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15 Ordinal longitudinal data analysis
Jeroen K. Vermunt and Jacques A. Hagenaars
Tilburg University

Introduction

Growth data and longitudinal data in general are often of an ordinal nature.
For example, developmental stages may be classified into ordinal categories
and behavioral variables repeatedly measured by discrete ordinal scales. Con-
sider the data set presented in Table 15.1. This table contains information
on marijuana use taken from five annual waves (1976–80) of the National
Youth Survey (Elliot et al., 1989; Lang et al., 1999). The 237 respondents were
13 years old in 1976. The variable of interest is a trichotomous ordinal variable
‘Marijuana use in the past year’ measured during five consecutive years. There
is also information on the gender of the respondents.

Ordinal data like this is often analysed as if it were continuous interval level
data, that is, by means of methods that imply linear relationships and normally
distributed errors. However, the data in Table 15.1 is essentially categorical and
measured at ordinal, and not at interval level. Consequently, a much better way to
deal with such an ordinal response variable is to treat it as a categorical variable
coming from a multinomial distribution; the ordinal nature of the categories
is then taken into account by imposing particular constraints on the odds of
responding, i.e. of choosing one category rather than another. As will be further
explained below, an ordinal analysis can be based on cumulative, adjacent-
categories, or continuation-ratio odds (Agresti, 2002). The constraints are in
the form of equality or inequality constraints on one of these types of odds.

In this chapter, we will discuss the three main approaches to the analysis
of longitudinal data: transition models, random-effects or growth models and
marginal models (Diggle et al., 1994; Fahrmeir and Tutz, 1994). Roughly speak-
ing, transition models like Markov chain models concentrate on overall gross
changes or transitions between consecutive time points, marginal models inves-
tigate net changes at the aggregated level and random-effects or growth models
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Table 15.1 Data on marijuana use in the past year and gender, taken from
five yearly waves of the National Youth Survey

Gendera 1976b 1977 1978 1979 1980 Frequency Gender 1976 1977 1978 1979 1980 Frequency

0 1 1 1 1 1 63 1 1 1 1 3 1 1
0 1 1 1 1 2 10 1 1 1 1 3 3 1
0 1 1 1 1 3 3 1 1 1 2 1 3 1
0 1 1 1 2 1 4 1 1 1 2 2 1 2
0 1 1 1 2 2 2 1 1 1 2 2 2 2
0 1 1 1 3 1 1 1 1 1 2 2 3 1
0 1 1 1 3 2 1 1 1 1 2 3 3 5
0 1 1 1 3 3 3 1 1 1 3 1 2 1
0 1 1 2 1 1 2 1 1 1 3 2 2 1
0 1 1 2 1 2 2 1 1 1 3 3 3 3
0 1 1 2 2 1 3 1 1 2 1 1 2 1
0 1 1 2 2 2 7 1 1 2 1 2 1 1
0 1 1 2 2 3 1 1 1 2 2 1 1 2
0 1 1 2 3 3 1 1 1 2 2 2 1 1
0 1 2 1 1 1 1 1 1 2 2 1 3 1
0 1 2 1 1 2 2 1 1 2 2 3 3 1
0 1 2 2 1 2 1 1 1 2 3 2 2 1
0 1 2 2 2 1 1 1 1 2 3 2 3 1
0 1 2 2 3 3 2 1 1 2 3 3 2 1
0 1 2 3 1 2 1 1 1 2 3 3 3 4
0 1 2 3 3 2 1 1 1 3 1 3 3 1
0 1 2 3 3 3 1 1 1 3 2 2 2 1
0 1 3 3 2 2 1 1 1 3 3 3 3 2
0 2 1 1 3 3 1 1 1 3 3 2 2 1
0 2 1 2 2 2 1 1 2 1 1 1 1 3
0 2 1 3 3 3 1 1 2 2 2 2 2 1
0 2 3 3 3 3 1 1 2 2 3 3 3 1
0 2 3 3 3 2 1 1 2 3 2 1 1 1
0 3 3 3 2 3 1 1 2 3 2 3 3 1
1 1 1 1 1 1 48 1 2 3 3 3 3 2
1 1 1 1 1 2 8 1 3 1 1 1 1 1
1 1 1 1 1 3 4 1 3 2 3 3 3 1
1 1 1 1 2 1 2 1 3 3 3 3 1 1
1 1 1 1 2 2 4 1 3 3 3 3 3 1
1 1 1 1 2 3 1

a 0, female; 1, male.
b 1, never; 2, not more than once a month; 3, more than once a month.

study developments at the individual level. Variants of each of these have been
developed for ordinal categorical variables (Agresti, 2002).

There are various complicating issues that have to be dealt with when
analysing longitudinal data in general and ordinal longitudinal data in particu-
lar. The first is the issue of misclassification or measurement error (Hagenaars,
1990, 2002; Bassi et al., 2000). Measurement of developmental stages is almost
never perfect. For example, even in situations in which this is theoretically
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impossible, backward transitions will be observed and usually different indica-
tors of the same phenomenon will provide partly inconsistent information. An
important way to cope with measurement error is to introduce latent variables
into the analysis. When dealing with categorical ordinal data that are assumed to
measure ordinal true states, it is most natural to use categorical latent variables
and latent class methods to this purpose.

Another important complicating issue, especially potentially harmful in
transitional and growth models is the problem of unobserved heterogeneity
(Vermunt, 1997, 2002). Random-effects approaches may be used to solve this
problem. With ordinal variables, because of their non-linear nature, these mod-
els are somewhat more complicated and their estimation is more time consum-
ing than with continuous outcome variables. A possible way out is to use a
non-parametric random-effects approach based on latent class or finite mixture
modelling.

The third issue is the presence of partially observed data. Methods for longi-
tudinal data analysis are less useful if they can only deal with complete records.
Fortunately, transition and growth models for ordinal variables can easily be
adapted to deal with missing data (Hagenaars, 1990; Vermunt, 1997).

These complicating issues will be further discussed at the end of this chapter.
First, logit models for ordinal response variables will be introduced (pp. 00–
00). They form the basic building blocks for models for categorical longitudinal
data. The main ways of analysing longitudinal data, viz. marginal, transitional
and random-effects models for ordinal categorical variables, are also discussed
(pp. 00–00).

Ordinal logit models

Given a dichotomous or polytomous ordinal outcome variable, the most popular
model is the logit model. The logit model is a regression model in which the
odds of choosing a particular category (or categories) of the response variable
rather than another category (other categories) are assumed to depend on the
values of certain independent variables (Agresti, 2002). Note that an odds is
simply a ratio of two probabilities. The term logit comes from log odds, which
refers to the fact that a logit model is a linear model for log odds.

The measurement level of the independent variables is also often ordinal. This
ordinal character of the variables involved frequently leads to the assumption
that the log odds are a linear function of predictors, which implies certain
equality constraints on the odds ratios. As shown below, another important
way of dealing with the ordinal nature of the variables of interest is to specify
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Table 15.2 Cross-tabulation of year and marijuana use in the past
year based on data in Table 15.1

Time (X)

Marijuana use (Y) 1. 1976 2. 1977 3. 1978 4. 1979 5. 1980

1. Never 218 195 167 156 138
2. No more than once a month 14 27 41 41 52
3. More than once a month 5 15 29 40 47

inequality restrictions on the odds ratios instead of equality restrictions. Various
types of ordinal logit models can be defined depending on the type of odds that
are being used (as mentioned above). It is also possible to use another link
function than the logit link (using the generalized linear modeling jargon), and
formulate probit, log-log, or complementary log-log models; Agresti provides
an excellent overview of these possibilities (Agresti, 2002).1 Here, we will only
deal with logit models.

In order to make the discussion more concrete, assume that we have a two-
way cross tabulation of X – time (or age) and Y – marijuana use, as shown in
Table 15.2 (derived from Table 15.1). Variable X with category index i has I =
5 levels or categories and variable Y with category index j has J = 3 levels. It
is assumed that X (time/age) serves as independent or predictor variable, that Y
(marijuana use) is the dependent or response variable, and that we are interested
in the conditional distribution of Y given X. The probability of giving response
j at time i is denoted by P(Y = j|X = i).

The substantive research question of interest is whether there is an increase
of marijuana use with age; that is, whether the proportion of respondents in
the highest categories increases over time. Note that this hypothesis does not
imply any specific parametric form for the relationship between X and Y: we
only assume that if X increases, Y will increase as well.

The most common way of modelling relationships between ordinal cate-
gorical variables is by means of a (linear) logit model that imposes equality
constraints on certain odds ratios. Four types of odds can be used for this
purpose (Agresti, 2002): cumulative odds denoted here as O(cum)i,j, adjacent-
category (or local) odds O(adj)i,j, or one of two types of continuation-ratio odds

1 The term link refers to the transformation of the dependent variable yielding the linear model. In
a logit model, the response probabilities are transformed to log odds. It is, however, possible to
work with other types of transformations. A probit link, for example, involves transforming the
response probabilities to z values using the cumulative normal distribution.
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O(conI)i, j , or O(conII)i, j . These are defined as

O(cum)i, j = P(Y ≤ j |X = i)/P(Y ≥ j + 1|X = i)

O(adj)i, j = P(Y = j |X = i)/P(Y = j + 1|X = i)

O(conI)i, j = P(Y = j |X = i)/P(Y ≥ j + 1|X = i)

O(conII)i, j = P(Y ≤ j |X = i)/P(Y = j + 1|X = i)

for 1 ≤ j ≤ J − 1 and 1 ≤ i ≤ I. Below, the symbol Oi, j will be used as a generic
symbol referring to any of these odds. As follows from these formal definitions,
for an ordinal variable with four categories, the ‘first’ cumulative odds will be
the odds of choosing category 1 rather than one of the other categories 2 or 3 or
4: (1)/(2 + 3 + 4) and the other cumulative odds denoted in a similar way are
(1 + 2)/(3 + 4) and (1 + 2 + 3)/(4). Using the same shorthand notation, the
adjacent odds are (1)/(2), (2)/(3), and (3)/(4) and the first type of continuation
odds are (1)/(2 + 3 + 4), (2)/(3 + 4), and (3)/(4).

In practical research situations, one has to make a choice between these four
types of odds, that is, one has to specify a model for the type of odds that fits
best to the process assumed to underlie the individual responses. The cumula-
tive odds are the most natural choice if the discrete ordinal outcome variable
is considered as resulting from a discretization of an underlying continuous
variable. The adjacent category odds specification fits best if one is interested
in each of the individual categories; that is, if one perceives the response vari-
able as truly categorical. The continuation-ratio odds correspond to a sequential
decision-making process in which alternatives are evaluated from low to high
(type I) or from high to low (type II).

If X and Y are both treated as nominal level variables, no restrictions will be
imposed on the odds. The logit model for this nominal–nominal case can be
expressed as

log Oi, j = α j − βi j

which is just a decomposition of the log odds. Here, αj is an intercept parameter
and β ij is a slope parameter.2 As is the case in most models for categorical
dependent variables, the intercept is category specific (for the categories of the
dependent variable). Typical for the nominal–nominal case is that the slope
depends on both the category of X and the category of Y.

2 Note that the index j goes from 1 to J − 1 and the index i from 1 to I. This means that no
further restrictions need to be imposed on the J − 1 αj parameters. On the other hand, there are
and (J − 1) × (I ) free β ij parameters, but we can identify only (J − 1) × (I − 1) of them. For
identification, one can, for instance, assume that β1j = 0 for each j, which amounts to treating
the first category of X as reference category.
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The most restricted specification is obtained if both the dependent and the
independent variable are treated as ordered. This yields the ordinal–ordinal
model

log Oi, j = α j − βxi

where xi denotes the fixed score assigned to category i of X, and α j and β are
the intercept and the slope of the logit model. In most cases, xi will be equal-
interval scores (for example, 1, 2, 3, etc., or 1976, 1977, 1978, etc.), but it is
also possible to use other scoring schemes for the X variable. As can be seen,
the slope is assumed to be independent of the categories of X and Y.

Because of the restrictions involved, a better, although not common, name
for the ordinal–ordinal would be the interval–interval model. For the adjacent-
categories odds, this model is also known as the linear-by-linear association
model (Goodman, 1979; Clogg and Shihadeh, 1994; Hagenaars, 2002). In fact,
we do not only specify scores for the categories of X, but implicitly also assume
that the categories of Y are equally spaced with a mutual distance of 1; for
example, 1, 2 and 3, or 0, 1 and 2.

The other two, intermediate, cases are the nominal–ordinal specification
(with Y nominal and X ordinal) and the ordinal–nominal case (with Y ordinal
and X nominal). These are defined as follows:

log Oi, j = α j − β j xi

log Oi, j = α j − βi

As can be seen, in the nominal–ordinal case, the slope is category specific for
Y, but does not depend on X. In the ordinal–nominal case, the slope does not
depend on Y.

These models are also known, for the adjacent categories odds, as row-
or column-association models (Goodman, 1979; Clogg and Shihadeh, 1994;
Hagenaars, 2002). In our case, the nominal–ordinal model is a row-association
model because the nominal variable (marijuana use) serves as the row vari-
able in Table 15.1. In a row-association model, the scores of the categories of
the column variable are fixed and the scores of the categories of the row vari-
able are unknown parameters to be estimated. In our parameterization, β j can
be interpreted as the distance between the unknown scores of categories j+1 and
j. For equivalent reasons, the ordinal–nominal model is a column-association
model, where β i represents an unknown column score. The row scores are
treated as fixed and assumed to have a mutual distance of 1.

Except for the nominal–nominal specification, each of these specifications
implies certain equality constraints on the odd ratios Oi, j/Oi+1, j . When we use
equal-interval xi, the ordinal–ordinal model implies that the log-odds increase
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or decrease linearly with X and that, in other words, the log odds ratios between
adjacent levels of X are assumed to be constant, to be equal to β:

log (Oi, j/Oi+1, j ) = log Oi, j − log Oi+1, j = β

for 1 ≤ j ≤ J − 1 and 1 ≤ i ≤ I − 1. The fact that these differences between
log odds do not depend on the values of X and Y can also be expressed by the
following two sets of equality constraints:

(log Oi, j − log Oi+1, j ) − (log Oi, j ′ − log Oi+1, j ′ ) = 0, (15.1)

(log Oi, j − log Oi+1, j ) − (log Oi ′, j − log Oi ′+1, j ) = 0, (15.2)

where i ′ �= i and j ′ �= j .
In the nominal–nominal specification of the logit model, the log odds ratio

between adjacent categories of X equals β i+1,j − β i, j and none of the two
equality constraints (15.1) and (15.2) are valid. In the nominal–ordinal case,
the log odds ratio equals β j and equality constraints (15.2) apply: the odds ratios
vary with Y but do not depend on X. In the ordinal–nominal case, the log odds
ratio equals β i+1 − β i and equality constraints (15.1) are applicable: the odds
ratios vary with X and do not depend on Y.

What can be observed is that the ordinal nature of the predictor variable is
dealt with by assuming that the odds ratio is the same for each pair of adjacent
categories. This amounts to assuming that the distances between all adjacent
categories are equal, which is a much stronger assumption than ordinal, and
essentially the interval-level assumption. The constraints related to the outcome
variable imply that the effect of the predictor variable is assumed to be the
same (constant) for each of the category-specific odds, which is also a more
restrictive assumption than ordinal. An advantage of imposing the ordinal logit
constraints is, however, that they force the solution to be in agreement with
an ordinal relationship. Moreover, they provide a parsimonious and easy-to-
interpret representation of the data: the effect of an ordinal predictor variable on
an ordinal outcome variable is described by a (very) small number of parameters.

However, in many situations, the ordinal–ordinal specification is too restric-
tive even if the relationship between the variables of interest is truly ordinal.
In such cases, one may consider staying closer to the definition of ordinal
measurement. In terms of odds, the purest definition of a positive, (weakly)
monotonically increasing relationship between two ordinal variables involves
the following set of inequality constraints:

log Oi, j − log Oi+1, j ≥ 0, (15.3)

for 1 ≤ j ≤ J − 1 and 1 ≤ i ≤ I − 1 (Vermunt, 1999). As can be seen, we are
assuming that all log odds ratios are at least zero, or, equivalently that all odds



Ordinal longitudinal data analysis 381

ratios are larger than or equal to 1. Such a set of constraints is often referred to
as simple stochastic ordering, likelihood ratio ordering, or uniform stochastic
ordering for cumulative, adjacent category, and continuation odds, respectively
(Dardanoni and Forcina, 1998).

The inequality constraints (15.3) are equivalent to the following constraints
on the slope parameters of the nominal–nominal model

βi+1, j − βi, j ≥ 0

This shows that this ‘non-parametric’ ordinal approach can be seen as a
nominal–nominal approach with an additional set of constraints. As long as
these constraints are not violated, the order-restricted solution will be the same
as the nominal–nominal solution. Similar types order constraints can be defined
for the nominal–ordinal and ordinal–nominal models to guarantee that the solu-
tion is ordered in the sense of a monotonic relationship. The order constraints
corresponding with a positive association are β j ≥ 0 in the nominal–ordinal
case and β i+1 − β i ≥ 0 in the ordinal–nominal case.

Another type of model for odds is a class of logit models with bi-linear
terms. When working with adjacent category odds, these are called row–column
association models (Goodman, 1979; Clogg and Shihadeh, 1994). The model
of interest has the form

log Oi, j = α j − β jγi

where the γi are unknown parameters to be estimated. These can be seen as free
scores for the categories of X. This model is, in fact, a restricted version of the
nominal–nominal model. It can also be seen as a less restricted variant of the
nominal–ordinal model (free instead of fixed scores for X) or of the ordinal–
nominal model (non-constant slope). If β j ≥ 0 and γ i+1 − γ i ≥ 0 for all i and
j, the solution is in agreement with an ordinal relationship.

In order to illustrate the equality and inequality constraints implied under
the various specifications, we applied the models to the data in Table 15.2
with an adjacent-category odds formulation. Table 15.3 reports the estimated
odds ratios obtained with the estimated models. Note that an odds ratio larger
than one is in agreement with the postulated positive relationship between
time and marijuana use. As can be seen from the outcomes of the nominal–
nominal model, the data contains only one violation of an ordinal relationship.
The test results indicate that this can be attributed to sampling fluctuation.
In the estimation and testing, we treated the observations at different time
points as independent samples, which is not correct. Results should therefore
be treated with some caution. The next section discusses methods that take
the dependence between observations into account. Moreover, the testing of
models with inequality constraints is not straightforward. Because the number
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Table 15.3 Adjacent-category odds ratios under various models for
the data in Table 15.3

Time/Age (X)

Modela L-sq (df)b Marijuana use (Y) 1/2 2/3 3/4 4/5

Nominal–nominal 0.00 (0) 1/2 2.16 1.77 1.07 1.43
2/3 1.56 1.27 1.38 0.93

Ordinal–ordinal 11.37 (7) 1/2 1.36 1.36 1.36 1.36
2/3 1.36 1.36 1.36 1.36

Nominal–ordinal 8.74 (6) 1/2 1.48 1.48 1.48 1.48
2/3 1.19 1.19 1.19 1.19

Ordinal–nominal 1.88 (4) 1/2 2.00 1.57 1.19 1.19
2/3 2.00 1.57 1.19 1.19

Row–column 0.72 (3) 1/2 2.05 1.65 1.27 1.27
2/3 1.75 1.41 1.08 1.09

Order-restricted 0.06 (1) 1/2 2.16 1.77 1.09 1.38
2/3 1.56 1.27 1.32 1.00

a The models were estimated with the LEM program (Vermunt, 1997).
b L-sq is the likelihood-ratio statistic, which is defined as twice the difference between
the log-likelihood of the data and the log-likelihood of the model concerned. The
number of degrees of freedom is denoted by df. In the order-restricted model, df refers
the number of odds ratios that are equated to 1.

of degrees of freedom is a random variable, the asymptotic distribution of the
test statistics is a mixture of χ2 distributions, which is usually denoted as χ̄2

distribution (Vermunt, 1999; Galindo-Garre et al., 2002). Especially the order-
restricted model using only inequality restrictions fits almost perfectly, but also
the ordinal–ordinal model, using equality restrictions, fits well and provides an
excellent very parsimonious description of the data. However, comparison of
the ordinal–ordinal with the ordinal–nominal model (L-sq = 9.5 with df = 3)
indicates that the ordinal constraint is somewhat too restrictive for the column
variable time. (Nested models can be compared by a likelihood-ratio test. For
this purpose we subtract their L-sq and df values, which yields a new asymptotic
χ2 test.)

Three approaches to longitudinal data

There are three main approaches to the analysis of longitudinal data: transi-
tional models, random-effects models and marginal models (Diggle et al., 1994;
Fahrmeir and Tutz, 1994). Transitional models such as Markov-type models
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concentrate on changes between consecutive time points. Marginal models can
be used to investigate changes in univariate distributions, and random-effects or
growth models study development of individuals over time. (Here, we concen-
trate on situations in which there is a single response variable. With multiple
response variables, one may wish to study change in multivariate distributions
(e.g. Croon et al., 2000)). These three approaches do not only differ in the
questions they address, but also in the way they deal with the dependencies
between the observations. Because of their structure, transitional models take
the bivariate dependencies between observations at consecutive occasions into
account. Growth models capture the dependence by introducing one or more
latent variables. In marginal models, the dependency is often not modelled, but
dealt with as found in the data and in general is taken into account in a more
ad hoc way in the estimation procedure. In this section, we present marginal,
transition, and random-effect models for ordinal outcome variables.

Before describing the ordinal data variants of the three approaches, we first
extend our notation to deal with the longitudinal character of the data. The total
number of time points is denoted by T, and a particular time point by t, where
1 ≤ t ≤ T. Moreover, we denote the response variable at time point t by Yt,
a particular value of Yt by jt, and the number of levels of Yt by J. Notice that
number of levels of the response variable is assumed to be the same for each
time point. Predictor k is denoted by Xkt , where the index t refers to the fact
that a predictor may change its value over time. When referring to a vector
of random variables, we use boldface characters. For example, the conditional
distribution of the time-specific responses given a particular covariate pattern
is denoted by P(Y = j|x).

The models of interest will be illustrated with the data set reported in
Table 15.1. This means that we have a trichotomous response variable mea-
sured at five occasions; that is, J = 3 and T = 5. There is a single time-constant
predictor gender, whose value is denoted by x, where x = 1 for males and x = 0
for females.

Marginal models

The analysis presented in the previous section is an example of a marginal
analysis. We studied the trend in the age- or time-specific marginal distribu-
tions of the response variable of interest. However, when estimating the model
parameters, we assumed that observations at different time points are indepen-
dent, which is, of course, unrealistic with longitudinal data. The purpose of the
marginal modelling framework is to test hypotheses like the one discussed in the
previous section, while taking the dependencies between the observations into
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account. Parameters can be estimated by maximum likelihood (ML), but also
by other methods, such as generalized estimating equations (GEE) or weighted
least squares (WLS).

The ML approach takes the full multidimensional distribution of the response
variables, P(Y = j|x), as the starting point. In addition, to the marginal model
of interest, a model has to be specified for the joint distribution. This is not
necessarily a restricted model and often the saturated model is simply used.
The ML estimates of the probabilities in the joint distribution should be in
agreement with both the model for the joint distribution and the model for
the marginal distribution. A disadvantage of the ML approach is that it is not
practical with more than a few time points. Although theoretically inferior to
ML, the GEE approach has the advantage that it can also be applied with larger
numbers of time points.

Using the ordinal logit formulation introduced in the previous section, a
marginal model for the data displayed in Table 15.1 could, for instance, be of
the form

log O jt = α j − β1t − β2x

Here, αj is the intercept for the log odds corresponding to category j, β1 is the
time effect and β2 is the gender effect. (In the example J = 3, which means
that there are two sets of odds since 1 ≤ j ≤ J − 1). The fact that the time and
gender effects do not depend on the category of the outcome variable shows
that we are using an ordinal logit model specification for the outcome variable.
Moreover, the log odds are assumed to change linearly with time or age, which
amounts to using an ‘ordinal’ specification for the time effects. Since gender
is a dichotomous variable, for this variable there is no difference between a
nominal or ordinal specification.

In the previous section, we showed how to relax the ‘ordinality’ assumptions.
For example, the assumption that the time trend is linear can be relaxed by
replacing the term β1t by β1t; that is, by introducing a separate parameter for
each time point. Moreover, inequality constraints can be used to transform
such a nominal specification for the time effect into ordinal. The ordinal-logit
assumption for the dependent variable can be relaxed by having a separate set
of effect parameters for j = 1 and j = 2.

Another possible modification of the above model is the inclusion of an
interaction effect between time and gender; that is,

log O jt = α j − β1t − β2x − β3t x

This model relaxes the assumption that the (linear) time trend is the same for
males and females.

What should be clear from this example is that marginal models are very
much similar to the logit models for ordinal response variables presented in the
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previous section. The only fundamental difference appears in the estimation pro-
cedure in which the dependencies between the time-specific observations have
to be taken into account. As was already mentioned, ML estimation involves
estimating the cell probabilities in the joint distribution of the time-specific
response variables given gender. These cell probabilities should be in agree-
ment with the marginal model of interest and the model that is specific for the
joint distribution. As shown by Lang and Agresti (1994) and Bergsma (1997),
this estimation problem can be defined as a restricted ML estimation problem.

Transitional models

Typical for transitional models is that a regression model is specified for the
conditional distribution of the response variable Yt given the responses at pre-
vious time points (Yt−1, Yt−2, Yt−3, etc.) and predictor values. The fact that
Yt is regressed on a person’s state at previous occasions distinguishes transi-
tional from marginal and growth models. Further, a transitional model implies
a model for the joint distribution of the time-specific responses. The most pop-
ular transitional model is the first-order Markov model in which Yt is assumed
to depend on the state at t − 1, but not on responses at earlier occasions. For
our example, a first-order Markov model implies the following structure for the
joint distribution P(Y = j|x):

P(Y = j|x) = P(Y1 = j1|x)P(Y2 = j2|Y1 = j1, x)P(Y3 = j3|Y2 = j2, x)

× P(Y4 = j4|Y3 = j3, x)P(Y5 = j5|Y4 = j4, x)

Further restrictions may be imposed on the initial and transition probabili-
ties. For example, one might assume that the transition probabilities are time
homogenous, yielding what is called a stationary first-order Markov model. The
ordinal nature of the response variable can be exploited by restricting the model
probabilities by means of an ordinal logit model. An example of a restricted
ordinal logit model for the transition probabilities P(Yt = jt |Yt−1 = jt−1, x) is

log O jt = α j − β1 yt−1 − β2t − β3x

Except for the presence of Yt−1 as a predictor, this transitional logit model is
similar to the marginal logit model presented above. Note that yt−1 denotes
the fixed score corresponding to category of the response at time point t − 1.
As in a marginal model, ordinal specifications can be changed into a nominal
specification, inequality constraints can be imposed, and interaction terms can
be included.

ML estimation of transitional models is straightforward. One makes use of a
log-likelihood based on a multinomial density with probabilities P(Y = j|x). By
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including states at previous occasions as predictors, the dependence between
the time-specific observations is automatically taken into account. More pre-
cisely, observations are assumed to be independent given these previous
states.

Random-effects growth models

The model structure of a growth model is similar to that of a marginal model. The
probability of being in a certain state at occasion t is assumed to be a function
of time and predictors. A difference is, however, that the dependence between
observations is dealt with in another way. More specifically, the dependence
between observations is attributed to systematic differences between individu-
als. This unobserved heterogeneity is captured by the introduction of random
effects in the regression model. A random effect is a parameter that takes on a
different value for each individual and that is assumed to come from a particu-
lar distribution. Random-effect terms are, in fact, latent variables, which means
that a random-effects model is a latent variable model.

An ordinal logit model with a linear growth structure, a gender effect, and a
random intercept has the form

log Oi jt = α j + ui − β1t − β2x

Here, ui is the random intercept for individual i. The most common specification
is to assume that ui comes from a normal distribution with a mean equal to zero
and variance equal to σ 2; that is, ui ∼ N(0,σ 2). Introducing such a random
effect amounts to specifying that the intercept is person specific, where person
i’s intercept equals αj + ui. It should be noted that apart from the random effect,
this logit model is the same as the marginal logit model presented above.

Not only the intercept can be specified to be person specific, but also the time
or predictor effects can be assumed to vary across individuals. For example, a
model with a random time effect is obtained by

log Oi jt = α j + u1i − β1t − u2i t − β2x

In this case, the joint distribution of the two random effects u1i and u2i has to
be specified. A common choice is bivariate normal, which means that besides
the variances also the covariance between the two random effects has to be
estimated.

ML estimation is based on the log-likelihood function derived from the multi-
nomial density with probabilities P(Y = j|x). Similarly to a transitional model,
a random-effects model implies a particular model for the joint distribution
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P(Y = j|x); that is,

P(Y = j|x) =
∫

u
P(Y1 = j1|x, u)P(Y2 = j2|x, u)P(Y3 = j3|x, u)

× P(Y4 = j4|x, u)P(Y5 = j5|x, u) f (u) du

As can be seen, occasion-specific responses are assumed to be independent
given the random effects u. In order to obtain P(Y = j|x), we have to integrate
out the unobserved random effects. However, contrary to the case of a linear
model with normal errors, in our case this integral cannot be solved analytically.
Two possible ways to solve the integral are numerical integration by Gauss–
Hermite quadrature or integration by simulation methods. Both methods can
become quite time consuming with more than a few random-effects terms.

An alternative to the above random-effects approach in which a parametric
form is specified for the mixing distribution f(u) is to use a non-parametric
specification for the mixing distribution (Laird, 1978; Vermunt and Van Dijk,
2001; Agresti; 2002). The distribution of the random effects is then approxi-
mated by a small number of mass points (or latent classes), whose locations
and weights are unknown parameters to be estimated. This approach, which is
usually referred to as latent class regression or finite mixture regression, has
several advantages over using a multivariate normal mixing distribution. One
advantage is that it not necessary to make non-testable assumptions about the
form of the distribution of the random effects. Another advantage is the much
smaller computation burden resulting from the fact that P(Y = j|x) can be
obtained by summing over a small number of latent classes instead of a large
number of quadrature points.

Let the index c refer to a latent class or mixture component and let C be the
number of latent classes. A non-parametric specification of the ordinal logit
model with a random intercept and a random time effect is

log O jt = α j + u1 jc − β1t − u2ct − β2x

Rather that assuming that each individual has its own intercept and time effect,
we now say that each individual belongs to one of C latent classes, each of
which has its own set of logit parameters. A more common way to express this
is to index the regression coefficients by c; that is,

log O jt = α jc − β1ct − β2x

where αjc = αj + u1jc and β1c = β1 + u2c. The implied model for the joint
distribution is now

P(Y = j|x) =
∑

c

P(Y1 = j1|x, c)P(Y2 = j2|x, c)P(Y3 = j3|x, c)

× P(Y4 = j4|x, c)P(Y5 = j5|x, c)P(c)
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which is much simpler than in the case of the parametric random effects. Note
that P(c) is the probability that an individual belongs to latent class c.

Both in the parametric and the non-parametric model it is possible to com-
pute individual-level effects. The most popular are expected a posteriori (EAP)
estimates.

Combining the three approaches

Above, we described the three approaches for dealing with longitudinal data as
if those provided three mutually exclusive options. However, in some situations,
to answer certain questions, one may wish to combine approaches. As explained
above, an ML approach to marginal modelling involves the specification of a
model for the joint distribution. This could be a restricted model, for example,
a first-order Markov model, a random-effects model, or a combination of the
two. Vermunt et al. (2001), for instance, proposed a combination of the three
approaches, in which the random-effects part of the model had the form of a
log-linear Rasch model.

Another interesting (and popular) combination is that between a transitional
and a random-effects model. Each of these models makes a very specific
assumption about the dependence structure of the repeated measures. In a first-
order Markov model, for example, it is assumed that dependencies between
observations can be fully described by means of first-order autocorrelation
terms. In a random effects model, on the other hand, it is assumed that after
controlling for the random effects (or latent class memberships), there is no
autocorrelation. It is very important when using transitional models to take
unobserved heterogeneity into account since failure to do so may result in a
strong negatively biased time dependence (Vermunt, 1997). A possible model
that combines the two approaches is a first-order Markov model with a non-
parametric specification of the random effect:

P(Y = j|x) =
∑

c

P(c)P(Y1 = j1|x, c)P(Y2 = j2|Y1 = j1, x, c)

× P(Y3 = j3|Y2 = j2, x, c)P(Y4 = j4|Y3 = j3, x, c)

× P(Y5 = j5|Y4 = j4, x, c)

This transitional model with unobserved heterogeneity is usually referred to as
mixed Markov model (Langeheine and Van de Pol, 1994; Vermunt, 1997).

And of course, also in these combined models, ordinal logit models can be
specified to further restrict the model probabilities. A simple example is

log O jt = α jc − β1 yt−1 − β2t − β3x

in which the intercept is assumed to vary across latent classes.
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Table 15.4 Test results for adjacent-category ordinal logit models estimated
with the data in Table 15.1

Longitudinal type Specification for Y and X L-sqa Degrees of freedom

Marginal M1. nominal–nominal 5.33 8
M2. nominal–ordinal 19.46 14
M3. nominal Y and no effect of X 96.09 16
M4. ordinal–nominal 9.27 13
M5. ordinal–ordinal 25.06 16
M6. ordered-restricted 5.40 9c

Transitional T1. nominal–nominal 208.47 466
T2. nominal–ordinal 258.50 470
T3. nominal Y and no effect of X 307.45 472
T4. ordinal–nominal 237.39 473
T5. ordinal–ordinal 274.84 475
T6. order-restricted 209.37 468c

Random effects R1. nominal–nominal 216.65 470
(parametric) R2. nominal–ordinal 230.07 476

R3. nominal Y and no effect of X 409.36 478
R4. ordinal–nominal 221.67 476
R5. ordinal–ordinal 235.36 479
R6. order-restricted model 216.65b 470c

Random effects L1. nominal–nominal 204.79 466
(three-class mixture) L2. nominal–ordinal 211.57 472

L3. nominal Y and no effect of X 388.01 474
L4. ordinal–nominal 208.61 471
L5. ordinal–ordinal 214.85 474
L6. order-restricted model 204.79b 466c

a L-sq is the likelihood-ratio statistic, which is defined as twice the difference between the
log-likelihood of the data and the log-likelihood of the model concerned. It is sometimes referred
to as the deviance statistic.
b The fact that the L-sq of the order-restricted model has the same values as the one of the
nominal–nominal model indicates that the latter was already in agreement with the order
restrictions.
c The number of order-restricted parameters that is equated to zero is added to the degrees of
freedom.

Application to data set on marijuana use

Table 15.4 reports the test results for a number of models that were estimated
for the data in Table 15.1. As can be seen in Table 15.4, marginal, transitional
and two types of random-effects models were estimated using different types
of specifications for the response and time variables. As in the previous section,
only adjacent-category logits have been applied. Many models contained a
time–gender interaction term. But as in none of these models the interaction
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effects were significant, they are not reported here. Obviously, the development
of boys and girls over time with respect to marijuana use is the same according
to this data set. In the transitional models, we conditioned on the state at the
first occasion, which means that no logit restrictions were specified for the
response at the first time point. The random-effects models are parametric and
three-class mixture models with a random intercept: no more than three latent
classes were needed in the non-parametric models and the random time effect
was not significant.3

The test results show that in the marginal model and the two types of random-
effects models, there is no problem if the response variable is treated as ordinal:
the difference in L-sq between the ordinal–nominal and nominal–nominal spec-
ification is small given the difference in degrees of freedom. In the transitional
model, this is somewhat more problematic. In each of the models, there is clear
evidence for a time effect since the models without a time effect have much
higher L-sq values than the models with a time effect, given the differences
in degrees of freedom.4 Although the ordinal (linear trend) specification cap-
tures the most important part of the time dependence, this specification is only
satisfactory in the three-class mixture model.

In order to give an impression of the differences in parameter estimates
between the four longitudinal data approaches, we present the parameters
obtained for the ordinal–ordinal specification in Table 15.5. As can be seen,
the signs of the time and gender effects are the same in each of approaches:
marijuana use increases over time and males are more likely to use marijuana
than females. The time effects are significant in each of the models. The esti-
mates for the gender effects are on the borderline of significance in all models,
except for the transitional model, in which it is clearly significant. A well-known
phenomenon that can also be observed in this application is that effect sizes are
generally larger in random-effects than in marginal models. The autocorrelation
term in the transitional model shows that there is a strong dependence between
responses at consecutive time points. The variance of random intercept shows
that there are large differences in marijuana use among children.

3 The non-parametric random-effects models were estimated with the Latent GOLD (Vermunt
and Magidson, 2000; www.latentclass.com), which is a very user-friendly Windows pro-
gram for latent class analysis. The other models were estimated with LEM (Vermunt, 1997;
www.uvt.nl/mto), a general program for categorical data analysis. There are several software
packages available for the estimation of parametric random-effects model for ordinal variables.

4 The overall goodness of fit of most models is very good. The number of degrees of freedom
is usually larger than the value of the likelihood-ratio statistic L-sq. The number of degrees of
freedom equals the number of independent cells in the table that is analyzed, minus the number
of parameters to be estimates plus the number of constraints that are imposed.
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Table 15.5 Parameter estimates for the ordinal–ordinal models

Modela Auto correlation Varianceb Time Gender

Marginal 0.28 0.28
Transitional 1.27 0.40 0.33
Random effects

(parametric)
4.17 0.69 0.60

Random effects
(three-class mixture)

3.37/1.44 0.68 0.39

a Standard errors are obtained by computing the observed information matrix, the
matrix of second-order derivates of the log-likelihood function towards all parameters.
The square root of diagonal elements of the inverse of this matrix contains the estimated
standard errors.
b The three-class mixture model contains two variance terms, one for the log odds
between categories 1 and 2 and one for the log odds between categories 2 and 3.

Special issues

In Section 15.1, it was mentioned that longitudinal data analysis methods should
be able to deal with three main problems: unobserved heterogeneity, measure-
ment error and incomplete responses. The issue of unobserved heterogeneity
was already addressed above within the context of random-effects modelling.

Longitudinal data is often incomplete. When using ML estimation it is always
possible to use cases with missing data on some of the occasions in the anal-
ysis. The assumption generally made is that the missing data are missing at
random (MAR). ML under missing at random is straightforward in transitional
and random-effects models since only the observed time points contribute to
the likelihood function. Although in marginal models things are bit more com-
plicated, the missing data problem can be dealt with, for example, by ML
estimation using an expectation maximization (EM) algorithm.

Another serious problem in longitudinal data analysis, especially in the tran-
sitional modelling approach, is measurement error in the response variable.
As a result of measurement error in the response variable, the number of
observed transitions will be much larger than the true number of transitions,
a phenomenon that has the highest impact for the smallest response category
(Hagenaars, 1990; Bassi et al., 2000). Another effect of measurement error
in the dependent or the independent variable is that covariate effects may be
biased. Measurement error can easily be taken into account when using a tran-
sitional approach. The transition model is then specified for the true unobserved
states �t, which are connected to observed stated Yt by means of probabilities
P(Yt |�t). This yields a model that is usually referred to as hidden Markov,
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latent class Markov, or latent transition model (Langeheine and Van de Pol,
1994; Vermunt, 1997).

The latent Markov model can also be used to deal with multiple response
variables. Each of the response variables will then be linked to the latent states
by a set of conditional probabilities P(Ytp |�t), where Ytp denotes response
variable p at time point t. With multiple response variables, it is also possible to
specify random-effects models in which measurement error is taken into account
(Vermunt, 2003). Also the marginal modelling approach could be extended to
deal with measurement error in the response variable.

Essentially, the introduction of (partially) unobserved or latent variables is a
powerful means to overcome many of the most important problems and com-
plexities in longitudinal analysis. Incorporated into one of the basic approaches
towards longitudinal analysis and in combination with flexible kinds of ordinal
restrictions to take the ordered nature of the categories into account, it provides
the developmental researcher with excellent tools for answering the relevant
research questions. And maybe the best news for the researcher is: many easy-
to-use computer programs are available to carry out the job.

REFERENCES

Agresti, A. (2002). Categorical Data Analysis. New York: John Wiley.
Bassi, F., Hagenaars, J. A., Croon, M. A. and Vermunt, J. K. (2000). Estimating true

changes when categorical panel data are affected by uncorrelated and correlated
errors. Sociological Methods and Research, 29, 230–68.

Bergsma, W. (1997). Marginal Models for Categorical Data. Tilburg, The Netherlands:
Tilburg University Press.

Clogg, C. C. and Shihadeh, E. S. (1994). Statistical Models for Ordinal Data. Thousand
Oaks, CA: Sage.

Croon, M., Bergsma, W. and Hagenaars, J. A. (2000). Analyzing change in discrete
variables by generalized log-linear models. Sociological Methods and Research,
29, 195–229.

Dardanoni, V. and Forcina, A. (1998). A unified approach to likelihood inference or
stochastic orderings in a nonparametric context. Journal of the American Statistical
Association, 93, 1112–23.

Diggle, P. J., Liang, K. Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford,
UK: Clarendon Press.

Elliot, D. S., Huizinga, D. and Menard, S. (1989). Multiple Problem Youth: Delinquence,
Substance Use and Mental Health Problems. New York: Springer-Verlag.

Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Gener-
alized Linear Models. New York: Springer-Verlag.

Galindo-Garre, F., Vermunt, J. K. and Croon, M. A. (2002). Likelihood-ratio tests for
order-restricted log-linear models: a comparison of asymptotic and bootstrap meth-
ods. Metodologı́a de las Ciencias del Comportamiento, 4, 325–37.



Ordinal longitudinal data analysis 393

Goodman, L. A. (1979). Simple models for the analysis of association in cross-
classifications saving ordered categories. Journal of the American Statistical Asso-
ciation, 74, 537–52.

Hagenaars, J. A. (1990). Categorical Longitudinal Data: Log-Linear Analysis of Panel,
Trend and Cohort Data. London: Sage.

(2002). Directed loglinear modeling with latent variables: causal models for categori-
cal data with nonsystematic and systematic measurement errors. In Applied Latent
Class Analysis, eds. J. A. Hagenaars and A. L. McCutcheon, pp. 234–86. New
York: Cambridge University Press.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixture distribu-
tion. Journal of the American Statistical Association, 73, 805–11.

Lang, J. B. and Agresti, A. (1994). Simultaneously modeling joint and marginal distri-
butions of multivariate categorical responses. Journal of the American Statistical
Association, 89, 625–32.

Lang, J. B., McDonald, J. W. and Smith, P. W. F. (1999). Association modeling of
multivariate categorical responses: a maximum likelihood approach. Journal of the
American Statistical Association, 94, 1161–71.

Langeheine, R. and Van de Pol, F. (1994). Discrete time mixed Markov latent class
models. In Analyzing Social and Political Change: A Casebook of Methods, eds.
A. Dale and R. B. Davies, pp. 171–97. London: Sage.

Vermunt, J. K. (1997). Log-Linear Models for Event Histories. Thousand Oaks, CA:
Sage.

(1999). A general non-parametric approach to the analysis of ordinal categorical data.
Sociological Methodology, 29, 197–221.

(2002). A general latent class approach to unobserved heterogeneity in the analysis
of event history data. In Applied Latent Class Analysis, eds. J. A. Hagenaars and
A. L. McCutcheon, pp. 383–407. New York: Cambridge University Press.

(2003). Multilevel latent class models. Sociological Methodology, 33.
Vermunt, J. K. and Magidson, J. (2000). Latent GOLD User’s guide. Belmont, MA:

Statistical Innovations Inc.
Vermunt, J. K. and Van Dijk, L. (2001). A nonparametric random-coefficients approach:

the latent class regression model. Multilevel Modelling Newsletter, 13, 6–13.
Vermunt, J. K., Rodrigo, M. F. and Ato-Garcia, M. (2001). Modeling joint and marginal

distributions in the analysis of categorical panel data. Sociological Methods and
Research, 30, 170–96.


