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Mokken Scale Analysis Using Hierarchical
Clustering Procedures

Alexandra A. H. van Abswoude, Tilburg University

Jeroen K. Vermunt, Tilburg University

Bas T. Hemker, Citogroep

L. Andries van der Ark, Tilburg University

Mokken scale analysis (MSA) can be used to
assess and build unidimensional scales from an
item pool that is sensitive to multiple dimensions.
These scales satisfy a set of scaling conditions,
one of which follows from the model of monotone
homogeneity. An important drawback of the MSA
program is that the sequential item selection and
scale construction procedure may not find the
dominant underlying dimensionality of the
responses to a set of items. The authors
investigated alternative hierarchical item selection
procedures and compared the performance of

four hierarchical methods and the sequential
clustering method in the MSA context.
The results showed that hierarchical clustering
methods can improve the search process of the
dominant dimensionality of a data matrix. In
particular, the complete linkage and scale linkage
methods were promising in finding the
dimensionality of the item response data from a set
of items. Index terms: item selection methods,
multidimensionality, Mokken scale analysis,
hierarchical cluster analysis, nonparametric item
response theory.

In the past decade, there has been an increasing interest in using nonparametric item response
theory (NIRT) as a tool in test dimensionality assessment. For example, Douglas, Kim, Roussos,
Stout, and Zhang (1999) investigated the dimensionality of the Law School Admission Test, and
Scheirs and Sijtsma (2001) investigated the dimensionality of data from the International Survey
of Adult Crying. In NIRT, it is assumed that all items are sensitive to a single latent trait (uni-
dimensionality, UD), that item responses given this latent trait are statistically independent (local
independence, LI), and, for dichotomously scored items, that the probability of answering an item
correctly is a monotone nondecreasing function of the latent trait (monotonicity, M) (Mokken, 1971;
Sijtsma, 1998). A set of item response data that are UD, M, and LI is denoted as being monotonely
homogeneous (MH; Mokken, 1971).

Methods that are aimed at selecting sets of items that are sensitive to one latent trait from larger
item pools sensitive to multiple latent traits frequently use relaxations of the UD, M, or LI assump-
tions and often focus on one or more of these weakened assumptions (e.g., Ip, 2001; van Abswoude,
van der Ark, & Sijtsma, 2004). HCA/CCPROX (e.g., Roussos, Stout, & Marden, 1998), DIMTEST
(e.g., Nandakumar & Stout, 1993), and DETECT (e.g., Zhang & Stout, 1999a, 1999b) concentrate on
the LI assumption. The program discussed in this article, MSP (Molenaar & Sijtsma, 2000), concen-
trates on the M assumption. The MSP procedure for dichotomously scored items is now discussed.
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The Mokken scale analysis method (MSA; e.g., Mokken, 1971; Molenaar & Sijtsma, 2000)
and its program (MSP) have, apart from being generally available for applied researchers,
a number of attractive properties: If the MH model is satisfied, simple sum scores may be used
to stochastically order subjects on the underlying variable (Grayson, 1988; Hemker, Sijtsma,
Molenaar, & Junker, 1997); it allows the user to choose only items with sufficient discrimina-
tion power into a test (Sijtsma, 1998); it is suitable in contexts where there are, compared to
weak-LI methods, few items and few subjects; and the item selection procedure runs quite fast.
MSP contains a sequential item selection method, which can be seen as a sequential clustering
algorithm. This clustering method has, however, an important drawback: It does not always find
back the correct dimensionality structure of the data in multitrait situations (van Abswoude et al.,
2004).

In this study, it is investigated whether hierarchical clustering (e.g., Everitt, Landau, &
Leese, 2001) algorithms can find the correct dimensionality structure better than the sequential
clustering algorithm—that is, whether suboptimal solutions can be prevented in multitrait situa-
tions. Four types of hierarchical clustering methods were used to create nonoverlapping sets of
dichotomous items, each of which satisfies certain scaling conditions. In a simulation study and an
empirical example, these four methods were compared with each other and with MSP’s sequen-
tial procedure in their ability to find the correct dominant underlying dimensionality structure in
situations with more than one latent trait.

Mokken Scale Analysis

Mokken scale analysis is a method that may be used to select a subset of items sensitive to
the same underlying dimension from a larger item pool. Similarly to factor analysis, MSA starts
with a matrix containing information on the strength of the bivariate relationships between the
J items under study. In factor analysis, this is either a correlation or covariance matrix. MSA uses
a matrix with H -coefficients (Loevinger, 1948; Mokken, 1971). Let Fjk represent the observed
number of Guttman (1950) errors for item pair (j, k), and let Ejk be the expected number of
Guttman errors under the null model of marginal independence. If item j is easier than item k

(i.e., more correct answers), a Guttman error occurs when the more difficult item k is answered
correctly and the easier item j is answered incorrectly. The pairwise Hjk for item pair (j, k) is
defined as

Hjk = 1 − Fjk

Ejk

= Ejk − Fjk

Ejk

.

LetXj be a binary random variable, denoting an individual’s score on item j (j = 1, . . . , J ). An item
score may take on the value 0 or 1, and let N be the sample size. Furthermore, let πj = P(Xj = 1),
1 − πj = P(Xj = 0), and πjk = P(Xj = 1, Xk = 1). Items are ordered such that πj > πk ,
for all j > k. Noting that Fjk/N = πk − πjk and Ejk/N = (1 − πj )πk , Hjk can also be
written as

Hjk = (1 − πj )πk − (πk − πjk)

(1 − πj )πk

= πjk − πjπk

(1 − πj )πk

.

The numerator of Hjk equals the covariance between binary variables, and the denominator is the
maximum positive value of the covariance given the marginal distributions of the item scores. Let
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cor(Xj , Xk) denote the correlation between the responses on items j and k, and let cor(Xj , Xk)max
be the maximum correlation given the marginal distributions of items j and k. Then, Hjk can also
be defined as

Hjk = cor(Xj , Xk)

cor(Xj , Xk)max
.

Thus, the Hjk can be seen as a normed correlation coefficient—that is, a measure that takes into
account that the correlation cannot reach the maximum value of 1, for items with different propor-
tions, correct scores πj and πk .

From the pairwise Hjk , one can derive Hj for each item belonging to a scale, as well as the
overall scale H . Hj indicates how well item j fits into a scale, and H indicates the strength of the
scale. High values of H indicate a more correct ordering (i.e., fewer Guttman errors) of subjects on
the latent trait.

The Hj for item j can be defined as follows:

Hj = 1 −
∑

k �=j Fjk∑
k �=j Ejk

=
∑

k �=j (Ejk − Fjk)∑
k �=j Ejk

,

as in Mokken (1971, p. 150). It can also be written as a weighted mean of Hjk coefficients, with
weights equal to Ejk; that is,

Hj =
∑

k �=j EjkHjk∑
k �=j Ejk

. (1)

The scale H is defined as

H = 1 −
∑

j

∑
k �=j Fjk∑

j

∑
k �=j Ejk

=
∑

j

∑
k �=j (Ejk − Fjk)∑
j

∑
k �=j Ejk

.

It can easily be verified that H can also be defined as a weighted mean of pairwise Hjk or
item Hj ,

H =
∑

j

∑
k �=j EjkHjk∑

j

∑
k �=j Ejk

=
∑

j (
∑

k �=j Ejk)Hj∑
j

∑
k �=j Ejk

, (2)

where the weights are equal to Ejk and
∑

k �=j Ejk , respectively.
Let cov(Xj , Xk) denote the covariance of variables j and k. A set of J items is called a Mokken

scale (Mokken, 1971, p. 184) if all items satisfy the following two conditions:

Condition 1 cov(Xj , Xk) > 0, for all j �= k, and
Condition 2 Hj ≥ c, for all j , where c is a user-defined constant between 0 and 1.

The first condition follows from the UD, LI, and M assumptions of the MH model (Mokken, 1971,
p. 149; see also Holland & Rosebaum, 1986). This condition can also be restated as cor(Xj , Xk) > 0
or Hjk > 0. The second condition serves the practical purpose that only items with sufficient
discrimination power are accepted into a scale (e.g., Sijtsma, 1998). More generally stated, the
higher c, the more accurate the ordering of persons on the underlying trait θ . Mokken chose c = 0.3
in Condition 2, which, over the years, has been shown to be a good rule of thumb in measuring
a single underlying dimension. Mokken also provided rules of thumb for interpreting the strength
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of a scale (Mokken, 1971, p. 185). Hemker, Sijtsma, and Molenaar (1995) provided suitable
values for c for finding the simulated dimensionality structure of item pools having different item
characteristics.

For a set of items satisfying a Mokken scale, the following inequalities hold:

0 < min(Hjk) ≤ min(Hj ) ≤ H ≤ max(Hj ) ≤ max(Hjk) ≤ 1 (3)

(see Hemker et al., 1995; Mokken, 1971). This means, for example, that the lowest Hj in the scale is
at least equal to the lowest Hjk . When searching for scales satisfying the Mokken scale conditions
using a clustering procedure (sequential, hierarchical, or otherwise), one will generally see that H

and also the Hj decrease when the number of items in the scale increases.
The H coefficient, as well as MSA in general, has been extended to polytomous items (Molenaar,

1982, 1991). The H coefficient for polytomous items also is the normed covariance between item
pairs, and the interpretation of the coefficient remains the same (Hemker et al., 1995). Although
the hierarchical procedures are discussed only for dichotomous items, they can be readily applied
to item sets consisting of polytomous items.

Sequential Clustering

One way to find a Mokken scale is by checking whether an a priori selected set of items satisfies
the two conditions described above. Items that do not fulfill these conditions should be removed.
Another, more exploratory, approach involves applying a stepwise item selection procedure rather
than specifying an a priori selected set. Such a stepwise procedure has been implemented in the
program MSP (Molenaar & Sijtsma, 2000).

The sequential item selection procedure works as follows:

Step 1: Select the two items with the highest significantly positive Hjk in the sample.

Step 2: Compute H for all remaining items with respect to the already selected items, and select
the item with the highest H that satisfies Conditions 1 and 2.

Step 3: Repeat Step 2 until no items remain that satisfy Conditions 1 and 2. If items remain, go
to Step 1 to form another scale using the remaining items. If no more items remain, the
entire procedure stops.

The default value for c is 0.3. The default α value used in the one-sided significance tests for Hjk

and Hj is 0.05. To reduce the risk of capitalizing on chance, the level of significance is adjusted
using a Bonferroni correction at each step. It is possible to change the default values for c and α,
as well as to use other starting sets in Step 1. In the situation of a tie in Step 1 or 2, the item pair
with the lowest πj is selected.

It should be noted that MSP’s item selection algorithm can also be regarded as a sequential
clustering algorithm. The objects to be clustered are the items, and the matrix with the Hjk serves
as proximity matrix between the items. The H serves as a proximity measure between a set of items
forming a cluster or scale and the remaining single items that could be added to the cluster that is
being built. Clusters are formed sequentially; that is, only after one cluster has been formed, item
selection for a second cluster starts. The end result is a set of clusters, each consisting of two or
more items and each forming a Mokken scale. Items that do not satisfy the scaling conditions for
any scale in Step 2 are not entered in any cluster. In general, the higher the discrimination of the
items in an item pool, the fewer nonscalable items there are.
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Table 1

Lower Diagonal of Hjk-Matrix and Item Popularities πj

for Small Generated Example

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Item 1
Item 2 0.87
Item 3 0.32 0.31
Item 4 0.01 –0.02 0.57
Item 5 0.06 0.04 0.56 0.48
Item 6 0.00 0.00 0.73 0.79 0.84

πj 0.68 0.38 0.50 0.75 0.62 0.27

A drawback of the sequential clustering procedure is, however, that it may yield a suboptimal
solution in the sense that the true dimensionality of the item response data may not be found (van
Abswoude et al., 2004). This phenomenon is illustrated by means of a small example consisting
of the responses on six items, denoted Item 1, . . . , Item 6, and two independent latent traits,
θ1 and θ2. Assume that Item 1 and Item 2 are strongly related to θ1, Item 3 is weakly related to
θ1 and strongly related to θ2, and Item 4, . . . , Item 6 are moderately related to θ2 but not related to θ1.
The Hjk matrix and πj values of these six items are presented in Table 1.

Using MSP’s defaults settings, Step 1 will yield item pair Item 1-Item 2 as starting pair. Sub-
sequently, Item 3 will be added to that cluster. The final first scale will consists of Item 1, Item 2,
and Item 3, with H = 0.46. The second scale will contain the remaining three items-Item 4, Item 5,
and Item 6, with H = 0.65. This two-cluster solution is suboptimal because there exists a solution
that better reflects the true dimensionality of the item response data from the six items. This solution
consists of two clusters containing Item 1-Item 2 and Item 3, Item 4, Item 5, Item 6, respectively.
The H values for these scales are 0.87 and 0.63.

The correlation between the sum scores on subsets of these items was calculated; these subsets
are item pair Item 1-Item 2 (Set 1), Item 3 (Set 2), and Item 4, Item 5, and Item 6 (Set 3). The
Pearson product moment correlation coefficient (ρ) between the sum scores for Sets 1 and 2 equals
0.272; for Sets 1 and 3, ρ = 0.022; and for Sets 2 and 3, ρ = 0.540. Thus, these correlations
indicate that there is no linear relationship between Sets 1 and 3 and that Item 3 seems to fit both
in Sets 1 and 3, but the linear relationship with the items in Set 3 is strongest.

The problem of the sequential clustering procedure is, of course, that the starting set determines
the solution. Once an item is selected in a cluster, it remains there, even if it fits better into a cluster that
is formed later. The better solution would be obtained if the selection procedure starts with the second
highestHjk and then continues using MSP’s default settings. The MSP software offers the possibility
to specify other starting sets or extend the search procedure to allow for overlapping clusters,
which means that it would have been possible to find the better solution. Unexperienced users may,
however, not override the default settings and may therefore end up with suboptimal solutions.

Hierarchical Clustering

A possible solution to the problem associated with MSP’s sequential item clustering method
may be to switch to another type of clustering method. Hierarchical clustering analysis (HCA; e.g.,
Everitt et al., 2001) may be a useful method to find sets of items that form a Mokken scale.
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The starting point of HCA is a data matrix containing proximities between separate objects.
In this study, the separate objects are items, and their proximities are their pairwise Hjk . At each
hierarchical step, the two objects that are most similar are joined. A joined pair is also called an
object or cluster. This means that at any hierarchical step, two single items may be clustered to form
one new cluster, a single item may be added to an existing cluster of items, or two clusters may be
combined into a single larger cluster. This process continues until some previously stated criterion
(i.e., a stopping rule) is met or until all items are in one single cluster.

Hierarchical clustering has been used before for dimensionality assessment in a classical test
theory context (e.g., Bacon, 2001; Hunter, 1973; Reveille, 1979; Schweizer, 1991), as well as
in a NIRT modeling context (Roussos et al., 1998). These studies have in common with each
other and with this study that they use variants of product moment correlations coefficients as
proximity metrics. For example, Reveille (1979) used Cronbach’s alpha and the worst split-half
(beta) coefficient to form clusters having high internal consistency reliability, and Roussos et al.
(1998) used conditional correlations and conditional covariances to obtain clusters that are weakly
locally independent. These studies differ from this study in the specification of minimal requirements
on the clusters constructed with HCA, meaning that two items that correlate negatively could end up
in the same cluster. New in this study’s hierarchical clustering procedures is that clusters constructed
with the HCA need to satisfy some minimal requirements, the Mokken scaling conditions.

Let Ov denote an object consisting of one or more items. The number of items in Ov is denoted
by Jv , and the proximity between objects Ov and Ow is denoted by HOvOw . The way the proximities
are calculated will be explained later on. Hierarchical clustering of items uses the following steps:

Step 1: Join the two items j and k with the highest Hjk that satisfy the scaling conditions.

Step 2: Compute the HOvOw between all object pairs Ov and Ow, and join the object pair with
the highest HOvOw as long as the stopping rule is not satisfied.

Step 3: Repeat Step 2 until no combination of two objects remain that satisfies the stopping rule.

When using HCA, individual items are not allocated to one cluster at the time, but multiple
clusters may be formed simultaneously. This means that for the small example introduced in the
previous section, HCA should be able to allocate Item 3 to the cluster it fits best in terms of
dimensionality—that is, to the second instead of the first cluster.

Proximities

In this study, the performance of four types of agglomerative HCA methods was investigated:
complete linkage, average linkage, within-groups linkage, and scale linkage. Although each of
the methods uses the same three steps, they differ with respect to the definition of HOvOw , or the
proximity between clusters of items. The first three methods are available in the clustering routines
of most statistical packages, such as SPSS (1998). The scale linkage method is a nonstandard
method that is especially developed for the Mokken scaling problem.

A complete linkage method is obtained by defining the proximity between clusters as

H
complete
OvOw

= min(Hjk), where jεOv and kεOw.

In other words, at each step, those two objects—Ov and Ow—are joined for which the least similar
pair of items has the highest proximity. Complete linkage is also known as the furthest neighbor
method.
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Average linkage, also known as the unweighted pair-group method of averages (Sokal &
Michener, 1958) or between-groups linkage (Everitt et al., 2001), defines the proximity between
objects as

H
average
OvOw

=
∑

jεOv

∑
kεOw

Hjk

JvJw

.

As can be seen, Haverage
OvOw

is the unweighted average of the bivariate Hjk between the items in object
v and the items in object w. This measure of proximity therefore reflects the average distance of
items belonging to different clusters.

Within-groups linkage defines the proximity of two objects, Ov and Ow, as the unweighted
average of the Hjk of all items within Ov or Ow. In other words,

Hwithin
OvOw

=
∑

j

∑
k �=j Hjk

(Jv + Jw)(Jv + Jw − 1)
, where {j, k} ε Ov ∪ Ow.

The fourth method, scale linkage, is based on the scale H of the possible new object that is
obtained by joining two objects; that is,

Hscale
OvOw

=
∑

j

∑
k �=j EjkHjk∑

j

∑
k �=j Ejk

, where {j, k} ε Ov ∪ Ow.

Scale linkage may be regarded as the a hierarchical clustering variant of the sequential clustering
procedure of the MSP package—that is, those objects are joined that together result in the largest
possible scale H .

To be able to define stopping rules on the basis of the four types of proximity measures, it is
important to get some idea on their meaning in the context of Mokken scaling. The first and last proxi-
mity measures have a direct interpretation in the context of Mokken scaling: H

complete
OvOw

is directly
related to the minimal requirement for items belonging to the same scale (Condition 1; Hjk >

0), whereas Hscale
OvOw

is the overall summary measure of the quality of a scale (see equation (2)).
The other two measures can be seen as proxies for Mokken scaling measures. As can be seen,
Hwithin

OvOw
is an unweighted average ofHjk and can, therefore, be interpreted as an unweighted approxi-

mation of the overall scale H , which was a weighted coefficient of the Hjks. Similarly, H
average
OvOw

can be seen as an unweighted proxy for Hj coefficients. More precisely, for each item belonging
to object v, an unweighted item Hj could be computed indicating how well it fits into object w,
H

Ow

j = ∑
kεOw

Hjk/Jw. The measure H
average
OvOw

equals the average of these H
Ow

j s: H
average
OvOw

=∑
jεOv

H
Ov

j /Jv .

Stopping Rule

The most natural point to stop a hierarchical clustering process is when the largest proximity drops
below some minimum value; that is, stop the process of joining objects if max(HOvOw) < c. When
applying the HCA in this study, it is important to choose the stopping rule in such way that it leads
to clusters that satisfy the same scaling conditions as the ones required with sequential clustering.

As one of the reviewers of this article correctly pointed out, the choice of a stopping rule is
a function of the research objective. For some objectives, it may be preferable to join subsets of
items sensitive to highly correlated traits because joining also increases test reliability, and for other
objectives, joining is undesirable. In MSA, constant c was incorporated (see scaling Condition 2) to
allow such research objectives to be incorporated in scale construction. The stopping rules proposed
here should be regarded as versions of this scaling condition that are adapted to the various HCA
methods discussed in this article.
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Defining a stopping rule based on H
complete
OvOw

is not straightforward because there is no direct
relationship between the minimal Hjk of a scale and the overall homogeneity of the items (Hj s).

From Conditions 1 and 2 and equation (3), the requirement that 0 < H
complete
OvOw

≤ c can be

derived. It, therefore, seems reasonable to set the minimum value of H
complete
OvOw

somewhat larger than

zero—say, ccomplete = 0.10—to increase the quality of measurement.
Using the same line of reasoning, a hypothesis about the value of the stopping rules for the

other methods can be derived using Conditions 1 and 2 and equation (3). The overall scale quality,
Hscale

OvOw
, and the unweighted overall scale quality, Hwithin

OvOw
, should be at least as large as the value

one would use for c in the sequential procedure (because min[Hj ] ≤ H ) and maybe somewhat
larger, say, 0.40. Because of its relationship to the item Hj , the same minimum value seems to be
reasonable for H

average
OvOw

(i.e., caverage = c = 0.30).
Rather than using method-specific stopping rules, it is also possible to use a more general rule

stopping rule. This means that the methods still maximize different proximities at each clustering
step, but for each method, the process of clustering stops when the same condition is no longer
satisfied. As a general stopping rule, Hj < c, which is directly related to the Mokken scale condi-
tions, can be used. In the simulation study, both method-specific and general stopping rulesare used.

Mokken Scale Conditions

In the sequential clustering algorithm, the conditions that define a Mokken scale are used as
a stopping rule; that is, if the conditions are no longer fulfilled, the algorithm starts forming the
next scale when any scalable items are left. The scales that are formed by means of HCA should
satisfy the same Mokken scale conditions. The application of the conditions is, however, much
more complicated within these clustering procedures.

The two Mokken scale conditions first need to be translated in such a way that they could be
applied in HCA. For all objects Ov , one should check whether the following conditions hold:

Hjk > 0, for all {j, k} εOv,

Hj ≥ c, for all items j, where j ε Ov.

The above conditions could, as in the sequential clustering procedure, be checked within the
clustering process, which amounts to using an additional stopping rule. This seems to be too strict
for this study’s HCA methods. Such as strategy could, for instance, impair the clustering of two
objects just because a single item does not satisfy the Mokken scaling conditions while the remain-
ing and possibly large set of items does satisfy the conditions. As a result, one would end up with
many small clusters.

Alternatively, the Mokken scale conditions can be checked after clusters have been formed.
A stopping rule is used to stop the clustering process at a certain number of clusters, and an additional
step is added to the HCA method in which misfitting items are deleted from the scales. If there is
more than one misfitting item in a scale, the items are deleted sequentially, where the worst item
is deleted first. The worst misfitting item is that item j with the lowest Hj among the items with
negative Hjks, or the item with the lowest Hj when negative Hjks do not exist. This is the procedure
followed in the simulation study.

Simulation Study

Description of the Design

A simulation study was conducted to evaluate the performance of five clustering proce-
dures: sequential, complete linkage, average linkage, within-groups linkage, and scale linkage.
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Method-specific stopping rules were used for each clustering method. For sequential clustering,
c = 0.3 and c = 0 were used. These conditions reflect two possible ways to conduct scale construc-
tion: quite restrictive (c = 0.3), as in MSP’s default, and lowly restrictive (c = 0.0), as in Roussos
et al. (1998) or Zhang and Stout (1999a). In hierarchical clustering, the four method-specific stop-
ping rules had the values ccomplete = 0.1, caverage = 0.3, and cwithin = cscale = 0.4. To facilitate
the comparison between sequential clustering and hierarchical clustering, this study investigated
the performance of c = 0.3 (for Hj ) as a general stopping rule for the four hierarchical clustering
methods.

Apart from the type of algorithm and the type of stopping rule, the data structure also was varied.
More precisely, the size of the correlations between the traits (five conditions) and the number
of items per dimension (three conditions) were varied. The number of latent traits was always
three. Because we wanted to circumvent sampling fluctuation issues, extremely large sample sizes
(N = 100,000), which approximate population data, were used. For a few cells, however, also the
performance of the methods using a sample of N = 200 were investigated.

Three conditions with identical correlations for each pairs of traits (ρ12 = ρ23 = ρ13) and
two conditions with unequal correlations were used. The three conditions with identical corre-
lations were 0.1, 0.4, and 0.7, representing weak, modest, and strong correlations, respectively.
Because in most practical test applications, latent traits show dependencies (McDonald, 2000), a
no-dependency condition (ρ = 0.0) was not included. The lower the ρ, the easier it should be
to find the correct dimensionality. In the two situations with unequal correlations, the correlations
were ρ12 = ρ13 = 0.20 and ρ23 = 0.60, as well as ρ12 = ρ13 = 0.40 and ρ23 = 0.60. Finding the
correct dimensionality may be more difficult for unequal correlations than for equal correlations
between latent traits. These different correlations are realistic in practical test applications.

The number of items per dimension was either 5 or 10; that is, each of the three traits may
be represented by a small (5) or a large (10) number of items. Notation [D : J1; J2; . . . ; JD] is
used to reflect the structure of an item pool, where D equals the simulated number of traits and
Jd(d = 1, . . . , D) equals the number of items sensitive to each trait. The three conditions used
were [3 : 5; 5; 5], [3 : 10; 10; 10], and [3 : 5; 5; 10], where the latter condition represents a
situation with an unequal number of items per dimension. The situation with unequal item numbers
was included because van Abswoude et al. (2004) encountered that the nonhierarchical clustering
procedure DETECT (Zhang & Stout, 1999a) is less successful under such a condition.

The performance of the various procedures (methods and stopping rules) was evaluated by
means of two criteria. The first criterion is whether the item selection procedure retrieves the true
dimensionality of the problem or, in other words, whether items sensitive to the same latent trait are
assigned to the same cluster. The second performance criterion is the overall fitness of the partition.
This was quantified as the number of items that must be discarded because of misfit with respect to
the two Mokken scaling conditions.

True Model of the Item Responses

The model used for generating item responses was a three-dimensional version of the five-
parameter acceleration model (M5-PAM; van Abswoude et al., 2004; see also Sijtsma & van der
Ark, 2001). This model was used because it has the flexibility to represent a large variety of
nondecreasing item response functions (IRFs) that may be typical for nonparametric IRT models.
In this study’s M5-PAM model, the probability that subject i answers item j correctly, given his or
her values on the three latent traits, equals

P(Xij = 1|θi1, θi2, θi3) = γ lo
j + (γ

up
j − γ lo

j )

[
exp(

∑3
d=1 1.7αjdθid + δj )

1 + exp(
∑3

d=1 1.7αjdθid + δj )

]ξj

.
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Table 2

Number of Clusters and Number of Items Per Cluster Obtained With
Sequential Clustering for Simulated Data Sets

Correlation Between Latent Traits

Test Composition 0.1 0.4 0.7 0.2/0.6 0.4/0.6

c = 0.3

[3 : 5; 5; 5] [3:5;5;5] [2:11;4] [1:15] [2:11;4] [2:11;4]
[3 : 5; 5; 10] [3:5;5;10] [2:16;4] [1:20] [2:16;4] [1:19]a

[3 : 10; 10; 10] [3:10;10;10] [1:30] [1:30] [2:21;9] [1:30]

c = 0.0

[3 : 5; 5; 5] [1:15] [1:15] [1:15] [1:15] [1:15]
[3 : 5; 5; 10] [1:20] [1:20] [1:20] [1:20] [1:20]
[3 : 10; 10; 10] [1:30] [1:30] [1:30] [1:30] [1:30]

a. One item excluded because of misfit with scale conditions.

Here, αjd is the discrimination parameter of item j on trait d, and δj is frequently referred to as the
difficulty parameter of item j . In M5-PAM, the slope and the location of the IRFs depend not only
on the αjd and δj parameters but also on γ lo

j , γ up
j , and ξj , which are the lower asymptote, the upper

asymptote, and the acceleration parameter of the IRF of item j , respectively. The last parameter
makes an IRF asymmetrical (see also Samejima, 2000).

Some items were assumed to be sensitive to a single latent trait (Zhang & Stout, 1999a, called
this condition simple structure), whereas others were assumed to be strongly sensitive to one trait
and less strong to the other two traits. Values for θid were drawn from a trivariate normal distribution
with means of zero and correlations depending on the condition. The values of the other parameters
were fixed: αjd ranged between 1.50 and 2.25 for dominant traits and was set to 0.25 or 0.0 for
nondominant traits, δj ranged from −1.5 to 1.5, γ lo

j from 0.0 to 0.1, γ
up
j from 0.9 to 1.0, and

ξj from 0.5 to 3.0. Item parameters were fixed to obtain items that are representative for true test
situations. Another option would have been to generate parameters from certain distributions, but
using this approach, it is difficult to obtain representative items.

Results

Sequential Clustering

Table 2 shows the detected dimensionality when using sequential clustering. The first column
reports the true test composition. The remaining columns report the retrieved dimensionality for
the five conditions related to the correlations between latent traits. Notation [K : J1; J2; . . . ; JK ]
is used to represent the number of detected clusters (K) and the number of items per cluster (Jk).

The higher the correlations between traits (ρ = 0.4 or 0.7), the fewer the number of clusters
detected. In these cases, items sensitive to differences on different latent traits were collected into
one cluster. Clustering simulated data based on traits with varying correlations showed the same
trend; that is, items that were sensitive to differences on highly correlating traits were collected in
one large cluster. Varying the number of items led to approximately the same number of clusters.
Changing the scaling conditions from c = 0.3 to c = 0.0 resulted into a single cluster containing
all items.
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Hemker et al. (1995) and van Abswoude et al. (2004) found similar results for the sequential
clustering procedure. Increasing the correlations between latent traits, or decreasing c in Criterion 2,
means that an increasing number of items satisfy the scaling conditions of the first cluster, and
consequently, fewer items remain to be collected in the second or third cluster. If the sequential
clustering was restricted using the scaling conditions (i.e., increase c to 0.3), depending on the type
of data, the true dimensionality could be retrieved.

Given that K clusters are found (e.g., also when K �= D), a solution may still be acceptable in
the sense that items that are sensitive to differences on the same latent trait are in the same cluster.
As can be seen in Table 2, sequential clustering did not always lead to acceptable solutions in this
sense. The result [2 : 11; 4], where [3 : 5; 5; 5] and ρ = 0.4 were simulated, for example, means not
only that items sensitive to differences on two different traits (θ2 and θ3) were selected into Cluster
1 but also that an item that mainly was sensitive to differences on θ1 was selected into Cluster 1. The
remaining items were selected into Cluster 2. Because objects were clustered one by one, the cluster
that was formed first may be overrepresented compared to the cluster that was formed second.

In the main study, to get a global idea about the effect of ρ on the methods’ success in dimen-
sionality assessment, some values of the correlations between traits were investigated. For a few
design conditions, it was investigated in more detail for which values of ρ the correct dimension-
ality was found, particularly for ρ = 0.1, 0.2, and 0.3 using a simulated data set having five item
responses based on three latent traits and c = 0.3. For ρ = 0.1, the cluster solution was [3:5;5;5]; for
ρ = 0.2, the cluster solution was [3:5;4;5]; and for ρ = 0.3, the cluster solution was [3:7/4/4]. The
slashes indicate that the obtained clusters are sensitive to different traits. These additional results
suggest that for c = 0.3, the true dimensionality is recovered up to a value of ρ that lies between
0.1 and 0.2.

Hierarchical Clustering

Three types of results are presented for the hierarchical clustering methods. First, to compare
the performance of the five clustering methods, the number of clusters found and the number of
items that were deleted sequentially due to misfit to the Mokken scaling conditions (denoted as
the number of misfitting items) are reported. For the stopping rules, hypothesized c values were
used. In general, the large sample was used, but for a few cells, the stability of the methods using
small samples was also investigated. Second, to find out whether the correct rules of thumb were
used for c, a different perspective was adopted: The ranges of the value of c that would have
recovered the simulated number of latent traits are presented. These values may give more insight
into the functioning of the four new proximities for different sets of items (for similar ranges
for Hj using sequential clustering, see Hemker et al., 1995). Finally, it was investigated whether
the graphical plots of the proximities at each hierarchical step contain information on the actual
dimensionality.

Table 3 reports the number of clusters and the number of misfitting items (in parentheses). The
first part shows the results using the general stopping rule Hj < 0.3 (all methods), and the second
part shows the results of each hierarchical clustering method in combination with its method-specific
stopping rule. The specific number of items in each cluster is not reported for clarity of Table 3.
Before discussing the effects of the general and method-specific stopping rules, some general results
are described.

As far as the number of clusters is concerned, the hierarchical clustering methods showed
approximately the same pattern as sequential clustering: The number of clusters decreased when the
correlations between latent traits increased and the restrictiveness of clustering decreased. Unlike
sequential clustering, the number of clusters did, in some instances, change between conditions with
different numbers of items per latent trait: The number of clusters decreased when the number of

 © 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 25, 2008 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


A. A. H. VAN ABSWOUDE, J. K. VERMUNT, B. T. HEMKER, and L. A. VAN DER ARK
MOKKEN SCALE ANALYSIS USING HIERARCHICAL CLUSTERING PROCEDURES 343

Table 3

Number of Clusters (Number of Misfitting Items in parentheses) Obtained
With Hierarchical Clustering for Simulated Data Sets

Correlation Between Latent Traits

Test Composition 0.1 0.4 0.7 0.2/0.6 0.4/0.6

General stopping rule

Hj < 0.3 (all methods)

[3 : 5; 5; 5] 3 2 1 2 2
[3 : 5; 5; 10] 3 2 1 2 2
[3 : 10; 10; 10] 3 1 1 2 1

Method-specific stopping rules

H
Complete

OvOw < 0.1

[3 : 5; 5; 5] 3 1(1) 1 2 1(1)
[3 : 5; 5; 10] 3 1(1) 1 2 1(1)
[3 : 10; 10; 10] 3 1 1 2 1

H
Average

OvOw < 0.3

[3 : 5; 5; 5] 5 6 6 5 5
[3 : 5; 5; 10] 5 5 4 4 6
[3 : 10; 10; 10] 4 4 4 4 4

HWithin
OvOw < 0.4

[3 : 5; 5; 5] 3 2 1 2 1(1)
[3 : 5; 5; 10] 2(5) 1(1) 1 1(4) 1(1)
[3 : 10; 10; 10] 3 1 1 1(2) 1

HScale
OvOw < 0.4

[3 : 5; 5; 5] 3 2 1 2 2
[3 : 5; 5; 10] 3 1(1) 1 2 1(1)
[3 : 10; 10; 10] 3 2 1 2 1

items decreased. This result, which is caused by minor differences in the parameter values when 5
or 10 items per trait were simulated, was found for some hierarchical methods (i.e., average linkage
and within-groups linkage) using the proposed stopping rules.

Because hierarchical clustering forms clusters simultaneously instead of sequentially, HCA
should collect items sensitive to the same trait into the same cluster. One can observe in Table 2
that especially the two-cluster solutions of sequential clustering were suboptimal. The results using
HCA are better; that is, [2 : 10; 5] for J = 15, [2 : 15; 5] for J = 20, and [2 : 20; 10] for J = 30
(the number of items per cluster is not shown in Table 3). In HCA, one does not see that the items
sensitive to differences on the same dominant trait were joined into different clusters.

The number of misfitting items as reported in Table 3 gives an indication of the quality of
a solution. As can be seen, most misfitting items were found when ρ was low or moderate and
for a small number of clusters. Misfitting items could, of course, be prevented by increasing the
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restrictiveness of item clustering. However, the absence of misfitting items does not indicate that
the true dimensionality was found because it might be a solution with too many clusters.

The general stopping rule (Hj < 0.3) was applied to all HCA methods. The results were the
same for all of these methods (results are presented only once in Table 3). This means that the path
item clustering initially took had no effect on the final solution. When comparing the results of the
general stopping rule with sequential clustering, one may observe that the number of clusters was
the same. As explained before, the specific items in each cluster were somewhat dissimilar. The
improvement of hierarchical clustering over sequential clustering lies in the fact that, when using
HCA, items sensitive to differences on the same latent trait were collected into the same cluster,
whereas when using sequential clustering, this was not always the case.

The four HCA methods, in combination with their method-specific stopping rules, were not
equally successful in finding the true dimensionality. In complete linkage, using the method-specific
stopping rule for conditions with modest (i.e., ρ = 0.4) and high (i.e., ρ = 0.7) correlations between
latent traits, the number of clusters found was less than the true number of latent traits. This suggests
that the method-specific stopping rule (i.e., the minimum of Hjk) for complete linkage was too low
to find the correct dimensionality. In within-groups linkage and, to a lesser extent, in scale linkage,
which both use functions of the scale H , similar trends can be observed. Scale linkage performed
better than within-groups linkage (see Table 3) because in scale linkage, a proximity measure was
used that corrects for variations in item difficulties. In within-groups linkage, especially in the
conditions with 10 items per latent trait, too few clusters were found. Using the average linkage
method with the average linkage criterion, more clusters than the true number were found. For many
item pools, this meant that a different cluster was generated for each possible combination of traits;
that is, sets of items sensitive to differences on either the same latent trait or a same combination of
latent traits were collected in one cluster. Seemingly, average linkage does not serve as good proxy
for Hj . Correct recovery stopped at the following values of ρ: general stopping rule between 0.2
and 0.3, complete linkage between 0.2 and 0.3, within-groups linkage between 0.2 and 0.3, and
scale linkage between 0.3 and 0.4 (not shown in Table 3). Thus, increasing ρ in smaller steps
shows that the scale linkage method performed best. To sum up, scale linkage seems to be the
only method that, in combination with the method-specific stopping rule, performs better than the
general stopping rule.

These results may not hold up for small samples. Therefore, the success of the methods and the
specific stopping rules was investigated for N = 200. Table 4 shows results of 10 replications for
small (i.e., N = 200) and large (i.e., N = 100,000) sample sizes. The table presents two types of
results. First, for each method, the number of times the correct three-cluster solution was obtained
using the four hierarchical clustering methods is presented. Alternatively, the average number of
clusters could have been presented over 10 replications. This, however, is not informative because
it says nothing about whether and how often the correct number of clusters is obtained and whether
this number of clusters corresponded with the true underlying dimensionality. Second, the standard
error (SE) of the proximities when the correct clustering was found using the method-specific
stopping rule is presented for small and large sample sizes. The SE is calculated using the proximity
value obtained with N = 100,000 as the true score. Let Yr denote the proximity value of an HCA
method for replication r . In addition, let µ denote the average of the proximity for N = 100,000
(it is referred to in Greek notation because it approaches the population value). Then, the SE equals

SE =
√√√√ 1

10

10∑
r=1

(Yr − µ)2. (4)

Furthermore, the results obtained for N = 100, 000 response patterns presented earlier (see Table 3)
suggested that the correlation conditions ρ = 0.7, 0.2/0.6, and 0.4/0.6 might not yield the true
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Table 4

Numbers of Correct Clusters (#) and the Proximities Standard Errors (SE)
for Large and Small Samples

Correlation Between Latent Traits

Test Composition 0.1 0.2 0.3 0.4

[3 : 5; 5; 5] # SE # SE # SE # SE

Complete linkage

N = 200 9 .053 9 .100 3 .099 0 —
N = 100, 000 10 .003 10 .004 0 — 0 —

Average linkage

N = 200 1 .082 0 — 0 — 0 —
N = 100, 000 1 .000 1 .000 0 — 0 —

Within-groups linkage

N = 200 3 .037 4 .094 0 — 0 —
N = 100, 000 10 .000 10 .005 0 — 0 —

Scale linkage

N = 200 9 .039 9 .084 3 .081 1 —
N = 100, 000 10 .000 10 .007 10 .005 0 —

Note. # represents number (out of 10) times the correct clusters were found using
predefined stopping rules. SE represents the standard error of the statistics found
for the correct solutions. — denotes the SE cannot be determined.

dimensionality. For that reason, the results for the conditions ρ = 0.1, 0.2, 0.3, and 0.4, which may
find the true dimensionality, were present.

The results in Table 4 show that for small samples, the methods using the method-specific
stopping rules worked less well than than those using large samples. As indicated by the standard
errors of the proximities (see Table 4), the proximities in some small samples fell below and in
others fell above the value of the predefined stopping rules. Thus, the stopping rules were not equally
suitable for large and small sample sizes.

In the second type of results, a different perspective is adopted: Instead of fixing c, it was
investigated for what ranges of c the correct dimensionality was obtained for the method-specific
stopping rules. These ranges are presented in Table 5. All methods were able to find the correct
number of clusters and joined the correct items. In general, the higher ρ, the more restrictive the
scaling conditions need to be to find the true dimensionality.

The range of c strongly changes with the proximity used for clustering. Using Hjk as proximity
(in complete linkage) is very attractive because a large range of c values leads to the correct result.
Table 5 provides a confirmation that hypothesized values of c were too low for complete linkage,
within-groups linkage, and scale linkage and too high for average linkage to find the correct solution.

As indicated by the preceding results, the use of the hypothesized stopping rules may not be the
desirable approach to determine the number of dominant dimensions of a data set. The best moment
to stop the clustering process depends on several characteristics of the data—that is, on the properties
of the items (e.g., discrimination) and of the subjects (e.g., variability on the traits). Explorative
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Table 5

Ranges of c Yielding the Correct Dimensionality Using Four Hierarchical
Clustering Methods for Simulated Data Sets

Correlation Between Latent Traits

Test Composition 0.1 0.4 0.7 0.2/0.6 0.4/0.6

Complete linkage

[3 : 5; 5; 5] .04−.41 .14−.41 .25−.42 .21−.41 .21−.42
[3 : 5; 5; 10] .05−.41 .17−.41 .31−.42 .25−.42 .26−.41
[3 : 10; 10; 10] .03−.41 .12−.41 .22−.43 .18−.42 .19−.42

Average linkage

[3 : 5; 5; 5] .08−.28 .17−.28 .24−.28 .21−.28 .20−.28
[3 : 5; 5; 10] .08−.28 .18−.28 .24−.28 .22−.28 .19−.27
[3 : 10; 10; 10] .08−.27 .18−.28 .26−.28 .23−.27 .22−.28

Within-groups linkage

[3 : 5; 5; 5] .36−.62 .45−.63 .54−.64 .51−.62 .43−.64
[3 : 5; 5; 10] .41−.63 .51−.63 .59−.64 .55−.63 .56−.64
[3 : 10; 10; 10] .39−.67 .49−.68 .59−.69 .55−.67 .55−.67

Scale linkage

[3 : 5; 5; 5] .32−.60 .42−.61 .51−.62 .47−.60 .48−.61
[3 : 5; 5; 10] .38−.61 .48−.62 .56−.62 .52−.61 .53−.61
[3 : 10; 10; 10] .36−.64 .46−.65 .56−.66 .52−.64 .52−.65

approaches that analyze the process of clustering may be more appropriate than confirmatory
approaches that use predefined stopping rules in determining the moment to stop the clustering.

In the third type of results, scree plots of the proximities at each hierarchical step are presented.
Figure 1 depicts the scree plots for item response data having unequal numbers of items per latent
trait and five ρ conditions. Each plot depicts the drop in proximity (i.e., max(HOvOw ) when two
objects are joined into one cluster at each cluster step. One may note that Figures 1 and 2 depict
not the drop in proximity when one item is added to a single scale but the drop when objects are
joined. One or both of these objects may contain a single item. It is expected that the proximity
function drops off when objects are joined because H generally decreases when more items are
added to a scale. However, when objects sensitive to different traits are joined, one would expect
a larger drop than when objects sensitive to the same latent trait are joined. Thus, with the sharp
drop-off, the criterion aims to capture the drop in proximity that cannot be explained by the reduced
correlation due to the numbers of items in the set(s) but by multidimensionality. One should note,
however, that a sharp drop in proximity may not only occur for reasons of multidimensionality but
also, for example, when there are one or two items having low discrimination in a set having high
discrimination.

For equal numbers of items per latent trait, the complete linkage, within-groups linkage, and
scale linkage plots indicate that the true dimensionality was found if the solution was used before
a sharp drop in max(HOvOw ) (at three clusters). The average linkage pattern was more difficult
to interpret. Several larger drops can be seen, for example, for ρ = 0.4 and 0.7; a sharp drop in

 © 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteit van Tilburg on April 25, 2008 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


A. A. H. VAN ABSWOUDE, J. K. VERMUNT, B. T. HEMKER, and L. A. VAN DER ARK
MOKKEN SCALE ANALYSIS USING HIERARCHICAL CLUSTERING PROCEDURES 347

Figure 1

Scree Plots of Number of Clusters and Maximum Proximity Using Complete Linkage,
Average Linkage, Within-Groups Linkage, and Scale Linkage on Simulated

Data Containing Unequal Numbers of Items Per Latent Trait and
Five Levels of Correlations Between Latent Traits
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max(HOvOw ) can be observed at the six-cluster solution; and a less obvious drop can be observed
for ρ = 0.1 at the three-cluster solution. Thus, for this method, it is more difficult to decide when
to stop clustering.

The plots for equal numbers of items were very systematic in the sense that comparable objects
were joined for each dimension. One may see in Figure 1 that max(HOvOw) does not change
much for the first three steps, for example, because for each dimension, items with the same item
characteristics (i.e., discrimination and difficulty) were joined. Because for unequal numbers of
items per trait (i.e., true dimensionality: [3:5;5;10]) the items characteristics were not the same, the
patterns were less systematic (see Figure 1). Although the pattern was less systematic, the general
results for unequal numbers of items per latent traits remain the same as for equal numbers.

Empirical Example

The five clustering methods were compared using an empirical example. A dichotomized 15-item
subset of the International Survey on Adult Crying (ISAC-A; Becht, Poortinga, & Vingerhoets,
2001), obtained for N = 3,896 subjects from 30 countries, was used. The questionnaire consists
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of 54 items about common events and feelings that may induce crying. For clarity of presentation,
this small subset of items was used. Cultural diversity in this analysis was ignored, and missing
data were deleted listwise from the analysis.

In an empirical study, the theoretical constructs on which the test or questionnaire is based can
be used to form hypotheses about the true dimensionality. From previous studies on the ISAC-A,
two (Becht et al., 2001; Scheirs & Sijtsma, 2001) or three (Scheirs & Sijtsma, 2001) types of items
can be distinguished: distress, representing emotions or situations that are unpleasant, for example,
“I cry when having been humiliated or insulted” (Item 24); sadness, representing emotions or
situations that are sad, for example, “I cry when I feel sad” (Item 1); and joy, representing emotions
or situations that are happy, for example, “I cry when a movie or a television program has a happy
ending” (Item 13). Becht et al. (2001) did not differentiate between the distress and sadness items.
The H coefficient of these subtests was Hdistress = 0.50 (8 items), Hsadness = 0.47 (3 items), and
Hjoy = 0.34 (4 items). The sum scores of the responses on the distress and sadness subsets were
moderately related: Their Pearson product moment correlation was ρ = 0.622. The correlations
between the responses on the distress and joy subtests (i.e., ρ = 0.393) and the sadness and joy
subtests (i.e., ρ = 0.357) were much weaker.

The crying data were analyzed using the five clustering procedures. For sequential clustering,
the same conditions were used as in the simulation study (i.e., c = 0.3, α = 0.05). For hierarchical
clustering, new stopping rules were specified using the ranges in Table 5; these are, ccomplete = 0.35,
caverage = 0.25, cwithin = 0.60, and cscale = 0.55. These new stopping rules are based on the
results of the simulation study, which may not be representative for empirical data. Also, information
about the process of clustering was obtained by making use of graphical analysis.

Results

Table 6 shows the results of the dimensionality analysis of the ISAC-A data. The first column
shows the number of obtained clusters, the second column shows the theoretical constructs of each
item per cluster, and the third column shows the max(HOvOw ) of the newly clustered objects. The
letters D, J, and S represent distress, joy, or sadness items, respectively. As can be seen from Table
6, no clustering method found the theoretical dimensionality. Sequential clustering resulted in a two-
cluster solution, confirming that the responses on the distress and sadness items are substantially
correlated. The hierarchical clustering methods yielded different results depending on the proximity
and the stopping rule used for clustering. Using the new values for the stopping rules (denoted
with an a in Table 6), the hierarchical methods found one large scale containing most distress items
and one sadness item, as well as several smaller scales. One sadness item was always found in the
cluster that mainly contained distress items because that item had the highest Hjk , with one of the
distress items making this pair the starting set of all clustering methods. This shows a property of
the items that is not detected when testing the homogeneity of the clusters confirmatory.

Scree plots of the ISAC-A data (see Figure 2) and complete linkage, average linkage, and within-
groups linkage dendrograms (see Figure 3; a scale linkage dendrogram is not included because
it cannot be replicated using SPSS and is therefore not readily available for applied researchers)
may provide more reliable information about what solution to use. The dendrograms presented in
Figure 3 depict the process by which items were joined, as well as the change in proximity between
steps. The actual distances were rescaled to numbers between 0 and 0.25, preserving the ratio of
differences between steps (SPSS, 1998).

In Figure 2, complete linkage had the most informative plot for determining the number of
underlying traits: A clear cutoff point can be found at the three-cluster solution (see also Figure 3).
Going from four to three clusters did not result in a large decrease in max(HOvOw); therefore, the
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Table 6

Number of Clusters, Item Number and Item Type, and Maximum Proximity Using Five Clustering
Methods for International Survey on Adult Crying (ISAC-A) Data

# Clusters Theory max(HOvOw )

Sequential clustering (c = 0.3)

2 [D6,D7,D8,D10,D11,D12,D13,D14,J15,S1,S5,S9] [J2,J3,J4] —

Complete linkage

4a [J3,J4] [D14,D15,S5] [D7,D8,D10,D11,D13,D6D12,S9] [S1] 0.37
3 [J2,J3,J4] [D14,J15,S1,5S] [D7,D8,D10,D11,D13,D6,D12,S9] 0.32
2b [J2,J3,J4][D6,D7,D8,D10,D11,D12,D13,D14,J15,S1,S5,S9] 0.19

Average linkage

4a [J3,J4] [D7,D8,D10,D6,D12,J15,J2,S1,S9] [D14,S5] [D11,D13] 0.28
3 [J3,J4][D14,S5][D11,D13,D7,D8,D10,D6,D12,J15,J2,S1,S9] 0.24
2 [J3,J4,D14,S5][D11,D13,D7,D8,D10,D6,D12,J15,J2,S1,S9] 0.23

Within-groups linkage

10a [J3][J4][D6,D7][D8,D10,D13,D12,S9][D11][J15][D12][J2][S1][S5] 0.61
· · · · · · · · ·
4 [J3,J4][J15][D6,D7,D8,D10,D11,D12,D13,D14,S1,S5,S9][J2] 0.49
3b [J3,J4][J15,D6,D7,D8,D10,D11,D12,D13,D14,S1,S5,S9][J2] 0.48
2 [J3,J4][J2,J15,D6,D7,D8,D10,D11,D12,D13,D14,S1,S5,S9] 0.45

Scale linkage

8a [J2] [J3] [D14] [J4] [J15] [S1] [S5] [D7,D8,D10,D11,D13,D6,D12,S9] 0.56
· · · · · · · · ·
4 [J3,J4][D6,D7,D8,D10,D11,D12,D13,J15,S1,S5,S9][D14][J2] 0.49
3b [J3,J4][D6,D7,D8,D10,D11,D12,D13,D14,J15,S1,S5,S9][J2] 0.47
2 [J3,J4][D6,D7,D8,D10,D11,D12,D13,D14,J15,J2,S1,S5,S9] 0.44

Note. The solutions still include misfitting items.
a. Result for hypothesized values of the stopping rules.
b. Result for general stopping rule, Hj < 0.3.

three-cluster solution was the dimensionality according to complete linkage. Within-groups linkage
and scale linkage showed only minor drops in max(HOvOw ) at K = 3 and were therefore less clear
with respect to the dimensionality of these items. The pattern of average linkage was difficult to
interpret: There were several small decreases but no clear cutoff point.

The relationship between the scores operationalized by the methods and correlations between
the sets can help to interpret the results of the scree plots. Complete linkage joins the two objects
having the highest minimum Hjk at each clustering step; thus, clustering is based on the relationship
between each pair of variables. The other methods use proxies for Hj or H that, in general, represent
the relationship between more than two variables. Thus, the other methods may average out the
differences that complete linkage focuses on. Complete linkage could therefore depict a sharp drop-
off where the other methods could not.

The lack of a clear cutoff point for all methods except complete linkage can be explained by the
relatively high correlations between the sets. In particular, the sets measured common variables;
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Figure 2

Scree Plots of Number of Clusters and Maximum Proximity Using Complete Linkage,
Average Linkage, Within-Groups Linkage, and Scale Linkage of

International Survey on Adult Crying (ISAC-A) Data
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therefore, the proximity did not drop much when items sensitive to these variables were clustered.
Although a sharp drop-off was observed for complete linkage at K = 3, the method’s plot also
indicates that the sets were moderately correlated. The proximities’ values at K = 2 and
K = 1, which were still quite high (probably even significantly positive for this sample size;
see Condition 1), indicated this.

Figure 3 illustrates that the process of clustering is different in the various methods. For example,
sequential clustering, complete linkage, and scale linkage (not shown) identify joy as a separate
cluster in an early stage of the clustering process, whereas average linkage and within-groups linkage
do not. To summarize the results of Figure 3, complete linkage was most useful as a method for
determining the number of underlying variables, and complete linkage and scale linkage methods
were successful for correctly identifying unidimensional sets.

When looking at the K = 2 solutions in Table 6, it can be seen that complete linkage leads
to the same result as sequential clustering. One may note that the K = 2 solution of complete
linkage combines two clusters of the K = 3 solution (i.e., the best solution according to the scree
plot). Even though the results for K = 2 were the same, complete linkage should be preferred to
sequential clustering because with complete linkage, more certain statements can be made about the
dimensionality of the items. In sequential clustering, it is unknown whether the two clusters were
combined (i.e., into the largest cluster) because this yields the strongest Mokken scale or because
of the sequential nature of the item selection procedure (i.e., forming clusters one at the time). In
hierarchical clustering, such information is present because HOvOw , for all combinations of objects,
is calculated, and only the two objects that maximized HOvOw are combined.
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Figure 3

Dendrograms of Complete Linkage, Average Linkage, and Within-Groups Linkage
of International Survey on Adult Crying (ISAC-A) Data
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Figure 3

(continued)

Using complete linkage and interpreting its graphically depicted result, the three-cluster solution
should be considered to be the best (e.g., clear results in scree plot, satisfies Mokken scale condi-
tions). Based on substantive grounds or on the correlations between the sets, however, one might
prefer the two-cluster solution with the lower within-cluster homogeneity.

Discussion

In this study, it was investigated whether hierarchical clustering improves sequential clustering
that is the standard in Mokken scale analysis. The simulation study showed that all four HCA
methods (i.e., complete linkage, average linkage, within-groups linkage, and scale linkage) were
able to find the true dimensionality. However, the success of the hierarchical methods depended on
the stopping rules of the clustering process. Scale linkage was the promising hierarchical clustering
method because it found the dominant dimensionality for most data. Complete linkage also was
promising because for this method, a large range of ccomplete values lead to the true dimensionality,
and because scree plots were interpretable for this method. Finally, the general stopping rule used in
combination with each of the HCA methods, seems to work well. This was to be expected because
that rule is most closely related to the Mokken scaling conditions. In the empirical study, not all
methods yielded the same results. Here, the underlying traits seemed to be substantially correlated,
and again, only complete linkage displayed an interpretable scree plot.

There are two reasons why scale linkage and complete linkage are an improvement over sequen-
tial clustering. First, these methods yield better results, meaning that items sensitive to the same
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latent trait are more often collected in one cluster using these methods than those methods using
sequential clustering. Second, the clustering process is more informative: It shows which objects are
joined at what step, and it shows the relative difference in maximum proximity between clustering
steps. Using graphical methods (i.e., scree plots or dendrograms), the “best” dimensionality for a
particular set of items can be found; that is, the solution before a sharp drop in maximum proximity
is seen. One should be aware, however, that the best solution in terms of relative difference might
not satisfy the Mokken scaling conditions. In addition, the presence of a sharp drop may depend
on characteristics of the data. For example, for highly correlated latent traits, no sharp drop can be
expected. Thus, the decision about which dimensionality to use should also be based on Hj and
H values of clusters. The process information of sequential clustering is less informative. It does
not inform whether any subclusters (i.e., these are the objects contained in a cluster) exist. Using
hierarchical clustering methods, there is information about the subclusters and their scalability, and
this information can be used to find the true dimensionality.

Sample fluctuation issues were ignored for the largest part of this article by using very large
sample sizes. For small sample sizes (say, N = 200), it may occur that the Hjk for some low-
discrimination items is negative due to sample fluctuation rather than because they are sensitive
to different latent traits. The same line of reasoning goes for values of Hj near c. For a few cells
of the simulation study, this study investigated the stability of the results for N = 200 and found
confirmations of expectations. In future research, it may be worthwhile to address the impact of
sample fluctuation on dimensionality assessment more explicitly.

As is common in sequential item selection, when creating scales, it is wise to make use of
other available information. More specifically, the clustering process as presented in a dendrogram,
substantive information, and methods used to search for specific violations of the MH model can
provide additional information about the dominant underlying dimensionality of data.

Rather than using a hierarchical procedure as an alternative to sequential clustering, a nonhierar-
chical procedure in which an overall criterion is optimized could also have been used. For example,
the Hj could be calculated for all items j and a given number of k clusters, and item j can be
assigned to that cluster that maximizes Hj . The advantage of such a procedure is that not only
objects but also items within objects are compared. In future research, nonhierarchical procedures
will be addressed.
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