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A Comparative Study of Test Data
Dimensionality Assessment Procedures Under
Nonparametric IRT Models

Alexandra A. H. van Abswoude, L. Andries van der Ark, and Klaas Sijtsma
Tilburg University, The Netherlands

In this article, an overview of nonparametric
item response theory methods for determining
the dimensionality of item response data is
provided. Four methods were considered:
MSP, DETECT, HCA/CCPROX, and DIMTEST.
First, the methods were compared theoretically.
Second, a simulation study was done to compare
the effectiveness of MSP, DETECT, and
HCA/CCPROX using the default settings of each
program in finding a simulated dimensional
structure of a matrix of item response data. In
several design cells, the methods that use
covariances conditional on the latent trait
(DETECT and HCA/CCPROX) were superior in

finding the simulated structure to the method that
used normed unconditional covariances (MSP).
Third, the correctness of the decision of accepting
or rejecting unidimensionality based on the
statistics used in DETECT and DIMTEST was
considered. This decision did not always reflect
the true dimensionality of the item pool. Index
terms: DETECT software and method,
dimensionality of item response data, DIMTEST
software and method, HCA/CCPROX software
and method, MSP software and method,
multidimensional item response data,
nonparametric item response theory,
unidimensional item response data.

Introduction

Although it can be argued that test performance often is simultaneously governed by several latent
traits, most researchers seem to agree that a test or a questionnaire should preferably measure only
one dominant latent trait. This is reflected by the existence of many unidimensional item response
theory (IRT) models and only a few multidimensional IRT models (e.g., Kelderman & Rijkes, 1994;
Reckase, 1997). There are at least two reasons why unidimensional measurement is preferred.

First, when test data measure one latent trait, a single score can be assigned to each examinee,
and the interpretation of test performance is unambiguous. Also, when a measurement practitioner
intends to measure multiple latent traits, it can be argued that he or she should construct a unidimen-
sional test for each trait separately. When items measuring different traits are part of the same test
(e.g., when some items are sensitive to vocabulary and others are sensitive to verbal comprehen-
sion), this line of reasoning would stipulate that the test be split into two unidimensional subtests
and that examinees obtain separate scores on each. Note that if one summary score were assigned
based on both item types, it would be unclear to what degree a latent trait influenced the test score
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of a particular examinee because one ability could have compensated for the other, also depending
on the strength of their mutual relationship.

Second, due to the larger number of parameters, the estimation of multidimensional IRT models
is more complicated than the estimation of unidimensional IRT models (e.g., see Béguin & Glas,
2001, who used Markov chain Monte Carlo techniques for estimating a multidimensional normal
ogive model). Using the simpler unidimensional IRT models instead may be an attractive option,
particularly after an item clustering method has been applied to the data to determine their dimen-
sionality. Then, a unidimensional IRT model can be fitted to the items loading on a particular latent
trait, and this may be repeated for each latent trait.

Traditionally, the dimensionality of responses from a set of dichotomous items was determined
using linear factor analysis. It is well known that “difficulty factors” may arise (Hattie, Krakowski,
Rogers, & Swaminathan, 1996; Nandakumar & Stout, 1993; see Miecskowski et al., 1993, for an
example) when items vary widely in difficulty, and correlations are based on binary item scores.
Other problems may arise when tetrachoric correlations are used to correct for the extreme dis-
creteness of the binary item scores. One problem is that the tetrachoric correlation matrix may not
be positive definite (Knol & Berger, 1991; Lord & Novick, 1968, p. 349). Another problem is that
tetrachoric correlations estimate a correlation based on hypothesized normal variables when, in fact,
only binary scores were observed, and normality thus may be an invalid assumption. An alternative
may be nonlinear factor analysis, but Hattie et al. (1996) found that nonlinear factor models were
not as effective in discriminating between unidimensional and multidimensional data sets as their
linear counterparts.

An alternative to factor analysis is nonparametric item response theory (NIRT), which is central
in this study. NIRT uses a nonlinear model for the relation between binary correct/incorrect item
scores and a continuous latent trait and has the advantage that it can be applied directly to the
binary item scores. This means that tetrachoric correlations are not necessary. The purpose of this
study was to investigate the effectiveness of three methods used for retrieving the dimensionality
of binary item score data, which are based on NIRT and use covariances between binary item
scores. Three methods are considered here as they exist “off the shelf”: MSP (Hemker, Sijtsma,
& Molenaar, 1995; Molenaar & Sijtsma, 2000), DETECT (Kim, 1994; Zhang & Stout, 1999a,
1999b), and HCA/CCPROX (Roussos, 1992; Roussos, Stout, & Marden, 1998). In addition, the
statistical procedure DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Douglas, Junker,
& Roussos, 1993; Stout, Goodwin Froelich, & Gao, 2001) was used for testing hypotheses about the
dimensionality of item response data, and results were compared to the results of the other methods.

Nonparametric IRT

Strictly and Essentially Unidimensional Models

Strictly unidimensional models. Let X = (X1, . . . , XJ ) be the vector of J binary scored item
variables, and let x = (x1, . . . , xJ ) be the realization of X. Score 1 indicates a correct answer and
score 0 an incorrect answer. The probability of an item score of one depends on one latent trait
θ , and is denoted Pj (θ). This is the unidimensionality (UD) assumption. Probability Pj (θ) is the
item response function (IRF). Furthermore, local independence (LI) is assumed, which is defined as

P(X = x|θ) =
J∏

j=1

P(Xj = xj |θ). (1)

Assumption LI means that, given any value of θ , the responses of an individual to the J items are
statistically independent. Assumptions UD and LI together do not imply falsifiable consequences
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on the observed data (Holland & Rosenbaum, 1986; Junker, 1993). For this purpose, restrictions
are needed on the IRFs. For example, let θa and θb be the latent trait values of examinees a and b;
then the monotonicity assumption (M) states that

Pj (θa) ≤ Pj (θb), whenever θa < θb, forj = 1, . . . , J.

Assumption M means that the IRFs are monotone nondecreasing in θ . The assumptions of UD, LI,
and M together define the model of monotone homogeneity (Mokken & Lewis, 1982; Sijtsma &
Molenaar, 2002, chaps. 2-5). The model of monotone homogeneity is an NIRT model that implies
the stochastic ordering of θ by the total test score, X+ = �Xj (Grayson, 1988; Hemker, Sijtsma,
Molenaar, & Junker, 1997).

Essentially unidimensional models. Stout (1990; see also Junker, 1993) defined the dimension-
ality of item response data in terms of the minimum number of traits necessary to achieve LI and
M. In essentially unidimensional models, however, the assumptions of LI and M are relaxed to
essential independence and weak monotonicity, respectively. Stout assumed that test performance
is governed by a dominant latent trait and several nuisance latent traits. Following this idea, a
vector θ = (θ, θ1, . . . , θW ) represents the dominant θ and W nuisance traits. Based on large sample
theory, essential independence (EI) (Stout, 1990) states that

2

J (J − 1)

∑
1≤j<k≤J

|Cov(Xj , Xk|θ = θ)| → 0, forJ → ∞;

also see McDonald (1982) and Holland and Rosenbaum (1986). For finite J , the analog to the large
sample version of EI is that Cov(Xj , Xk|θ) ≈ 0, which is mathematically idealized to weak local
independence (weak LI) or, equivalently, pairwise local independence; that is,

Cov(Xj , Xk|θ = θ) = 0, for all θ, and for all 1 ≤ j < k ≤ J (2)

(Stout et al., 1996; Zhang & Stout, 1999a). Note that weak LI (equation (2)) is an implication of
LI (equation (1)) but not the other way around. In practice, weak LI may be used to investigate LI
(Stout, 1990).

Weak monotonicity means that the average of J IRFs is an increasing function of θ but leaves
the individual IRFs unrestricted within the confines of this condition on the mean; that is,

J−1
J∑

j=1

Pj (θa) ≤ J−1
J∑

j=1

Pj (θb), whenever θa < θb, coordinatewise.

Thus, the strictly unidimensional model has a stronger independence assumption and a stronger
monotonicity assumption than the essentially unidimensional model.

Discussion of the models. Although both have different points of departure, the essentially and
strictly unidimensional IRT models both imply weak LI. For analyzing empirical data, both types
of models may use this property. For example, in the strictly unidimensional Rasch model, the
LI assumption is investigated for empirical test data using statistical tests based on weak local
independence (Molenaar, 1983; see also Glas & Verhelst, 1995). The most pronounced difference
between the strictly and essentially unidimensional NIRT model discussed here is the investigation
of the dimensionality of the responses to a set of items. Item selection based on strictly unidimen-
sional models aims at finding one or more homogeneous (i.e., measuring one θ each) clusters, using
observable consequences of the model of monotone homogeneity, in particular, of assumption M.
Item selection based on essentially unidimensional models aims at finding clusters of items sensi-
tive to one dominant trait each, using observable consequences of weak LI. These differences are
explained in the next sections in more detail.
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Methods for Investigating Dimensionality

MSP

Let a set of items consist of J dichotomous items, and let a unidimensional cluster of items
consist of L items (j = 1, . . . , L; L ≤ J ). The Mokken Scale Analysis for Polytomous Items
computer program (MSP5 for Windows, or MSP for short; Molenaar & Sijtsma, 2000) uses scala-
bility coefficient H (Loevinger, 1948; Mokken, 1971) as the criterion for selecting items that yield
a unidimensional cluster. For items j and k, the H coefficient is defined as the ratio of the covari-
ance between items j and k and their maximum covariance given the marginal distributions of the
items; that is,

Hjk = Cov (Xj , Xk)

Cov (Xj , Xk)max
.

Thus, Hjk is the normed covariance of an item pair. The scalability coefficient of a single item j

with respect to the other L − 1 items selected into a cluster is defined as

Hj =

∑
k �=j

Cov (Xj , Xk)∑
k �=j

Cov (Xj , Xk)max
.

The item scalability coefficient Hj can be interpreted as an index for the slope of the IRF of item j .
For example, under the two-parameter logistic model (2-PLM) (e.g., Birnbaum, 1968), fixing the
distribution of θ and also the 2-PLM location parameters of the IRFs, the Hj s are an increasing
function of the slope parameters (Mokken, Lewis, & Sijtsma, 1986).

Finally, for a set of L items, the scalability coefficient H is a weighted average of the item Hj s,
with positive weights depending on the marginals. Let πj be the proportion correct on item j , and

write Cov(Xj , Xk)max = π
(0)
jk . Note that π

(0)
jk = πj (1 − πk) if πj ≤ πk , and π

(0)
jk = πk(1 − πj ) if

πk < πj . Mokken (1971, p. 152) writes coefficient H as

H =

L−1∑
j=1

L∑
k=j+1

π
(0)
jk Hj

L−1∑
j=1

L∑
k=j+1

π
(0)
jk

. (3)

Because fixed πj s also imply fixed π
(0)
jk s, an increase of the Hj s causes an increase of H . Under

UD, LI, and M, it can be shown that 0 ≤ H ≤ 1 (Mokken, 1971, p. 150). Given UD, LI, and M,
the value of H = 0 means that the IRFs of at least (L − 1) items are constant functions of θ , and
H = 1 means that there are no Guttman errors (given that πj ≤ πk , a Guttman error is defined as
Xj = 1 and Xk = 0); see Mokken (1971, p. 150) for further elaboration. Mokken (p. 184) defined
a scale as follows:

DEFINITION: A cluster of items is a Mokken scale if

Cov(Xj , Xk) > 0, for all item pairs (j, k; j �= k); and (4)

Hj ≥ c > 0, for all items j, (5)

where c is a positive lower bound of Hj , which is user specified. The higher c, the more restric-
tive item selection is with respect to the discrimination of the items. A high c means good item
discrimination and accurate person ordering using X+ (see also Sijtsma & Molenaar, 2002, p. 68).
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MSP uses a sequential bottom-up item clustering procedure to partition a multidimensional set of
items into clusters of items that each constitute a Mokken scale. The default start set is the item pair
in the pool with the highest significant positive Hjk (for other possibilities, see Molenaar & Sijtsma,
2000, chap. 5). The second step is the selection of an item from the remaining items that satisfies
equations (4) and (5) with respect to the previously selected items and maximizes the common H

of the already selected items and the newly selected item. In the next steps, items are added to the
already selected cluster using the same procedure. A scale has been completed when no more items
remain that satisfy equations (4) and (5). If items remain unselected, subsequent clusters of items
may be selected as described for the first cluster. The procedure stops when no more items remain
that satisfy equations (4) and (5). For more details about the item selection procedure, see Hemker
et al. (1995) and Molenaar and Sijtsma (2000).

Additional remarks. First, by selecting Mokken scales using scaling condition Hj ≥ c, the
dimensionality of the data is implicitly investigated as well (see Hemker et al., 1995). Consider the
following idealized situation. Assume that some items are driven by θ1 and other items by θ2 and
that these traits are correlated. Notice that, for the entire set of items, an IRF is the regression of
Xj on a composite of these two θs and that Hj expresses the strength of this relationship. Finally,
assume that the relationship of the items driven by θ1 with θ1 is stronger than that of the items
driven by θ2 with θ2. The rest score, R(−j) = X+ − Xj , estimates the latent trait composite, and
the regression of item j on R(−j) is given by P [Xj = 1|R(−j)]. Based on these assumptions, in
general, the regression of items driven by θ1 on R(−j) is steeper (higher Hj ) than that of the items
driven by θ2 (lower Hj ).

Suppose that the item pair selected first is driven by θ1, then a conveniently chosen c value selects
the other items sensitive to θ1 into the first cluster because their Hj s with respect to the already
selected items are greater than those of items sensitive to θ2. If these latter items have Hjs < c, they
remain unselected and the first item cluster is completed. Because the remaining items are driven
by θ2, rest score R(−j) based on these items estimates θ2, and the regression, P [Xj = 1|R(−j)], is
steeper, resulting in higher Hj s. If these Hj s exceed lower bound c, then a second cluster consisting
of items sensitive to θ2 is selected.

The choice of lower bound c affects the cluster composition. A low c value may result in clusters
that are highly heterogeneous with respect to latent trait composition. A high c value yields a cluster
with high Hjs, but as a consequence, many items sensitive to the same latent trait may be rejected.
In general, when determining an appropriate value of c, a researcher should find a balance between
the number of items in a scale and the strength of the scale.

Second, because MSP uses a sequential item selection procedure comparable to forward stepwise
regression in SPSS (1998), not all combinations of items are considered. Therefore, the final item
clusters may not have the maximum possible H coefficient for each cluster given all possible
partitions of the total set. MSP offers a possibility to refine the search procedure; see Mokken (1971,
pp. 198-199) and Sijtsma and Molenaar (2002, p. 72) for more details.

DETECT

Let composite θα be a linear combination of the separate θs from latent trait vector θ (which
may contain several dominant traits and several nuisance traits simultaneously). Composite θα can
be understood as the latent direction that is best measured by the test (see Zhang & Stout, 1999a,
for a rigorous definition of the direction of best measurement of a test). Given unidimensionality,
following equation (2), the expected conditional covariance of an item pair equals 0. If θα is built up
from multiple traits differentially measured by different items, the expected conditional covariance
is positive when items j and k are driven by the same latent trait or traits that correlate highly, and it is
negative when items j and k are driven by traits that correlate weakly or zero. The computer program
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Figure 1

Geometrical Representation of Two Traits and Five Items

θ2
m

l

n

k
j

θ1

θα

DETECT uses the sign behavior of the conditional covariances to find clusters of dimensionally
homogeneous items.

More specifically, DETECT (Kim, 1994; Zhang, 1996; Zhang & Stout, 1999b) partitions, as
much as possible, the set of items into an a priori specified maximum number of clusters in such a
way that the expected conditional covariances between items from the same cluster are positive, and
the expected conditional covariances between items from different clusters are negative. Consider
an arbitrary partitioning P of the item pool. Let δjk(P) = 1 if items j and k are in the same cluster
of P , and δjk(P) = −1 otherwise (Zhang & Stout, 1999b). Then, the theoretical DETECT index
is defined as

Dα(P) = 2

J (J − 1)

∑
1≤j<k≤J

δjk(P)E[Cov
(
Xj , Xk|θα

)
]. (6)

DETECT tries to find the partition that maximizes Dα(P). This partition is denoted as P∗ and is
taken as the final cluster solution. Thus, DETECT attempts to find dimensionally homogeneous
clusters of items, each of which may be interpreted to assess another latent trait; this way, DETECT
finds the number of dominant latent variables within a data matrix. Because the number of possible
partitions increases very fast with the number of items, DETECT uses a genetic algorithm to search
for the optimal partition. The criterion that is used to evaluate each partitioning is the DETECT
index, Dα(P).

A geometrical representation (e.g., Ackerman, 1996; Stout et al., 1996), depicted in Figure 1,
helps to visualize item response data driven by two θs. The vectors’ length depends on the item
discrimination, and the vectors’ angles reflect the correlation between variables. Items j , k, l, m, and
n are differentially sensitive to both θs, and item n exactly measures composite θα . The expected
conditional covariance of an item pair is positive when the items are on the same side of θα (e.g.,
items j and k) and negative when the items are on different sides of θα . The expected conditional
covariance of an item pair that includes item n equals zero. In practice, items that coincide with θα

are rare (Zhang & Stout, 1999b).
Let rest score R(−j,−k) = X+−Xj −Xk be the total score ignoring the two studied items j and k.

The sample DETECT statistic uses the following estimate of the expected conditional covariances,

E
[
Ĉov(Xj , Xk|θα)

] = E
{
Ĉov[Xj , Xk|R(−j,−k)]

} + E
[
Ĉov(Xj , Xk|X+)

]
2

. (7)
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This average of the expected covariances was used because E[Ĉov(Xj , Xk|X+)] tends to be
negatively biased and E{Ĉov[Xj , Xk|R(−j,−k)]} positively biased (Junker, 1993; Zhang & Stout,
1999a). The average of the two expected conditional covariances was expected to be less biased
(Zhang & Stout, 1999a).

Additional remarks. First, DETECT is relatively new, and much theoretical research remains to
be done. For example, the distribution of theoretical Dα(P) under interesting hypotheses is still
unknown. In addition, in spite of equation (7), the DETECT index still is slightly biased (e.g.,
Zhang, Yu, & Nandakumar, 2003, investigate bias for various DETECT indices).

Second, Zhang and Stout (1999b) showed that DETECT finds the correct partitioning if items
are mainly sensitive to one trait and only marginally to other traits. This is known as approximate
simple structure (see Zhang & Stout, 1999b for a rigorous definition). When data deviate from
approximate simple structure, the correct dimensionality may not be found (Zhang & Stout, 1999b).

Third, the DETECT index expresses the magnitude of the departure from unidimensionality
within one or more clusters of the partition but is not an index of the number of traits within the
item response data. Thus, there may be a high number of dimensions and yet Dα(P) is small, or
there may be few dimensions and yet Dα(P) is large.

HCA/CCPROX

The software package HCA/CCPROX (Roussos et al., 1998) uses agglomerative hierarchical
cluster analysis (HCA) for finding clusters of items. The program provides the opportunity to
choose between different statistics, including conditional covariances, for assessing the relationship
between variables. The user can also choose between different agglomerative HCA methods. Only
the combination of statistic and method that, according to Roussos et al. (1998), was most successful
in dimensionality assessment is presented here.

The program starts with each of the J items as a separate cluster. Then, at the second
level of hierarchy, the two items having the smallest expected conditional covariance,
E{Cov[Xj , Xk|R(−j,−k)]}, are joined. For the subsequent steps, some additional notation is intro-
duced. In general, at one particular step in the clustering process, let Av and Aw denote two clusters
of items, containing Jv and Jw items, respectively. Let R(−Av,−Aw) denote the rest score, containing
all responses to items that are not in Av and Aw. Then, the expected conditional covariance may
be defined: E{Cov[Xi, Xj |R(−Av,−Aw)]}. In each of the subsequent levels of hierarchy, that pair of
clusters is joined that is closest of all pairs according to the proximity measure,

Prox(Av, Aw) = (JvJw)−1
∑
iεAv

∑
jεAw

|E[Cov(Xi, Xj |R(−Av,−Aw))]|.

The process of joining clusters is repeated until all J items are collected into one large cluster.
Additional remarks. First, HCA/CCPROX does not provide a formal criterion, such as the lower

bound c of coefficient H in MSP or the maximum DETECT index Dα(P∗), that helps the researcher
to decide which one of the J − 1 possible cluster outcomes reflects the true dimensionality best.
Consequently, the researcher must choose the solution that most likely represents the dimensionality
of the item response data. Due to the lack of a formal criterion, the researcher should rely on a
priori theoretical expectations about the true dimensionality structure of the data. For example,
when it is expected that a verbal test measures vocabulary, grammar, and spelling, and each item is
assumed to predominantly measure one trait, then the three-cluster solution from HCA/CCPROX
is appropriate here.

Second, according to Roussos et al. (1998), the positively biased E{Ĉov[Xi, Xj | R(−Av,−Aw)]}
will not affect the cluster analysis much because two items sensitive to different traits have an
expected conditional covariance that is larger than that of two items that are sensitive to the same
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latent trait. HCA/CCPROX should therefore be able to correctly partition the items according to
their dimensionality.

DIMTEST

DIMTEST is a statistical test procedure that evaluates the unidimensionality of data from a user-
specified item set (Nandakumar & Stout, 1993; Stout, 1987; Stout et al., 2001). The procedure
of DIMTEST is the following. First, the item pool is split into three subtests, of which two are
assessment subtests (denoted AT1 and AT2) and one is a partitioning subtest (denoted PT). One
may use factor analysis or, for example, MSP or DETECT to have a sensible basis for AT1, AT2,
and PT. DIMTEST provides linear factor analysis on the tetrachoric correlation matrix to determine
which M items out of the total set of J items (the number M is user specified; for rules of thumb,
see Nandakumar & Stout, 1993) are selected in AT1. These M items that constitute AT1 are
hypothesized to be sensitive to the same trait. AT2 consists of M items sensitive to another trait than
that measured by AT1 but with a similar observed frequency distribution of proportions correct on
the items. Subtest PT is formed using the J − 2M remaining items.

Using the sum scores on the PT subtest, the group of examinees is partitioned into subgroups
of at least 20 (as recommended by Stout, 1987) of approximately equal ability. AT2 is designed to
reduce “examinee variability bias” (i.e., θ still has a positive variance given a fixed PT score) and
“item difficulty bias” (i.e., θ variance is inflated even more when items in the AT1 test and the PT
test vary in difficulty). For short tests, both kinds of bias may inflate the DIMTEST statistic enough
to incorrectly reject the null hypothesis of unidimensionality.

Let XAT 1
j and XAT 1

k be the scores on two items from AT1, and let YPT be a total score comparable
with X+ based on all items in PT. The DIMTEST sample statistic is based on

Cov
(
XAT 1

j , XAT 1
k |YPT = y

)
. (8)

Under unidimensionality and for large J , this covariance must be close to zero for any item pair
from AT1 and any YPT score. Under regularity conditions, the original DIMTEST statistic T (Stout,
1987) and the more powerful T ′ (Nandakumar & Stout, 1993) are distributed asymptotically (both
in N and J ) standard normally when unidimensionality holds. Given a significance level α and the
upper 100(1 − α) percentile of a standard normal distribution, Zα , unidimensionality is rejected
when T > Zα or T ′ > Zα .

Additional remarks. First, DIMTEST tests the specific hypothesis that unidimensionality holds
in a particular data set. For that reason, DIMTEST, unlike MSP, DETECT, and HCA/CCPROX,
cannot directly be used to partition items in different clusters. Second, DIMTEST exhibits some
positive bias because of the use of test scores as a conditioning variable even after correcting for two
types of bias using AT2. Third, Stout et al. (2001) proposed a new DIMTEST procedure that uses
only one subtest AT. The aim of the new DIMTEST procedure is to further reduce bias and increase
power of T ′. The properties of the new procedure are still subject to investigation. Therefore, the
new procedure was not used in this study.

A Simulation Study

A simulation study was done to compare the effectiveness of MSP, DETECT, and HCA/CCPROX
for selecting items into clusters that represent the true dimensionality of the data. Also, it was
investigated whether the DETECT statistic,Dα(P), and the DIMTEST statistic,T ′, indicate whether
the true model is essentially unidimensional or multidimensional. The simulation study involved
six factors: (a) the IRT model used for simulating the data (two models), (b) the number of latent
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traits (two numbers), (c) the correlation between the latent traits (six correlations), (d) the number
of items per trait (for each number of latent traits, four combinations of numbers of items), (e)
the item discrimination per trait (three combinations), and (f) the item selection method (four
methods). For each cell of the 2 × 2 × 6 × 4 × 3 × 4 design, 2,000 simulees were generated from a
multivariate standard normal density. Data were simulated assuming simple structure (Stout et al.,
1996), meaning that items loaded only on one trait, but traits were allowed to correlate. Part of
the design was replicated five times to investigate the stability of the results. For a few cells of the
design, a smaller sample size (n = 200) was investigated.

IRT model. To simulate multidimensional item response data, the multidimensional extensions
of the 2-PLM and the five-parameter acceleration model (5-PAM) (see also Sijtsma & Van der Ark,
2001; Samejima, 1995, 2000) were used. Several researchers (e.g., Hemker et al., 1995; Reckase
& McKinley, 1991; Roussos et al., 1998) used the 2-PLM for simulating data, but data were also
simulated using the more general 5-PAM to allow IRFs to take on a more flexible shape. Let
θ = (θ1, . . . , θQ) be the vector of Q latent traits (no nuisance traits), and let θiq be the value of
person i on trait q. The 5-PAM has five item parameters: Let αjq be the discrimination parameter
of item j on trait q (q = 1, . . . , Q); δjq the location parameter of item j on trait q; γ

up
j and γ lo

j the
upper and lower asymptotes of the IRF, respectively; and ξj the acceleration parameter. Then, for
a multidimensional extension of the 5-PAM, to be denoted M5-PAM, the probability of answering
item j correctly, given the latent trait vector θ, is

P(Xj = 1|θ) = γ lo
j + (γ

up
j − γ lo

j )


exp

[
Q∑

q=1
1.7αjq(θiq − δjq)

]

1 + exp

[
Q∑

q=1
1.7αjq(θiq − δjq)

]


ξj

. (9)

Parameter γ lo
j and parameter γ

up
j allow the lower asymptote to be larger than 0 and the upper

asymptote to be smaller than 1, respectively. Parameter ξj allows the IRF to be asymmetric (see
also Samejima, 1995, 2000). The multidimensional 2-PLM (M2-PLM) (see also Reckase, 1997) is
a special case of the M5-PAM for γ lo

j = 0, γ
up
j = 1, and ξj = 1.

Number of traits. The numbers of latent traits used here were two and four.
Correlation between traits. The six product-moment correlations (ρ) between the latent traits

were 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The correlation of 0.0 represents independent latent traits, and
the correlation of 1.0 represents unidimensionality.

Number of items per trait. For Q = 2 and Q = 4, four different combinations of the number of
items per trait were chosen. Each trait was measured by either a small or a large number of items. For
Q = 2, the four different combinations of test lengths within the item pool were as follows: short-
short, short-long, long-short, and long-long. Notation [2:v; w] was used to indicate that two latent
traits were generated with v items sensitive to θ1 and w items sensitive to θ2. Likewise, [4:v; w; y; z]
is the four-dimensional extension of this notation. For Q = 2, the four combinations were [2:7;7],
[2:7;21], [2:21;7], and [2:21;21]; for Q = 4, the four combinations were [4:7;7;7;7], [4:7;7;21;21],
[4:21;21;7;7], and [4:21;21;21;21]. Each of these eight simulated combinations of the number of
items per trait is referred to as the true dimensional structure or the simulated dimensional structure.
It may be noted that by varying the number of items per trait across design cells, the total number
of items in the item pool across design cells also varies.

Discrimination per trait. All items measuring the same latent trait either had low discrimination
or high discrimination. If items all had low discrimination, the discrimination parameters were
sampled from a distribution, to be discussed shortly, in such a way that discrimination varied but was
low for all items. The same procedure was followed for items having high discrimination. Once the
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parameters had been sampled, they were fixed across the design cells for which the discrimination
level was held constant. Information referring to high-discrimination items is printed in boldface.
For example, for Q = 2 and seven items per subset, three combinations of discrimination were
used: [2:7;7], [2:7;7], and [2:7;7]; for Q = 4, the combinations were [4:7;7;7;7], [4:7;7;7;7], and
[4:7;7;7;7].

Item discrimination was operationalized as the maximum slope of the IRF. In the special case
of the M2-PLM, this maximum equals the discrimination parameter αjq , but in the M5-PAM, the
slope also depends on parameters γ lo

j , γ
up
j , and ξj . Thus, in the M5-PAM, the maximum slope

(α∗
jq ) was calculated using the first partial derivative of equation (9). This resulted in

α∗
jq = 4

1.7

[
max

(
∂Pj (θ)

∂θ

)]
= 4

1.7

[
αjqξj (γ

up
j − γ lo

j )

(
ξj

1 + ξj

) (
1 − ξj

1 + ξj

)]
. (10)

From equation (10), it follows that

αjq =
α∗

jq

4
1.7

[
ξj (γ

up
j − γ lo

j )(
ξj

1+ξj
)(1 − ξj

1+ξj
)
] . (11)

Thus, αjq can be calculated when γ lo
j , γ

up
j , ξj , and α∗

jq are known. Constant 4/1.7 is included in

equation (11), so that in the M2-PLM, α∗
jq = 1.7×αjq . Thus, αjq depends on γ lo

j , γ
up
j , ξj , and α∗

jq .

Parameters γ lo
j , γ

up
j , and ξj influence the location of θ where α∗

jq reaches its maximum. If δ∗
jq is

the location where the M5-PAM item discriminates best, then the corresponding location parameter
equals

δjq = δ∗
jq − ln(ξjq)

α∗
jq

. (12)

The parameters were generated to resemble parameter estimates found in the analysis of real test
data. Under the M2-PLM, for items with low discrimination, αjq is the exponentiation of a number
randomly drawn from a normal distribution with mean 0.75 and variance 0.1, truncated at 0.5 and
1.25. For items with high discrimination, αjq is the exponentiation from a number randomly drawn
from a normal distribution with mean 1.75 and variance 0.1, truncated at 1.5 and 2.25. The difficulty
parameters were chosen equidistant between −2.0 and 2.0.

Under the M5-PAM, γ lo
j was chosen from the interval between 0.0 and 0.2, γ

up
j was chosen

between 0.8 and 1.0, and ξj was chosen between 0.5 and 7, such that the slope (α∗
jq ) and the location

(δ∗
jq ) under the M2-PLM and the M5-PAM were mathematically equal. However, the different

shapes of the curves may prevent a direct and easy comparison of the results generated under the
two models.

Item selection method. For the three item selection procedures (MSP, DETECT, and
HCA/CCPROX) and for DIMTEST, the default settings were used as much as possible. Also, the
recommendations made by the authors in various papers were used.

For MSP, the default lower bound value of c = 0.30 was used (Molenaar & Sijtsma, 2000). In
addition, following recommendations by Hemker et al. (1995), for a part of the design, the influence
of different c-values (0.10, 0.20, 0.30, 0.40, and 0.50) on the retrieval of the true dimensionality
structure was investigated.

For DETECT, DIMTEST, and HCA/CCPROX, stable conditional covariance estimates were
obtained using the item score vectors of at least 20 simulees per estimated θα (Stout, 1987) unless
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this led to the rejection of more than 15% of the item score vectors. Then, the minimum group size
was lowered to 10.

For DIMTEST, factor analysis of 500 item score vectors determined which items were used
in AT1. The remaining 1,500 item score vectors were used to calculate the DIMTEST statistic.
As recommended by Nandakumar and Stout (1993), the number of items M included in AT1 was
determined by the rules that 4 < M ≤ J/4 and the absolute value of the loadings ≥ .15. In the
14-item tests, M = 3 was used.

Results

Comparison of the Item Selection Methods

In the notation [4: v, w; y; z], the first number (here, 4) reflects the number of clusters found by
MSP, DETECT, or HCA/CCPROX; v reflects the number of items selected into the first cluster; w

reflects the number of items selected into the second cluster; and so on. A semicolon separates two
clusters that are sensitive to different latent traits. A comma separates two clusters that are sensitive
to the same latent trait. A classification error is defined as two items in the same cluster that are
sensitive to different latent traits. Such errors are denoted by a slash, as in [2:7/7], meaning that at
least one of the two clusters contains items that are sensitive to different θs.

Five types of results are distinguished. Type A means all J items were selected into the true
dimensional structure. Type B indicates that the correct number of clusters and no classification
errors were found, but not all J items were selected. Type C reflects that the true dimensionality
was found to a high degree, but the number of clusters was larger than the Q latent traits in the
sense that two or more clusters were driven by the same trait. Thus, Types A, B, and C do not have
classification errors. Type D reflects that the true dimensional structure was not found; that is, items
driven by different latent traits were selected into one subset. Type E represents the result whereby
all items were selected into one subset. Types D and E have classification errors. For ρ = 1.0,
Type E is the correct outcome, and for ρ = 0.0, Type A is the correct outcome.

Two-Dimensional Data Sets Based on M2-PLM

Correlation between traits. Table 1 shows that as correlations between traits (ρ) increased, the
simulated dimensional structure was found less often by each of the item selection procedures.

Interaction of Correlation Between Traits × Method. The effect of increasing ρ on item selec-
tion was more apparent in MSP than in DETECT and HCA/CCPROX. For example, MSP found
the simulated structure in [2:7;7] for ρ = 0.0 and ρ = 0.2, and as ρ increased, MSP tended
to select more items sensitive to different traits into the same cluster until, for ρ = 1, a Type E
result was found. These classification errors are made when the interitem correlations are such
that lower bound c is not restrictive enough to split items sensitive to different traits into dif-
ferent clusters. DETECT and HCA/CCPROX found the simulated structure approximately until
ρ = 0.8. Table 1 shows that for highly correlating traits, DETECT continued to form multiple
clusters, even when items correlated ρ = 1.0. Due to sampling fluctuations and a weakly biased
Dα(P) statistic, the observable conditional covariances were nonzero, even when the data were
unidimensional. For these reasons, Dα(P) can be highest for a partitioning having two or more
clusters.

Discrimination. With increasing α∗
jq , the simulated dimensional structure was found more often

for each of the item selection methods; see Table 1.
Interaction of Discrimination × Method. MSP was more sensitive to item discrimination than

DETECT and HCA/CCPROX. Variation in mean α∗ between latent traits within one data matrix
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Table 1

Item Selection Results Using the Multidimensional Two-Parameter

Logistic Model (M2-PLM) and Two Latent Traits

ρ

Test Composition 0.0 0.2 0.4 0.6 0.8 1.0

MSP
[2 :7; 7] [3:2,5;6] [3:2,5;7] [2:7;6] [3:2/3/7] [4:2/2/2/8] [2:10/2]
[2 :7; 21] [2:6;19] [4:2,5;2,19] [5:2,5;2,17] [4:2/2/3/20] [4:2/2/2/21] [3:2/2/24]
[2 :21; 7] [3:19,2;7] [3:19,2;5] [2:20/5] [3:20/4/2] [3:22/2/2] [2:25/2]
[2 :21; 21] [4:2,18;2,19] [3:2,18;19] [4:2,18; 2,19] [4:2/2/9/27] [5:2/2/2/2/31] [2:2/39]
[2 :7; 7] [3:2,5;7] [2:7;6] [2:6;7] [1:13] [1:14] [1:14]
[2 :7; 21] [2:6;21] [2:7;21] [2:5;21] [2:2/25] [1:27] [1:28]
[2 :21; 7] [3:2,18;7] [3:2,18;7] [4:2,2,17;7] [2:2/26] [1:27] [1:27]
[2 :21; 21] [3:2,19;21] [3:2,18;21] [3:2/17/23] [3:2/2/37] [2:2/40] [1:42]
[2 :7; 7] [2:7;7] [2:7;7] [1:14] [1:14] [1:14] [1:14]
[2 :7; 21] [2:7;21] [2:7;21] [1:28] [1:28] [1:28] [1:28]
[2 :21; 7] [2:21;7] [2:21;7] [1:28] [1:28] [1:28] [1:28]
[2 :21; 21] [2:21;21] [2:21;21] [1:42] [1:42] [1:42] [1:42]

DETECT
[2 :7; 7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [3:3/5/6] [5:2/2/2/2/6]
[2 :7; 21] [2:7;21] [2:7;21] [3:7;1,20] [2:7;21] [4:7;1,6,14] [4:4/5/6/13]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [3:2,19;7] [4:2,2,19;7] [4:3/10/10/5]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [4:1/12/12/17]
[2 :7; 7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [3:1,6;7] [3:2/3/9]
[2 :7; 21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [4:2,2,3;21]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [4:1,2,18;7] [4:4,8,9;7] [4:3/3/4/18]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [3:5/8/29]
[2 :7; 7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [1:14]
[2 :7; 21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [3:3/11/14]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:10;18]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [3:18/16/8]

HCA/CCPROX
[2:7; 7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [2:1/13] [2:2/12]
[2 :7; 21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:3/25]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:4/24]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:2/40]
[2 :7; 7] [2:7,7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [2:2/12]
[2 :7; 21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:6/22]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:4/24]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:9/32]
[2 :7; 7] [2:7;7] [2:7;7] [2:7;7] [2:7;7] [2:2/12] [2:2/12]
[2 :7; 21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:7;21] [2:10/18]
[2 :21; 7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:21;7] [2:3/25]
[2 :21; 21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:21;21] [2:5/37]

Note. Boldface indicates highly discriminating items. Bracket notation: a semicolon separates dimensionally
different clusters, a comma separates dimensionally similar clusters, and a slash separates mixed clusters.

was also simulated. Latent traits that were represented by clusters of weakly discriminating items
were not well recovered by any of the three item selection methods, but latent traits that were
represented by means of highly discriminating items were well recovered.
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Number of items per trait. Traits represented by 7 items were, in general, equally well recovered
as traits represented by 21 items.

Interaction of Number of Items Per Trait × Method. For clusters containing 21 items
having low item discrimination, MSP sometimes misclassified a single item out of the total set.
Another result was that MSP selected the lowly discriminating items into an extra cluster (i.e.,
Type C). Such results were not found for latent traits assessed by 7 items. DETECT produced
more Type C results in the unequal number of items condition compared to the equal conditions.
HCA/CCPROX produced approximately the same results, irrespective of the number of items per
trait.

Method. In general, the simulated structure was found more often by DETECT and
HCA/CCPROX than by MSP. HCA/CCPROX results should be interpreted with care because only
the outcomes were presented when the number of clusters equalled the number of simulated traits
(Q). In practical data analysis, however, the researcher has to decide which cluster solution is
best, possibly relying on previous knowledge about the trait structure of the data. Thus, the results
of HCA/CCPROX presented here and elsewhere in the Results section may be more favorable
than in practical data analysis. For ρ = 1.0, the HCA/CCPROX partitioning only reflects random
fluctuation.

Replications Based on M2-PLM

For [2:7;7], [2:7;21], and [2:7;7]; for ρ = 0.0, 0.4, and 0.8; and for MSP, DETECT, and
HCA/CCPROX, five data matrices were randomly and independently sampled (results are not pre-
sented in a table). True dimensionality was found consistently across replications, particularly for
highly discriminating items and low correlations between traits. DETECT and HCA/CCPROX
yielded more consistent results than MSP. This may be due to the scaling condition Hj ≥ c in MSP.
For some items, this condition may be satisfied in some samples but not in others, resulting in dif-
ferent cluster solutions between samples. DETECT and HCA/CCPROX do not have such a scaling
condition, and the effect of sample fluctuations on the cluster solution may therefore be smaller. In
other design cells also included in the replication investigation, MSP and DETECT often found an
extra cluster, and HCA/CCPROX misclassified several items.

Small Sample Size

The MSP and HCA/CCPROX results for n = 200 and n = 2, 000 were approximately the same
in the design cells for [2:7;7], [2:7;21], and [2:7;7], and ρ = 0.0, 0.4, and 0.8. DETECT’s results
were somewhat worse for n = 200, probably due to inaccurate conditional covariance estimates in
too small X+ and R(−j,−k) score groups. MSP uses the Hj coefficient, which is based on the whole
sample and, therefore, is more stable.

Four-Dimensional Simulation Using the M2-PLM

In general, the results for Q = 2 and Q = 4 (see Table 2) were comparable. However, for
Q = 4, more results of Type B and Type C were found (A, B, C, D, E notation is used to save
space) because the greater number of items gave rise to more chance capitalization. A peculiar
result for DETECT was that for [4:7;7;21;21] and [4:21;21;7;7]; as ρ increased, DETECT (but
not HCA/CCPROX) selected the two clusters of seven equally discriminating items, sensitive to
different latent traits with equal discrimination, into one cluster. The effect was more pronounced
for higher discrimination. For HCA/CCPROX, only the correct (Type A) or incorrect (Type D)
solutions were reported because of the use of the foreknowledge that Q = 4.
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Table 2

Four-Dimensional Item Selection Results Using the Multidimensional
Two-Parameter Logistic Model (M2-PLM)

MSP (ρ) DETECT (ρ) HCA/CCPROX (ρ)
Test
Composition .0 .2 .4 .6 .8 1 .0 .2 .4 .6 .8 1 .0 .2 .4 .6 .8 1

[4 :7; 7; 7; 7] B C B D D D A A A A A D A A A A D D
[4:7; 7; 21; 21] C C C D D D D D A D D D A A A A D D
[4:21; 21; 7; 7] C C C D D D A D D A A D A A A A A D
[4:21; 21; 21; 21] C C D D D D A A D A A D A A A A D D

[4:7; 7; 7; 7] C C D D D E A A A A D D A A A A D D
[4:7; 7; 21; 21] B C C D E E A D D D D D A A A D D D
[4:21; 21; 7; 7] C C D D D D A D D A A D A A A A D D
[4:21; 21; 21; 21] C B D D D E A A A A A D A A A A A D

[4:7; 7; 7; 7] A A D E E E A A A A A D A A A A A D
[4:7; 7; 21; 21] A A D E E E A A D A A D A A A D D D
[4:21; 21; 7; 7] A A E E E E A D D D D D A A A A D D
[4:21; 21; 21; 21] A A E E E E A D A A A D A A A D A D

Note. Boldface indicates highly discriminating items; A = true dimensionality found; B = not all items
included; C = multiple clusters; D = dimensionality not found; E = all items in one subset.

Two-Dimensional Simulation Using the M5-PAM

For data generation using the M5-PAM, only those factor levels were used that proved to be
informative in the M2-PLM analysis: two traits (not four), either low or high discrimination (max-
imum slope α∗) (no combination), 7 or 21 items per trait, and correlations between the traits that
varied from 0.0 to 1.0. The design, therefore, had the order 2 (discrimination levels) × 2 (number
of items per trait) × 6 (correlation between traits) × 4 (item selection method).

The general trend in the results (see Table 3) was the same as with the simulation using the
M2-PLM. For any of the three methods, for a higher ρ and a lower α∗, the dimensional structure
was found less often (see Table 3). As before, these trends were more obvious for MSP than for
DETECT and HCA/CCPROX. For the number of items per cluster, the effects were reversed: For
21-item clusters, somewhat better results were obtained than for 7-item clusters. However, the
differences were small and may be due to sample fluctuation. As for the M2-PLM, DETECT found
the simulated dimensionality less often for unequal numbers of items.

Compared to the M2-PLM, in general, all three methods performed a little worse. For MSP, more
Type B results were found; for DETECT, more Type C results were found; and for HCA/CCPROX,
more Type D results were found (cf. Tables 1 and 3). These results may, in part, be due to the
different overall shapes of the IRFs of the M5-PAM and the M2-PLM. Even when two IRFs from
different models have equivalent maximum slopes (and equal locations), their slopes are not the
same for all θs. In this study, this resulted in a somewhat lower overall discrimination for the M5-
PAM items. This might explain that more minor deviations from the simulated dimensional structure
were found when using the M5-PAM than when using the M2-PLM.
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Table 3

Two-Dimensional Item Selection Results Using the Multidimensional
Five-Parameter Acceleration Model (M5-PAM)

MSP (ρ) DETECT (ρ) HCA/CCPROX (ρ)
Test
Composition .0 .2 .4 .6 .8 1 .0 .2 .4 .6 .8 1 .0 .2 .4 .6 .8 1

[2 :7; 7] B B B E E E A A A C C D A A A A D D
[2:7; 21] B B B E E E A C C C C D A A A A D D
[2:21; 7] B B E E E E C C C C D D A A A A A D
[2:21; 21] B C B E E E A A A A A D A A A A A D

[2:7; 7] A B E E E E A A A A C D A A A A D D
[2:7; 21] B B D E E E A A C C C D A A A A D D
[2:21; 7] A B E E E E A A A C D D A A A A A D
[2:21; 21] B A D E E E A A A A A D A A A A A D

Note. Boldface indicates highly discriminating items; A = true dimensionality found; B = not all items
included; C = multiple clusters; D = dimensionality not found; E = all items in one subset.

Manipulating Lower Bound c in Mokken Scale Analysis

The effect of using different c-values (0.00, 0.20, 0.30, 0.40, and 0.50) (Hemker et al., 1995)
on MSP item selection was investigated for several design cells; that is, item discrimination was
either low or high, seven items per trait were used, and the M2-PLM was used for generating data.
This constituted a 3 (levels of mean discrimination) × 6 (correlation between traits) × 5 (lower
bound c) design. In general, Table 4 shows that for low c-values, a high mean discrimination, and
a high correlation between traits, all items were selected into one cluster (outcome Type E). As c

increased, some items, depending on their discrimination and on the correlation between the latent
traits, did not satisfy Hj ≥ c and, consequently, were not selected into this subset. When mean
item discrimination was low and the correlation between latent traits was also low, with increasing
c, many lowly discriminating items did not satisfy Hj ≥ c for the first subset but satisfied Hj ≥ c

for the second subset. As a consequence, more clusters were found than simulated (outcome Type
C). When item discrimination was high and lower bound c was also high, only the items sensitive
to the same trait were collected into the same subset, thereby finding the true dimensional structure
(outcome Type A). Thus, following Hemker et al. (1995), it was found that the choice of c greatly
influences item selection results.

Comparing the DETECT and DIMTEST Test Statistics

DETECT. For data generated using the M2-PLM, Table 5 shows the values of Dα(P∗) multi-
plied by 100; for simplicity, the result is also called Dα(P∗). Following Zhang and Stout (1999a),
Dα(P∗) < 0.1 is interpreted as essential unidimensionality and Dα(P∗) > 1.0 as sizable multidi-
mensionality. Based on Douglas, Kim, Roussos, Stout, and Zhang (1999), 0.1 < Dα(P∗) < 1 can
be interpreted as moderate multidimensionality. Thus, to correctly interpret DETECT’s results, the
clustering solution as well as the value of Dα(P∗) should be considered.
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Table 4

MSP Results for Different Lower Bounds c

ρ
Test

c Composition 0.0 0.2 0.4 0.6 0.8 1.0

0.10 [2 :7; 7] A D E E E E
[2 :7; 21] A D E E E E
[2 :21; 21] A E E E E E

0.20 [2 :7; 7] A A D E E E
[2 :7; 21] A A E E E E
[2 : 21; 21] A A E E E E

0.30 [2 :7; 7] C C B D D D
[2:7; 21] C B B E E E
[2 :21; 21] A A E E E E

0.40 [2 :7; 7] C C C C C D
[2:7; 21] B C C D D E
[2:21; 21] A A A C E E

0.50 [2 :7; 7] B C C C B B
[2:7; 21] B B B B B E
[2 :21; 21] A A A C E E

Note. Boldface indicates highly discriminating items;
A = true dimensionality found; B = not all items included;
C = multiple clusters; D = dimensionality not found;
E = all items in one subset.

Table 5 shows that Dα(P∗) is smaller as the correlation between latent traits is closer to 1.0.
Also, Dα(P∗) tends to be higher for high discrimination items and lower when clusters contained
different numbers of items (i.e., [2:7;21]). Based on the rules of thumb, for equal numbers of items
per trait, for ρ = 0.0, 0.2, and 0.4, statistic Dα(P∗) correctly indicated sizable multidimensional-
ity; for ρ = 0.6 and 0.8, statistic Dα(P∗) indicated moderate multidimensionality; and for ρ = 1.0,
statistic Dα(P∗) often indicated unidimensionality. For unequal numbers of items, statistic Dα(P∗)
indicated moderate multidimensionality, except for ρ = 1.0, for which Dα(P∗) indicated unidi-
mensionality.

Because the values of Dα(P∗) for ρ = 1.0 indicate unidimensionality, the clusters DETECT
yielded for ρ = 1.0 and that were presented in Table 1 should be ignored. Unidimensionality was
supported only for ρ = 1.0 when items discriminated highly or when clusters contained 21 items
(see Table 1). The results in Table 5 show that for unidimensional data, Dα(P∗) values were found
as high as 0.202. This may indicate that the upper bound of 0.1 for essential unidimensionality may
be too low. As one of the reviewers suggested, the rules of thumb for interpreting Dα(P∗) may be
the topic of future research.

DETECT works less well for unequal numbers of items. This result can be explained using
Figure 2. Let [2:7;21] be the simulated dimensionality, then the direction of best measurement of
the test, θα , lies closer to the direction of θ2 because there are more items sensitive to this trait. As
a consequence, the expected conditional covariances for items sensitive to θ2 are closer to 0 than
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Table 5

Results of DETECT Statistic Dα(P∗) Using the
Multidimensional Two-Parameter Logistic
Model (M2-PLM) for Two Latent Traits

ρ
Test
Composition 0.0 0.2 0.4 0.6 0.8 1.0

[2 :7; 7] 1.564 1.254 1.010 0.642 0.242 0.186
[2 :7; 21] 0.756 0.654 0.535 0.379 0.203 0.108
[2 :21; 7] 0.827 0.681 0.551 0.380 0.203 0.115
[2 :21; 21] 1.889 1.513 1.083 0.731 0.361 0.092

[2 :7; 7] 1.836 1.547 1.111 0.775 0.441 0.202
[2 :7; 21] 0.905 0.806 0.621 0.427 0.303 0.118
[2 :21; 7] 0.851 0.723 0.574 0.361 0.208 0.119
[2 :21; 21] 2.132 1.702 1.341 0.879 0.442 0.090

[2 :7; 7] 2.137 1.750 1.266 0.842 0.385 0.067
[2 :7; 21] 0.978 0.826 0.668 0.472 0.259 0.039
[2 :21; 7] 0.999 0.816 0.653 0.494 0.247 0.042
[2 :21; 21] 2.400 2.016 1.508 0.967 0.518 0.034

Note. Boldface indicates highly discriminating items.

the expected conditional covariances for items sensitive to θ1, and because of that, their dispersion
also is smaller. Furthermore, item pairs from the larger clusters more easily may have negative
conditional covariances, even though they are sensitive to the same latent trait, and items from
different clusters may have positive expected conditional covariances, even though they are sensitive
to different traits. Such incorrect sign behavior is more likely for item pairs that are sensitive to θ2
because, due to their smaller angles with θα , they more often are on different sides of θα than item
pairs that are sensitive to θ1.

DIMTEST. Using DIMTEST statistic T ′, Table 6 shows that, in general, for ρ = 1.0, unidi-
mensionality was found, and for ρ ≤ .8, multidimensionality was found. These results were more
pronounced for highly discriminating items. These results were not found for 14 items ([2:7;7]),
maybe because T ′ is an asymptotic statistic.

Unidimensionality was found unexpectedly for [2:21;21] and [2:21;21] when ρ = 0.4. Given
that AT1 must be as dimensionally distinct as possible from AT2 and PT, then both setups result
in an AT1 that is sensitive to either θ1 or θ2 and an AT2 and a PT that are sensitive to a mixture
of θ1 and θ2. This may result in less power to reject the null hypothesis in these cases (see also
Nandakumar & Stout, 1993) because the covariance between AT1 items will be relatively low when
PT scores are partly driven by the same latent trait. One may note that DIMTEST performs well
when latent traits are represented with an unequal number of items and, to a lesser extent, with
unequal discrimination. In the latter cases, AT1 and PT are, in a large degree, driven by distinct
latent traits.

In Table 7, the number of times the null hypothesis was rejected using a nominal significance
level of .05 is reported for five replicated data matrices. The results agree to a high degree with
the findings presented in Table 6. For example, the results for equal numbers of items per trait are
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Figure 2

Geometrical Representation of One Short Test (θ1) and One Long Test (θ2)

θ2

θ1

θα

Table 6

Results of DIMTEST Statistic T ′ Using the
Multidimensional Two-Parameter Logistic
Model (M2-PLM) for Two Latent Traits

ρ
Test
Composition 0.0 0.2 0.4 0.6 0.8 1.0

[2 :7; 7] ◦ ◦ ◦ ◦ ◦ ◦
[2 :7; 21] • • • • ◦ ◦
[2 :21; 7] • • • • ◦ ◦
[2 :21; 21] ◦ • ◦ • • ◦

[2 :7; 7] • ◦ • • ◦ ◦
[2 :7; 21] • • • ◦ ◦ ◦
[2 :21; 7] • • • • • ◦
[2 :21; 21] • • • ◦ ◦ ◦

[2 :7; 7] ◦ • ◦ ◦ ◦ ◦
[2 :7; 21] • • • • • ◦
[2 :21; 7] • • • • • ◦
[2 :21; 21] • • ◦ • • ◦

Note. Boldface indicates highly discriminating items;
• denotes significant result using .05 as significance level
(i.e., multidimensionality), ◦ indicates a nonsignificant
result (i.e., unidimensionality).

less stable than for unequal numbers of items per trait. Also, for [2:7;7], the results mainly reflect
random fluctuation.
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Table 7

Frequency (Out of Five) With Which DIMTEST Statistic
T ′ Rejects the Null Hypothesis (5% Level), Using the

Multidimensional Two-Parameter Logistic
Model (M2-PLM) for Simulation

ρ
Test
Composition 0.0 0.2 0.4 0.6 0.8 1.0

[2 :7; 7] 2 4 0 1 0 0
[2 :7; 21] 5 5 5 4 2 0
[2 :21; 7] 5 5 5 5 2 0
[2 :21; 21] 5 2 4 4 3 1

[2 :7; 7] 0 3 1 0 1 0
[2 :7; 21] 5 5 5 4 2 0
[2 :21; 7] 5 5 5 5 3 1
[2 :21; 21] 4 5 5 5 3 1

[2 :7; 7] 2 2 2 2 0 0
[2 :7; 21] 5 5 5 5 5 0
[2 :21; 7] 5 5 5 5 5 0
[2 :21; 21] 5 5 5 4 4 0

Note. Boldface indicates highly discriminating items.

Conclusion and Discussion

Using the methods as recommended in the literature, DETECT and HCA/CCPROX were supe-
rior to MSP in retrieving the simulated dimensional structure. Even when there was little information
available to distinguish items that are sensitive to different traits (e.g., highly discriminating items,
sensitive to two traits that correlated 0.8), DETECT and HCA/CCPROX retrieved the dimensional
structure, but MSP failed. It may be noted, however, that traits correlating 0.8 may be indistin-
guishable from a substantive viewpoint, which puts the MSP result in a more positive perspective.
In general, DETECT performed better than HCA/CCPROX, but in some instances (e.g., when dis-
crimination was low and tests were long), HCA/CCPROX was superior to DETECT.

Differences between DETECT and HCA/CCPROX may be due to different conditional covari-
ance estimates used in these methods. Also, DETECT’s algorithm is less susceptible to locally opti-
mal solutions than HCA/CCPROX’s algorithm. In addition, in practice, the researcher must choose
the final HCA/CCPROX cluster solution among J − 1 solutions. This may be an extra source for
differences.

MSP and DETECT differ in many ways. First, MSP uses normed unconditional covariances,
and DETECT uses conditional covariances. Second, MSP uses a sequential clustering procedure
based on several item selection criteria, and DETECT searches for the item partition that maximizes
Dα(P) without additional selection criteria. Third, MSP selects items that satisfy Hj ≥ c, where
c is meant as a minimum quality criterion for item discrimination. As a result, the default setting
c = 0.3 may not, for example, select all items driven by the same trait in a cluster and thus may
not yield the “true” dimensionality. Other, nondefault values of c, however, may yield the correct
dimensionality. Fourth, items selected by MSP into a cluster cannot leave this cluster, and this
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makes MSP susceptible to locally optimal solutions. DETECT uses a genetic algorithm, which
moves items back and forth until a final solution is found. These differences make the comparison
of MSP and DETECT difficult.

Two remarks with respect to the DETECT and DIMTEST statistics are in order. First, it was
found that the number of items in a cluster assessing one trait may influence the assessment of
dimensionality; DETECT’s maximum, Dα(P∗), did not reflect the dimensionality well for data
matrices that contained clusters with an unequal number of items, and DIMTEST’s T ′ did not reflect
the dimensionality well for clusters with equal numbers of items and equal average discrimination.
Second, the results for n = 200 made clear that DETECT and DIMTEST may be more effective in
larger samples (here, n = 2, 000 was investigated).

Practical recommendations. Based on the simulation study, DETECT and MSP were found to
be the most useful programs for finding unidimensional item clusters. Both methods yield a single
clustering solution and provide test statistics for evaluating the quality of the cluster solution. In
general, DETECT recovered the simulated dimensionality better than MSP, but DETECT needed
larger samples than MSP. Furthermore, for data sets with highly correlating latent traits, DETECT
forces items into clusters, and therefore seems to be vulnerable to chance capitalization. MSP always
produces the best item clustering according to the definition of a Mokken scale and discards items
not fitting well. The methods were compared as they are available to researchers. Future research
may use in one selection procedure conditional covariances to find the true dimensionality of the
data and a minimum item quality criterion for only selecting practically useful items.

DIMTEST is suitable when the researcher expects his or her data to be unidimensional but cannot
be used to partition the data. DIMTEST has low power for short tests. HCA/CCPROX yields J − 1
cluster solutions. This forces the researcher to make a choice about the dimensionality of the test. A
drawback of the method is that it does not provide the value of a quality statistic for each solution,
such as Dα(P∗) or H , on which the researcher can base his or her choice.

At the practical level, it may be noted that MSP uses a Windows interface and can be run under
Windows 95 or higher. DETECT, HCA/CCPROX, and DIMTEST are DOS programs.

Because the methods are so different, a practical recommendation is to use them next to one
another to analyze the same data set. For example, one could use DETECT to find dimensionally
distinct clusters and use MSP to select the best discriminating items for which Hj > c within these
clusters. HCA/CCPROX can be informative about the process of clustering (e.g., which items have
most in common and are clustered first and which are added later). DIMTEST can be used to verify
unidimensionality of the clusters, especially because this method has more power than DETECT
when only few items are driven by another trait than the main trait.
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