µt(i−1)

µti

)
,

(
Σ(i−1)(i−1) Σ(i−1)i

Σi(i−1) Σii

))
.

The distribution of the observations is characterized by the unknown parameter

θ = (β, Σ) ∈ Θ. We write|A| =det(A).

Theorem 4.3.4.The likelihood of the observationsY = {Yi} = {Yti} is given by

L(θ; Y ) =
r∏

i=1

[{(2π)mi|Γii|}−
Ni
2 exp{−1

2
tr(Γ−1

ii η′
iηi}] (4.3.22)

= exp{−1
2

r∑

i=1

tr(Γ−1
ii (ν̂i − νi)

′(ν̂i − νi)}

·
r∏

i=1

[{(2π)mi |Γii|}−
Ni
2 exp{−1

2
tr(Γ−1

ii η̂′
iη̂i)}]. (4.3.23)

Proof.

L(θ; Y )
1
=

r∏

i=1

Ni∏

t=1

p(Yti|Yt(i−1))

2
=

r∏

i=1

[{(2π)mi |Γii|}−
Ni
2 exp{−1

2

Ni∑

t=1

(Yti − νti)
′Γ−1

ii (Yti − νti)}]

3
=

r∏

i=1

[{(2π)mi |Γii|}−
Ni
2 exp{−1

2
tr(Γ−1

ii (Yi − νi)
′(Yi − νi)}]

4
=

r∏

i=1

[{(2π)mi |Γii|}−
Ni
2 ·

exp{−1

2
tr(Γ−1

ii (ν̂i − νi)
′(ν̂i − νi)) −

1

2
tr(Γ−1

ii η̂′
iη̂i)}].

Equality 1 holds by conditioning; note thatYt(0) = 0. GivenYt(i−1), νti is fixed and

(4.3.10) impliesL(Yti|Yt(i−1)) = Nmi
(νti, Γii). Because of the row independence

the conditional densities can be substituted into the likelihood which results in
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equality 2. Equality 3 is obtained by writing the likelihoodin terms of matrices

Yi instead of the columnsYti; this proves (4.3.22). The fourth equality is based

on the orthogonal decomposition ofYi in ν̂i andη̂i (according to (4.3.18)). Since

η̂i is the orthogonal projection ofYi ontoL⊥
(i), η̂i is orthogonal to botĥνi andνi.

This proves (4.3.23).

In case of knownΣ, it is clear from equality (4.3.22) that maximization of the

likelihood coincides with minimization of the GLS criterion (4.3.13) and that the

MLE’s will coincide with the GLS estimators. So in case of normality, the GLS

estimators are MVUE.

In case of unknownΣ, minimization of (4.3.23) leads to Theorem 4.3.5.

Theorem 4.3.5.The MLE forµi coincides with the EGLS estimatorµ̂i as defined

in Theorem 4.3.3. Moreover, the MLE forΓii is

Γ̂ii =
η̂′

iη̂i

Ni

. (4.3.24)

The maximized likelihood is given by

sup
ϑ∈Θ

L(θ; Y ) = (2πe)
− 1

2

r∑
i=1

Nimi
r∏

i=1

|η̂′
iη̂i/Ni|−

Ni
2 . (4.3.25)

Proof. The MLE is obtained by maximization of the likelihood (4.3.23) w.r.t. all

νi andΓii, respectively. Now (4.3.23) is maximized byνi = ν̂i, regardless the

value ofΓii. Thereforêνi is the MLE for νi, even in case of unknownΓii. The

estimators for the other parameters follow from (4.3.12) asin the case of EGLS

estimation (see Section 4.3.4).

Substitution of̂νi in (4.3.23) gives

sup
νi

L(θ; Y ) =
r∏

i=1

[{(2π)mi|Γii|}−
Ni
2 exp{−1

2
tr(Γ−1

ii η̂′
iη̂i)}].

This has to be maximized w.r.t. theΓii. The separate factors of this maximized

likelihood have the same structure as the expression for thecomplete multivariate

linear model. So, in the same way we see thatΓ̂ii of (4.3.24) is the MLE forΓii.

Substitution of thêνi andΓ̂ii into (4.3.23) results in (4.3.25).
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In case of identifiableαi andβi, the EGLS estimatorŝβi and α̂i equal the

MLE’s. Though the coefficientsαi are identifiable, this is not true forβi. In case

of non-uniquêβi we choose the MLE equal to the EGLS estimator forβi.

The MLE Σ̂ for the covariance matrix follows sequentially from the relations

(4.3.8) and (4.3.9), and from the MLE (4.3.24):
{

Σ̂11 = Γ̂11 and fori = 2, ..., r :

Σ̂(i−1)i = Σ̂(i−1)(i−1)α̂i, ∆̂ii = α̂′
iΣ̂(i−1)(i−1)α̂i, Σ̂ii = Γ̂ii + ∆̂ii.

(4.3.26)

Note that the difference between the estimatorsΣ̂ and Ŝ of (4.3.21) is not just

caused by the introduction of the number of degrees of freedom. For example,

from the expressions

Σ̂22 = η̂′
2η̂2/N2 + α̂′

2ε̂
′
1ε̂1α̂2/N1, Ŝ22 = η̂′

2η̂2/r2 + α̂′
2ε̂

′
(1)ε̂(1)α̂2/r2

we see that the difference is caused by taking other residuals as well.

Note that we can usêΣ in EGLS (regardless of normality). It is not straight-

forward which one of the covariance matrix estimatorsS, Ŝ or Σ̂ has the smallest

bias. The bias of̂Σ will probably be decreased by correcting for the degrees of

freedom. ReplacingNi by r(i) in (4.3.24) gives an unbiased estimator forΓii; Σ

can still be estimated according to relation (4.3.26). A major drawback of this

correction is that the estimator forΣ depends on the particular division of the data

into groups, even in case of the complete model (with no missing observations).

This problem is solved by substitutingri for Ni in (4.3.24) and still estimatingΣ

by relation (4.3.26). Though this does not result in an unbiased estimator forΓii,

the estimator forΣ is unique in case of complete data and the bias of this estimator

is probably smaller than the bias of the MLÊΣ.

The analysis of the bias of the current covariance estimatorsS, Ŝ andΣ̂ is left

for future research. A similar approach as the one of Krishnamoorthy and Pannala

(1999) or Kanda and Fujikoshi (1998) for the model with only the constant term

could be followed. It would also be interesting to look at alternative estimators for

the covariance matrix such as for example presented by Krishnamoorthy (1991)

for the model with only the constant term. In this chapter, werestrict ourselves to

(4.3.7), (4.3.21) and (4.3.26).
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4.4 Relative efficiency

We compare the performance of the discussed LS estimators bymeans of the rela-

tive efficiency of the estimators for the regression coefficients under the normality

assumption. The relative efficiency of estimatorθ̂1 in relation to estimator̂θ2 can

be expressed as the determinant of the following function ofthe M(ean) S(quared)

E(rror)s:

MSE(θ̂1)
− 1

2 MSE(θ̂2)MSE(θ̂1)
− 1

2 , (4.4.1)

other possibilities are the maximum eigenvalue or the trace.

Throughout this section we assume without loss of generality that mi = 1

for all i. In case of normality all LS estimators for the regression coefficients are

unbiased and their MSE’s coincide with their variances. Thevariance of OLS

estimatorbi follows directly from its definition in (4.3.5):

V ar{bi} = σii(X
′
iXi)

−1. (4.4.2)

The variance of the GLS estimator
⌣

β i is more complicated.

Theorem 4.4.1.For i = 2, . . . , r,

V ar{
⌣

β i} = V ar{
⌣

β (i−1)αi} + (X ′
iXi)

−1X ′
iΓiiXi(X

′
iXi)

−1. (4.4.3)

Proof. We determine the variance by the relation

V ar{
⌣

β i} = V ar{E{
⌣

β i|Y(i−1)}} + E{V ar{
⌣

β i|Y(i−1)}}.

For the variance of the conditional expectation we have

V ar{E{
⌣

β i|Y(i−1)}} 1
= V ar{βi + (X ′

iXi)
−1X ′

i(ε(i−1) −
⌣
ε (i−1))αi}

2
= V ar{(X ′

iXi)
−1X ′

i(Xi

⌣

β (i−1) − Xiβ(i−1))αi}
3
= V ar{

⌣

β (i−1)αi}.
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The first equality follows from (4.3.16) andE{Yi|Y(i−1)} = Xiβi + ε(i−1)αi; the

second fromε(i−1) −
⌣
ε (i−1) = Xi

⌣

β (i−1) − Xiβ(i−1) andV ar{βi} = 0. Rewriting

andV ar{β(i−1)} = 0 gives the last equality.

For the conditional variance we have

V ar{
⌣

β i|Y(i−1)} = V ar{(X ′
iXi)

−1X ′
iYi|Y(i−1)}

= (X ′
iXi)

−1X ′
iΓiiXi(X

′
iXi)

−1,

where the first equality follows from (4.3.16) andV ar{⌣
ε (i−1)αi|Y(i−1)} = 0; the

second one from (4.3.12).

Corollary. If M2 = 2, then

V ar(
⌣

β2) = ρ2
12σ22(X

′
1X1)

−1 + (1 − ρ2
12)σ22(X

′
2X2)

−1, (4.4.4)

whereρ12 =
σ12√
σ11σ22

.

This corollary follows from Theorem 4.4.1,
⌣

β1 = b1 and (4.4.2).

We look into more detail at the relative efficiency for the frequently occurring

situationM2 = 2. Substituting (4.4.2) and (4.4.4) into (4.4.1) gives the relative

efficiency ofb2 in relation to
⌣

β2

(1 − ρ2
12) + ρ2

12(X
′
2X2)

1
2 (X ′

1X1)
−1(X ′

2X2)
1
2 . (4.4.5)

It is clear that (4.4.5) is always smaller (or equal) to one,i.e.
⌣

β2 always outper-

formsb2 in terms of variance (as can be expected). GLS is relatively more efficient

for high values ofρ12 and small(X ′
2X2)(X

′
1X1)

−1; the latter usually corresponds

with a high fraction of missing observations,i.e. n2/n1 is small. This seems to

be quite a logical result: GLS makes use of the sample information of preceding

dependent variables in contrast to OLS. If there is relatively a lot of additional

information available (i.e. n1/n2) is high) and the preceding dependent variable

is highly correlated with the current one, the additional information concerning

the preceding dependent variable will result in more accurate estimates. Figure

4.4.1 plots the relative efficiency ofb2 in relation to
⌣

β2 as function ofρ12 for
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several combinations ofn1/n2 (under the assumption that(X ′
2X2)(X

′
1X1)

−1 is

equivalent ton2/n1).
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Figure 4.4.1: Relative efficiency ofb2 in relation toβ̃2

It is quite hard to derive a closed form expression forV ar{β̂i}. However,

(4.4.3) will give a good approximation for large sample sizes since EGLS is

asymptotically equivalent to GLS. In Chapter 6 we will consider the relative effi-

ciency of OLS in relation to EGLS for a practical example.

4.5 Special cases

4.5.1 No missing observations

In the model formulation of Section 4.2 the restrictionsNi−1 ≥ Ni are imposed

instead ofNi−1 > Ni. In case of the last restrictions the division of the data into
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different group is always unique, while this is not true for the first restrictions: if

there are several variables with the same number of observations, all the variables

together can be defined as one group, but it is also possible todefine multiple

groups. In case of different groups with the same number of observations, thêεj

of the previous dependent variables with the same number of observations as the

dependent variables of groupi are orthogonal toXi. Since the regression ofYi

onto theXi and ε̂(i−1) coincides with partial regression (seee.g.Green (1993)),

the estimatorŝµi andε̂i will not depend on the group composition.

The situation with no missing observations (N = N1 = ... = Nr) is a special

case of the presented model. By constructing just one group, it is straightforward

that the OLS and (E)GLS estimators forµi are identical:Zi = µ̂i. As a conse-

quence the covariance estimators (4.3.7) and (4.3.21) are identical and unique.

The uniqueness and equality of the OLS and EGLS estimators can also be

shown sequentially by the estimation procedure. From both Figure 4.3.1 and for-

mula (4.3.20) for the regression coefficients, we can see that the OLS and EGLS

estimators are identical whenR(ε̂(i−1)) ⊆ R(Xi)
⊥. That this is true for the sit-

uation with no missing observations can be directly deducedfrom the estimation

procedure. In case of complete data, we haveX = X1 = X2 = ... = Xr and

R(Xi) = R(X) for i = 1, ..., r. The iterations in the EGLS estimation procedure

show

Step 1: µ̂1 ∈ R(X), ε̂1 ∈ R(X)⊥

Stepi (i = 2, ..., r) : ε̂(i−1) = [ε̂1 ε̂2 ... ε̂i−1] ∈ R(X)⊥

=⇒ ζ̂i = ε̂(i−1)α̂i ∈ R(ε̂(i−1)) ⊆ R(X)⊥ andη̂i ∈ R(X)⊥

=⇒ ε̂i = ζ̂i + η̂i ∈ R(X)⊥

=⇒ R(ε̂(i)) = R(ε̂1 ε̂2 ... ε̂i) ⊆ R(X)⊥.

So ε̂(i−1) ∈ R(X)⊥, Zi = µ̂i and as a consequenceS = Ŝ.

For the case of complete data, the MLE in Theorem 4.3.5 must beidentical

to the standard result known from literature, as well as the maximized likelihood

(4.3.25). To show the latter we make use of the following two properties:

(a) η̂1, η̂2, . . . , η̂r are orthogonal,
(b) E(r) = [E1 E2 . . . Er] = [ε̂1 ε̂2 . . . ε̂r] = [η̂1 η̂2 . . . η̂r]A.
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with A an upper triangular invertible matrix with unit diagonal elements. The

existence of such a matrix follows form (a slightly modified)QR-factorization of

E(r). Hence,

sup
ϑ∈Θ

L(θ; Y )
1
= (2πe)−

1
2
NM

r∏
i=1

|η̂′
iη̂i/N |−N

2

2
= (2πe)−

1
2
NM |[η̂1 η̂2 . . . η̂r]

′[η̂1 η̂2 . . . η̂r]/N |−N
2

3
= (2πe)−

1
2
NM |[η̂1 η̂2 . . . η̂r]A)′([η̂1 η̂2 . . . η̂r]A/N |−N

2

4
= (2πe)−

1
2
NM |E ′

(r)E(r)/N |−N
2 .

The first equality follows fromN = N1 = ... = Nr andX = X1 = ... = Xr. The

second and third equality are based on property (a) and|A| = 1. The last equality

follows from (b). The final expression can be found in Seber (1984), p. 407. A

general approach for complete data can be found in Van der Genugten (1997)e.g.,

emphasizing a geometrical approach.

4.5.2 The constant term

Often the first explanatory variable is the constant term. Wedenote the corre-

sponding regression coefficients byβc ∈ IR1×M (c = constant); the regression

coefficients of the other explanatory variables are denotedby βv ∈ IR(k−1)×M

(v = variable). Expanding this notation we can write

β =

[
βc

βv

]
, b =

[
bc

bv

]
, β̂ =

[
β̂c

β̂v

]
, X = [1N Xv],

with Xv ∈ IRN1×(k−1). The subindicesi and(i − 1) have a similar meaning as in

the preceding sections, so for example,Xvi contains the firstNi rows ofXv.

LS estimation with the constant term corresponds to orthogonal projections on

R(1Ni
) and the centered spacesL̃i andL̃(i) defined as

L̃i ⊕R(1Ni
) = Li and L̃i ⊥ R(1Ni

), l̃i = dim(L̃i) = li − 1,

L̃(i) ⊕R(1Ni
) = L(i) and L̃(i) ⊥ R(1Ni

), l̃(i) = dim(L̃(i)) = l(i) − 1.

The mean and centered observations coincide with orthogonal projections of the
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observations onR(1Ni
) and the centered spaces:

X i = 1
Ni

1′Ni
Xvi ∈ IR1×(k−1), X̃i = Xvi − 1Ni

X i ∈ IRNi×(k−1),

Y i = 1
Ni

1′Ni
Yi ∈ IR1×mi , Ỹi = Yi − 1Ni

Y i ∈ IRNi×mi ,

Y (i−1) = 1
Ni

1′Ni
Y(i−1) ∈ IR1×Mi−1 , Ỹ(i−1) = Y(i−1) − 1Ni

Y (i−1) ∈ IRNi×Mi−1,
ε(i−1) = 1

Ni
1′Ni

ε̂(i−1) ∈ IR1×Mi−1 , ε̃(i−1) = ε̂(i−1) − 1Ni
ε(i−1) ∈ IRNi×Mi−1 .

Note thatY (i−1) 6= [Y 1 Y 2 . . . Y i−1] andε(i−1) 6= 0.

The LS estimators can be expressed in terms of the means and the centered

observations,e.g.the EGLS estimators (or equivalently the MLE’s in case of nor-

mality and unknownΣ) read





[
β̂vi

α̂i

]
= G̃(i)

[
X̃ ′

i

ε̃′(i−1)

]
Ỹi, with G̃(i)=

[
X̃ ′

iX̃i X̃ ′
i ε̃(i−1)

ε̃′(i−1)X̃i ε̃′(i−1)ε̃(i−1)

]−

β̂ci = Y i − X iβ̂vi − ε(i−1)α̂i.

(4.5.1)

We now turn to the very special case that the constant term is the only explanatory

variable:Xi = 1Ni
. This model has received considerable attention in literature,

especially ML estimation under the normality assumption. Anderson (1957) de-

rived the MLE’s for r = 2 andm1 = m2 = 1 and suggested an approach to

determine the MLE’s for generalr. Bhargava (1962) derived the MLE’s for gen-

eralr. Following the approach suggested by Anderson (1957), Afifi and Elashoff

(1966) confirmed the findings of Bhargava (1962) for the regression coefficients,

but presented a different, incorrect MLE for the covariancematrix. Jinadasa and

Tracy (1992) derived the correct MLE’s for generalr by matrix differentiation

which resulted in rather complicated expressions. Fujisawa (1995) presented the

MLE’s for generalr in recursive form, which coincide with the MLE’s given by

Bhargava (1962) and Jinadasa and Tracy (1992).

For the model with only the constant term,ε̃(i−1) and ε̃i coincide withỸ(i−1)

andỸi respectively, and the MLE’s (4.5.1) for the regression coefficients reduce
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to the same expressions as found by Fujisawa (1995):

β̂c1 = µ̂1 = Y 1,

α̂i = (Ỹ ′
(i−1)Ỹ(i−1))

−1(Ỹ(i−1)Ỹi),

β̂ci = µ̂i = Y i − (Y (i−1) − µ̂(i−1))α̂i, for i = 2, ..., r.

The MLE Γ̂ii is determined by substituting the MLE’s for the regression coeffi-

cients into (4.3.24), leading to the same covariance estimators as found by Fuji-

sawa (1995):
{

Γ̂11 = Ỹ ′
1 Ỹ1/N1

Γ̂ii = (Ỹi − Ỹ(i−1)α̂i)
′(Ỹi − Ỹ(i−1)α̂i)/Ni for i = 2, ..., r.

4.6 Restricted models

So far we just have considered (unrestricted) models in which µi ∈ Li andνi ∈
L(i). In a restricted model,pi linear constraints are imposed on the parametersβi :

Ciβi = 0 with Ci ∈ IRpi×k for i = 1, . . . , r. So fori = 1, . . . , r the unknownβi

are restricted toN (Ci), the null space ofCi. We assume that the restrictions are

monotone (decreasing) in the sense thatN (C1) ⊆ N (C2) ⊆ . . . ⊆ N (Cr). This

includes the usual caseC1 = . . . = Cr.

Similar to the unrestricted model, we can distinguish between OLS , (E)GLS

and ML estimation. We will only discuss the specific EGLS corresponding to ML

under normality.

For two matricesP ∈ IRp×candQ ∈ IRq×c we will write

[
P
Q

]
shortly as

[P ; Q]. Now νi = [Xi Y(i−1)][βi; αi] is restricted toR(Xi(N (Ci)) Y(i−1)), where

Xi(N (Ci)) is the image ofN (Ci) under the linear transformationXi. The linear

spaceL(i) = R(Xi Y(i−1)) can be split into two orthogonal subspaces:L0(i) and

L1(i), which (with some additional characteristics) are defined as

L0(i) = R(Xi(N (Ci)) Y(i−1)), L1(i) ⊕ L0(i) = L(i), L1(i) ⊥ L0(i),
H0(i): projection matrix ofL0(i), l0(i) = dim(L0(i)),
H1(i): projection matrix ofL1(i), l1(i) = dim(L1(i)) = l(i) − l0(i),
U0(i): projection matrix ofL⊥

0(i), L0(i) ⊕ L⊥
0(i) = IRNi , L0(i) ⊥ L⊥

0(i),
r0(i) = dim(L⊥

0(i)) = Ni − l0(i).
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So L⊥
0(i) = L1(i) ⊕ L⊥

(i). Quantities relating toL0(i) andL1(i) are denoted by a

primary subindex 0 and 1, respectively. The following testing problem will be

considered (for identifiableCiβi):





H0 : {∀i : Ciβi = 0} againstH1 : {∃i : Ciβi 6= 0},
or equivelantly,

H0 : {∀i : νi ∈ L0(i)} againstH1 : {∃i : νi ∈ L(i) − L0(i);∀i : νi ∈ L(i)}.
(4.6.1)

The relevant test statistics for (4.6.1) can be based on orthogonal projections onto

theL1(i) andL⊥
(i).

The whole procedure for EGLS estimation for the restricted model is similar

to the one described in Section 4.3.4 for the unrestricted model: only the sub-

spacesL(i) have to be replaced byL0(i). This is due to the fact that the restrictions

are monotone, implying thatµi, µ(i−1) ∈ L0(i). Formulae (4.3.18), (4.3.19) and

(4.3.21) through (4.3.26) still hold for the restricted model if we add a subindex

0. The estimatorŝβ0i and α̂0i for βi andαi respectively, are given (similar to

(4.3.20)) by





β̂01 = G01X
′
1Y1, with G01 ∈ IRk×k

defined by

[
G01 *
* *

]
=

[
X ′

1X1 C ′
1

C1 0

]−

i = 2, . . . , r :[
β̂0i

α̂0i

]
= G0(i)

[
X ′

i

ε̂′0(i−1)

]
Yi with G0(i) ∈ IR(k+Mi−1)×(k+Mi−1)

defined by

[
G0(i) *
* *

]
=




X ′
iXi X ′

i ε̂0(i−1) C ′
i

ε̂′0(i−1)Xi ε̂′0(i−1)ε̂0(i−1) 0
Ci 0 0




−

.

(4.6.2)

The required statistics for the LR test (based on EGLS) can besummarized into

a collection of non-centered MANOVA-tables fori = 1, . . . , r. In the tables the

abbreviations SS, DF and R stand for Sum of Squares, Degrees of Freedom and

Restricted, respectively.
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Model Space SS DF Testing
R. model L0(i) ν̂ ′

0iν̂0i l0(i)

Difference L1(i) ν̂ ′
1iν̂1i l1(i) Λ0i =

|η̂′
iη̂i|

|η̂′
iη̂i + ν̂ ′

1iν̂1i|
Model L(i) ν̂ ′

iν̂i l(i)
Error L⊥

(i) η̂′
iη̂i r(i)

Total IRNi Y ′
i Yi Ni

Table 4.6.1: Collection of non-centered MANOVA-tables(i = 2, . . . , r)

The column Testing will be used in case of normality in Section 4.8; note that

η̂0i = U0(i)Yi = ν̂1i + η̂i.

If the constant term is included as an explanatory variable,often the centered

MANOVA-tables are presented, provided that no restrictions are imposed on the

constant term. The abbreviation C stands for Corrected (or Centered):

Model Space SS DF Testing
C.R. model L̃0(i) ν̃ ′

0iν̃0i l̃0(i)

Difference L1(i) ν̂ ′
1iν̂1i l1(i) Λ0i =

|η̂′
iη̂i|

|η̂′
iη̂i + ν̂ ′

1iν̂1i|
C. model L̃(i) ν̃ ′

iν̃i l̃(i)
Error L⊥

(i) η̂′
iη̂i r(i)

C. total R(1Ni
)⊥ Ỹ ′

i Ỹi Ni − 1

Mean R(1Ni
) NiY

′

iY i 1
Total IRNi Y ′

i Yi Ni

Table 4.6.2: Collection of centered MANOVA-tables(i = 2, . . . , r)

The inner products in the non-centered MANOVA-tables are acquired by adding

the inner products of the corresponding means to the centered inner products,e.g.

ν̂ ′
iν̂i = ν̃ ′

iν̃i+ NiY
′

iY i. Since the termŝν1i and the errorŝηi in the non-centered

MANOVA-tables are centered if a constant is included in the model, they are

identical to the corresponding inner products in the centered MANOVA-tables.

Now suppose that (not necessary identifiable) linear restrictions Ciβi = 0

have already been imposed and thatqi additional linear constraints are consid-

ered of the formDiβi = 0 with Di ∈ IRqi×k. Then the unknownβi is restricted
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to N ([Ci; Di]), the null space of[Ci; Di]. This double restricted model (with

[Ci; Di]βi = 0) is discussed here, since this model enables us to formulateand

solve the most general case; there is no need for additional triple constraints.

Again, we assume that the additional restrictions are monotone: N (D1) ⊆
N (D2) ⊆ . . . ⊆ N (Dr). Similar to the (single) restricted model, the linear

spaceL0(i) can be split into the subspacesL00(i) = R(Xi(N ([Ci; Di])) Y(i−1))

andL01(i), the orthogonal complement ofL00(i) w.r.t. L0(i). We will consider the

following testing problem (for identifiable[Ci; Di]βi):




H00 : {∀i : Ciβi = 0, Diβi = 0} againstH01 : {∃i : Diβi 6= 0;∀i : Ciβi = 0}
or equivalently,

H00 : {∀i : νi ∈ L00(i)} againstH01 : {∃i : νi ∈ L0(i) − L00(i);∀i : νi ∈ L0(i)}
(4.6.3)

The test statistics for (4.6.3) can be based on orthogonal projections onto theL01(i)

andL⊥
0(i). The estimation procedure of the preceding sections can again be applied

to the double restricted model similar as to the restricted model. For estimation

under the (not necessarily identifiable) double restrictions [Ci; Di]βi = 0 ∀i, we

can use again (4.6.2) withCi replaced by [Ci; Di].

All information of the unrestricted, restricted and doublerestricted models re-

quired for the described tests can be summarized in combinedcentered MANOVA-

tables fori = 1, . . . , r, assuming that the model contains the constant as an ex-

planatory variable and that no restrictions are imposed on this constant. This

combined centered MANOVA-table can be obtained by adding Table 4.6.3 to the

top of the centered MANOVA-table in Table 4.6.2. Here D stands for double:

Model Space SS DF Testing
C. D. Restricted model L̃00(i) ν̃ ′

00iν̃00i l̃00(i)

Difference L01(i) ν̂ ′
01iν̂01i l01(i) Λ00i =

|η̂′
0iη̂0i|

|η̂′
0iη̂0i + ν̂ ′

01iν̂01i|

Table 4.6.3: Double restricted centered inner products(i = 2, . . . , r)

From Tables 4.6.1, 4.6.2 and 4.6.3 relations between the unrestricted, restricted

and double restricted statistics can be deduced such asη̂′
00iη̂00i = η̂′

0iη̂0i + ν̂ ′
01iν̂01i.
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The related testing procedure will be discussed for the normal case in Section 4.8.

4.7 Some distributions and orthogonal projections

We define the Wishart distributionWd as follows: letY = [Y1 . . . Yn]′ andµ =

[µ1 . . . µn]′ with independentYi ∼ Nd(µi, Σ), Σ ≥ 0. Then

W = Y ′Y =
n∑

i=1

YiY
′
i ∼ Wd(n, Σ; ∆) (with ∆ = µ′µ),

whereWd(n, Σ; ∆) denotes the noncentral Wishart distribution with dimension

d, degrees of freedomn, dispersion matrixΣ and non-centrality matrix∆. The

central Wishart distribution isWd(n, Σ) = Wd(n, Σ; 0). The standard Wishart

distribution isWd(n) = Wd(n, Id). Our notation is the same as the one of Gupta

and Nagar (2000), except for the non-centrality matrix which they define asΘ =

Σ−1∆ for Σ > 0. We prefer to include singularΣ as well.

The properties of the projections follow from the followingprojection theorem

(compare Gupta and Nagar (2000), Theorems 7.8.3 and 7.8.5).

Theorem 4.7.1.LetL0 andL1 be linear subspaces ofIRn with L0 ⊥ L1. Denote

the orthogonal projection matrices ofL0 andL1 byP0 respectivelyP1 and letl0 =

dim(L0). Then, forY ′ = [Y1 . . . Yn] ∈ IRd×n, with uncorrelatedYi, Cov(Yi) = Σ

andE{Y } = µ,

P0Y andP1Y are uncorrelated,
E{P0Y } = P0µ,
Cov(vec(P0Y )) = Σ ⊗ P0.

If in addition theYi are normally distributed, then

P0Y andP1Y are independent,
Y ′P0Y ∼ Wd(l0, Σ; µ′P0µ).

In the next section a generalization of the Wilks’ distribution is used. For the

(usual) Wilks’ distribution we follow the same notation ase.g.Rencher (1998):

let B ∼ Wd(s, Σ), C ∼ Wd(t, Σ), B andC independent. Then

Λ =
|B|

|B + C| ∼ Λd,t,s ,
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whereΛd,t,s denotes the Wilks’ distribution with parametersd, t ands. We define

the generalized Wilks’ distributionΛA,D,T,S with parameter vectorsA, D, T and

S ∈ IR1×ras follows: letΛi ∼ Λdi,ti,si
be independent andai ∈ [0, 1] with a1 = 1.

Then, by definition,

r∏

i=1

Λai

i ∼ ΛA,D,T,S.

The vectorA contains the exponentsai of the separate factors as elements,D the

di, T theti andS thesi (i = 1, . . . , r).

4.8 Testing

We assume normally distributed errors now. From the projection Theorem 4.7.1

(applied toL(i) andL⊥
(i)) we get the following conditional properties givenY(i−1):





ν̂i andη̂i are independent, normally distributed conditional underY(i−1)

E{ν̂i|Y(i−1)} = H(i)νi = νi, E{η̂i|Y(i−1)} = U(i)νi = 0
Cov(vec(̂νi)|Y(i−1)) = Γii ⊗ H(i), Cov(vec(̂ηi)|Y(i−1)) = Γii ⊗ U(i)

L(ν̂ ′
iν̂i|Y(i−1)) = Wmi

(l(i), Γii; ν
′
iνi), L(η̂′

iη̂i|Y(i−1)) = Wmi
(r(i), Γii).

(4.8.1)

Here we have used thatν ′
iH(i)νi = ν ′

iνi andν ′
iU(i)νi = 0. These properties permit

us to give confidence intervals for (identifiable)Ciβi. We omit the details and

concentrate on testing.

The following unconditional properties also hold




Y(i−1), ν̂i andη̂i are normally distributed
L(η̂′

iη̂i) = Wmi
(r(i), Γii)

(Y(i−1), ν̂i ) andη̂′
iη̂i are independent

ν̂1, η̂1, η̂
′
2η̂2, ..., η̂

′
rη̂r are independent.

(4.8.2)

The first three properties follow directly from (4.8.1); thelast from the fact that

η̂j (j < i) is a function ofY(j−1) andYj and therefore ofY(i−1) and the individual

observationsYt(j), t = Ni + 1, . . . , Nj. The latter are independent ofη̂i because

of the row independence of the observations (see (4.2.2)).
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Now consider the likelihood ratio test for the hypothesis (4.6.1). Denote the

restricted parameter space ofθ = (β, Σ) by Θ0. From (4.3.25) the likelihood ratio

LR0 for (4.6.1) is given by

LR0 =

sup
θ∈Θ0

L(θ; Y )

sup
θ∈Θ

L(θ; Y )
=

r∏

i=1

( |η̂′
iη̂i|

|η̂′
0iη̂0i|

)Ni
2

=
r∏

i=1

( |η̂′
iη̂i|

|η̂′
iη̂i + ν̂ ′

1iν̂1i|

)Ni
2

=
r∏

i=1

Λ
Ni
2

0i . (4.8.3)

For the model with only the constant term as explanatory variable,LR0 reduces

to the test statistic which Bhargava (1962) derived. Hao and Krishnamoorthy

(2001) discussed that test statistic in more detail; in bothpapers its distribution

was approximated.

Sinceν ′
iH1(i)νi = 0 underH0 of (4.6.1), applying Theorem 4.7.1 tôν0i ∈

L0(i), ν̂1i ∈ L1(i) andη̂i ∈ L⊥
(i) leads to the conclusion thatν̂ ′

11ν̂11, ν̂
′
12ν̂12, . . . , ν̂

′
1rν̂1r,

η̂′
1η̂1, η̂

′
2η̂2, . . . , η̂

′
rη̂r are independent underH0 (compare (4.8.2)). Now Theorem

4.8.1 follows directly.

Theorem 4.8.1.UnderH0 : {∀i : Ciβi = 0} :

(LR0)
2
N ∼ ΛA,D,T,S, with ai = Ni/N1 di = mi,

ti = l1(i), si = r(i), for i = 1, . . . , r.
(4.8.4)

Denote the double restricted parameterspace ofθ = (β, Σ) by Θ00. The likeli-

hood ratioLR00 for (4.6.3) becomes

LR00 =

sup
θ∈Θ00

L(θ; Y )

sup
θ∈Θ0

L(θ; Y )| =
r∏

i=1

( |η̂′
0iη̂0i|

|η̂′
0iη̂0i + ν̂ ′

01iν̂01i|

)Ni
2

=
r∏

i=1

Λ
Ni
2

00i. (4.8.5)

Sinceν ′
iH01(i)νi = 0 underH00, applying Theorem 4.7.1 tôν00i ∈ L00(i), ν̂01i ∈

L01(i) andη̂0i ∈ L⊥
0(i) leads to the conclusion thatν̂ ′

011ν̂011, ν̂
′
012ν̂012, . . . , ν̂

′
01rν̂01r,

η̂′
01η̂01, η̂

′
02η̂02, . . . , η̂

′
0rη̂0r are independent underH00 (compare (4.8.2)). This proves

the following generalization of Theorem 4.8.1.
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Theorem 4.8.2.UnderH00 : {∀i : Ciβi = 0, Diβi = 0} :

(LR00)
2
N ∼ ΛA,D,T,S, with ai = Ni/N1, di = mi, (4.8.6)

ti = l01(i), si = r0(i), for i = 1, . . . , r.

Note that in both (4.8.4) and (4.8.6) T contains the degrees of freedom of the

null hypothesis, whileS contains the degrees of freedom of the error terms under

the alternative hypothesis.

4.9 A numerical illustration

We now apply the estimation and testing procedures to the numerical example

described in Section 4.2. All the tests are performed on a 5% significance level.

The OLS estimation is straightforward by columnwise regression of the de-

pendent variables on only the explanatory variables. To obtain our EGLS esti-

mates, the orthogonal projections described in Section 4.3.4 have to be sequen-

tially performed for groupsi = 1, 2, 3. For i = 1 this givesµ̂1 = Z1, ε̂1 = E1

while β̂1 coincides with the OLS estimate (4.3.5). Fori = 2, 3, ν̂i follows from

(4.3.18), and the EGLS estimatesβ̂i andα̂i are sequentially determined according

to (4.3.20). The EGLS estimatêS follows from (4.3.21) and the ML estimatêΣ

is determined according to (4.3.24) and (4.3.26).

We will discuss four tests, of which one in more detail; Table4.9.1 contains the

hypotheses and results for these tests. Assume that we are particularly interested

in the testing problem (4.6.1) withCi = [0 0 0 1]∀i, and in (4.6.3) withDi =

[0 0 1 0]∀i. The estimates for the corresponding restricted and doublerestricted

model are given in Appendix 4.12.2 and 4.12.3. The results for the complete

data are presented in Appendices 4.12.6 and 4.12.7 for comparison. Neither the

estimation technique nor the missing observations resultsin large differences in

the estimates. The latter phenomenon seems logical in view of the relative small

number of missing observations.

Appendix 4.12.4 contains the combined centered MANOVA-tables with the

required statistics to perform the two LR tests discussed above. For testing the
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significance of the fourth explanatory variable, the LR statistic is determined ac-

cording to (4.8.3); we foundLR
2
N

0 = 0.3070. From the MANOVA-tables and the

structure of the dataset, it follows that

(LR0)
2
N ∼ Λ[1 11/12 10/12],[1 2 1],[1 1 1],[8 6 3].

Since we do not have an analytical expression available yet for the quantiles of the

generalized Wilks’ distribution, the critical values weredetermined with simula-

tion (runsize 1,000,000). In Section 4.10 we discuss theoretical approximations

for the generalized Wilks’ distribution, not based on simulation.

Table 4.9.1 gives the main results for this test (in row 3) andthe three other

tests. The table contains the null and alternative hypotheses, the values of the

corresponding test statistics and the critical values for the performed tests on a

5% significance level. The tests are performed for both the dataset with missing

observations and the complete data. In tests 1 through 3,LR
2
N

0 is the test statistic;

in the last testLR
2
N

00.

For the complete data, these test statistics coincide with the usual test statistic

Wilks’ lambda. (The corresponding critical values are given by e.g.Kres (1983),

p. 32.) In Table 4.9.1 the abbreviations TS and CV stand for Test Statistic and

Critical Value.

Null hypothesis Alternative hypothesis Incomplete data Complete data
TS CV TS CV

1. ∀i : βi = 0 ∃i : βi 6= 0 0.0019 0.0148 0.0018 0.0249
2. ∀i : βvi = 0 ∃i : βvi 6= 0 0.0240 0.0262 0.0229 0.0432
3. ∀i : β4i = 0 ∃i : β4i 6= 0 0.3070 0.1348 0.3061 0.1940
4. ∀i : β3i = β4i = 0 ∃i : β3i 6= 0 ∀i : β4i = 0 0.4474 0.2053 0.3156 0.2486

Table 4.9.1: Tests for the numerical example

From the results in Table 4.9.1 it can be concluded that, for example, the null

hypothesis 3 of an insignificant fourth explanatory variable is not rejected. The

conclusions for all the tests are identical for the completeand incomplete data.

This seems (again) logical in view of the relative small number of missing obser-

vations.
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4.10 Approximating generalized Wilks’ distributions

4.10.1 Box transformations

Our approximation for the generalized Wilks’ distributionis formulated for the

choiceM = r. This gives no loss of generality because we identify each group to

consist of one dependent variable.

In Theorem 4.8.1 we saw that our test statisticLR
2
N

0 in (4.8.3) has a gener-

alized Wilks’ distribution underH0. In case of complete data, this distribution

coincides with the (usual) Wilks’ distribution. For the latter, two approximations

are well known: theχ2-distribution of Bartlett (1947) and the F-approximation

of Rao (1952). In this section we will approximate the generalized Wilks’ distri-

bution by means ofχ2-distributions and compare the different approximations by

means of a simulation study.

The approximations can be derived by means of transformations which were

introduced in Box (1949); we have used the main result of the transformations as

presented in Muirhead (1982) Section 8.2.4. Recall thatl(i) denotes the dimension

of L(i) = R(Xi Y(i−1)), while ai = Ni/N .

Theorem 4.10.1.Under the null hypothesisH0 in (4.6.1), a second order approx-

imation of the distribution ofQ = −2log(LR
2
N

0 ), is

P (Q ≤ q) = (1 − ω2)P (χ2
f ≤ ρq) + ω2P (χ2

f+4 ≤ ρq) + O(N−3) (4.10.1)

with

f =
M∑

i=1

l1(i),

ρ =
N

2
ρ0 =

N

2

[
1 − 1

2Nf

r∑

i=1

l1(i)
ai

[
l1(i) + 2l0(i) + 2

]
]

,

ω2 =
1

12N2ρ2
0

r∑

i=1

l1(i)
a2

i

[
3l0(i)(2 + l(i)) + (l1(i) + 2)(l1(i) + 1)

]
− (1 − ρ0)

2

4ρ2
0

f.

Proof. SinceM = r we havemi = 1 and soΛ0i ∼ Beta(1
2
r(i),

1
2
l0(i)). The

moments ofLR0 follow from its definition (4.8.3) and from the independenceand
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the moments ofΛ0i:

E{LRh
0} = E{

r∏

i=1

Λ
Nih

2
0i } = K

r∏

i=1

Γ
[

1
2
Ni(1 + h) − 1

2
l(i)

]

Γ
[

1
2
Ni(1 + h) − 1

2
l0(i)

] , (4.10.2)

whereK is a constant not involvingh. Box transformations applied toLR0 lead,

after algebraic manipulations, to the approximating distribution (4.10.1) with pa-

rametersf , ρ0 andω2 (see Appendix 4.12.8). Sincelog(LR
2
N

0 ) = 2
N

log(LR0),

the approximating distribution of the logarithm of the teststatistic is identical to

the one of the logarithm of the likelihood ratio, except the scale parameterρ. The

scale parameter of the test statistic isN
2

timesρ0.

In case of only the constant as explanatory variable (l1(i) = 1 andl0(i) = i−1),

our parameters reduce to the ones derived in Bhargava (1962).We call (4.10.1)

the Box approximation.

An approximation of the distribution of the test statisticLR
2
N

00 can be derived

in a similar way.

Corollary. UnderH00 in (4.6.3), the second order approximation of the distribu-

tion of Q = −2log(LR
2
N

00) is equal to (4.10.1) with the parametersl(i) and l1(i)

replaced byl0(i) andl01(i), respectively.

From (4.10.1) the first order approximation follows

P (Q ≤ q) = P (χ2
f ≤ ρq) + O(N−2). (4.10.3)

Since (4.10.3) coincides with Bartlett’s approximation in case of complete data,

we will call (4.10.3) Bartlett’s approximation even in this more general situation.

4.10.2 A simulation study

We compare approximations (4.10.1), (4.10.3) and the standard approximation

(i.e.−2log(LR0) ∼ χ2
f ) by means of simulation (with runsize 1,000,000). First

the critical value of our test statistic (with significance levelα) is determined by

means of simulation. Then the probability that our test statistic exceeds this criti-

cal value is determined according to the three different approximations. This has
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been done under the assumption that there are four explanatory variables, three

groups andp linear constraints per group (pi = p for all i). The simulations

have been performed for different values of the significancelevel α, number of

cases (N ), number of constraintsp, fractions of missing data (A = [a1 a2 a3] with

ai = Ni/N ) and different number of variables per group (D = [m1 m2 m3]).

Table 4.10.1 contains the results forD = [1 2 1].

D = [1 2 1] A = [1 0.9 0.8] A = [1 0.8 0.6]

α = 0.05 Standard Bartlett Box Standard Bartlett Box
p = 1 .009 .047 .050 .004 .040 .048

N = 20 p = 2 .012 .047 .050 .007 .042 .049
p = 4 .037 .047 .050 .032 .045 .049
p = 1 .044 .050 .050 .044 .050 .050

N = 200 p = 2 .045 .050 .050 .044 .050 .050
p = 4 .049 .050 .050 .048 .050 .050
p = 1 .049 .050 .050 .049 .050 .050

N = 2000 p = 2 .049 .050 .050 .049 .050 .050
p = 4 .050 .050 .050 .050 .050 .050

α = 0.10
p = 1 .026 .096 .100 .015 .085 .098

N = 20 p = 2 .031 .095 .100 .020 .087 .098
p = 4 .078 .095 .100 .070 .092 .099
p = 1 .091 .100 .100 .090 .100 .100

N = 200 p = 2 .092 .100 .100 .090 .100 .100
p = 4 .098 .100 .100 .097 .100 .100
p = 1 .099 .100 .100 .099 .100 .100

N = 2000 p = 2 .099 .100 .100 .099 .100 .100
p = 4 .100 .100 .100 .100 .100 .100

Table 4.10.1: Simulated approximations forD = [1 2 1]

As can be expected, the accuracy of the approximations increases with the

sample sizes. Approximation (4.10.1) outperforms the other ones. The standard

approximation is quite bad for small sample sizes. Only forN = 2000, this
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approximation gives good results. Approximation (4.10.3)performs well for big

sample sizes (N = 200(0)), but is not as accurate as approximation (4.10.1) for

small sample sizes (N = 20). All the approximations seem to improve with the

number of constraints (p). As the fraction of missing observations increases, the

approximations become less accurate.

To study the effect of the number of variables per group on thequality of the

approximations, we also did a simulation forD = [1 3 2]. Table 4.10.2 contains

the results.

D = [1 3 2] A = [1 0.9 0.8] A = [1 0.8 0.6]

α = 0.05 Standard Bartlett Box Standard Bartlett Box
p = 1 .003 .040 .049 .000 .022 .040

N = 20 p = 2 .003 .041 .049 .001 .027 .043
p = 4 .017 .042 .049 .001 .035 .046
p = 1 .042 .050 .050 .040 .050 .050

N = 200 p = 2 .046 .050 .050 .041 .050 .050
p = 4 .049 .050 .050 .045 .050 .050
p = 1 .049 .050 .050 .049 .050 .050

N = 2000 p = 2 .049 .050 .050 .049 .050 .050
p = 4 .049 .050 .050 .050 .050 .050

α = 0.10
p = 1 .009 .085 .098 .002 .054 .086

N = 20 p = 2 .011 .086 .099 .003 .063 .091
p = 4 .041 .087 .099 .026 .077 .096
p = 1 .088 .100 .100 .085 .100 .100

N = 200 p = 2 .087 .100 .100 .085 .100 .100
p = 4 .094 .100 .100 .092 .100 .100
p = 1 .098 .100 .100 .098 .100 .100

N = 2000 p = 2 .098 .100 .100 .099 .100 .100
p = 4 .100 .100 .100 .099 .100 .100

Table 4.10.2: Simulated approximations forD = [1 3 2]

The previous conclusions about the effect of the different parameters still re-
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main valid. However, in comparison to Table 4.10.1, the quality of the approxima-

tions is worse if there is only a small number of observations(N = 20) available.

4.11 Conclusions and further research

This chapter discussed estimation and testing for a linear regression model with

complete observations for the explanatory variables and consecutively added de-

pendent variables, leading to a specific incomplete data structure. For this model,

OLS and GLS do not longer coincide, so we discussed EGLS. A specific choice

of EGLS estimation, which coincides with ML estimation, wasanalysed in detail.

Exact tests for restricted and double restricted models were presented. Different

approximations of the distribution of the test statistic were compared.

The relative efficiency of the OLS estimators in relation to the (E)GLS estima-

tors for the regression coefficients have been discussed in more detail. The small

sample properties of the remaining estimators have not beenanalysed in detail

yet. Especially the first step of EGLS estimation,i.e. the choice of the covariance

estimator, is interesting for further research.

The LR test for linear restrictions on the regression coefficients under the nor-

mality assumptions has been extensively discussed. Other well known test statis-

tics for complete data, are the test statistics of Pillai, Hotelling and Roy. The

derivation of similar test statistics for incomplete data is left for further research. It

could also be interesting to look at a similar test as the one which was constructed

by Krishnamoorthy and Pannala (1998) for the model with onlythe constant term

as explanatory variable.



98 CHAPTER 4. MULTIVARIATE REGRESSION

4.12 Appendices

4.12.1 Missing data: the unrestricted model

OLS estimates

b =




2.0000 5.0000 5.0000 3.4107
1.0000 -1.0000 1.0000 0.9821
1.0000 2.0000 0.0000 0.1964

-1.0000 -1.0000 -1.0000 -1.0536




S =




2.2500 1.2027 2.4054 -0.6959
1.2027 2.5714 0.0000 -0.0496
2.4045 0.0000 10.2857 -2.7775

-0.6959 -0.0496 -2.7775 2.1964




EGLS estimates

β̂ =




2.0000 5.4091 5.8182 3.1919
1.0000 -1.0000 1.0000 0.9815
1.0000 1.8636 -0.2727 0.2694

-1.0000 -0.9545 -0.9091 -1.0774




Ŝ =




2.2500 1.2756 2.5511 -0.7382
1.2756 2.6246 0.1063 -0.0951
2.5511 0.1063 10.4982 -2.8377

-0.7382 -0.0951 -2.8377 2.2139




ML estimate

Σ̂ =




1.5000 1.0227 2.0455 -0.5480
1.0227 1.7758 0.2789 -0.1050
2.0455 0.2789 7.1033 -1.7858

-0.5480 -0.1050 -1.7858 1.3169



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4.12.2 Missing data: the restricted model

OLS estimates

b0 =




4.0000 7.0769 7.0769 5.4839
-0.3333 -2.3187 -0.3187 -0.4113
0.6667 1.6374 -0.3626 -0.1774

0 0 0 0




S0 =




3.3333 2.5526 3.6132 0.9083
2.5526 3.7335 1.4835 1.1833
3.6132 1.4835 10.4835 -0.8794
0.9083 1.1833 -0.8794 3.6014




EGLS estimates

β̂0 =




4.0000 7.3889 7.5185 5.6474
-0.3333 -2.2593 -0.2346 -0.3881
0.6667 1.5185 -0.5309 -0.2238

0 0 0 0




Ŝ0 =




3.3333 2.6022 3.6835 0.9496
2.6022 3.7762 1.5439 1.2442
3.6835 1.5439 10.5690 -0.8337
0.9496 1.2442 -0.8337 3.6166




ML estimate

Σ̂0 =




2.5000 2.0278 2.8704 0.7295
2.0278 2.7629 1.1464 0.9570
2.8704 1.1464 7.7199 -0.5300
0.7295 0.9570 -0.5300 2.4869



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4.12.3 Missing data: the double restricted model

OLS estimates

b00 =




5.0000 9.6818 6.5000 5.2000
0.0000 -1.5000 -0.5000 -0.5000

0 0 0 0
0 0 0 0




S00 =




3.6000 4.0247 2.8460 0.6037
4.0247 7.0152 0.5000 0.6128
2.8460 0.5000 9.5000 -0.6835
0.6037 0.6128 -0.6835 3.2000




EGLS estimates

β̂00 =




5.0000 9.7813 6.5703 5.1376
0.0000 -1.5000 -0.5000 -0.5000

0 0 0 0
0 0 0 0




Ŝ00 =




3.6000 4.0352 2.8535 0.5898
4.0352 7.0272 0.5085 0.5848
2.8535 0.5085 9.5060 -0.6961
0.5898 0.5848 -0.6961 3.2049




ML estimate

Σ̂00 =




3.0000 3.2812 2.3203 0.3876
3.2812 5.5320 0.2623 0.2392
2.3203 0.2623 7.6689 -0.6188
0.3876 0.2392 -0.6188 2.5704



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4.12.4 The collection of centered MANOVA-tables

Group 1 Group 2
Space SS DF Space SS DF

L̃00(1) 0 1 L̃00(2)

[
82.2614 43.0313
43.0313 25.3828

]
2

L01(1) 6 1 L01(2)

[
9.0750 -12.0313

-12.0313 15.9505

]
1

L̃0(1) 6 2 L̃0(2)

[
91.3364 31.0000
31.0000 41.3333

]
3

L1(1) 12 1 L1(2)

[
0.4364 -0.7273

-0.7273 1.2121

]
1

L̃(1) 18 3 L̃(2)

[
91.7727 30.2727
30.2727 42.5455

]
4

L⊥
(1) 18 8 L⊥

(2)

[
11.8636 -12.2727

-12.2727 47.4545

]
6

R(112)
⊥ 36 11 R(111)

⊥

[
103.6364 18.0000
18.0000 90.0000

]
10

R(112) 300 1 R(111)

[
295.3636 285.0000
285.0000 275.0000

]
1

IR12 336 12 IR11

[
399 303
303 365

]
11

Group 3
Space SS DF
L̃00(3) 9.0849 4
L01(3) 2.5022 1
L̃0(3) 11.5872 5
L1(3) 9.8462 1
L̃(3) 21.4333 6
L⊥

(3) 8.6667 3
R(110)

⊥ 30.1000 9
R(110) 136.9000 1
IR10 167 10

LR0 = 0.3070, LR00 = 0.4474.
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4.12.5 Complete data: the unrestricted model

LS estimates

b =




2.0000 5.0000 5.0000 4.0000
1.0000 -1.0000 1.0000 1.0000
1.0000 2.0000 0.0000 0.0000

-1.0000 -1.0000 -1.0000 -1.0000




S =




2.2500 1.1250 2.2500 0.0000
1.1250 2.2500 0.0000 0.0000
2.2500 0.0000 9.0000 -2.2500
0.0000 0.0000 -2.2500 2.2500




ML estimate

Σ̂ =




1.5000 0.7500 1.5000 0.0000
0.7500 1.5000 0.0000 0.0000
1.5000 0.0000 6.0000 -1.5000
0.0000 0.0000 -1.5000 1.5000




4.12.6 Complete data: the restricted model

LS estimates

b0 =




4.0000 7.0000 7.0000 6.0000
-0.3333 -2.3333 -0.3333 -0.3333
0.6667 1.6667 -0.3333 -0.3333

0 0 0 0




S0 =




3.3333 2.3333 3.3333 1.3333
2.3333 3.3333 1.3333 1.3333
3.3333 1.3333 9.3333 -0.6667
1.3333 1.3333 -0.6667 3.3333




ML estimate

Σ̂0 =




2.5000 1.7500 2.5000 1.0000
1.7500 2.5000 1.0000 1.0000
2.5000 1.0000 7.0000 -0.5000
1.0000 1.0000 -0.5000 2.5000



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4.12.7 Complete data: the double restricted model

LS estimates

b00 =




5.0000 9.5000 6.5000 5.5000
0.0000 -1.5000 -0.5000 -0.5000

0 0 0 0
0 0 0 0




S00 =




3.6000 3.6000 2.7000 0.9000
3.6000 6.7500 0.4500 0.4500
2.7000 0.4500 8.5500 -0.4500
0.9000 0.4500 -0.4500 3.1500




ML estimate

Σ̂00 =




3.0000 3.0000 2.2500 0.7500
3.0000 5.6250 0.3750 0.3750
2.2500 0.3750 7.1250 -0.3750
0.7500 0.3750 -0.3750 2.6250




4.12.8 Box transformations

To approximate the generalized Wilks’ distribution, we have used the main result

of Box transformations as presented in Muirhead (1982) Section 8.2.4:

Consider a random variableZ (0 ≤ Z ≤ 1) with moments:

E{Zh} = K




p∏
j=1

y
yj

j

q∏
k=1

xxk

k




h q∏
k=1

Γ [xk(1 + h) + ξk]

p∏
j=1

Γ [yj(1 + h) + ηj]

,

where
p∑

j=1

yj =

q∑

k=1

xk

and K is a constant such that E{Z0}=1. Then

P (−2ρlog(Z) ≤ x) =

P (χ2
f ≤ x) + ω2

[
P (χ2

f+4 ≤ x) − P (χ2
f ≤ x)

]
+ O(N−3),
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where

f = −2

[
q∑

k=1

ξk −
p∑

j=1

ηj −
1

2
(q − p)

]

and

ρ = 1 − 1

f

[
q∑

k=1

x−1
k

(
ξ2
k − ξk +

1

6

)
−

p∑

j=1

y−1
j

(
η2

j − ηj +
1

6

)]

and

ω2 = − 1

6ρ2

{
q∑

k=1

x−2
k

[
(βk + ξk)

3 − 3

2
(βk + ξk)

2 +
1

2
(βk + ξk)

]

−
p∑

j=1

y−2
j

[
(ǫj + ηj)

3 − 3

2
(ǫj + ηj)

2 +
1

2
(ǫj + ηj)

]}
,

with

βk = (1 − ρ)xk, ǫj = (1 − ρ)yj.

Since the moments of our test statisticLR0 have that specific shape (see (4.10.2)),

Box transformations can be applied and give

f = −2

[
r∑

i=1

(−1

2
l(i) +

1

2
l0(i))

]
=

r∑

i=1

l1(i)

and

ρ0 = 1 − 1

f

r∑

i=1

2

Ni

[{
(−1

2
l(i))

2 +
1

2
l(i) +

1

6

}
−

{
(−1

2
l0(i))

2 +
1

2
l0(i) +

1

6

}]

= 1 − 1

f

r∑

i=1

1

Ni

[{
1

2
(l20(i) + l21(i) + 2l0(i)l1(i)) −

1

2
l20(i) +

1

2
l1(i)

}]

= 1 − 1

2f

r∑

i=1

l1(i)
Ni

[
l1(i) + 2l0(i) + 2

]
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and

ω2 = − 1

6ρ2
0

r∑

i=1

4

N2
i

[{
(ǫi + γi −

1

2
l1(i))

3 − 3

2
(ǫi + γi −

1

2
l1(i))

2+

1

2
(ǫi + γi −

1

2
l1(i)) − (ǫi + γi)

3 − 3

2
(ǫi + γi)

2 +
1

2
(ǫi + γi)

}]

= − 1

6ρ2
0

r∑

i=1

l1(i)
N2

i

[
−6(ǫi + γi)

2 + 3(ǫi + γi)l1(i) + 6(ǫi + γi)−

1

2
l21(i) −

3

2
l1(i) − 1

]

= − 1

6ρ2
0

r∑

i=1

l1(i)
N2

i

[
3(ǫi + γi)(−2(ǫi + γi) + l1(i) + 2) − 1

2
(l21(i) + 3l1(i) + 2)

]

= − 1

12ρ2
0

r∑

i=1

l1(i)
N2

i

[
3((1 − ρ0)Ni − l0(i))(2 + l(i) − (1 − ρ0)Ni)−

(l1(i) + 2)(l1(i) + 1)
]

= − 1

12ρ2
0

[
−3(1 − ρ0)

2

r∑

i=1

l1(i) + 3(1 − ρ0)
r∑

i=1

l1(i)
Ni

[
l1(i) + 2l0(i) + 2

]

−
r∑

i=1

l1(i)
N2

i

[
3l0(i)(2 + l(i)) + (l1(i) + 2)(l1(i) + 1)

]
]

= −(1 − ρ0)
2

4ρ2
0

f0 +
1

12ρ2
0

r∑

i=1

l1(i)
N2

i

[
3l0(i)(2 + l(i)) + (l1(i) + 2)(l1(i) + 1)

]
.





Chapter 5

Additional topics of multivariate
regression

5.1 Introduction

The previous chapter introduced the model for multivariateregression with con-

secutively added dependent variables. Several estimatorswere presented and the

distribution of the test statistic (based on the likelihoodratio) was derived. Some

additional features of this model will be discussed in this chapter.

In Section 5.2 we will introduce new classes of covariance estimators and

prove consistency of these estimators and of the estimatorspresented in Chapter

4.

We further discuss two, widely used, alternative estimation techniques for our

model: iterative EGLS (in Section 5.3) and the EM-algorithm(in Section 5.4).

Unlike the estimation procedure of Chapter 4, these iterative procedures do not

result in closed form estimators for the coefficients.

In Section 4.3.4 it was shown that for EGLS estimation the dependent vari-

ables are used in a well-structured way. For the model with the constant term as

the sole explanatory variable, this resulted in nice expressions for the EGLS es-

timators (see Section 4.5.2). In Section 5.5 we look at a simple generalization:

one-way MANOVA. For this model, the usual MANOVA-tables (for complete

data) must be adapted in a non-trivial way.

107
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The final Section 5.6 reviews and discusses our results.

5.2 Consistency of estimators

5.2.1 Introduction

We consider the asymptotic behavior forNr → ∞. SinceNi ≥ Ni+1, this implies

Ni → ∞ for all i. Without loss of generality, we takemi = 1 for all i throughout

this section.

In the notation of random variablesZNr
depending onNr, we omit the subindex

Nr for greater readability. As usual the notationZ = OP (Nr) for a random vector

Z means thatZ is of orderNr in probability:

sup
Nr

P (N−1
r |Z| ≥ z) → 0 asz → ∞.

To enhance the readability of the proofs, we will sometimes use the additional

notationZ = oP (Nr) for 1
Nr

Z
P−→ 0.

We make the following three assumptions

N1 = O(Nr), (5.2.1)

theεt(r) are i.i.d., (5.2.2)

(X ′
rXr)

−1 → 0. (5.2.3)

The first assumption implies thatO(Nr), OP (Nr) andoP (Nr) are equivalent to

O(Ni), OP (Ni) andoP (Ni), respectively. So all samples sizes increase in more

or less the same way to infinity.

As a consequence of (5.2.1) and (5.2.2), the law of large numbers can be ap-

plied to all groupsi:

1

Nh

Nh∑

t=1

εt(i)ε
′
t(i)

P−→ Σ(i)(i), for h = i, . . . , r, (5.2.4)

1

Nh

Nh∑

t=1

ηtiη
′
ti

P−→ Γii, for h = i, . . . , r, (5.2.5)

1

Nh

Nh∑

t=1

ζtiζ
′
ti

P−→ ∆ii, for h = i, . . . , r. (5.2.6)
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We only prove consistency of the unrestricted estimators (of the previous chapter),

since the proofs for the restricted estimators are quite similar. In the proofs we will

extensively use the following properties:

Lemma 5.2.1.For i = 1, . . . , r

|Ei − εi| = OP (1), (5.2.7)

|εi|, |ζi| and|ηi| areOP (N
1
2
r ). (5.2.8)

Proof. SinceE{|Hiεi|2} = tr(E{ε′iHiεi}) = tr(HiE{εiε
′
i}) = liσii ≤ kσii

andεi − Ei = Hiεi, we have|Ei − εi| = OP (1). SinceE{|εi|2} = Niσii, we

have|εi| = OP (N
1
2
r ). Similarly, E{|ζi|2} = Ni∆ii andE{|ηi|2} = NiΓii (since

mi = 1).

Omitting a finite or even infinite number of vector elements, while still keeping

an infinite number, does not invalidate the lemma. More precisely, let us define

a(h) : the firstNh elements of the vectora.

Since

|a(h)| ≤ |a|, (5.2.9)

the following Lemma results directly from (5.2.1) and Lemma5.2.1.

Lemma 5.2.2.For i = 1, . . . , r

|E(h)
i − ε

(h)
i | = OP (1), (5.2.10)

|ε(h)
i |, |ζ(h)

i | and|η(h)
i | areOP (N

1
2
r ). (5.2.11)

5.2.2 OLS

In discussing the consistency of estimators for the regression coefficients, we as-

sume thatr(Xr) = k. As a consequencer(Xi) = k for all i. For the consistency

of the covariance estimators, this assumption is not necessary.

We will denote the matrix of all OLS estimatorsbi in (4.3.5) byb. A more

precise notation would bebNr
but we drop the subindex (see Section 5.2.1).
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Theorem 5.2.3.b P−→ β.

Proof. From (4.3.5) it follows that

bi − βi = (X ′
iXi)

−1X ′
i(Xiβi + εi) − βi = GiX

′
iεi.

We haveGi = (X ′
iXi)

−1 ≤ (X ′
rXr)

−1 → 0 by (5.2.3). Therefore

E {(bi − βi)(bi − βi)
′} = σiiGi → 0,

which completes the proof.

In discussing the consistency of covariance estimators forΣ, we do not assume

thatr(Xr) = k. We look at a broad class of estimators based on the OLS residuals.

In this class, the estimators forΣ have entries

S
(h)
ig =

E
(h)′

i E
(h)
g

Nh

, g = 1, . . . , i, i = 1, . . . , r, with h ∈ {i, . . . , r}.

The covariance estimators differ in the number of residualson which they are

based:S(h)
ig is based on the firstNh OLS residuals of dependent variablesi andg.

In practice there are two often used estimators in this class. One of these uses

all available residuals (S(i)
ig for all i), the other uses only the firstNr residuals

(S(r)
ig for all i) and discards all the residuals of incomplete observations. These

estimators differ in efficiency and positive definiteness but the next theorem states

that both are consistent.

Theorem 5.2.4.S(h)
ig

P−→ σig.

Proof. We have

|E(h)′

i E(h)
g − ε

(h)′

i ε(h)
g | = |E(h)′

i (E(h)
g − ε(h)

g ) + (E
(h)
i − εi)

(h)′ε(h)
g |

≤ |E(h)
i ||E(h)

g − ε(h)
g | + |E(h)

i − ε
(h)
i ||ε(h)

g | = OP (N
1
2
r ),

where the last equality follows from (5.2.10) and (5.2.11).According to (5.2.4),

we have 1
Nh

ε
(h)′

i ε
(h)
g

P−→ σig. Together this implies1
Nh

E
(h)′

i E
(h)
g

P−→ σig.

Corollary. S
P−→ Σ.

This corollary forS in (4.3.7) follows directly from Theorem 5.2.4, since

Sig = Ni

ri
S

(i)
ig and Ni

ri
→ 1.
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5.2.3 GLS

In this (and next) subsection we present direct proofs of theconsistency of (E)GLS

estimators instead of verifying the general regularity conditions for consistency of

(E)GLS (see Mittelhammeret al. (1996) p. 347 and p. 374e.g.). We assume

non-collinearity (see Section 5.2.2). Denoting the matrixof all GLS estimators
⌣

β i

in (4.3.16) by
⌣

β , we will show that
⌣

β is consistent forβ.

Theorem 5.2.5.
⌣

β
P−→ β.

Proof. We prove this theorem by using an induction argument. Fori = 1, GLS

and OLS estimation coincide. So according to Theorem 5.2.3
⌣

β1
P−→ β1. For

generali (= 2, . . . , r), the induction assumption is
⌣

β (i−1)
P−→ β(i−1). We have

⌣

βi − GiX
′
i(Yi − ζi) = GiX

′
i(ζi −

⌣

ζi) = GiX
′
i(

⌣
µ(i−1) − µ(i−1))αi

= (
⌣

β (i−1) − β(i−1))αi
P−→ 0.

The first equality follows from (4.3.16), the second from (4.3.1) and (4.3.12). The

convergence in probability follows from the induction assumption.

Furthermore, relations (4.3.1) and (4.3.12) give

GiX
′
i(Yi − ζi) − βi = GiX

′
i(εi − ζi) = GiX

′
iηi

P−→ 0

sinceE{|GiX
′
iηi|2} = Γiitr (Gi) → 0. Together, the consistency property

⌣

β i − βi =
(⌣

β i − GiX
′
i(Yi − ζi)

)
+ (GiX

′
i(Yi − ζi) − βi)

P−→ 0

follows.

We will use this theorem in proving consistency of the EGLS estimators for

the regression coefficients.

5.2.4 EGLS

For EGLS we have to minimize (4.2.5) where the covariance-matrix Σ is replaced

by a starting estimator, usually obtained with OLS. Different starting estimators
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will in general lead to different EGLS estimators forβ. In the previous chapter we

looked at two specific kinds of EGLS: OLS (in Section 4.3.2) and ML (in Section

4.3.5). Here we will consider general EGLS estimators obtained from a starting

estimatorS̃0; they will be denoted by replacing the (ML) superscript̂ by ,̃ like β̃

andS̃.

The starting estimator̃S0 for Σ influences the EGLS estimators only through

the resulting starting estimators̃α0i for αi; theαi are specific functions ofΣ, see

relation (4.3.8), and thẽα0i are the corresponding functions ofS̃0. (Note that

in this section, the subindex 0 indicates the starting estimator andnot estimators

under linear constrictions as in Section 4.6.)

The EGLS estimators for the regression coefficients are verysimilar to the

GLS estimators (4.3.16):

β̃i = GiX
′
i(Yi − ζ̃i) = GiX

′
i(Yi − ε̃(i−1)α̃0i). (5.2.12)

The EGLS estimator̃β = [β̃1 . . . β̃r] turns out to be consistent if thẽα0i are.

Theorem 5.2.6.If α̃0i
P−→ αi for i = 1, . . . , r, thenβ̃

P−→ β.

Proof. According to Theorem 5.2.5
⌣

β
P−→ β. So it suffices to show that̃β −

⌣

β
P−→ 0. We use an induction argument. Fori = 1, GLS and EGLS estimation

are equivalent because they both coincide with OLS estimation. For generali(=

2, . . . , r),

β̃i −
⌣

β i
1
= GiX

′
i(

⌣

ζ i − ζ̃i)
2
= GiX

′
i

(
Y(i−1)(αi − α̃0i) + µ̃(i−1)α̃0i −

⌣
µ(i−1)αi

)

3
= GiX

′
iY(i−1)(αi − α̃0i) + β̃(i−1)(α̃0i − αi) + (β̃(i−1) −

⌣

β (i−1))αi.

The first equality follows from the definitions of the (E)GLS estimators (4.3.16)

and (5.2.12). The second equation follows by definition from
⌣

ζ i =
⌣
ε (i−1)αi and

⌣
ε (i−1) = Y(i−1) −

⌣
µ(i−1) (and similarly forζ̃i). Rewriting gives the third equation.

Note thatGiX
′
iY(i−1) can be considered as an OLS estimator forβ(i−1) based

on the firstNi observations. SinceNi ≥ Nr → ∞, a similar proof as for Theorem

5.2.3 givesGiX
′
iY(i−1)

P−→ β(i−1). All three terms converge in probability to

zero because of the conditioñα0i
P−→ αi and the induction assumptioñβ(i−1) −

⌣

β (i−1)
P−→ 0.
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To prove consistency of EGLS estimators forΣ we need the following Lemma.

Lemma 5.2.7. If α̃0i
P−→ αi for i = 1, . . . , r, thenΓ̃ii

P−→ Γii.

Proof. We have

1

Ni

|Uiε(i−1)(α̃0i − αi)|2 ≤ 1

Ni

|Uiε(i−1)(α̃0i − αi)|2 +
1

Ni

|Hiε(i−1)(α̃0i − αi)|2

=
1

Ni

(α̃0i − αi)
′ε′(i−1)ε(i−1)(α̃0i − αi)

P−→ 0.

The equality follows fromINi
= Ui + Hi, the convergence in probability from

(5.2.4) and the conditioñα0i
P−→ αi.

We have

η̃i
1
= Ui(Yi − ε(i−1)α̃0i)

2
= Ui(Yi − µi − ε(i−1)αi + ε(i−1)(αi − α̃0i))

3
= Ui(ηi + ε(i−1)(αi − α̃0i)).

An argumentation as in the proof of Theorem 4.3.2 leads to thefirst equality. Since

µi ∈ Li, we haveUiµi = 0 and the second equality holds. The third equation

follows from (4.3.12).

As in the proof of Lemma 5.2.1 we have|Hiηi| = OP (1). Combining this

with the two previous results gives

|ηi−η̃i| = |ηi−Uiηi−Uiε(i−1)(αi−α̃0i)| ≤ |Hiηi|+|Uiε(i−1)(αi−α̃0i)| = oP (N
1
2
r ).

According to (5.2.8)|ηi| = OP (N
1
2
r ) so that|η̃i| ≤ |η̃i − ηi| + |ηi| = OP (N

1
2
r ) as

well. This gives

|ηi − η̃i|(|ηi| + |η̃i|) = oP (Nr).

Since|NiΓ̃ii − ηiηi| = |η̃′
iη̃i − ηiηi| ≤ |ηi − η̃i|(|ηi| + |η̃i|) and 1

Ni
η′

iηi
P−→ Γii

according to (5.2.5), this proves the lemma.

Similar to OLS estimation, we define a class of EGLS estimators for Σ in

which each estimator has entries

S̃
(h)
ig =

ε̃
(h)′

i ε̃
(h)
g

Nh

, g = 1, . . . , i, i = 1, . . . , r, with h ∈ {i, . . . , r}.
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Theorem 5.2.8.If α̃0i
P−→ αi for i = 1, . . . , r, thenS̃

(h)
ig

P−→ σig.

Proof. We prove the theorem by induction. Fori = 1, EGLS and OLS estimation

coincide and̃S(h)
11

P−→ σ11 according to Theorem 5.2.4. For generali (= 2, . . . , r),

the induction assumption implies that1
Ni

ε̃′(i−1)ε̃(i−1)
P−→ Σ(i−1)(i−1). In combina-

tion with the conditionα̃0i
P−→ αi, this leads to the following convergence in

probability

1

Ni

ζ̃ ′
i ζ̃i =

1

Ni

α̃′
0iε̃

′
(i−1)ε̃(i−1)α̃0i

P−→ αiΣ(i−1)(i−1)αi = ∆ii, (5.2.13)

where the first equality follows from̃ζi = ε̃(i−1)α̃0i (similar to (4.3.12)), and the

last equality follows from (4.3.9).

According to Lemma 5.2.7 we have the following convergence in probability

1

Ni

η̃′
iη̃i =

1

Ni

(ε̃′iε̃i − ζ̃ ′
i ζ̃i)

P−→ Γii = Σii − ∆ii, (5.2.14)

where the first equality follows from̃εi = ζ̃i+η̃i and the orthogonality of̃ζi andη̃i,

and the last equality by definition from (4.3.9). Combining (5.2.13) and (5.2.14)

gives

1

Ni

ε̃′iε̃i
P−→ Σii. (5.2.15)

For every matrixΣ relation (4.3.15) holds, so also for̃S0:

ε̃i = Ei + Hiζ̃i. (5.2.16)

SinceEi andHiζ̃i are orthogonal we havẽε′iε̃i = E ′
iEi + (Hiζ̃i)

′(Hiζ̃i). Sub-

stituting this in (5.2.15) gives1
Ni

(E ′
iEi + (Hiζ̃i)

′(Hiζ̃i))
P−→ Σii. According to

Theorem 5.2.41
Ni

E ′
iEi

P−→ Σii, so|Hiζ̃i| = oP (N
1
2
r ). We have

|ε̃(h)′

i ε̃(h)
g − ε

(h)′

i ε(h)
g |

1

≤ |E(h)′

i E(h)
g − ε

(h)′

i ε(h)
g | + |E(h)

i ||(Hg ζ̃g)
(h)|

+|(Hiζ̃i)
(h)||E(h)

g | + |(Hiζ̃i)
(h)||(Hg ζ̃g)

(h)|
2

≤ |E(h)
i ||E(h)

g − ε(h)
g | + |E(h)

i − ε
(h)
i ||ε(h)

g |
+|E(h)

i ||Hg ζ̃g| + |Hiζ̃i||E(h)
g | + |Hiζ̃i||Hg ζ̃g|

3
= oP (Nr),
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where we used (5.2.16) and (5.2.9) to obtain the first and second inequality, re-

spectively. The third relation follows from|Hiζ̃i| = oP (N
1
2
r ), (5.2.10) and (5.2.11).

Since 1
Nh

ε
(h)′

i ε
(h)
g

P−→ σig according to (5.2.4), this completes the proof.

Similar toŜ in (4.3.21), we construct̃S as
{

S̃ii = ε̃′iε̃i/ri

S̃ig = ε̃′iε̃(i−1)g/ri for g = 1, ..., i − 1,

and based on (4.3.8) we construct

α̃i = S̃−1
(i−1)(i−1)S̃(i−1)i. (5.2.17)

Similar to the MLEΣ̂ in (4.3.26) we construct̃Σ as
{

Σ̃11 = Γ̃11 and fori = 2, ..., r:
Σ̃(i−1)i = Σ̃(i−1)(i−1)α̃i, ∆̃ii = α̃′

iΣ̃(i−1)(i−1)α̃i, Σ̃ii = Γ̃ii + ∆̃ii.
(5.2.18)

Theorem 5.2.9.If α̃0i
P−→ αi for i = 1, . . . , r, thenS̃

P−→ Σ andΣ̃
P−→ Σ.

Proof. SinceS̃ig = Ni

ri
S̃

(i)
ig andNi

ri
→ 1, the consistency of̃S follows directly from

Theorem 5.2.8.

The αi in (4.3.8) are continuous function ofΣ. Since theα̃i in (5.2.17) are

the same continuous functions of consistentS̃, the α̃i are consistent as well. In

combination with Lemma 5.2.7 this proves the consistency ofΣ̃ in (5.2.18) since

Σ̃ is the same continuous function ofΓ̃ii andα̃i asΣ is of Γii andαi.

According to Theorems 5.2.6 and 5.2.9, a consistent starting estimator̃S0 (and

consequently consistentα̃0i) results in consistent EGLS estimators. In practice it

is common to perform OLS estimation and then to take the resulting OLS esti-

matorS asS̃0. SinceS is consistent according to Corollary 5.2.4, this results in

consistent EGLS estimators.

In iterative EGLS, the EGLS estimation procedure is repeated several times

and the estimate forΣ of an iteration is taken as the starting estimate in the next

iteration. For our model, it is clear that such an iterative procedure would result in

consistent estimators in each step, if the initial estimator S0 is consistent.
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5.2.5 ML

In Section 4.3.5, the MLE’s were derived in case all errors are normally dis-

tributed: from general theory it is known that these MLE’s are consistent under

certain regularity conditions. Here we will prove consistency if the normality

assumption is dropped.

In Section 4.3.5 we have seen that ML estimation coincides with a specific

type of EGLS estimation. The estimatorsα̂i and β̂ in (4.3.20) were derived by

simultaneously minimizing the GLS criterium w.r.t.αi andβ. However,β̂ (and

consequentlŷS in (4.3.21) andΣ̂ in (4.3.26)) can also be derived by means of

EGLS estimation witĥαi as starting valuẽα0i. For this, a closed form expression

for α̂i is required, which we derive by means of partial regression.In the first step

we regressYi andε̂(i−1) ontoXi. In the second step we regress the residuals ofYi

onto the residuals of̂ε(i−1). This results in

α̂i = (ε̂′(i−1)Uiε̂(i−1))
−1ε̂′(i−1)UiYi = (ε′(i−1)Uiε(i−1))

−1ε′(i−1)Uiεi. (5.2.19)

Theorem 5.2.10.α̂i
P−→ αi, β̂

P−→ β, Γ̂ii
P−→ Γii, Ŝ

P−→ Σ and Σ̂
P−→ Σ.

Proof. We denoteε = [ε(i−1) εi]. Sinceε′Hiε ≥ 0 and

tr (E{ε′Hiε}) = tr (HiE{εε′}) = tr(Hi)
i∑

g=1

σgg ≤ k

i∑

g=1

σgg,

we see that1
Ni

(ε′ε − ε′Uiε) = 1
Ni

ε′Hiε
P−→ 0. In combination with (5.2.4), this

gives

α̂i − (ε′(i−1)ε(i−1))
−1ε′(i−1)εi = −(

1

Ni

ε′(i−1)Uiε(i−1))
−1 1

Ni

ε′(i−1)Hiεi

+

(
(

1

Ni

ε′(i−1)Uiε(i−1))
−1 − (

1

Ni

ε′(i−1)ε(i−1))
−1

)
1

Ni

ε′(i−1)εi
P−→ 0.

From (5.2.4) we also get

(
1

Ni

ε′(i−1)ε(i−1))
−1 1

Ni

ε′(i−1)εi
P−→ Σ−1

(i−1)(i−1)Σ(i−1)i = αi.
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Together this implies

α̂i−αi =
(
α̂i − (ε′(i−1)ε(i−1))

−1ε′(i−1)εi

)
+

(
(ε′(i−1)ε(i−1))

−1ε′(i−1)εi − αi

) P−→ 0.

Since ML estimation is a specific kind of EGLS estimation, allconvergence prop-

erties of Section 5.2.4 still hold. Accordingly, the MLE’s (for β, Γii andΣ) are

consistent if thêαi(= α̃0i) are consistent.

5.3 Iterative EGLS

5.3.1 Introduction

In this section we look in more detail at the iterative EGLS procedure and the

properties of the estimators in each iteration. We considerthe specific EGLS

procedure where in each iteration the estimators forβ andΣ are the conditional

MLE’s under the normality assumption in the following sense. Each iteration

consists of two steps: first the ML estimate forβ is determined given a previously

determined estimate forΣ, secondly the ML estimate forΣ is determined given

the previous estimate forβ.

There are different ways to determine these conditional estimators. Srivastava

(1985) used matrix differentiation to derive the first orderconditions for multivari-

ate regression with ageneralmissing data pattern. These first order conditions can

also be used for a monotone missing data pattern. However, they consist of non-

linear matrix equations which have to be solved numerically. For the numerical

example of Chapter 4 (which has a small number of observations), this caused

problems for the iterative algorithms which we used.

In order to construct the EGLS algorithm in an alternative way, we first discuss

ML estimation ofΣ with known regression coefficients in Section 5.3.2. This

technique is used in the iterative EGLS procedure which is presented in Section

5.3.3.
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5.3.2 ML estimation ofΣ with known β

We assume the model of Section 4.3.5 but with known regression coefficientsβ.

Similar to Chapter 4, the MLE’s are derived by means of orthogonal projections.

We introduce the following additional notation

Lε(i) = R(ε(i−1)),
Hε(i) ∈ IRNi×Ni : orthogonal projection matrix ofLε(i),
Uε(i) = INi

− Hε(i) : orthogonal projection matrix ofL⊥
ε(i).

Theorem 5.3.1.The MLE forαi is

⌣
αi = (ε′(i−1)ε(i−1))

−1ε(i−1)εi,

and the MLE forΓii is

⌣

Γii =
ε′iUε(i)εi

Ni

. (5.3.1)

Proof. The likelihood reads

L(Σ; β, Y )
1
=

r∏

i=1

[
{(2π)mi|Γii|}−

Ni
2 exp{−1

2
tr(Γ−1

ii η′
iηi}

]

2
=

r∏

i=1

[
{(2π)mi|Γii|}−

Ni
2 exp{−1

2
tr(Γ−1

ii (η′
iUε(i)ηi + η′

iHε(i)ηi)}
]

3
=

r∏

i=1

[
{(2π)mi|Γii|}−

Ni
2 exp{−1

2
tr(Γ−1

ii ε′iUε(i)εi+

Γ−1
ii (Yi − µi − ε(i−1)αi)

′Hε(i)(Yi − µi − ε(i−1)αi))}
]
. (5.3.2)

See (4.3.22) for the first equality. The second equality holds because the projec-

tion matricesHε(i) andUε(i) are orthogonal andHε(i) + Uε(i) = INi
. The third

equality follows fromηi = Yi − µi − ε(i−1)αi, (4.3.12) andUε(i)ηi = Uε(i)εi

(becauseε(i−1)αi ∈ Lε(i) and thusUε(i)ε(i−1)αi = 0).

The MLE’s are obtained by maximization of (5.3.2) w.r.t. allαi andΓii, re-

spectively. Regardless of the value ofΓii, the termHε(i)(Yi−µi−ε(i−1)αi) is zero

for
⌣
αi = (ε′(i−1)ε(i−1))

−1ε(i−1)εi. Substitution of
⌣
αi in (5.3.2) gives

sup
αi

L(Σ; β, Y ) =
r∏

i=1

[{(2π)mi|Γii|}−
Ni
2 exp{−1

2
tr(Γ−1

ii ε′iUε(i)εi)}].
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A similar reasoning as in the proof of Theorem 4.3.5 leads to the MLE forΓii.

The MLE
⌣

Σ for the covariance matrix follows sequentially from the relations:
{ ⌣

Σ11 =
⌣

Γ11 and fori = 2, ..., r :
⌣

Σ(i−1)i =
⌣

Σ(i−1)(i−1)
⌣
αi,

⌣

∆ii =
⌣
α

′

i

⌣

Σ(i−1)(i−1)
⌣
αi,

⌣

Σii =
⌣

Γii +
⌣

∆ii.
(5.3.3)

Theorem 5.3.2.
⌣

Σ
P−→ Σ.

Proof. We have

η′
iηi − Ni

⌣

Γii
1
= η′

iηi − ε′iUε(i)εi
2
= η′

iηi − η′
iUε(i)ηi

3
= η′

iHε(i)ηi
4
= oP (Nr).

The first equality follows by definition from (5.3.1), the second fromεi = ε(i−1)αi+

ηi andUε(i)ε(i−1) = 0, the third fromINi
= Hε(i) + Uε(i). The fourth relation fol-

lows fromη′
iHε(i)ηi ≥ 0 andtr(E{ 1

Ni
η′

iHε(i)ηi}) ≤ Mi−1Γii

Ni
→ 0.

Since 1
Ni

η′
iηi

P−→ Γii according to (5.2.5), this proves
⌣

Γii
P−→ Γii. From

(5.2.4) it follows that
⌣
αi

P−→ αi. Since
⌣

Σ in (5.3.3) is the same continuous func-

tion of
⌣
αi and

⌣

Γii asΣ is of αi andΓii, this completes the proof.

5.3.3 The iterative EGLS procedure

In each iteration estimates forβ andΣ have to be determined, or equivalently,

the estimates forβ, αi andΓii have to be determined. In the procedure we dis-

cuss here, the estimates in iterationq,
⌣

β q,
⌣
αqi and

⌣

Γqii, are the conditional ML

estimates under the normality assumption. So
⌣

β qi is the EGLS estimator forβ

with starting value
⌣
αq−1,i (see (5.2.12)). Similarly,

⌣
αqi and

⌣

Γqii are the MLE’s

for αi andΓii givenβ =
⌣

β q (see Theorem 5.3.1). Summarized, iterationq of the

iterative EGLS procedure consists of the follow three steps:

(i)
⌣

β qi = GiX
′
i(Yi −

⌣
ε q−1,(i−1)

⌣
αq−1,i)

(ii)
⌣
αqi = (

⌣
ε
′

q(i−1)

⌣
ε q(i−1))

−1⌣
ε
′

q(i−1)

⌣
ε qi

(iii)
⌣

Γqii = 1
Ni

⌣
ε
′

qiU⌣
ε q(i)

⌣
ε qi
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where

⌣
ε qi = Yi − Xi

⌣

β qi,
H⌣

ε q(i)
∈ R

Ni×Ni, orthogonal projection matrix ofR(
⌣
ε q(i−1)),

U⌣
ε q(i)

= INi
− H⌣

ε q(i)
, orthogonal projection matrix ofR(

⌣
ε q(i−1))

⊥.

Step (iii) could be omitted from the iterative procedure, because only
⌣
αqi is used

in the next iteration and not
⌣

Γqii. Only in the last iteration, step (iii) needs to be

executed to determine the final estimate forΣ.

Similar to the MLEΣ̂ in (4.3.26) we construct the EGLS estimateΣ̃q in itera-

tion q as

{
Σ̃q11 = Γ̃q11 and fori = 2, ..., r: Σ̃q(i−1)i = Σ̃q(i−1)(i−1)α̃qi,

∆̃qii = α̃′
qiΣ̃q(i−1)(i−1)α̃qi, Σ̃qii = Γ̃qii + ∆̃qii.

(5.3.4)

Theorem 5.3.3. If
⌣
α0i

P−→ αi and ‖X ′
iXi‖ = O(Nr), then the estimators are

consistent in each iteration, in particular:

⌣

β q
P−→ β,

⌣

Σq
P−→ Σ.

Proof. Without loss of generality we takemi = 1. The consistency of
⌣

β q follows

directly from Theorem 5.2.6. As a consequence of this consistency and the condi-

tion‖X ′
iXi‖ = O(Nr), we have|⌣µqi−µi|2 = (

⌣

β qi−βi)
′X ′

iXi(
⌣

β qi−βi) = op(Nr).

Hence,|⌣ε qi−εi| = |⌣µqi−µi| = op(N
1
2
r ). In combination with (5.2.4), this proves

the consistency of
⌣
αqi.

From the consistency of
⌣
αqi and|⌣ε qi − εi| = oP (N

1
2
r ), it follows that

|⌣ε q(i−1)(
⌣
αqi − αi)| = oP (N

1
2
r ) and|(⌣

ε q(i−1) − ε(i−1))αi| = oP (N
1
2
r ). Hence

|⌣ε q(i−1)
⌣
αqi−ε(i−1)αi| ≤ |⌣ε q(i−1)(

⌣
αqi−αi)|+ |(⌣

ε q(i−1)−ε(i−1))αi| = oP (N
1
2
r ).

Similarly we have

|U⌣
ε q(i)

(
⌣
η qi−ηi)| ≤ |⌣η qi−ηi| ≤ |⌣µqi−µi|+ |⌣ε q(i−1)

⌣
αqi−ε(i−1)αi| = oP (N

1
2
r ),
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where the first inequality follows fromU⌣
ε q(i)

≤ INi
. The second inequality fol-

lows from
⌣
η qi = Yi −

⌣
µqi −

⌣
ε q(i−1)

⌣
αqi and (4.3.12).

Sincetr(E{η′
qiH⌣

ε q(i)
ηqi|Y(i−1)}) ≤ Mi−1Γii is finite, we have|H⌣

ε q(i)
ηqi| =

oP (N
1
2
r ). So

|ηi − U⌣
ε q(i)

⌣
η qi| ≤ |U⌣

ε q(i)
(ηi −

⌣
η qi)| + |H⌣

ε q(i)
ηqi| = oP (N

1
2
r ). (5.3.5)

According to (5.2.8)|ηi| = OP (N
1
2
r ), so

|U⌣
ε q(i)

⌣
η qi| ≤ |ηi − U⌣

ε q(i)

⌣
η qi| + |ηi| = OP (N

1
2
r ). (5.3.6)

We have

|η′
iηi − Ni

⌣

Γqii| = |η′
iηi −

⌣
η
′

qiU⌣
ε q(i)

⌣
η qi|

≤ |ηi − U⌣
ε q(i)

⌣
η qi|(|ηi| + |U⌣

ε q(i)

⌣
η qi|) = oP (Nr),

where the first equality follows from (5.3.1) andU⌣
ε q(i)

⌣
ε i = U⌣

ε q(i)

⌣
η i. The second

equality follows from|ηi| = OP (N
1
2
r ), (5.3.5) and (5.3.6).

This proves thatΓii is consistent because1
Ni

η′
iηi

P−→ Γii according to (5.2.5).

Since
⌣

Σq in (5.3.4) is the same continuous function of
⌣

Γqii and
⌣
αqi asΣ is of αi

andΓii, this completes the proof.

Though the estimators in the iterative EGLS procedure are consistent in each

iteration, this does not necessarily mean that they share the same asymptotic prop-

erties of the MLE’s, such as asymptotic efficiency. See for precise conditions

Magnus (1978), Theorem 4. We leave the verification of these conditions for fur-

ther research.

Numerical illustration

We applied the described iterative EGLS algorithm to the numerical example of

Section 4.2. As starting value
⌣

Σ0 we took the OLS estimateS. The algorithm

only needed 3 (5) iterations to produce the maximum likelihood estimates, accu-

rate up to two (four) decimals. However, the numerical example concerns only
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a small number of observations with a relatively low fraction of missing obser-

vations. In practical problems the iterative EGLS algorithm will obviously need

more iterations to converge.

5.4 EM-algorithm

5.4.1 Introduction

The EM-algorithm (and generalizations of it, such as the ECM-algorithm, see

McLachan and Krishnan (1997) for an overview) is a widely used technique in

missing data problems to determine ML estimates. The EM-algorithm is an iter-

ative procedure which has been proven to converge numerically to the ML esti-

mates under certain conditions (see Dempsteret al. (1977) and Wu (1983)e.g.).

In this section we look in more detail at the EM-algorithm forthe model of Sec-

tion 4.3.5,i.e. for the multivariate regression model with monotone missing data

of the dependent variables and normally distributed errors. We will also give the

EM-algorithm for a general missing data pattern.

The underlying idea of the EM-algorithm is that it might be difficult to de-

termine the MLE’s from the observed (incomplete) data, but it would be simple

in case of complete data. Therefore the missing observations are substituted by

their expected values and subsequently the ML estimates aredetermined from the

completed data. Based on these new estimates, the expected values of the missing

observations are again determined,et cetera. Accordingly, each iteration of the

EM-algorithm consists of an E(xpectation) and a M(aximization) step.

In Meng and Rubin (1993) the ECM-algorithm was presented for a multivari-

ate regression model which is similar to our model but differs in two aspects:

1. the explanatory variables do not necessarily have identical values for all

dependent variables,

2. the regression coefficients are identical for all dependent variables(β1 =

. . . = βr).
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Our model considers the special case of identical explanatory variables for all

dependent variables. As a consequence of the identical explanatory variables the

M-step can be simplified considerably.

5.4.2 Additional notation

To describe the EM-algorithm for a general missing data pattern, we need the

following additional notation:

obst : set of indices of the groups of dependent variables for which the

observations are present for caset,

mist : set of indices of the groups of dependent variables for which the

observations are missing for caset,

obs : set of indices of the observed values of the groups of dependent variables,

mis : set of indices of the missing values of the groups of dependent variables,

Y = (Yobs, Ymis)

: matrix of all (observed and unobserved) values of the dependent variables,

Xt ∈R
k×1

: values of the explanatory variables for observationt,

Σmistmist·obst
= Σmistmist

− Σmistobst
(Σobstobst

)−1 Σobstmist

: conditional variance of the missing variables given the observed

variables for caset.

We will denote the estimators for the parameters in iteration q of the EM-algorithm

by the corresponding symbols plus a superscript̂ (similar to the MLE’s) and an

additional subindexq.
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5.4.3 E-step

In the Expectation step, the expectation of the sufficient statistics is calculated,

given the (estimated) values of the parameters characterizing the complete data

likelihood. For our model, this comes down to determine the expectations of the

missing values themselves and their cross-products.

E-step: general missing data pattern

Expectations missing values:

E{Yti|Yobs, β̂q, Σ̂q} = Yqti,

where

Yqti =

{
Yti, i ∈ obst

ν̂qti, i ∈ mist

=

{
Yti, i ∈ obst

X ′
tβ̂qi + Σ̂qi,obst

Σ̂−1
q,obstobst

(
Yqt,obst

− β̂′
q,obst

Xt

)
, i ∈ mist.

Expectations inner products missing values:

E{YtiY
′
tj|Yobs, β̂q, Σ̂q} = Yqti (Yqtj)

′ + cqtij, where

cqtij =

{
0, i ∈ obst and/orj ∈ obst

Σ̂qij·obst
, i ∈ mist andj ∈ mist,

with Σ̂qij·obst
, the appropriate elements ofΣ̂q,mistmist·obst

.

In case of monotone missing data the previous expectations reduce to

E-step: monotone missing data

Expectations missing values:

Yqti =

{
Yti, t = 1, . . . , Ni

µ̂qti + α̂′
qiε̂qt(i−1), t = Ni + 1, . . . , N .

Expectations inner products missing values:

E{YtiY
′
tj|Yobs, β̂q, Σ̂q} = Yqti (Yqtj)

′ + cqtij, where

cqtij =

{
0, t = 1, . . . ,max(Ni, Nj)

Σ̂q,ij·obst
, t = max(Ni, Nj) + 1, . . . , N .



5.4. EM-algorithm 125

5.4.4 M-step

In the maximization step of an EM-algorithm, the loglikelihood of the expected

values of all the variables (observed and missing),i.e. the completed likelihood,

is maximized w.r.t. the parameters characterizing the likelihood. In case of com-

plete observations and identical explanatory variables for all dependent variables,

ML estimation and OLS coincide (see Van der Genugten (1988) p. 495,e.g.). The

maximization step in iterationq + 1 reads

M-step

β̂q+1 = E{(X ′X)
−1

X ′Y |Yobs, β̂q, Σ̂q} = (X ′X)
−1

X ′Yq,

Σ̂q+1 = E{
(
Y − Xβ̂q+1

)′ (
Y − Xβ̂q+1

)
/N |Yobs, β̂q, Σ̂q}

=
E{Y ′Y |Yobs, βq, Σq} − β̂′

q+1X
′Xβ̂q+1

N
.

Since the observations for the first group of dependent variables are complete, it

is clear that the MLE’s for this group will be obtained after one iteration. It is

not clear how many iterations are required for the numericalconvergence of the

estimates for the other groups. The rate of convergence depends on several factors

such as the fraction of missing observations (see McLachan and Krishnan (1997)

e.g.).

Numerical illustration

We applied the described EM-algorithm to the numerical example of Section 4.2.

As starting value we took the ML estimate based solely on theNr complete ob-

servations. The EM-algorithm needed 10 (20) iterations to produce the maximum

likelihood estimates, accurate up to two (four) decimals. This is considerably

more than the iterative EGLS procedure of Section 5.3.
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5.5 One-way MANOVA

5.5.1 The model

We look at the model for one-way MANOVA with factorA havinga (≥ 2) levels

A1, . . . , Aa, with nij (nij ≥ 1) observations of theith group of dependent variables

on thejth level. Thetth observation on levelj of the dependent variables in group

i is denoted byYijt. If there arer groups, the regression equations read as follow:

Yijt = µijt + εijt, i = 1, . . . , r, j = 1, . . . , a, t = 1, . . . , nij (5.5.1)

where

µijt = µij = βic + βij. (5.5.2)

We want to interpretβic as the general level of theith group of dependent variables

and βij as the specific contribution of levelAj for the ith group of dependent

variables. One of the following identifiability conditionsis often imposed:

(unweighted)
a∑

j=1

βij = 0, for i = 1, . . . , r, (5.5.3)

(weighted)
a∑

j=1

nijβij = 0, for i = 1, . . . , r. (5.5.4)

By introducing a dummy variable for each levelAi of A, (5.5.1) and (5.5.2) can

be written as a linear regression model. Let

XA
jt =

{
1 if observationt is performed at levelAj

0 else.

We will denote the observations of the dummy variables for level j by the vector

XA
j = [XA

jt], and for all levels byXA = [XA
1 . . . XA

a ]. Similarly, the matrix with

the observations of all the explanatory variables (i.e. the constant and the dummy

variables) is denoted byX = [1N XA].

The model assumptions concerning the error terms are those of Chapter 4 (see

(4.2.2)). A monotone missing data structure is assumed, sonij ≥ ni+1,j . Note

thatNi =
∑a

j=1 nij.
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5.5.2 Notation for averages and covariances

In the remainder of the section we will see that the EGLS estimators and their in-

ner products in the MANOVA-tables can be expressed in terms of sample averages

and (co)variances. Therefore we introduce symbols to denote these frequently

used sample statistics. We denote the sample means by

Y ij· =
1

nij

nij∑

t=1

Yijt (∈ R
mi×1),

Y iv = [Y i1· . . . Y ia·] (∈ R
mi×a),

(unweighted) Ŷi·· =
1

a

a∑

j=1

Y ij· (∈ R
mi×1),

(weighted) Y i·· =
1

Ni

a∑

j=1

nij∑

t=1

Yijt =
a∑

j=1

nij

Ni

Y ij· (∈ R
mi×1).

A similar notation is used for the sample means of the residuals.

We denote the sample (co)variances by

Σ(i−1)i =
1

Ni

ε̂′(i−1)Yi −
a∑

j=1

nij

Ni

ε(i−1)j·Y
′

ij·,

Σ(i−1)(i−1) =
1

Ni

ε̂′(i−1)ε̂(i−1) −
a∑

j=1

nij

Ni

ε(i−1)j·ε
′
(i−1)j·.

5.5.3 EGLS estimation

Since EGLS estimation for the first group coincides with OLS estimation, the

EGLS estimators for this group are the usual one-way MANOVA-estimators. Re-

gardless of the specific identifiability constraint for the regression coefficients, the

OLS projections are

µ̂1jt = Y 1j· andε̂1jt = Y1jt − Y 1j·, j = 1, . . . , a, t = 1, . . . , n1j.
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The unweighted constraint (5.5.3) leads to the following OLS estimators for the

regression coefficients

β̂1c = Ŷ1·· ,

β̂1j = Y 1j· − Ŷ1·· , j = 1, . . . , a,

and the weighted constraint (5.5.4) to

β̂1c = Y 1·· ,

β̂1j = Y 1j· − Y 1·· , j = 1, . . . , a.

For EGLS estimation for groupi (= 2, . . . , r) the regression equations read

Yi = Xiβi + ε̂(i−1)αi + εi.

Since either constraint (5.5.3) or (5.5.4) holds, andL0i = R(Xi(N (C))) =

R(XAi) = R(Xi) = Li for both, we can omit the constant term when calcu-

lating the EGLS estimators forνi andµij.

The EGLS estimator forνi can easily be determined by means of partial re-

gression. First we regress [Yi ε̂(i−1)] onto XAi. Since the columns ofXAi are

orthogonal, this is straightforward and leads to the centered residuals

[Yi − XAiY
′

iv· ε̂(i−1) − XAiε
′
(i−1)v·].

The second step consists of the regression of these residuals of Yi onto the corre-

sponding residuals of̂ε(i−1). This leads to the (final) residuals ofYi

η̂i = Yi − XAiY
′

iv· − (ε̂(i−1) − XAiε
′
(i−1)v·) ·

((ε̂(i−1) − XAiε
′
(i−1)v·)

′(ε̂(i−1) − XAiε
′
(i−1)v·))

−1

(ε̂(i−1) − XAiε
′
(i−1)v·)

′(Yi − XAiY
′

iv·)

= Yi − XAiY
′

iv· − (ε̂(i−1) − XAiε
′
(i−1)v·) ·

(ε̂′(i−1)ε̂(i−1) −
a∑

j=1

nijε(i−1)j·ε
′
(i−1)j·)

−1(ε̂′(i−1)Yi −
a∑

j=1

nijε(i−1)j·Y
′

ij·)

= Yi − XAiY
′

iv· − (ε̂(i−1) − XAiε
′
(i−1)v·)Σ

−1

(i−1)(i−1)Σ(i−1)i.
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SinceYi = ν̂i + η̂i, this leads to

ν̂i = XAiY iv· + (ε̂(i−1) − XAiε
′
(i−1)v·)Σ

−1

(i−1)(i−1)Σ(i−1)i, (5.5.5)

or equivalently

ν̂ijt = Y
′

ij· − Σi(i−1)Σ
−1

(i−1)(i−1)

(
ε(i−1)j· − ε̂(i−1)jt

)
.

This expression and relation (4.3.12) lead to the estimatorof the mean of groupi

for levelAj

µ̂ij = Y ij· − Σi(i−1)Σ
−1

(i−1)(i−1)ε(i−1)j· .

The EGLS estimator̂µij and the constraint (5.5.3) or (5.5.4) give the EGLS es-

timators for the regression coefficients. In case of constraint (5.5.3) the EGLS

estimators for the regression coefficients are

β̂ic = Ŷi·· − Σi(i−1)Σ
−1

(i−1)(i−1)ε̂(i−1)·· ,

β̂ij = Y ij· − Ŷi·· − Σi(i−1)Σ
−1

(i−1)(i−1)(ε(i−1)j· − ε̂(i−1)··) ,

and in case of constraint (5.5.4)

β̂ic = Y i·· − Σi(i−1)Σ
−1

(i−1)(i−1)ε(i−1)··

β̂ij = Y ij· − Y i·· − Σi(i−1)Σ
−1

(i−1)(i−1)(ε(i−1)j· − ε(i−1)··).

The EGLS estimatorŝµi andβ̂ are the usual one-way MANOVA-estimators plus

a deviation. In case of complete data,ε(i−1)j· = 0 for all j and thusε(i−1)·· = 0

and ε̂(i−1)·· = 0. As a consequence,̂µij and β̂ reduce to the ‘regular’ one-way

MANOVA-estimators.

If some observations are missing but not for levelAj (nij = n1j), thenε(i−1)j· =

0 but ε̂(i−1)·· 6= 0 andε(i−1)·· 6= 0. Henceµ̂ij = Y ij· but β̂ does not reduce to the

‘regular’ one-way MANOVA-estimator.



130 CHAPTER 5. ADDITIONAL TOPICS

5.5.4 MANOVA-tables

In Section 4.6 we looked at the collection of MANOVA-tables for (general) multi-

variate regression with consecutively added dependent variables. These MANOVA-

tables (see for example Table 4.6.1) contain the inner products of the uncon-

strained and constrained projections and the corresponding degrees of freedom.

In this section, we only present the MANOVA-tables for the model test (i.e. the

null hypothesis assumes all regression coefficients to be zero except the constant

term). Table 5.5.1 contains the relevant information for the model test.

Model Space SS DF

C. model L̃(i) ν̃ ′
iν̃i a − 1

Error L⊥
(i) η̂′

iη̂i Ni − a

C. total R(1Ni
)⊥ Ỹ ′

i Ỹi Ni − 1

Mean R(1Ni
) NiY

′

i··Y i·· 1

Total IRNi Y ′
i Yi Ni

Table 5.5.1: Collection of centered MANOVA-tables (i = 2, . . . , r)

To determine the exact expressions for the inner products ofthe MANOVA-

table, we first determinêν ′
iν̂i. Sinceν̂i in (5.5.5) is the sum of two orthogonal

terms, its inner product is the sum of the two corresponding inner products:

ν̂ ′
iν̂i = (XAiY

′

iv·)
′(XAiY

′

iv·) + Σi(i−1)Σ
−1

(i−1)(i−1)(ε̂(i−1) − XAiε(i−1)v·)
′ ·

(ε̂(i−1) − XAiε
′
(i−1)v·)Σ

−1

(i−1)(i−1)Σ(i−1)i

=
a∑

j=1

nijY ij·Y
′

ij· + NiΣi(i−1)Σ
−1

(i−1)(i−1)Σ(i−1)i.

The inner products of the EGLS residuals are

η̂′
iη̂i = Y ′

i Yi − ν̂ ′
iν̂i

=
a∑

j=1

nij∑

t=1

(Yijt − Y ij·)(Yijt − Y ij·)
′ − NiΣi(i−1)Σ

−1

(i−1)(i−1)Σ(i−1)i.
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Since the EGLS residuals are already centered, the centeredinner products̃ν ′
iν̃i of

the MANOVA-table can be determined as the difference between Ỹ ′
i Ỹi and η̂′

iη̂i.

The inner products of the centered dependent variables are

Ỹ ′
i Ỹi =

a∑

j=1

nij∑

t=1

(Yijt − Y i··)(Yijt − Y i··)
′,

which leads to

ν̃ ′
iν̃i =

a∑

j=1

nij(Y ij· − Y i··)(Y ij· − Y i··)
′ + NiΣi(i−1)Σ

−1

(i−1)(i−1)Σ(i−1)i.

The first terms of̃ν ′
iν̃i and η̂′

iη̂i are the inner products between the samples and

within the samples, respectively.

5.6 Conclusions

This chapter discussed several features of the model for multivariate regression

with consecutively added dependent variables. We proved that all estimators of

the previous chapter, and new classes of covariance estimators are consistent. In

Section 4.4 we investigated the relative efficiency of the estimators for the regres-

sion coefficients, but we have not studied the (asymptotic) relative efficiency of

the estimators for the (co)variances yet. From general theory it is known that the

MLE’s are asymptotic efficient. Are there also asymptotic efficient estimators in

the new classes of covariance estimators? If not, which estimators in the new

classes are the best in terms of efficiency? We leave these questions for further

research.

We also described two alternative, often used, estimation techniques. Al-

though these procedures numerically converge to the ML estimates, they do not

result in closed form estimators for the coefficients. Therefore, our estimation

technique of Section 4.3 is simpler, more straightforward,and much faster.

Finally, we also looked at a special case of the model of Chapter 4: one-way

MANOVA. This simple generalization of the model with only the constant term

as explanatory variable, resulted in quite complicated expressions for the EGLS

estimators.





Chapter 6

Mixed models

6.1 Introduction

The previous chapters discussed models (with applicationsto repeated audit con-

trols) with either categorical or continuous variables. However, in audit practice

the records are often correct (i.e. the error is zero); but if they are incorrect, the

errors can take many different values (see Johnsonet al. (1981) or Neteret al.

(1985)e.g.for a more detailed discussion). The resulting error hence has a mixed

distribution; we therefore will call models for this frequently occurring situation

mixed models.

The model with continuous errors and a probability mass in zero has been dis-

cussed in literature. Cox and Snell (1979) derived Bayesian estimators and upper

limits for a model with non-negative errors and a probability mass in zero. Moors

(1983) and Moors and Janssens (1989) expanded on this. Estimators for contin-

uous, but not necessarily positive, errors with a point massin zero were derived

by Fienberget al. (1977), Tamura and Frost (1986), Tamura (1988) and Laws

and O’Hagan (2000). However, they all assume one audit roundwith an infallible

auditor. This in contrast to Barnettet al. (2001) who discussed a repeated au-

dit control with two rounds. First a model for the classification frequencies was

presented and MLE’s for the classification probabilities were derived. Further,

based on the observed errors, several estimators for the mean value of the errors

in the population were proposed; no relation was specified between the size of the

133
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non-zero errors and the (registered) values of the records.

Section 6.2 introduces our mixed model for a repeated audit control with two

rounds. In Section 6.2.2 the model of Chapter 2 for the classification probabilities

is extended slightly; the resulting model is identical to the model of Barnettet al.

(2001). Conditional on the classification of a record, we specify regression models

for the non-zero error in Section 6.2.3. These conditional linear regression models

are similar to the one of Chapter 4.

In Section 6.3 the estimation techniques of Chapters 2 and 4 are used to de-

termine estimators for the classification probabilities and regression parameters,

respectively. The OLS estimators and MLE’s for the parameters of the conditional

regression models are compared by means of simulation. Section 6.4 discusses es-

timators for the mean value of the errors in the population. We present the MLE

for our model and briefly discuss the estimators of Barnettet al. (2001). All the

estimators are compared by means of simulation. The final Section 6.5 contains

our main conclusions and ideas for further research.

6.2 The model

6.2.1 Notation

Define the random variableA0 as the registered value (or the so called book value)

of a random record. The random variablesA1 andA2 are defined as the values of

a random record according to the first auditor and the expert,respectively. Since

the expert is assumed to be infallibleA2 is the true value. We denote the book and

audit values of recordt by At0, At1, andAt2, respectively.

As in Chapter 2 the first auditor checks the records of a random sample (drawn

with replacement) of predetermined sizen1; a subsample of (possible random)

sizeN2 ≤ n1 is checked again by the expert. Now the values of(At0, At1, At2)

are available for theN2 double checked sample records, while for then1 − N2

single checked sample records only(At0, At1) are available. Since in practice the

book values are known for all records of the population, we will assume thatAt0

is known for the whole population.
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In Section 3.2.3 we discussed two different approaches to determineN2: ran-

dom and stratified sampling. Both methods can be applied in this chapter. How-

ever, we will not elaborate on this difference since the sampling method does not

influence the MLE’s (see Theorem 3.3.2).

Our model is constructed from an absolute model for the classification proba-

bilities and a conditional model for the audit values. Firstall records are classified

into five groups, based on the question whether the two audit values and the book

value are identical. In Section 6.2.2 we give our model for the corresponding clas-

sification probabilities. If all three values coincide, no further steps are necessary.

In the four other cases, we still need to specify models for one of the audit values,

or both. Section 6.2.3 describes these conditional regression models.

6.2.2 Classifications

As in Chapter 2,π0 (π1) is the probability that the auditor classifies a random

record as ‘incorrect’ (‘correct’). With conditional probability π0|0 (π1|1) the ‘in-

correct’ (‘correct’) record is indeed incorrect (correct). With conditional proba-

bility π1|0 (π0|1) the ‘incorrect’ (‘correct’) record was misclassified by the auditor

and is correct (incorrect) after all. Joint probabilities as π01 = π0π1|0 (a random

record being classified as ‘incorrect’ by the auditor and as correct by the expert)

follow from these; compare Figure 2.2.1.

So far our model for the classification probabilities is identical to the model

of Chapter 2. However, now we are interested not only in the fraction errors but

also in the size of the errors; an additional subdivision is therefore necessary. If

the auditor correctly concludes that a record is in error, two possibilities remain:

(s)he is correct about the size of the error, or not. Accordingly, we introduce the

probabilitiesπ0e|0 (π0u|0) for the events that the error size indicated by the auditor

is equal (unequal) to the true error. Soπ0|0 = π0e|0 + π0u|0 andπ00 = π00e + π00u.

The foregoing classifications and probabilities can be expressed in terms of

book and audit values. For example

π0u|0 = Pr(A0 6= A2, A1 6= A2|A0 6= A1).
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Table 6.2.1 gives an overview of the five possible classifications and their proba-

bilities.

Classification Probability
1. A0 = A1, A0 = A2 π11

2. A0 = A1, A0 6= A2 π10

3. A0 6= A1, A0 = A2 π01

4. A0 6= A1, A0 6= A2, A1 = A2 π00e

5. A0 6= A1, A0 6= A2, A1 6= A2 π00u

Table 6.2.1: Classifications and probabilities

As in Chapter 2, we denote the sample classification frequencies by the sym-

bol C with the same subindices as the corresponding probabilities π (see Table

6.2.1). Figure 6.2.1 gives an overview of the sample frequencies and probabilities

(compare Figure 2.2.1).

First auditor Expert
C1−

C11 (: A0 = A2) π11

C1 (: A0 = A1) π1|1

π1

C1+

n1 C10 (: A0 6= A2) π10

π0|1

C0−

C01 (: A0 = A2) π01

C0 (: A0 6= A1) π1|0

π0

C0+ C00e (: A0 6= A2, A1 = A2) π00e

π0e|0

C00u (: A0 6= A2, A1 6= A2) π00u

π0u|0

Total n1 N2

Figure 6.2.1: Classification frequencies and probabilities
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6.2.3 Conditional regression

Since the book value is available for each record, it is only necessary to specify

a conditional model forAt1 given At1 6= At0. Whether this is the case follows

from the classification of recordt. If the book and audit value do not coincide, it

seems reasonable to assume that the book value influences theaudit value. So we

assume

At1 = β′
0

[
1

At0

]
+ εt, with E(εt|At0) = 0 givenAt0 6= At1,

for some (regression) coefficientβ0. Here we omit in our notation for the expecta-

tion (and in the following for the variance) the conditionAt0 6= At1. Moreover, we

assume a constant variance (V (εt|At0) = σ2
0) and no correlation between records.

We only need to specify a model forAt2 if the true value does not coincide

with the book or previous audit value. This is the case for theclassifications 2

and 5 in Table 6.2.1. For both classifications we assume linear regression models,

which are not necessary identical: after all, the first auditor missing an error might

indicate that the error is quite small, while the first auditor finding an error (but

not the true one) might indicate a large or complicated error. We assume

At2 = β′
1

[
1

At0

]
+ εt, with E(εt|At0) = 0 given

{
At0 = At1

At0 6= At2
,

for some (regression) coefficientβ1. Again we assume that the variance of the

error terms is constant (V (εt|At0) = σ2
1) and that there is no correlation between

records.

Similarly, we assume

At2 = β′
0u

[
1

At0

]
+ εt, with E(εt|At0) = 0 given





At0 6= At1

At0 6= At2

At1 6= At2

,

for some (regression) coefficientβ0u. Although we assume again a constant vari-

ance (V (εt|At0) = σ2
0u) and no correlation between different records, we do not

impose restrictions on the correlation between the audit and true value per record

(or equivalently, the covarianceσ12).
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Table 6.2.2 gives an overview of the explanatory and dependent variables of

the conditional regression models in the notation of Chapter4.

Parameters β1, σ2
1 β0, σ2

0 β0u, σ2
0u, σ12

dependent variablesYti At2 At1 At2

explanatory variables[Xt1 Xt2] [1 At0] [1 At0] [1 At0]

previous error termsεt(i−1) - - At1 − β′
0

[
1

At0

]

number of observationsNi C10 C0 C00u

Table 6.2.2: Explanatory and dependent variables

In all our conditional regression models, the explanatory variables consist of

the constant and the book value. The conditional model givenAt0 = At1, has

the true value as dependent variable. The other two conditional models (given

At0 6= At1) form a bivariate regression model with monotone missing observa-

tions: for the first dependent variable (the value accordingto the first auditor)

C0 observations are available, while for the second dependentvariable (the true

value) onlyC00u observations are available.

We will use the estimation techniques of Chapter 4 to determine estimators for

the parameters of the conditional regression models.

Table 6.2.3 gives an overview of the conditional regressionmodels for all clas-

sifications. This overview will be especially useful for theestimation of the mean

true value in Section 6.4.
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Classification Conditional regression model
A0 = A1,A0 = A2 -

A0 = A1, A0 6= A2 At2 = β′

1

[
1

At0

]
+ εt, E(εt|At0) = 0,

Cov(εt|At0) = σ2

1
,

A0 6= A1, A0 = A2 At1 = β′

0

[
1

At0

]
+ εt E(εt|At0) = 0,

Cov(εt|At0) = σ2

0
,

A0 6= A1, A0 6= A2, At1 = β′

0

[
1

At0

]
+ εt, E(εt|At0) = 0,

A1 = A2 Cov(εt|At0) = σ2

0
,

A0 6= A1, A0 6= A2,

[
At1

At2

]
=

[
β′

0

β′

0u

] [
1

At0

]
+ εt, E(εt|At0) =

[
0
0

]
,

A1 6= A2 Cov(εt|At0) =

[
σ2

0
σ12

σ12 σ2

0u

]

Table 6.2.3: Conditional regression models

6.3 Estimation of the model parameters

6.3.1 Classification probabilities

The classification frequencies have binomial and multinomial distributions sim-

ilar to (2.2.4). So the MLE’s for the classification probabilities are the sample

fractions (compare (3.3.3)):





Π̂1 =
C1

n1

, Π̂0 =
C0

n1

Π̂1|1 =
C11

C1+

, Π̂0|1 =
C10

C1+

Π̂1|0 =
C01

C0+

, Π̂0e|0 =
C00e

C0+

, Π̂0u|0 =
C00u

C0+

.

(6.3.1)

These MLE’s can be found in Barnettet al. (2001) as well.

If C0+ or C1+ is zero, not all MLE’s in (6.3.1) are defined. See Section 3.3.3

for a more detailed discussion of this situation and possible solutions.
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6.3.2 Regression parameters

The estimators for the regression parameters of the conditional regression mod-

els in Section 6.2.3 can be determined by means of the estimation procedures in

Section 4.3.2. In terms of general dependent variablesY and explanatory variable

X, the OLS estimators for the regression coefficients and (co)variances are (4.3.5)

and (4.3.7), respectively; under the normality assumptionthe MLE ’s are (4.3.20)

and (4.3.26). Table 6.2.2 gives an overview of the dependentand explanatory vari-

ables for the parameters in our conditional regression models. For completeness,

we include the OLS estimators and MLE’s in terms of the book and audit values

in Appendix 6.6.1.

The MLE’s for β1 andβ0 coincide with the OLS estimators. The MLE’s for

σ2
1 andσ2

0 differ from the OLS estimators solely by the denominator: the MLE’s

are the inner products of the residuals divided by the numberof observations,

while the OLS estimators are the same inner products dividedby the degrees of

freedom. Only with respect toβ0u, σ2
0u andσ12 the MLE’s differ essentially from

the OLS estimators. In the next subsection we study the relative efficiency of the

OLS estimators and MLE’s for these parameters by simulation.

6.3.3 Practical example

As in Chapter 2, the practical example concerns the Dutch social security pay-

ments. However, now we consider another case study where also error sizes are

observed. The population consists of 587 social security payments with mean

9.0418 and standard deviation 8.5726 (both in 1000’s of Dutch guilders). An in-

ternal auditor checks all 587 social security payments; an external auditor (the

expert) checks a subsample of size 60 once more. We will assume here that the

587 payments checked by the first auditor constitute a samplefrom a large popula-

tion. In this context the variableA0 is the social security payment which actually

has been paid,A1 (A2) is the social security payment which should have been

paid according to the first auditor (expert). Table 6.3.1 contains the classification

quantities of the control.
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Total Single checked Double checked sample
sample Expert

First auditor Total correct incorrect
‘correct’ c1 = 551 c1− = 493 c1+ = 58 c11 = 55 c10 = 3
‘incorrect’ c0 = 36 c0− = 34 c0+ = 2 c01 = 0 c00e = 2
Total n1 = 587 n1 − n2 = 527 n2 = 60 c+1 = 55 c+0 = 5

Table 6.3.1: CTSV example

In the double checked sample the first auditor did not make up errors, missed

three errors and found two (true) errors; the expert confirmed the size of the latter

errors.

For these classification frequencies, (6.3.1) results in the ML estimates

π̂11 = 0.8901, π̂10 = 0.0486, π̂01 = 0, π̂00e = 0.0613, π̂00u = 0.

The ML estimates for the regression parameters are determined from the sample

observations ofAt0, At1 andAt2. Since there are no sample records with{At0 6=
At1, At0 6= At1, At1 6= At2} (i.e. c00u = 0), the parametersβ0u, σ2

0u andσ12 can

not be estimated. The ML estimates for the other regression parameters are

β̂1 =

[
−14.7107
−0.8275

]
, σ̂2

1 = 53.5911, β̂0 =

[
−0.6807

0.8808

]
, σ̂2

0 = 17.3533.

These ML estimates are used in our simulations to study the relative efficiency of

the OLS estimators and MLE’s forβ0u, σ2
0u andσ12.

The difference between OLS and ML estimation mainly stems from the treat-

ment of theC00u observations where the auditor correctly identifies an error, but

errs in its size. Hence in the simulation study, we use a valueof the classification

probabilityπ00u which is unlikely to lead to zero observations in this category:

π11 = π10 = π01 = π00e = 0.1, π00u = 0.6.

We take the regression parameters equal to the corresponding ML estimates of

the practical example; in addition we assume thatβ0u (σ2
0u) is equal toβ0 (σ2

0).

Since we expect the correlation betweenAt1 andAt2 (given{At0 6= At1, At0 6=
At1, At1 6= At2}) to be important for the relative efficiency, we look at different
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values for the correlation coefficient (ρ12); this determines as well the covariance

σ12 = ρ12σ0σ0u.

We simulate the book values from a normal distribution with mean 9.0418

and standard deviation 8.5726 from the practical example. The audit values are

also drawn from (multi)normal distributions. To determinethe effect of the sam-

ple sizes, we have simulated data (each with runsize 10,000)for three differ-

ent situations: (a)n2 = 100, n1 = 1000, (b) n2 = 100, n1 = 3000 and (c)

n2 = 300, n1 = 3000. Figure 6.3.1 contains the smoothed curves of the relative

efficiency for the different parameters as function ofρ12. Note that each graph

contains three curves, which however often partly coincide.
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Figure 6.3.1: Relative efficiency of OLS in relation to ML

The first and second graph show the relative efficiency for thefirst and second

component ofβ0u, respectively. These graphs show the same pattern as Figure
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4.4.1 and hence confirm our findings of Section 4.4. For low values of the cor-

relation coefficient, there is hardly any difference in efficiency between the two

estimators; for high values,̂β0u is much more efficient thanb0u. This difference in

efficiency increases with the missing data ratio. Note that the difference seems not

to depend on the absolute sample sizes themselves, only on this ratio1 − n2/n1.

The third and fourth graph, forσ2
0u andσ12, show a similar picture as the first

two. This is understandable since the MLE’sσ̂2
0u andσ̂12 are functions of̂σ2

0 which

is based on alln1 observations.

6.4 Estimation of the mean true value

6.4.1 Notation

In a repeated audit control, the main parameter of interest is often the mean true

value in the population or equivalently the total true valuein the population. The

mean population error size is the difference between the mean population book

valueµ0 and the mean population true value,µ2: µ0 − µ2. Since we assume that

the book values are available for all population elements, the estimator for the

mean error size is obtained by subtracting the estimator forµ2 from the known

parameterµ0.

In Section 6.4.2 we propose an estimator forµ2 based on our model. Section

6.4.3 discusses several estimators of Barnettet al. (2001). All four estimators are

compared by simulation in Section 6.4.4.

We use the following notation for sample averages and regression coefficients

A
(Cij)

g =
1

Cij

Cij∑
Atg,

α̂
(Cij)
gh =

∑Cij(Atg − A
(Cij)

g )(Ath − A
(Cij)

h )
∑Cij

(
Atg − A

(Cij)

g

)2 .

The symbolθ will denote all model parameters,i.e.all classification probabilities

and regression parameters; the MLE forθ is denoted bŷθ.
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6.4.2 A new estimator

A new estimator forµ2 is the average of the observed and predicted true values of

all population elements:

µ̂2 =
1

np

np∑

t=1

Ât2, (6.4.1)

with

Ât2 =





At2, if t = 1, . . . , N2

E{At2|At0, At1, At0 = At1, θ̂}, if t = N2 + 1, . . . , n1 andAt0 = At1

E{At2|At0, At1, At0 6= At1, θ̂}, if t = N2 + 1, . . . , n1 andAt0 6= At1

E{At2|At0, θ̂}, else.

Each missingAt2 is estimated by its conditional expectation (under the normality

assumption) given the observations and the (estimated) parameter values. The

conditional expectations differ per classification (see Table 6.2.3) and are given in

Appendix 6.6.2.

The advantage of this estimator is that it distinguishes thedifferent classifica-

tions and it uses all available sample and population information. It also shares

some nice properties with the MLE’s which have been derived in Chapter 5.

6.4.3 Estimators Barnett

Although Barnettet al. (2001) did not specify a model for the size of the errors,

several estimators forµ2 (or µ0−µ2) were proposed: the regression estimator, the

post-stratification estimator and the estimator from non-overlapping samples.

Similar to (6.4.1), the regression estimator forµ2 is the average of the observed

and predictedAt2 of all population elements. However, the predictions for theAt2

differ from ours. The regression estimatorµ̂2r, used by Barnettet al. (2001)

equation (17), equals

µ̂2r = A
(N2)

2 + (A
(N1)

1 − A
(N2)

1 )α̂
(N2)
12 + (µ0 − A

(N1)

0 )α̂
(N1)
01 α̂

(N2)
12 . (6.4.2)
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This estimator is quite logical in case of the following model:



At0

At1

At2


 = β′+εt, with E{εt} =




0
0
0


 , V ar{εt} =




σ00 σ01 0
σ01 σ11 σ12

0 σ12 σ22


 .

Note, however that this model contradicts the model for the classification proba-

bilities, since it does not distinguish the different classifications. This in contrast

to the post-stratification estimator forµ2 (see Barnettet al. (2001) equation (21))

π̂11µ0 + π̂10A
(N2)

2 + π̂01µ0 + π̂00eA
(N1)

1 + π̂00uA
(N2)

2 .

This estimator is the sum of the MLE’s for the classification probabilities times

the estimator for the mean true value of elements with that classification. The

disadvantage of this estimator is that the estimators for the mean values per clas-

sification can be quite biased. Therefore we propose an alternative estimator̂µ2p

with the same structure but with different estimators for the stratum means

µ̂2p = π̂11A
(C11)

2 + π̂10A
(C10)

2 + π̂01A
(C01)

2 + π̂00eA
(C00e)

2 + π̂00uA
(C00u)

2 (6.4.3)

(although it is not mentioned explicitly in their paper, this seems to be the esti-

mator which Barnettet al. (2001) used in their simulations). The disadvantage of

this post-stratification estimator is that it uses the sample information of the single

checked elements solely for the estimation of the classification probabilities; the

estimation of the stratum means is only based on the double checked sample.

The last estimator̂µ2w uses information from both single and double checked

sample elements (see Barnettet al. (2001) equation (25))

µ̂2w = µ0 −
N2

n1

(A
(N2)

0 − A
(N2)

2 )

−n1 − N2

n1

C0−π̂0|0 + C1−π̂0|1

C0−

(A
(N1−N2)

0 − A
(N1−N2)

1 ). (6.4.4)

This estimator isµ0 minus the weighted average of the mean error size of the

double checked elements and, the mean error size of the single checked sample

elements according to the auditor multiplied by a correction factor for the mis-

classifications. Theorem 6.4.1 shows thatµ̂2w is not always consistent.
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Theorem 6.4.1.In case of random samplinĝµ2w
P−→ µ2 if and only ifE{At0 −

At1|At0 6= At1} = E{At0 − At2|At0 6= At2}.

Proof. As in Chapters 2 and 3 we denote the fraction incorrect elements in the

population byp0(= π10 + π00).

Since sample means converge to their expectations in case ofrandom sam-

pling, it follows that

A
(N2)

0 − A
(N2)

2
P−→ µ0 − µ2, A

(N1−N2)

0 − A
(N1−N2)

1
P−→ µ0 − µ1,

C0−π̂0|0 + C1−π̂0|1

C0−

=

C0−

n1−N2
π̂0|0 + C1−

n1−N2
π̂0|1

C0−

n1−N2

P−→ π0π0|0 + π1π0|1

π0

=
p0

π0

.

From this andµ0 − µ1 = π0E{At0 − At1|At0 6= At1), it follows that

µ̂2w
P−→ µ0 −

N2

n1

(µ0 − µ2) −
n1 − N2

n1

p0E{At0 − At1|At0 6= At1).

Only if E{At0−At1|At0 6= At1} = E{At0−At2|At0 6= At2}, we havep0E{At0−
At1|At0 6= At1) = (p0E{At0 − At2|At0 6= At2} =)µ0 − µ2 and hencêµ2w

P−→
µ2.

6.4.4 A simulation study

We compare the performance of the estimators of this sectionby simulation. The

simulation procedure we use is almost identical to the one ofBarnettet al. (2001)

Section 5.

The simulations (runsize 10,000) are performed for severalsets of given clas-

sification probabilities and sample sizes; see Table 6.4.1.Then1 book values are

drawn from the following distribution:

book value 100 500 1000 2000 5000
probability 0.9 0.05 0.03 0.015 0.005

.

The classifications of the items are drawn from multinomial distributions. The
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fractional error sizes have the following uniform distributions:

At0 − At1

At0

∼ U(0, 1), if At0 6= At1,

At0 − At2

At0

∼ U(0, 1), if At0 = At1, At0 6= At2,

At0 − At2

At0

= 1 − At1

At0

, if At0 6= At1, At0 6= At2, At1 6= At2.

So far the simulation procedure is identical to the one of Barnett et al. (2001).

However, to avoid not uniquely defined parameter estimates (see Section 3.3.3),

we apply stratified sampling instead of random sampling (seeSection 3.2.3).

From the described simulation procedure, the mean population error size can

be determined analytically for each set of classification probabilities. In each

simulation runµ0 −µ2 is estimated using the four discussed estimators. Note that

E{At0 −At1|At0 6= At1} = E{At0 −At2|At0 6= At2} in the described simulation

procedure. Table 6.4.1 contains the results of the simulations.

From the four studied estimators,µ̂2r has the largest bias; the other three es-

timators have a small bias (if any at all). The small bias ofµ̂2w (never exceeding

0.1) is caused by the fact thatE{At0−At1|At0 6= At1} = E{At0−At2|At0 6= At2}
for the simulated data.

Higher sample sizes in the first and second round lead to a lower variance

for all estimators except̂µ2p; the variance of̂µ2p decreases for highern2, but n1

hardly seems to have an impact. See for example the first entryof the second half

of the table: the standard deviation ofµ̂2p is 11.9, 12.0 and 7.0 for(n1, n2) equal

to (1000,100), (3000,100) and (3000,300), respectively.

We see that the variances of all estimators are lower for the small mean error

size (10) than for the high mean error size (20). For example,for n1 = 1000

andn2 = 100 the standard deviation of̂µ2 is 3.1 for the first set of probability

parameters withµ0−µ2 = 10; for the first set of parameter values withµ0−µ2 =

20 the standard deviation is 4.1.

In every second line of the table the probability of an auditor missing an error

is higher, and the probability of an auditor finding the rightsize of an error is

lower than in the previous line. Comparing two subsequent lines, we see that a
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20.3
20.0

20.0
(4.2)

(9.9)
(12.2)

(4.6)
(3.6)

(10.1)
(12.5)

(3.6)
(2.6)

(6.1)
(6.9)

(2.7)
.74

.12
.06

.04
.04

20.0
20.4

20.0
20.0

20.0
20.5

19.9
20.0

20.0
20.3

20.0
20.0

(5.5)
(12.5)

(12.3)
(5.9)

(5.2)
(12.3)

(12.5)
(4.6)

(3.6)
(7.6)

(7.2)
(3.3
)

.70
.04

.06
.12

.04
20.0

20.6
20.1

20.0
20.0

20.4
19.9

20.0
20.0

20.4
20.0

20.0
(4.4)

(10.9)
(12.6)

(4.7)
(3.8)

(10.7)
(12.2)

(3.7)
(2.6)

(6.8)
(7.1)

(2.7
)

.74
.12

.06
.04

.04
20.0

20.5
19.9

20.0
20.1

20.9
20.2

20.0
20.0

20.4
20.0

20.0
(5.5)

(13.7)
(12.3)

(5.6)
(5.3)

(13.5)
(12.7)

(4.6)
(3.5)

(8.1)
(7.2)

(3.2
)

Table
6.4.1:

S
im

ulated
m

eans
(and

standard
deviations)

oft
he

estim
ators
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higherπ10 and a lowerπ00e cause an increase in the variance of the estimators. For

example, in the first two lines of the table the standard deviation of µ̂2 increases

from 3.1 to 3.8 forn1 = 1000 andn2 = 100.

Based on the results of Table 6.4.1, we can conclude that estimatorsµ̂2 andµ̂2w

have comparable variances and outperformµ̂2r andµ̂2p (in terms of variance). The

simulations in this section were constructed such thatE{At0 −At1|At0 6= At1} =

E{At0 − At2|At0 6= At2}, which is a necessary condition for consistency ofµ̂2w.

This is not an essential condition for the consistency ofµ̂2. Moreover,µ̂2w does

not outperformµ̂2 even under this condition and with a model for the simulated

data which deviates from our model in Section 6.2. Hence,µ̂2 seems to be the

preferable estimator.

6.5 Final remarks and conclusions

We introduced a mixed model for a repeated audit control withtwo rounds. This

model consists of a submodel for the absolute classificationprobabilities and an-

other submodel in terms of conditional regression for the audit values. The gen-

eralization to a repeated audit control withk rounds is quite straightforward. The

basic variables of the general model areA0, A1, . . . , Ak, whereAi (i = 1, . . . , k)

is the value according to auditori of a random record. The records can be clas-

sified based on the question whether some of thek audit values and book values

coincide; note that the number of classifications increasessharply ink. Next,

similar to Section 6.2.3, conditional regression models can be specified for the

audit values which do not coincide with the book value or previous audit values

according to the classification.

As mentioned previously, repeated audit controls can be regarded as a missing

data problem (or more specific: as a monotone missing data problem). In the

missing data literature, Olkin and Tate (1961) have alreadyintroduced a model

with a mixture of both categorical and continuous variables: the general location

model. In this model,K categorical variables are classified, and theM continuous

variables have a (M -variate) normal distribution conditional on this classification.

The model in this chapter differs essentially from the general location model: the
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classifications are not based on separate categorical variables but on the equality

of the continuous variables, and the dimensionality of the conditional models may

be lower thanM . For example, the conditional regression models in Table 6.2.2

are uni- and bivariate.

We derived estimators for the model parameters and the main parameter of

interest: the mean true value. In a simulation study our estimator for the mean true

value outperformed several other estimators introduced byBarnettet al. (2001),

although the underlying model of the simulation study differed from our model in

Section 6.2.

So far we have only discussed point estimators for the parameters, but con-

fidence limits are at least as important in auditing practice. In auditing practice,

selection with probabilities proportional to the recordedvalue (‘monetary unit

sampling’) is applied frequently instead of the discussed sampling techniques. It

would be interesting to investigate this sampling method aswell. We leave these

topics for further research.
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6.6 Appendices

6.6.1 Estimators for the regression parameters

We use the following notation for sample averages and variances:

A
(Cij)

g =
1

Cij

Cij∑
Atg,

S
(Cij)

gh =
1

Cij

Cij∑
(Atg − A

(Cij)

g )(Ath − A
(Cij)

h ).

OLS-estimators

b1 =

[
A

(C10)

2 − (S
(C10)
00 )−1S

(C10)
02 A

(C10)

0

(S
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00 )−1S
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]
, s2

1 =
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[
1

At0

]
)2

C10 − 2

b0 =

[
A

(C0)

1 − (S
(C0)
00 )−1S

(C0)
01 A

(C0)

0

(S
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[
A
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0
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ML estimators

β̂1 = b1, σ̂2
1 =

C10 − 2

C10

s2
1, β̂0 = b0, σ̂2

0 =
C0 − 2

C0

s2
0

[
β̂0u

α̂0u

]
=




C00u

∑C00u At0
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6.6.2 Conditional expectations

E{At2|At0, At1, At0 = At1, θ̂} = π̂1|1At0 + π̂0|1β̂
′
0

[
1

At0

]
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Samenvatting (Summary in Dutch)

Statistische modellen voor steekproefcontroles zijn meestal gebaseerd op de (im-

pliciete) veronderstelling dat de controleur geen fouten maakt. Echter, controleurs

zijn menselijk en dus feilbaar.

Eén manier om rekening te houden met mogelijke fouten van een controleur

is het toepassen van een herhaalde steekproefcontrole. Eenherhaalde steekproef-

controle bestaat uit twee of meer ronden. In de eerste ronde worden posten uit de

boekhouding steekproefsgewijs gecontroleerd door een feilbare controleur. In de

daaropvolgende ronde wordt een deelsteekproef van deze posten nogmaals gecon-

troleerd, ditmaal door een meer bekwame controleur. Dit kanenkele malen her-

haald worden totdat de laatste controleur, een feilloze expert, de juiste waarde

geeft voor een deelsteekproef van posten die door alle voorgaande (feilbare) con-

troleurs al gecontroleerd zijn.

Herhaalde steekproefcontroles zijn gerelateerd aan ontbrekende data proble-

men. Standaard statistische methoden analyseren meestal data van een aantal

variabelen, waargenomen voor een vast aantal cases. Het komt vaak voor dat

voor enkele cases niet alle variabelen zijn waargenomen, zodat enkele obser-

vaties ontbreken. Deze ontbrekende dataproblemen zijn uitgebreid in de litera-

tuur bestudeerd. Herhaalde steekproefcontroles kunnen beschouwd worden als

ontbrekende data problemen. Neem bijvoorbeeld de herhaalde steekproefcontrole

met twee ronden: het oordeel van de expert is slechts beschikbaar voor de dubbel

gecontroleerde steekproefposten, maar ontbreekt voor de eenmalig gecontroleerde

posten.

Dit proefschrift behandelt de statistische modellering enanalyse van herhaalde

steekproefcontroles. De modellen verschillen met betrekking tot het aantal feil-
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bare controleurs en het soort variabelen (categorisch, continu of een combinatie

van beide). Hoofdstuk 2 behandelt de modellering en analysevan de meest een-

voudige situatie met́eén feilbare controleur en alternatieve variabelen; dat laatste

wil zeggen dat de controleur en expert de posten slechts als correct dan wel incor-

rect classificeren. Het model van Hoofdstuk 2 is al eerder beschreven in de litera-

tuur, maar de aandacht is tot nu toe voornamelijk uitgegaan naar puntschattingen

voor de fractie incorrecte posten in de hele boekhouding. Aangezien bovengren-

zen in de praktijk vaak minstens zo belangrijk zijn als puntschattingen, bespreken

we twee methoden voor het bepalen van bovengrenzen: de zogenaamde klassieke

methode en de Bayesiaanse methode. Het verschil is dat de Bayesiaanse methode

gebruik maakt van eventueel aanwezige (subjectieve) voorkennis omtrent de po-

pulatie en de kwaliteit van de controleurs. De klassieke methode blijkt te leiden

tot erg hoge betrouwbaarheidsbovengrenzen; de Bayesiaanseaanpak geeft in het

algemeen lagere bovengrenzen.

In Hoofdstuk 3 presenteren we een algemeen kader voor herhaalde steekproe-

ven; er kan meer dańeén feilbare controleur bij betrokken zijn en bovendien be-

schouwen we categorische variabelen: er kunnen meer classificatiemogelijkheden

zijn dan alleen correct en incorrect. Het model van het voorgaande hoofdstuk is

hiervan dus het meest eenvoudige geval. We bespreken twee verschillende me-

thoden voor het trekken van de steekproefposten. Voor beidesteekproefmethoden

bepalen we de meest aannemelijke schatters en geven we een oplossing voor het

probleem van niet uniek bepaalde schatters. We vergelijkenook drie verschil-

lende methoden voor het bepalen van bovengrenzen, waaronder de Bayesiaanse

aanpak. Ons Bayesiaans model verschilt van het gangbare in dewijze waarop we

de voorkennis formuleren.

In de laatste drie hoofdstukken bespreken we modellen voor continue variabe-

len of een combinatie van categorische en continue. Hoofstukken 4 en 5 behande-

len multivariate lineaire regressie met een monotone datastructuur voor de afhan-

kelijke variabelen. In multivariate regressie wordt een aantal afhankelijke variabe-

len beschreven met behulp van een aantal verklarende variabelen. Een monotone

datastructuur voor de afhankelijke (continue) variabelenbetekent het volgende:

de verklarende variabelen kunnen zodanig geordend worden dat als een waarne-
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ming van een verklarende variabele ontbreekt voor een case,dan ontbreken ook

de waarnemingen van alle daaropvolgende verklarende variabelen voor dezelfde

case. De waarnemingen voor de verklarende variabelen zijn compleet. Een zeer

speciaal geval is het model met slechts de constante term alsverklarende variabele

dat al uitvoerig in de literatuur besproken is.

In Hoofdstuk 4 bepalen we analytische uitdrukkingen voor enkele schatters

door middel van projecties; deze schatters hebben een duidelijke meetkundige

interpretatie. Voor het bepalen van schattingen wordt in ontbrekende data pro-

blemen vaak gebruik gemaakt van een iteratief algoritme; dit zogenaamde EM-

algoritme convergeert numeriek naar de meest aannemelijkeschattingen. In ver-

gelijking hiermee, heeft onze methode twee voordelen: de gemakkelijke inter-

pretatie en de directe berekening die natuurlijk nauwkeuriger en sneller is. We

bespreken ook in detail een toets voor de regressiecoefficienten: de zogenaamde

likelihood ratio test. De toetsingsgrootheid wordt afgeleid, alsmede de bijbe-

horende kansverdeling, die een generalisatie van reeds bestaande kansverdelingen

is. Voor deze nieuwe kansverdeling worden verschillende benaderingen afgeleid

en vergeleken door middel van simulatie.

In Hoofdstuk 5 komen verschillende aspecten van het multivariate regressie-

model aan de orde. We laten zien dat de schatters van het vorige hoofdstuk consis-

tent zijn, dit wil zeggen dat het verschil tussen de schatters en de parameters naar

nul gaat voor grote steekproeven. Voor de volledigheid worden ook twee alter-

natieve schattingsmethoden gegeven voor het bepalen van demeest aannemelijke

schatters; beide methoden zijn veelgebruikte iteratieve algoritmes die numeriek

convergeren naar de meest aannemelijke schattingen. Ten slotte bekijken we ook

een generalisatie van het model met slechts de constante alsverklarende variabele:

one-wayMANOVA.

In de praktijk is men vaak geı̈nteresseerd in de totale grootte van fouten in de

populatie; in geval van bekende populatie-omvang is dit equivalent aan de gemid-

delde grootte van de fouten. De fout bij de meeste posten is echter gelijk aan

nul, zodat het niet realistisch is een continu model voor de grootte van de fouten

te veronderstellen. In Hoofdstuk 6 construeren we een realistischer model voor

de grootte van fouten door de modellen van de voorgaande hoofdstukken te com-
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bineren. Voor de classificatiekansen gebruiken we de modellen van Hoofdstukken

2 en 3. Als uit de classificatie van een post vervolgens blijktdat er echt sprake is

van een fout, dan wordt de grootte van deze fout gemodelleerdmet behulp van een

conditioneel regressiemodel (vergelijkbaar met dat van Hoofdstuk 4). De schatters

voor de modelparameters en voor de gemiddelde grootte van defouten in de po-

pulatie zijn nu eenvoudig te bepalen door combinatie van de schattingstechnieken

van de voorgaande hoofdstukkken. Simulatie toont aan dat onze schatter voor de

gemiddelde grootte van de fouten nauwkeuriger is dan enkeleandere schatters die

eerder in de literatuur besproken zijn.


