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Customized Sequential Designs for Random Simulation Experiments:   

Kriging Metamodeling and Bootstrapping 

 

Wim C.M. van Beers and Jack P.C. Kleijnen 
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Abstract 

 

This paper proposes a novel method to select an experimental design for interpolation in 

random simulation. (Though the paper focuses on Kriging, this method may also apply to 

other types of metamodels such as linear regression models.) Assuming that simulation 

requires much computer time, it is important to select a design with a small number of 

observations (or simulation runs). The proposed method is therefore sequential. Its novelty is 

that it accounts for the specific input/output behavior (or response function) of the particular 

simulation at hand; i.e., the method is customized or application-driven. A tool for this 

customization is bootstrapping, which enables the estimation of the variances of predictions 

for inputs not yet simulated. The new method is tested through the classic M/M/1 queueing 

simulation. For this simulation the novel design indeed gives better results than a Latin 

Hypercube Sampling (LHS) with a prefixed sample of the same size. 

 

1. Introduction 
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In this paper, we focus on expensive simulations; that is, we assume that a single simulation 

run takes ‘much’ computer time. Consequently, ‘interpolation’ is needed; i.e., from the 

simulated input/output (I/O) data, the outputs are predicted for input combinations not yet 

simulated. We devise a method that is meant to minimize the number of simulation runs for 

such interpolation. We tailor our design of experiments (DOE) to the actual simulation; that 

is, we do not derive a generic design such as a classic design (for example, a 2k – p design) or a 

LHS design. The differences between customized designs and generic designs are explained 

by Kleijnen and Van Beers (2004), as follows. 

A metamodel is a model of the I/O function (or ‘response function’) implied by the 

underlying simulation model. We denote the metamodel by )(xY  where x  denotes the k-

dimensional vector of the k inputs (factors) so x  = )’,,,,( 1 kj xxx �� . Classic DOE assumes 

a simple metamodel. For example, designs of resolution III (including certain 2k – p designs) 

assume a first-order polynomial I/O function. Composite designs (CCD) assume a second-

order polynomial. These designs are discussed for physical experiments in (for example) the 

well-known textbook Box, Hunter, and Hunter  (1978) and the recent textbook Myers and 

Montgomery (2002); for simulation experiments we refer to Kleijnen (1987). 

LHS (much applied in Kriging, described below) assumes that an adequate metamodel 

is more complicated than a low-order polynomial. LHS, however, does not assume a specific 

metamodel. Instead, LHS focuses on the design space formed by the k–dimensional unit cube, 

defined by 10 ≤≤ jx  (j = 1, …, k) after standardizing (scaling) the inputs. LHS is one of the 

space filling designs: LHS samples that space according to some prior distribution for the 

inputs, such as independent uniform distributions on [0, 1]; see McKay, Beckman, and 

Conover (1979, 2000), and also Kleijnen et al. (2004), Koehler and Owen (1996), and 

Santner, Williams, and Notz (2003). 
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Unlike LHS, we explicitly account for the I/O function. Unlike classic DOE, we 

assume that a low-order polynomial (estimated through regression analysis) gives an 

inadequate approximation of the I/O function. We therefore estimate the uncertainty of 

predicted outputs at unobserved input combinations (these combinations are also called 

scenarios, design points, combinations of factor levels or simulation inputs). To estimate the 

uncertainty of these predictions, we use bootstrapping; i.e., we resample the outputs for each 

scenario already simulated (for bootstrapping in general see the classic textbook, Efron and 

Tibshirani 1993; for bootstrapping in the validation of regression metamodels in simulation 

see Kleijnen and Deflandre 2004). 

We make our procedure sequential for the following two reasons. 

1. Sequential statistical procedures are known to be more ‘efficient’; that is, they require 

fewer observations than fixed-sample (one-shot) procedures; see, for example, the handbook 

by Ghosh and Sen (1991) and the recent article by Park et al. (2002). 

2. Simulation experiments proceed sequentially (unless parallel computers are used; our 

procedure is well suited for parallel computers). 

The literature on deterministic simulation shows several designs that—like ours—

account for the specific simulation’s I/O function, and are sequential. For example, Crary 

(2002) discusses G-optimal and I-optimal designs, which the DOE literature defines as 

follows. G-optimal designs minimize the maximum Mean Squared Error (MSE) of the 

predicted output; I-optimal or Integrated MSE (IMSE) designs minimize the average MSE 

(obviously, the MSE reduces to the variance if the predictor is unbiased; see (5) and (6) 

below). Williams, Santner, and Notz (2000, 2002) use a Bayesian approach to derive 

sequential IMSE designs. Sasena, Papalambros, and Govaerts (2002) derive sequential 

designs for the optimisation of deterministic simulation models. Kleijnen and Van Beers 

(2004) derive customized sequential designs for deterministic simulations. We, however, 
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focus on DOE for random simulations, and we seem to be the first to apply bootstrapping for 

this problem.  

We shall see that our designs concentrate on input combinations in sub-areas that have 

more interesting I/O behavior. In our example, we spend most of our computer simulation 

time on the challenging ‘explosive’ part of the metamodel that estimates the mean steady-

state waiting time for various traffic rates of single-server queueing systems with Markovian 

(Poisson) arrival and service times (M/M/1 systems). (The reader may take a peek at Figure 1 

discussed in section 5.) In this example, we compare our customized sequential designs with 

classic fixed LHS; our design gives better predictions. 

We summarize our paper as follows. As a metamodel for interpolation, we use 

Kriging instead of linear or nonlinear regression. To estimate the parameters of this 

metamodel, we need a criterion for selecting a design; we do not use D-optimality or a related 

criterion used in classic DOE for regression metamodels, but we use a prediction error 

criterion, traditional in DOE for Kriging. To sequentially select candidate input combinations 

for actual simulation, we apply distribution-free bootstrapping. To validate our approach, we 

simulate the classic M/M/1 model. 

The remainder of this paper is organized as follows. Section 2 summarizes the basics 

of Kriging. Section 3 summarizes DOE and Kriging. Section 4 explains our method, which 

uses bootstrapping—to estimate the variances of the Kriging predictions for candidate inputs 

not yet simulated—and sequentially selects as the next input to be simulated the one with the 

largest bootstrap variance. Section 5 demonstrates the procedure through M/M/1 simulations, 

which show that our method gives better results than LHS with a prefixed sample size. 

Section 6 present conclusions and topics for further research. 

 

2. Kriging basics 
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Kriging (named after the South-African mining engineer Krige) is an interpolation method 

that predicts unknown values of a random function or random process; see Journel and 

Huijbregts (1978) and Cressie (1993)’s classic Kriging textbook on spatial (geo)statistics. 

Whereas spatial statistics considers the two-dimensional ‘location’ as the known input of this 

process, simulation considers the k –dimensional ‘scenario’ as input; see Sacks et al. (1989)’s 

classic article on the Design and Analysis of Computer Experiments (DACE)—these 

computer experiments concern deterministic simulation. Random (stochastic) simulation—

including Discrete Event Dynamic Systems (DEDS) simulations—is the topic of this paper. 

More precisely, a Kriging prediction is a weighted linear combination of all output 

values already observed. These weights depend on the distances between the new input to be 

predicted and the old inputs already observed. Kriging assumes that the closer the inputs are, 

the more positively correlated the outputs are. Mathematical formulations follow in equations 

(1) through (4). 

Nowadays, Kriging is frequently applied in deterministic simulation, which is much 

used in engineering; again see Sacks et al. (1989); for an update see Simpson et al. (2001). In 

deterministic simulation, Kriging has an important advantage over regression analysis: the 

predicted values at old inputs are exactly equal to the observed (simulated) outputs. 

In random simulation, however, this advantage disappears. Now, each scenario is 

simulated several times—with non-overlapping pseudo-random number (PRN) streams. Van 

Beers and Kleijnen (2003) show that Kriging interpolates the average output per scenario. 

These averages, however, are still random, so the fact that at simulated scenarios the Kriging 

predictions equal the averages loses its intuitive appeal. Still, Kriging may be attractive 

because it may decrease the prediction bias (and hence the MSE) at scenarios close together. 

Indeed, in the examples presented by Van Beers and Kleijnen (2003) the Kriging predictions 
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are much better than the regression predictions (regression analysis may be useful for other 

goals such as screening and validation; see Kleijnen et al. 2004). Therefore we do not further 

discuss regression analysis in this paper. 

Mathematically formulated, Kriging assumes the following metamodel: 

 

)()()( xxx δµ +=Y  with ))(,0(IID~)( 2 xx σδ    (1) 

 

where µ  is the mean of the stochastic process )(⋅Y , and )(xδ  is the additive noise, which is 

assumed independently and identically distributed (IID) with mean zero and variance )(2 xσ . 

‘Ordinary’ Kriging—to which we limit ourselves—further assumes a stationary covariance 

process for )(xY in (1); i.e., the expected values )(xµ are a constant µ  and the covariances of 

)( hx +Y and )(xY depend only on the distance (lag) ||)()(|||||| xhxh −+= . 

The Kriging predictor for the unobserved (non-simulated) input (say) 0x —denoted by 

)(ˆ
0xY —is a weighted linear combination of all the n observed outputs: 

 

Yxx ⋅=⋅= ∑
=

/

1
0 )()(ˆ

i

n

i
i YY λ     (2) 

 

with ∑ =

n

i i1
λ  = 1,  ),,( 1 ′= nλλ �  and ),,( 1 ′= nyy �Y . To choose these weights, Kriging 

derives the Best Linear Unbiased Predictor (BLUP), which minimizes the MSE of the 

predictor: 

 

( ){ } ( ){ }2

000 )(ˆ)(min)(ˆMSEmin xxx YYEY −=
λλ

.   (3) 
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Obviously, this solution depends on the output’s covariances. It can be proven that the 

optimal weights in (2) resulting from (3) are 

 

1

/

1/

1/
/ 1 −

−

−






 −+=
11

1
1      (4) 

 

with the following symbols: 

 is the vector of covariances between the outputs at the input to be predicted and at the 

already observed inputs, so = /
010 ))(,),(( nxxxx −− γγ � ; 

/)1,,1( �=1 is the vector of ones; 

 is the nn ×  matrix whose element (i, j) is the (co)variance at the already observed inputs 

)( ji xx −γ  with i, j = 1, …, n. 

We point out that the weights in (4) vary with 0x  (input to be predicted), whereas 

regression analysis uses the same estimated metamodel for all inputs x . 

We further observe that the literature on (deterministic) simulation speaks of 

covariances and corresponding correlations, whereas the geostatistics literature speaks of the 

variogram, defined as ))()(()(2 xhxh YYvar −+=γ . Since we shall use the Matlab Kriging 

toolbox DACE—made available free of charge by Lophaven, Nielsen, and Søndergaard 

(2002)—we avoid the term variogram. 

We emphasize that in practice the covariances  and  in (4) must be estimated. 

Consequently, the weights in (4) become random variables (say) ˆ . These weights make the 

Kriging predictor resulting from (2) non-linear. This characteristic is often neglected in the 

Kriging literature. In general, non-linear variables are hard to analyze—a simple computer-

intensive solution is bootstrapping; see Efron and Tibshirani (1993). 
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Ignoring the randomness of the estimated optimal weights ˆ  tends to underestimate 

the true variance of the Kriging predictor. This follows from the general formula for the 

conditional variance )var()1()|var( 2 YXY ⋅−= ρ ; see, for example, Kreyszig (1970, p. 343). 

To tackle this problem, Cressie (1993, p. 146) proposes cross-validation. Cross-validation is 

also used by Kleijnen and Van Beers (2004) for deterministic simulation. For deterministic 

simulation Den Hertog, Kleijnen, and Siem (2004) apply parametric bootstrapping—

assuming normally distributed prediction errors—and find that ignoring the randomness of 

the Kriging weights leads to serious errors. Because random simulation may have non-normal 

outputs (for example, queueing simulations have distributions with heavy right-hand tails), we 

use distribution-free bootstrapping—as we shall explain. 

 

3. DOE and Kriging 

 

By definition, an experimental design is a set of n combinations of k factor values. These 

combinations are usually bounded by ‘box’ constraints: jjj bxa ≤≤  where Rba jj ∈,  with j 

= 1, …, k. The set of all feasible combinations is called the experimental region (say) H. We 

suppose that H is a k-dimensional unit cube, after rescaling the original rectangular area (see 

the Introduction, Section 1). 

Our goal is to find the ‘best’ design for Kriging predictions within H; the Kriging 

literature proposed several criteria (see Sacks et al. 1989, p. 414). Most of these criteria are 

based on the predictor’s MSE. Most progress has been made for the IMSE (see Bates et al. 

1996):  

 

( ) xxx dYIMSE
H

)()(ˆMSE φ∫=     (5) 



 9 

 

where MSE follows from (3), and )(xφ  is a given weight function—usually assumed to be 

uniform.  

To evaluate a design, Sacks et al. (1989, p. 416) compare the predictions with the 

known output values of a test set consisting of (say) m inputs. The IMSE in (5) can then be 

estimated by the Empirical IMSE (EIMSE): 

 

( ) .)()(ˆ
1

1

2∑
=

−=
m

i
ii yy

m
EIMSE xx     (6) 

 

Besides this EIMSE, we will also study the maximum MSE; that is, we also consider 

risk-averse users (see Van Groenigen, 2000). So IMSE—defined in (5)—is replaced by 

 

( ){ })(ˆmax x
x

YMSEMaxMSE
H∈

=    (7) 

 

and EIMSE in (6) by  

 

( ){ }.)()(ˆmax 2

}...,,1{
xx ii

mi
yyEMaxIMSE −=

∈
   (8) 

 

4. Sequential DOE 

 

To decide on the final design, we devise the following sequential procedure with eight steps. 

Step 1. We start with a small pilot design with (say) 0n  input combinations; for 

example, 0n  = 5. We select the specific 0n  values such that they are equally spread over the 
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experimental region. There are various ‘space filling’ designs; for example, LHS designs.  

However, in our example—namely an M/M/1 queueing system—we use maximin designs; 

see Koehler and Owen (1996, p. 288). So we select the traffic rates ix  ∈  {0.1, 0.3, 0.5, 0.7, 

0.9} ( 5,,1 �=i ).  

Step 2: For each input value ix , we initially generate (say) 0m  IID replicates—

because bootstrapping requires IID observations; see Efron and Tibshirani (1993). To obtain 

IID observations in our M/M/1 simulation example, we apply renewal (regenerative) analysis 

(see, for example, Kleijnen and Van Groenendaal 1992, and Law and Kelton 2000). As ‘the’ 

renewal state, we choose the idle (empty) state. We therefore start the simulation run in the 

empty state—for each traffic rate ix . Next we observe 0m  cycles—each with (random) cycle 

lengths (say) iL  (the higher ix , the higher iL  tends to be). Besides the 0m  cycle lengths jiL ;  

per traffic rate ix , we observe the sum of the waiting times over that cycle:  

 

jisw ;  = ∑
=

jiL

t
tjiw

;

1
;;  (i = 1, …, 0n ; 0,,1 mj �= ).    (9) 

 

To reduce the variance when comparing the (random) outputs for different inputs (i.e., 

to improve the signal/noise ratio), we use common random numbers (CRN). This is a popular 

variance reduction technique (VRT). It is well known that to reduce the variance 

substantially, the PRN (say) tr  may be manipulated as follows: successive random numbers 

are used alternatively to simulate the arrival time a  and the service time s ; in other words, ta  

= )(ln 12 aEr t −−  and ts  = )(ln 2 sEr t−  (t = 1, 2, …).  In the M/M/1 simulations the correlation 

between the average waiting times for two neighboring traffic rates turns out to be very high, 

namely 0.99. 
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To generate the PRN, we use the Matlab command ‘rand’. To initialize the PRN, we 

set the Matlab generator (rather arbitrarily) to its initial state 0s ; for example, 0s  = 10. The 

Matlab web site states: ‘The uniform random number generator in MATLAB 5 (and above) 

uses a lagged Fibonacci generator, with a cache of 32 floating point numbers, combined with 

a shift register random integer generator. The integer generator uses shifts and exclusive 

OR’s.’ ; see (http://www.mathworks.com/support/solutions/data/8542.shtml) and also Moler 

(1995). 

For further details on CRN, VRT, and PRN we refer to Law and Kelton (2000). 

Step 3. Based on these 0m  bivariate IID outputs ( jiL ; , jisw ; ) (j = 1, …, 0m ) per input 

value ix , we estimate the mean waiting times through 

 

∑

∑

=

==
0

0

1
;

1
;

0 )( m

j
ji

m

j
ji

i

L

sw
my  .               (10) 

 

This ratio estimator is asymptotically unbiased; for references see again Kleijnen and Van 

Groenendaal (1992) and Law and Kelton (2000). We do not try to improve the small-sample 

performance of this estimator (for example, through jackknifing—which is closely related to 

bootstrapping), because this estimator suffices for our Kriging metamodel. 

To estimate the precision of the estimate defined in (10), we use the following (1- α ) 

confidence interval per input value ix : 

 

α
σσ

αα −=












⋅+≤≤⋅− −−−− 1
ˆ

)()(
ˆ

)( 0

21;10

0

21;10 00

i

i

mii

i

i

mi L

m
tmywE

L

m
tmyP  (11) 
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where ),v(ôc2)r(âv)r(âvˆ 22
iiiiiii LswyLysw ⋅−⋅+=σ  and 0;1

/0 mLL
ji

m

ji ∑ == ; again see Kleijnen 

and Van Groenendaal (1992).  Note that this interval does not have a joint (or 

experimentwise) probability (1- α ) over all simulated input values. 

Next, we add replicates one at a time—sequential sampling—until the desired half-

width of the interval in (11) has reduced to a prefixed relative error (say) δ ; for example, δ  

= 0.15 (again see Kleijnen and Van Groenendaal 1992 and Law and Kelton 2000). We denote 

the final number of replicates per input ix  by im . This gives the average output )( ii my  per 

input ix  based on im  replicates; see (10) with 0m  replaced by im . 

Step 4. Based on these 0n  average outputs )( ii my  for the 0n  inputs ix , we compute 

the Kriging predictors for the expected outputs of a new set of  (say) cn  candidate input 

values c

gx  (g = 1, …, cn ). We again select these candidates in a space-filling way; in our 

example we choose the candidate inputs halfway between two old neighboring inputs: 

2)( 1++= gg
c
g xxx  (with 1,,1 0 −= ng � , so we avoid extrapolation).  

By definition, the Kriging predictor is a weighted linear combination of all outputs 

already observed; see (2). So now Kriging weights the 0n  values already observed in steps 1 

through 3: 

 

)()(ˆ
0

1
i

n

i
i

c
g yy xx ∑

=

⋅= λ      (12) 

 

with ∑ =
0

1

n

i iλ  = 1. To estimate the weights iλ  in (12), Kriging uses the old data set 

))(,( iii myx  (i = 1, …, 0n ) . To estimate the variance of this non-linear predictor, we use 

bootstrapping—as follows. 
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Step 5. Per input ix , we bootstrap the im  bivariate IID outputs ( jiL ; , jisw ; ); i.e., we 

resample—with replacement—the outputs resulting from steps 1 through 3. We denote these 

bootstrap observations by the superscript *  (as is traditional in the bootstrap literature): 

 

)},(,),,{( *
;

*
;

*
1;

*
1; ii mimiii LswLsw � .                  (13)  

 

Using these bootstrapped observations and (10), we compute the bootstrap averages: 

 

∑

∑

=

==
i

i

m

j
ji

m

j
ji

ii

L

sw

my

1

*
;

1

*
;

* )(  .    (14) 

 

Using the I/O data ))(,( *

iii myx  (i = 1, …, 0n ) and (12), we compute the bootstrapped 

Kriging predictor: 

 

)()(ˆ *

1

**
0

i

n

i
i

c
g yy xx ∑

=

⋅= λ     (15) 

 

We again estimate the bootstrap weights *

iλ in (15) by means of the Matlab Toolbox DACE; 

see Section 2. 

We note that DACE can use a starting value for the numerical search that leads to the 

maximum likelihood estimator (MLE) of the Kriging weights *

iλ  in (15). As starting values 

we use the MLE for iλ  based on the original I/O data in (12). 
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Step 6. The resampling per input ix  in step 5 is repeated (say) B times (this B is called 

the bootstrap sample size). Hence, (13) through (15) give )(ˆ* c
gby x  (b = 1, …, B). 

For each of the cn candidate inputs c
gx , we compute the bootstrap variance of the 

corresponding Kriging predictor:  

 

∑
=

−
−

=
B

b

c
g

c
bg

c
g yy

B
y

1

2**
;

* )ˆˆ(
1

1
)ˆr(âv .    (16) 

 

Step 7. We determine which candidate input has the largest bootstrap prediction 

variance (16): 

 

{ }


=
∈

)ˆr(âvmaxarg *

}...,,1{

c
g

ng
yv

c
,     (17) 

 

and we add this ‘winning’ input c
vx  to the old design. 

Now, we run the simulation model with the input c
vx —until we have 0m  replicates for 

this input. We still apply CRN (so we initialize the PRN with the seed 0s ). Furthermore, we 

again start with the empty system as the renewal state. We continue the simulation until the 

confidence interval reaches the threshold δ ; see (11). 

Step 8. We repeat the steps 4 through 7—until we have reached a stopping criterion. 

In other words, we bootstrap the old I/O set augmented with the candidate selected in step 7. 

We select a new set of candidates. For these candidates, we compute the Kriging predictors 

and their bootstrap variances. Alternative stopping criteria may be: (i) the computer budget 

has been exhausted, (ii) the project has reached its deadline, (iii) the precision of the Kriging 

metamodel is acceptable. 
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We observe that adding one point at a time—as we do in our sequential DOE—is not 

necessarily optimal. However, it is a simple—albeit myopic—heuristic; also see Banjevic and 

Switzer (2002, pp. 5-6), who refer to Ferri and Piccioni (1992). 

  

5. M/M/1 example 

 

An M/M/1 has as true I/O function the hyperbole 

 

x

x
y

−
=

1
 with 0 < x < 1     (18) 

 

where y denotes the expected mean steady-state waiting time assuming a service rate of 1, and 

x denotes the traffic rate .  

We apply our customized sequential design procedure described in section 4, selecting 

the following parameters for our sequential design procedure.  

Step 1: A pilot design of size 50 =n .  

Step 2: 100 =m  replicates for the initial estimates of the variances; initial PRN seeds 0s  = 10 

and 0s  = 12 respectively. 

Step 3: Precision  = 0.05 and 0.15 respectively for the confidence interval (11) with �= 0.01 

and 0.05 respectively. For high traffic rates x (say, x > 0.7), long cycle lengths are more 

likely; in our experiments, we limit jiL ;  to 1000. 

Step 6: Bootstrap sample sizes B = 50 and 100 respectively. 

Step 8: Stopping criterion is reaching a total design size n = 15, 25, and 100 respectively. 

 

Insert Figure 1 
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Figure 1 shows our design and a LHS design—both with 15 simulated traffic rates—

and their Kriging predictions, for M/M/1 (for case 4b in Table 1; see below). LHS turns out to 

simulate fewer ‘challenging’ inputs; i.e., high traffic rates with large variances. Clearly, the 

LHS predictions deviate from the true output—especially for traffic rates larger than 

(roughly) 0.7.  

To further evaluate our procedure, we use a test set consisting of 32 equidistant traffic 

rates with the following traffic rates: {0.1125, 0.1375, …, 0.8875}. Sacks et al. (1989) use 

similar test sets to evaluate their procedure. We compare our Kriging predictions with the 

‘true’ outputs of the test set—using the true I/O function (18)—and calculate the prediction 

errors. (Both our final design and the LHS design may contain some members of the test set, 

but we ignore this phenomenon.) 

We compare the EIMSE defined in (5) for our final design and for a LHS design with 

the same n (number of traffic rates). We use a LHS design with replicate numbers per input 

value that are again determined by the precision of the confidence interval (11). The replicate 

numbers m in our design and the LHS design may differ, so we calculate the corrected 

EIMSE: 

 

( )∑
=

−×=
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i

t
i

t
i

t

xyxy
n

CCEIMSE
1

2
)()(ˆ

1
,    (19) 

 

where C is the ratio of the total number of replicates in the LHS design and in our design, tn  

is the number of I/O combinations in the test set (here 32=tn ), and t
ix  is the  i th input of the 

test set.  
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Insert Table 1 

 

This gives Table 1, which shows that in all cases our designs give ‘better’ predictions 

than LHS designs with the same size; i.e., our designs have smaller CEIMSE. However, as n 

increases, this advantage gets smaller; so our procedure is most attractive for expensive 

simulations with small sample sizes! 

Risk-averse users use EMaxIMSE defined in (8). Our designs outperform LHS in 13 

out of the 14 cases simulated; this exceptional, worst case is illustrated in Figure 2, which 

shows that the maximum error occurs at 0.8875 (the maximum traffic rate in the test set). 

 

Insert Figure 2 

 

Further, all numbers in this table have the same magnitude, even when the final 

sample size n varies. This implies that the magnitude of the individual prediction error 

decreases as n increases; see (19).  

Table 1 also shows that the bootstrap sample size B has no systematic effect. Our 

explanation is that our procedure uses the bootstrap only to estimate which candidate input 

has the largest variance of the Kriging predictor; see (17). So we conclude that in practice the 

smaller size, B = 50, may be used. (Most bootstrap applications require the estimation of the 

whole distribution function, so B is much higher than 50; for example B = 1000.) 

Finally, changes in  and �affect the number of replicates, but this effect is 

incorporated in CEIMSE via the factor C; see (19). 

 

Insert Figure 3 
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As we expected, the number of required replicates (or cycles) increases with the traffic 

rate. For example, if  = 0.05 and  = 0.15, then the traffic rate x = 0.1 requires 489 simulation 

runs, whereas the traffic rate x = 0.9 requires the maximum number of runs, namely 1000; see 

Figure 3. Moreover, a cycle is likely to be longer as the traffic rate increases. For example, if 

x = 0.1 then the average cycle length 8.4=L  for 100 =m  replicates; if x = 0.9 then 9.45=L . 

 

6. Conclusions and future research 

 

In practice, simulation often requires much computer time per run (or replicate)—so an 

efficient experimental design for interpolation is desirable. In general, it is well known that 

sequential designs are more efficient than fixed-sample designs. Our specific sequential 

designs add as the input to be simulated next, the candidate input with the maximum 

estimated variance for its predicted output. As the predictor we use the Kriging metamodel; to 

estimate its variance, we use bootstrapping. We applied this procedure to the classic M/M/1 

simulation, and compared its efficiency with LHS with a fixed sample size of the same 

magnitude. Our results clearly show that our procedure is indeed more efficient. 

In future research, (asymptotic) proofs of the behavior of our procedure might be 

derived. Examples that are more complicated than the M//M/1 simulation may be 

investigated. Besides LHS, other designs with prefixed sizes may be explored; for example, 

min-max designs. Besides Ordinary Kriging, other metamodels may be used to analyze the 

I/O data. For example, the ‘optimal’ weights in Ordinary Kriging require that the predictor 

equal the average outputs at the inputs already observed; dropping this constraint implies that 

new Kriging software must be developed. Instead of the IMSE criterion, the maximum 

squared error may be chosen and the corresponding weights may be derived. Besides Kriging, 
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other metamodels may be used for prediction; for example, linear or nonlinear regression 

metamodels. 
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Figure 1. Two designs with 15 traffic rates x , their average simulation outputs y , and the 

Kriging interpolations ŷ , for M/M/1 

yy ˆ,

x
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Figure 2. Two designs and their predictions ŷ  for the test set inputs tx , for M/M/1

tx

ŷ
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Figure 3. Number of cycles m per traffic rate x�IRU�0�0����LI� � ������DQG�  = 0.15 
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      a:   seed = 10  b:   seed = 12 
Case       CEIMSE max 

MSE 
 CEIMSE max 

MSE 
            
1 � ����� � ����� B = 100 n = 15 seq 0.067436 0.83412  0.038184 0.88275 
     lhs 0.087018 1.86096  0.066435 0.89785 
           
2    n = 25 seq 0.076384 0.83412  0.039545 0.88275 
     lhs 0.092085 2.4571  0.057393 0.92206 
           
3    n = 100 seq 0.068665 0.83412  0.039533 0.88275 
     lhs 0.079271 0.52591  0.049694 0.32893 
           
4 � ����� � ����� B = 50 n = 15 seq 0.067437 0.83412  0.038185 0.88275 
     lhs 0.083430 1.86096  0.067582 0.89785 
           
5    n = 25 seq 0.076384 0.83412  0.039544 0.88275 
     lhs 0.092085 2.4571  0.056007 0.92206 
           
6 � ����� � ����� B = 100 n = 15 seq 0.065212 0.83412  0.040773 0.60218 
     lhs 0.072658 1.3592  0.041426 0.76348 
           
7 � ����� � ����� B = 100 n = 15 seq 0.064575 0.83412  0.047135 0.6769 
     lhs 0.066912 1.0823  0.058562 0.76348 
 
 

 

 

Table 1. Corrected Empirical Integrated Mean Squared Error (CEIMSE; see (19)) and 

maximum MSE (see (8), for M/M/1  


