

Tilburg University

Exploring a multi-faceted framework for SOC

Leune, C.J.; van den Heuvel, W.J.A.M.; Papazoglou, M.

Published in:
Proceedings of the 14th International Workshop on Research Issues on Data Engineering

Publication date:
2004

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Leune, C. J., van den Heuvel, W. J. A. M., & Papazoglou, M. (2004). Exploring a multi-faceted framework for
SOC: How to develop secure web-service interactions? (An extended abstract). In Proceedings of the 14th
International Workshop on Research Issues on Data Engineering: Web Services for E-Commerce and E-
Government Applications (pp. 56-61). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/6c6c92d8-d890-49a0-960d-dfc8d9a1f705

Exploring a Multi-Faceted Framework for SOC: How to develop secure
web-service interactions?

(An extended abstract)

Kees Leune Willem-Jan van den Heuvel Mike Papazoglou
Tilburg University, Infolab,

The Netherlands

Abstract

Service Oriented Computing (SOC) demands an infras-
tructure that seamlessly integrates all connection points be-
tween business processes, services and associated support
resources. Parts of the infrastructure may be supported by
existing standards such as XACML and BPEL. However, an
integral and sound framework that takes into account all
these issues and serves as the formal underpinning of this
infrastructure is currently lacking. A multi-facetted frame-
work to enforce minimal levels of security not only at the
level of the network (e.g., using encryption), but also of
business processes, is of paramount importance.

To address this challenge, we explore an Event-driven
Framework for Service Oriented Computing (EFSOC) that
is organized in four tiers: the event tier, the business process
tier, the resource tier, and the access control tier. The event
tier encompasses definitions of business-related events, and
supports their propagation throughout the business process
flow. The business process tier specifies the dynamic inter-
actions between business processes and services. The re-
source tier describes how service invocations interact with
organizational resources, while the access control tier de-
fines access roles that are allowed to invoke certain ser-
vices.

1. Introduction

The manifestation of the Service-Oriented Computing
(SOC) paradigm for Web applications is conducted on the
basis of web services. Web service standards such as SOAP
(Simple Object Access Protocol) [4], WSDL (Web Ser-
vice Description Language) [5] and UDDI (Universal De-
scription, Discovery and Integration protocol) [1] provide
the foundations for building a service-oriented architecture
(SOA). The SOA treats software resources as services avail-
able on a network. To achieve this, SOA relies on univer-

sally accepted standards to provide broad interoperability
among different platforms, and loose coupling to separate
the participants in distributed computing interactions, so
that modifying the interface of one participant in the ex-
change does not affect the other. The combination of these
two core principles means that enterprises can implement
web services without having any knowledge of the con-
sumers of those services, and vice versa.

Large scale web service deployments across multiple ap-
plications and services requires appropriate security, and
particularly access control mechanisms are necessary to en-
sure that while a complex business process flows from one
activity to the next, only authorized actors can invoke the
supporting web-services. This requires deploying large-
scale and reliable, Service Oriented Architectures based on
the right blend of standards based technologies. This chal-
lenge is only partially tackled by current standards such as
WS-Security, SAML, and XACML that are rather opaque
and focus at an isolated part of the overall problem do-
main only, e.g., web service representation, or web service
composition or web-service security. In particular, “tra-
ditional” security enforcement standards typically assume
that roles can be structured hierarchically. However, this
assumption is not any longer realistic in the SOA as it needs
event-driven integration of connection points between busi-
ness processes, services and associated support resources,
i.e., back-end systems. On the other hand, emerging web-
service standards tend to provide rather low-level, technical
solutions while neglecting business semantics that are hard-
wired in business processes.

To address the challenge of developing secure interac-
tions between web-services of various collaborating enter-
prises, a multi-facetted framework is required. This “uni-
fied” framework should be capable of associating external
events, e.g., a customer (service requester) requesting to
check the availability of a certain type of rental car, with
the business process and services with which this event is
associated as well as the resources that are invoked by these

services. In this way an organization is in a position to de-
termine which services and business process are being han-
dled by which actors at any point in time and what resources
are affected, making it easier to safely adapt business pro-
cesses in response to business changes.

In the remainder of this paper, we develop and ex-
plore such a unified framework that is entitled the Event
driven Framework for Service Oriented Computing (EF-
SOC) framework.

2. Related Work

As the framework that is presented herein is multi-
facetted, this research draws upon results from various (vir-
tually) independent domains.

Firstly, this research framework builds on top of the main
manifestation of service flow languages: BPEL4WS (also
known as BPEL) [2] is an standardization initiative that
aims to define a notation for specifying business process
behavior based on web services. The initiative has pro-
duced an XML specification for describing business pro-
tocols. Business protocols may be captured by specify-
ing the service flow and sequence of service invocations.
BPEL4WS assumes that all message exchange takes place
in a point-to-point fashion. In other words, any business
relation takes place between exactly two parties. The re-
lationship between a service and a business process is de-
scribed in terms of partner link types, which describe the
roles that each partner may play in a conversation. This
approach allows BPEL4WS to describe cross-business in-
teraction as a large number of point-to-point message ex-
changes, without immediately specifying which role each
business partner plays. A comprehensive overview of the
main service composition languages, including a compari-
son, can be found in [13].

Although BPEL4WS includes a facility for exchanging
messages between business partners, it assumes security to
be an extension of the approach. In particular, security is en-
forced by supplementary standards, e.g., WS-Security and
WS-SecureConversation. These standards help to secure
message exchanges between parties just above the transport
level (SSL), and are typically build on top of SOAP as en-
cryption or signature headers.

SAML [8] is another initiative that stems from the SOC
domain. In contrast to WS-Security however, this language
is not defined in conjunction with WSDL or BPEL. In a nut-
shell, SAML is a security assertion markup language which
may be used to safeguard message exchange by allowing
trading partners to share authentication and authorization
information. SAML conveys assertions that may be vali-
dated by authorities. In addition to, for example, an au-
thorization decision assertion, SAML offers a framework
to define custom assertion types. Similar to WS-Security

however, SAML offers security at the level of message ex-
change, not at the level of business processes.

XACML [9] is a related initiative that allows security
policies to be expressed in a common, XML-based, lan-
guage. Using XACML, a common way to describe how
authorization requests will be treated is available. XACML
defines policies in terms of rules and combining algorithms.
The XACML initiative is especially relevant to EFSOC as it
is a candidate for implementing a part of the access control
tier.

In contrast to the above security standards, the EFSOC
framework security approach explicitly relates service in-
vocations in a business process context to event types. This
implies that security is not implemented as a set of SOAP
extensions, but rather specified at the level of business
events, processes and resources. However, we believe that
the above standards could be used in conjunction with EF-
SOC to provide security at the ”message-level”. Moreover,
the framework will offer a rich set of predefined queries to
dynamically infer facts about security related issues. This
feature is essential in the SOC-style eco-systems in which
business processes operate in highly volatile environments
and may change their resources from one moment to the
next, e.g., due to load balancing, pricing or trust reasons.
For example business process BP1 depends at moment X
on two web-services from provider X, and the next, on ser-
vices of provider A and B.

3. The EFSOC Framework

The EFSOC framework provides four tiers for support-
ing event-driven access control rules for invoking ports of
business processes. In this way, the framework integrates
points of access to services, which are enacted using roles,
resources and events. The main constituents of each tier,
and their cross-correlations are depicted in Figure-1.

3.1. Event Tier

Typically, enterprise business processes and workflows
communicate with each other by continuously generating
and responding to events. The Event Tier in the EFSOC
meta-model aims at supporting such kind of complex events
partly based on findings which are borrowed from the do-
main of Complex Event Processing (CEP) [12]. Events can
be simply perceived as occurrences that happen over time,
and independently from each other. Events represent a spe-
cific capability that is carried out by a service, and are ca-
pable of carrying information themselves, e.g., a request
product event can be parameterized with a product identi-
fier, date and quantity.

The Event Tier in EFSOC comprises two main compo-
nents: subjects and events. A subject can be either a re-

2

Business process Tier
Resource Tier

Access/Control TierEvent Tier

event generator even t m onitor

system event business event

resource

actor

VBOS

business object

0 ..*0 ..*

role assignment role session

role type

event

subject

0..*

1..*

0..*

1..*
0..*

0..*

0..*

0..*

initiates

business service

system service

message port
0..*

0..*

0..*

0..*

business process

1..*

1..*

1..*

1..*

initiates

service

0..*0..*

port_type

servi ce assignmen t

Figure 1. The EFSOC Framework

source or a service, and is capable of playing a certain role
in the context of a business process. Subjects thus need not
be necessarily human actors, but also can be implemented
using an (autonomous) web-service. Events are generated
and monitored by subjects and are typically part of an event
chain. It should be noted that the internal structure of events
(e.g., parameters, ECA rules) are for now left outside the
scope of this article; only the basic framework is stipulated
here.

3.2. The Business Process Tier

Our framework assumes that the coordination of web-
service invocations are driven by business processes. A
business process describes the flow of tasks that needs to
be executed from a client request until the delivery of the
required product or service, the information that is needed
during each step, and the allocation of resources.

The business processes tier provides the (dynamic) allo-
cation of services to specific tasks in the business process.
This is achieved by defining a mapping operator between
services and business processes. These mappings are named
service assignments. Service assignments are persistent and
may be queried run-time by a service flow engine to coor-
dinate service invocation in the context of a particular busi-
ness process.

To describe the features and behavior of a service we use
WSDL, while the business process flow specifies the ac-
tual execution order of services described by WSDL inter-
faces. As observed before, several standards are proposed
to specify and enact service process flows, e.g., the Business
Process Execution Language (BPEL) [7], the Web Service
Choreography Interface (WSCI) standard [6], and the Busi-
ness Process Management Language (BPML)[3].

3.3. The Resource Tier

The Business Process Tier represents the abstract behav-
ior of business processes in terms of service interactions,
whereas the resource tier adopts a human resource- and im-
plementation resource centric view of the services. The re-
source tier distinguishes between two kinds of resources;
actors are active entities in an organization, such as employ-
ees, processes or agents and business objects (BOs) that are
objects with well-defined business semantics, such as in-
voices, customers and purchase orders.

Actors are autonomous entities, e.g., human or e-agents,
and reflect another alternative for enacting web-services.
For example, the actor John Doe can implement a business
service ”Claim Management” by giving advice about insur-
ances such as whether or not to buy damage liability cover-
age as a European customer in the US.

Access to a resource is provided subsidiary through a vir-
tual business object (VBO). The purpose of VBOs is to hide
the internal implementations of a resource in terms of enter-
prise back-end services. For instance, business objects are
exposed to services via their interface, and thus VBOs act
as technology neutral wrappers of resources such as existing
information systems of legacy applications.

Regular services may not interact directly with a re-
source. For example, a VBO supports connectivity to back-
end systems, provides aggregation and transformation of
data, and allows for the dynamic presentation of informa-
tion to authorized end-users.

As with any other service, the interface of a virtual busi-
ness object service may be described using WSDL. A com-
prehensive methodology for mapping virtual object services
to services has been scrutinized in [15].

3.4. The Access Control Tier

To reduce the risk of interacting with potentially un-
known service providers, any approach that focusses on
service integration in business processes must have strong
security measures to ensure that all communications are
adequately safeguarded against unauthorized disclosure or
manipulation. Not only must the communication be safe,
once messages have been safely relayed from the service
provider to the service consumer (or vice versa), there must
also be an adequate access control system in place that en-
forces that each service provider can only interact with busi-
ness processes in exactly the way it needs to do to deliver
its service.

The access control tier should be capable of taking into
account several categories of interactions between services
in an organization, including:

• subject to service: one-way interaction. Subjects are

3

active entities that are capable of producing events
which may start processes of one or more services

• two way interaction: This category of interaction is
also referred to as conversational interaction as it com-
prises pairs of message exchanges between services
and or subjects

The Access Control Tier deals with allocating roles to
subjects. A role factors cohesive behavior of subjects into
some type, e.g., the subjects John Doe and Mary Doolit-
tle both are specialized in advising clients about car insur-
ances. From an implementation perspective, roles are used
to prevent instances of web-service implementations (e.g,
Enterprise Javabeans) to switch between classes. The link-
age between a subject and a role type is typified using a role
assignment. In role-based access control, permissions are
associated with roles and roles are assigned to users [14].

Here, we refine the definition of a subject to make it ex-
plicit that any actor, service or business object is considered
as a subject. Each subject may be assigned to one or more
role types. A role type represents the function that a certain
element fulfills in completing a business process.

Role types can be organized into role hierarchies, that
are capable of indicate that one role is contained in another
role. It has been proven that this containment relationship
is irreflexive, a-symmetric and transitive [10]. Role type
hierarchies play are an important means to substitute role
instances and support the administration of access control
privileges and constraints. Using role hierarchies, a role
can be refined into another role that possesses stricter ac-
cess control properties.

In the above, we stated that all events must originate
from an authorized event generator and may only be sent
to authorized event monitors. As role types can be assigned
to subjects, they are a pivotal concept in our approach. A
role assignment as such does not entitle the subject to any
privileges. Instead, a role assignment must be explicitly ac-
tivated, which results in a role session. Each role session is
associated with exactly one role assignment.

A role session encompasses a set of access control poli-
cies that must be satisfied before a role, engaged in a par-
ticular role session, is allowed to invoke a capability of a
service.

When the access control tier receives an event, it will
evaluate an additional algorithm which will determine
whether or not the event will be relayed to any possible
event monitors. When the access control tier determines
whether or not permission should be granted the event tier
will receive the decision in the form of an authorization re-
sponse event. Based on the contents of the authorization
event, the access control tier will either relay the event, or
prevent it from propagating further.

Figure 2. Infrastructure and Operational Ser-
vices for EFSOC

4. Run-time Enactment of event-driven and
service-based process with EFSOC

The above introduced framework provides the structural
foundation for enabling even-driven business processes that
are executed by authorized service resources.

In order to facilitate the run-time enactment of event-
driven processes, the EFSOC framework basically utilizes
two categories of services: infrastructure (system) services
and operational (event) services. Thus, EFSOC is defined
recursively as a conglomerate of composite infrastructure
and operational services in itself. We have depicted the ar-
chitecture of the supporting infrastructure and operational
services in figure 2.

4.1. Infrastructure services

To implement the runtime enactment of the framework,
we are developing a number of system services. Just like
business services, system services are services, however,
they are provided by the EFSOC framework instead of de-
signed by the user. The EFSOC framework defines four
system services: an event service that provides operations
for sending, monitoring and relaying events, a workflow
service which provides service invocation coordination and
session management, an integration gateway service that
servifies resources, and lastly, an access control service.
The access control service is used primarily by the event
service and the workflow service to establish whether or
not events are allowed to be monitored or generated by sub-
jects. The integration gateway provides a suite of wrap-
ping capabilities, e.g., semantic wrappers and converters, to
access resources such as legacy systems, and hereby gives
support for building virtual business objects. For these pur-

4

<wsdl:interface name="accessControlInterface">
<wsdl:operation

name="requestAuthorization"
pattern="http://www.w3.org/2003/06/wsdl/in-out">

</wsdl:operation>
<wsdl:operation name="newRoleType"

pattern="http://www.w3.org/2003/06/wsdl/in-only">
</wsdl:operation>
<wsdl:operation name="newSubject"

pattern="http://www.w3.org/2003/06/wsdl/in-only">
</wsdl:operation>
<wsdl:operation name="newRoleAssignment"

pattern="http://www.w3.org/2003/06/wsdl/in-only">
</wsdl:operation>
<wsdl:operation name="addAuthorizedEventMonitor"

pattern="http://www.w3.org/2003/06/wsdl/in-only">
</wsdl:operation>
<wsdl:operation name="addAuthorizedEventGenerator"

pattern="http://www.w3.org/2003/06/wsdl/in-only">
</wsdl:operation>

</wsdl:interface>

Figure 3. WSDL excerpt of the Access Control
Infrastructure Service

poses, technology such as XSLT and semantic mappings are
adopted by this component.

All system services are implemented as web services and
WSDL descriptions are available [11] 1.

Figure 3 illustrates partially the interface description of
the access control service, which provides a number of basic
operations to the event service. For example, when a subject
attempts to generate an event, the event service will invoke
the requestAuthorization operation of the accessControlIn-
terface. The operation will decide, based on a number of
rules that must be evalatued, whether or not this subject
is authorized to generate this event. Once the accessCon-
trolInterface has returned the decision, which is sent back
to the event service in the form of a new event, the event
will be relayed to the appropriate event monitors.

4.2. Operational Services

Operational services are constructed on top of the infras-
tructure services (see the event interfaces which are con-
nected to the four components of the architecture), and
serves to instantiate the types of the EFSOC metamodel,
provide run-time support for event-driven processes, and,
query the framework.

Event-driven processing may lead to large amounts of
different events being generated and monitored. To address
this issue, we have chosen to organize all event types in
an event hierarchy as shown in figure 4. The total event
space can be divided in three event categories: 1) definition
event types, 2) execution event types and 3) query event
types. Definition events are events that modify the existence

1WSDL definitions can be found at:
http://infolab.uvt.nl/people/kees/efsoc/systemservices/wsdl

EventType

DefinitionEventType ExecutionEventType QueryEventType

NewActorEvent
NewBusinessObjectEvent
NewRoleTypeEvent
...
RemoveActorEvent
RemoveBusinessObjectEvent
RemoveRoleTypeEvent
...
ModifyActorEvent
ModifyBusinessObjectEvent
ModifyRoleTypeEvent
...

AssignRoleEvent
RevokeRoleEvent
AssignServiceEvent
RevokeServiceEvent
InvokeServiceEvent
TerminateServiceEvent
...

QueryServiceAssignmentEvent
QueryBusinessProcessEvent
QueryActorServicesEvent
...

Figure 4. The (partial) Event Taxonomy

of model elements. For example, creating a new role type
will trigger a NewRoleTypeEvent, or removing an actor
will fire off a RemoveActorEvent. Execution events are
events that represent changes in run-time properties of the
model, such as service invocations, role assignments, etc.
Query events can be used to inspect the state of the system.
For example, to find out which actors are participating in a
particular business process, a QueryBusinessProcessEvent
will be generated.

The event taxonomy has been mapped to the infrastruc-
ture services. In particular, the definition and execution
event types are supported by the Work Flow Service, ex-
cluding for those which are related to the access/control
tier in EFSOC. The conformance of the result of execution
event types is checked upon the existing definitions (speci-
fied using the definition events) using advanced query capa-
bilities in the framework. These query facilities are imple-
mented in the QueryEventTypes.

5. Summary and conclusions

SOC requires instantaneous process flows throughout
the enterprise to ensure that business events are propagated
along the chain of connections to the appropriate and autho-
rized handling services and resources. Enterprises increas-
ingly expose their internal business processes to external
business events. Dealing with large numbers of incoming
and outgoing events implies that organizations must keep
control of both their internal and cross-enterprise business
processes.

In this article, we have explored a four-tiered framework
and some infrastructural services that could serve as the ba-
sis for securing interactions between trading partners. In
contrast to existing web-service standards, this framework
starts from the business processes and allows security of
peer-to-peer interactions between trading partners. Actu-
ally, as argued in the article, this framework can be con-
structed on top of existing security standards such as SAML
that merely provide (SOAP) message level security. In ad-
dition, and perhaps more importantly, the framework offers

5

a set of queries to dynamically infer new facts, e.g., web-
service X can deduce whether an incoming request to in-
voke one of its port is authorized or not. This feature is of
paramount importance as enterprises will have to operate
in increasingly volatile business environments, with chang-
ing trading partners between one process execution and the
next.

We realize that the current version of the EFSOC frame-
work only provides the most basic functionality and con-
structs to specify and enact event-driven business processes
for Service Oriented Computing. This framework encom-
passes four complementary tiers: the Event Tier, the Busi-
ness Process Tier, the Resource Tier, and lastly, the Access
Control Tier. This framework is capable of capturing exter-
nal events and distribute them to associated internal busi-
ness processes and services according to a predefined ac-
cess/control scheme. There are a number of additional fea-
tures, which would further enhance the usability and expres-
sive power of the framework.

These include the following items:

• Extension of the EFSOC framework.

The metamodel that is presented herein, typifies the
basic constituents for complex event processing in
SOC. We intend to elaborate both the metamodel and
the underlying formalization so that they include a type
system, which can more effictively deal with recur-
sively defined events and business processes.

• Development of Unified EFSOC Language.

We plan to work on a (formalized) unified language
that combines and extends existing standards like
BPEL, SAML and WSDL, and is based on a sound
and concise formal metamodel.

• Query Language and Repository of Predefined
Queries.

We intend to design a query language and a repository
system on top of the EFSOC language. In addition, we
will predefine a rich set of queries to infer facts about
the EFSOC framework.

An experimental system for enacting event-driven busi-
ness processes within the EFSOC framework is under con-
struction. This system is architected according to the orga-
nization of infrastructure and operational services that was
presented in section 4.

References

[1] Universal Description, Discovery, and Integration (UDDI).
Technical report. http://www.uddi.org.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business process execution lan-
guage. Specification Version 1.1, BEA Systems, Interna-
tion Business Machines Corporation, Microsoft Corpora-
tion, SAP AG, Siebel Systems, May 2003.

[3] A. Arkin. Business process modeling language. Last call
draft report, BPMI.Org, November 2002.

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Sim-
ple Object Access Protocol (SOAP) 1.1. W3c note, W3C,
May 2000. http://www.w3.org/TR/SOAP/.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Lan-
guage (WSDL) 1.1. W3c note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[6] A. A. et al. Web service choreography interface 1.0. Techni-
cal report, BEA Systems, Intalio, SAP, Sun Microsystems,
2002. http://dev2dev.bea.com/techtrack/wsci.jsp (visited 2-
7-2003).

[7] F. C. et al. Business process execution lan-
guage for web-services, version 1.1. Technical re-
port, BEA Systems, IBM, Microsoft, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel
(visited: 28-6-2003).

[8] S. Farell, I. Reid, H. Lockhart, D. Orchard, K. Sankar,
C. Adams, T. Moses, N. Edwards, J. Pato, B. Blakley, M. Er-
dos, S. Cantor, R. B. Morgan, M. Chanliau, C. McLaren,
C. Knouse, S. Godik, D. Platt, J. Moreh, J. Hodges, and
P. Hallam-Baker. Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) V1.1. Com-
mittee specification, OASIS, July 2003. http://www.oasis-
open.org/committees/documents.php?wg abbrev=security.

[9] S. Godik and T. M. (editors). eXtensible Access Control
Markup Language (XACML). OASIS Standard, OASIS,
February 2003.

[10] W. Jansen. Inheritance properties of role hierarchies. In 21st
National Information Systems Security Conference, Crystal
City, Virginia, October 6-9 1998.

[11] K. Leune. Efsoc: Infrastructure services and prototype im-
plementation. Infolab technical report, Tilburg University,
October 2003.

[12] D. Luckham. The Power of Events. An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Press, April 2002.

[13] C. Pelz. web services orchestration: a review of emerg-
ing technologies, tools, and standards. Technical report, HP,
January 2003.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, February
1996.

[15] W.-J. van den Heuvel. Integrating Modern Business Appli-
cations with Objectified Legacy Systems. PhD thesis, Tilburg
University, Infolab, 2002.

6

