
  

 

 

Tilburg University

Efficient Line Searching for Convex Functions

den Boef, E.; den Hertog, D.

Publication date:
2004

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
den Boef, E., & den Hertog, D. (2004). Efficient Line Searching for Convex Functions. (CentER Discussion
Paper; Vol. 2004-52). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Oct. 2022

https://research.tilburguniversity.edu/en/publications/ec3e36ad-0f63-4064-9e81-23d42c12dd1c


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2004–52 

 
 
 

EFFICIENT LINE SEARCHING FOR CONVEX FUNCTIONS 
 

By E. den Boef, D. den Hertog 
 

May 2004 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



Efficient Line Searching for Convex Functions

Edgar den Boef1 � 2 Dick den Hertog3

1Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3Department of Econometrics and OR, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The
Netherlands

denboef@natlab.research.philips.com
D.denHertog@uvt.nl

May 12, 2004

Abstract
In this paper we propose two new line search methods for convex functions. These new methods

exploit the convexity property of the function, contrary to existing methods. The first method is an
improved version of the golden section method. For the second method it is proven that after two
evaluations the objective gap is at least halved. The practical efficiency of the methods is shown by
applying our methods to a real-life bus and buffer size optimization problem and to several classes
of convex functions.

Keywords: convex optimization, golden section, line search.

1 Introduction

Line searching is an important step for many optimization methods. In practice both exact and
approximate line search methods are used. Well-known line search methods are quadratic and
cubic interpolation, the golden section method and backtracking. For an overview we refer to the
book on optimization by Gill, Murray, and Wright [2].

The aim in such line search methods is to find a (near) optimal solution along a given direction
using a minimal number of function evaluations. Especially in the case of black-box functions,
where often time-consuming simulation runs, i.e., function evaluations, have to be done, it is
desirable to perform as few function evaluations as possible.

Now suppose the (black-box) function is known to be convex (or concave). Then the function
has exactly one optimum on a closed domain. This fact is used by above mentioned methods.
However, convexity of a function gives more information. For example, if a function is convex
then using the performed functions evaluations, an upper and lower bound can be constructed for
the function values. This information can be used to obtain better information on the location of
the optimum.

In this paper we will show how this convexity information can be used. We will show that ex-
isting methods propose new candidates which may a priori be detected as not optimal by using
the information of the previous iterations and the convexity property. We will describe two new
methods: the improved golden section method and the triangle section method. We will show that
theoretically the improved golden section strategy is at least as good as the regular golden section
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Figure 1. (a) Example of a convex function f with six function evaluations. (b) A piecewise-linear
upper bound based on the convexity property. (c) A piecewise-linear lower bound based on the
convexity property. (d) (Zoomed in compared with (a)–(c)) The optimum lies somewhere in the
gray areas, the areas of uncertainty. The interval of uncertainty based on the convexity property is
given by

�
L � U � .

strategy. For the triangle section method we will show that the range of uncertainty, i.e., the differ-
ence between the current best known objective value and the lower bound for the optimal value, at
least halves after two function evaluations. It is significant that this result relates to the objective
of the optimization, namely the function values, in contrast to the convergence result of the golden
section method, which relates to the function domain values. We also describe the application
of our methods to a real-life bus and buffer size optimization problem and to several classes of
convex functions. We compare the resulting efficiency of our methods with the efficiency of the
golden section method.

In Section 2 we show how convexity of a function can be used to reduce the interval in which
the optimum can be. For a concave function similar methods can be used. We continue with
deriving performance guarantees on the interval reduction in Section 3. In Section 4 we describe
an application involving bus and buffer size optimization in which a non-differentiable function
with computationally hard function evaluations has to be optimized. We describe experimental
results for this application and for other classes of convex functions in Section 5. Finally, in
Section 6 we give our conclusions.

2 Interval reduction using convexity

In this section we describe how to use convexity of a function to obtain upper and lower bounds for
the function values. We show how they can be used to reduce the interval in the function domain
in which the minimum can be, which is called the interval of uncertainty. For concave functions a
similar method can be used.

Let f � x � be a continuous, univariate, convex function on a closed domain D. Assume that for a
given set of points ���	� x1 
������

 xn � in D the function values of f are known.

Figure 1(a) gives an example of a convex function f of which six function evaluations are known.
As f is convex, α f � xi ����� 1 � α � f � x j ��� f � αxi ��� 1 � α � x j � with α ��� 0 
 1 � for each xi 
 x j ��� .
Using this property we obtain the piecewise-linear upper bound f u of f with f u � x ��� f � x � for all
x � D and f u � x ��� f � x � if x ��� ; cf. Figure 1(b). Now we consider the line segments BC and
DE and extend them until they intersect at point K, as shown in Figure 1(c). Then, the lines CK
and KD give a lower bound for the function f between x3 and x4. This can be done for any four
consecutive points, resulting in the lower bound f l on f given in Figure 1(c) by the dashed line.
Now let xk ��� be a point with the lowest determined function evaluation, i.e., f � xk ��� f � x � for
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Figure 2. Example where the golden section method chooses a point outside the interval of un-
certainty for function evaluation. Five function evaluations have already been made following the
sequence A ������� � E. The sixth point for evaluation proposed by golden section is point F . However,
the interval of uncertainty comprising the two small gray triangles is located to the right of F .

all x � � . Then the minimum function value of f must lie between f � xk � and the minimum of
f l � x � . The possible locations of the minimum are given in an enlarged view in Figure 1(d) by the
gray areas, the areas of uncertainty. The interval of uncertainty is � L 
 U � .
This shows how the interval of uncertainty can be decreased using the convexity property. The
next step in finding the minimum of f is choosing a point for evaluation. Naturally, this should
be a point in the interval of uncertainty. Taking one of the existing methods to choose a point,
however, does not always give a point in the interval of uncertainty. Figures 2, 3, and 4 show three
examples where the golden section method, unit search, and quadratic interpolation, respectively,
would evaluate the function at a point that is outside the interval of uncertainty. In Section 3 we
discuss some strategies for choosing a new point. Finally, the interval of uncertainty may even
be further decreased if for an evaluated point the gradient of the function is known. However, we
leave this for future research.

3 Function evaluation strategies

We discuss in this section two strategies for choosing a new point. In Section 3.1 we show how
to choose a new point such that the reduction of the interval of uncertainty is at least as large
as the reduction which the golden section method would obtain. In Section 3.2 we show how to
choose a new point such that the range of uncertainty, i.e., the interval consisting of all possible
function values for the minimum, at least halves for each two new function evaluations. Finally,
in Section 3.3 we shortly describe how known piecewise linearity of a function can be used to
terminate the search procedure.
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then using convexity we know that f
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a new minimum. Unit search can be im-
proved by each time choosing the point in
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Figure 4. Example where quadratic inter-
polation chooses a point outside the interval
of uncertainty for function evaluation. The
points with known function evaluations are
a � 0, b � 1

10 , and c � 1, with f
�
a �
� f

�
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�

1 and f
�
b ��� 0. Furthermore, we know

f
�
c � � . Quadratic interpolation would take
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2 as the point for a new function evalua-

tion. However, if 2 1
9 
 f

�
c � � 
 3 holds, then

using convexity it is clear that f
�
d ��� 0 and

therefore will not lead to a new minimum.
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Figure 5. Starting the golden section method. (a) First two points, x0
1 and x0

2, are chosen in the
interior of the starting interval of uncertainty,

�
L0 � U0 � . Next, the function is evaluated at these

points, and depending on which one is lower, the interval of uncertainty is adjusted; see (b) and (c).

3.1 Function domain reduction

The strategy to reduce the interval of uncertainty in the function domain that we present in this
paper, is basically the golden section method improved with the reduction that follows from the
convexity property, as described in the previous section. The golden section method chooses new
points for function evaluation in such a way that the interval of uncertainty can be decreased by
a constant factor τ � ��� 5 � 1 ��� 2 in each iteration. Figure 5 shows an example. Let � L0 
 U0 � be
the initial interval of uncertainty. Then golden section chooses the following two interior points
x0

1 and x0
2 for evaluation: x0

1 � U0 � τ � U0 � L0 � and x0
2 � L0 � τ � U0 � L0 � . Now, suppose x0

1 has
the lowest function evaluation. Then the new interval of uncertainty � L1 
 U1 � is equal to � L0 
 x0

2 � .
Furthermore, the new interior points to be evaluated are x1

1 � U1 � τ � U1 � L1 � and x1
2 � L1 �

τ � U1 � L1 � . However, because the interior points are chosen with the golden section factor τ, x1
2 is

the same point as x0
1, and therefore, only x1

1 has to be evaluated for the next step. Similarly, if x0
2

has the lowest function evaluation, then L1 � x0
1 and x1

1 � x0
2.

The improved golden section method now works as follows. Initially, it is the same as the regular
golden section method. Let � L 
 U � be the interval of uncertainty with two interior points x1 and
x2 such that x2 � L � U � x1 � τ � U � L � . If f � L � � min � f � L � 
 f � x1 � 
 f � x2 � 
 f � U � � , then the new
interval of uncertainty according to the golden section method is given by � L 
 x1 � . However, using
the convexity property we can obtain a smaller interval of uncertainty � L 
 U � � with U � � x1 for
which two new interior points are selected. If f � U � � min � f � L � 
 f � x1 � 
 f � x2 � 
 f � U � � , then simi-
larly a new interval � L � 
 U � can be obtained. Notice that by evaluating the function f first at the
boundaries L and U , and then at the interior point closest to the boundary with the lowest function
value, e.g. x1 if f � L ��� f � U � , the function does not need to be evaluated at the other interior point
if the lowest function value is still at a boundary.

Now let the lowest function value be at x1; if f � x2 ��� f � x1 � , then a strategy analogous to what we
describe here can be followed. The new interval of uncertainty using the golden section method is
now given by � L 
 x2 � . Using the convexity property we can obtain a smaller interval of uncertainty
� L � 
 U � � for which L � � L and U � � x2 holds. For now we assume that x1 is an interior point of
� L � 
 U � � ; the possibility that x1 is not an interior point is handled later in this section.

Golden section would choose a new point x3 � x2 � τ � x2 � L � so that x2 � x3 � x1 � L. However,
if we replace � L 
 x2 � by � L � 
 U � � , and then choose x3 � U � � τ � U � � L � � , U � � x3 is generally not
equal to x1 � L � , meaning that the two interior points x1 and x3 do not satisfy the golden section
property w.r.t. the interval of uncertainty � L � 
 U � � . Therefore, we will stretch the interval � L � 
 U � � to
a new interval � L̃ 
 Ũ � such that the golden section property can be maintained for the new point to
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Figure 6. Stretching the interval of uncertainty obtained with the convexity property such that the
golden section property is maintained for the new function evaluation. The four figures correspond
to the four different possibilities.

evaluate. We distinguish four possibilities for this:
(a) x1 � U � � τ � U � � L � � ,
(b) U � � τ � U � � L � ��� x1 �	� U � � L � ��� 2,
(c) � U � � L � ��� 2 � x1 � L � � τ � U � � L � � ,
(d) x1 � L � � τ � U � � L � � .
Figure 6 shows an example of these four possibilities. The corresponding stretched intervals are
the following:
(a) L̃ � U � ��� U � � x1 ��� τ 
 Ũ � U � ,
(b) L̃ � L � 
 Ũ � � x1 � τL � ��� � 1 � τ � ,
(c) L̃ � � x1 � τU � ��� � 1 � τ � 
 Ũ � U � ,
(d) L̃ � L � 
 Ũ � L � � � x1 � L � ��� τ.
The next lemma states that the obtained stretched interval is not larger than the interval of uncer-
tainty obtained with the regular golden section method.

Lemma 1. Ũ � L̃ � x2 � L.
Proof. For (a),(c), and (d) we prove that Ũ � L̃ � x2 � L holds by showing that L̃ � L and Ũ � x2.
For (b) it is possible that Ũ � x2. In the following derivations we use the fact that 1 � τ

τ � τ.
(a) As Ũ � U � it follows that Ũ � x2. For L̃ we can derive:

L̃ � U � ��� U � � x1 ��� τ

�
�

1 � 1
τ � U � � 1

τ
� L � τ � x2 � L ���

� x2 � 1 � τ
τ
� U � � L �

� x2 � τ � U � � L �
� x2 � τ � x2 � L �� x2 ��� x2 � L �

6



� L �
(b) From x1 � 1

2 � L � � U � � it follows that 1
2 � x1 � L � � � 1

2 � U � � x1 � , and therefore x1 � L � � U � � x1 �
x2 � x1. We can now make the following derivation:

Ũ � L̃ � x1 � τL �
1 � τ

� L �

� x1 � L �
1 � τ

� x2 � x1

1 � τ

� x2 ��� L � τ � x2 � L ���
1 � τ

� x2 � L �
(c) As Ũ � U � it follows that Ũ � x2. For L̃ we can derive:

L̃ � � x1 � τU � ��� � 1 � τ �
� 1

1 � τ
� L � τ � x2 � L ��� � τ

1 � τ
U �

� L � 1
τ
� x2 � U � �

� L �
(d) As L̃ � L � it follows that L̃ � L. For Ũ we can derive:

Ũ � L � � � x1 � L � ��� τ

�
�

1 � 1
τ � L � � 1

τ
� L � τ � x2 � L ���

� x2 �
�

1 � τ
τ � � L � � L �

� x2 � τ � L � � L �
� x2 � �

This leads to the following strategy for choosing a new point for evaluation.

Improved golden section strategy, f � x1 � � f � x2 � . Determine the stretched interval � L̃ 
 Ũ � as
described above. Choose the new point x3 for function evaluation as follows for the four previously
distinguished possibilities.

(a) x1 � U � � τ � U � � L � � x3 � L̃ � τ � Ũ � L̃ � � U � � τ � U � � x1 � .
(b) U � � τ � U � � L � ��� x1 � 1

2 � L � � U � � x3 � L̃ � τ � Ũ � L̃ � � 1
τ x1 � τL � .

(c) 1
2 � L � � U � � � x1 � L � � τ � U � � L � � x3 � Ũ � τ � Ũ � L̃ � � 1

τ x1 � τU � .
(d) x1 � L � � τ � U � � L � � x3 � Ũ � τ � Ũ � L̃ � � L � � τ � x1 � L � � .
In the following theorem we show that the improved golden section strategy performs at least as
good as the regular golden section method, while ensuring that the new point chosen for function
evaluation lies in the interval of uncertainty.

7



Theorem 1. Choosing a point according to the improved golden section strategy reduces the in-
terval of uncertainty by at least a factor τ. Furthermore, the new point chosen for function evalu-
ation lies in the interval of uncertainty, i.e., x3 � � L � 
 U � � .

Proof. Using the golden section method, the interval of uncertainty � L 
 U � with function evaluations
at x1 � U � τ � U � L � and x2 � L � τ � U � L � reduces to interval � L 
 x2 � of size τ � U � L � . The new
point for function evaluation x3 is then chosen such that the golden section property is maintained,
i.e., x3 � x2 � τ � x2 � L � .
Using the improved golden section strategy, the new point for function evaluation is chosen either
x3 � Ũ � τ � Ũ � L̃ � or x3 � L̃ � τ � Ũ � L̃ � . Expressing the other internal point x1 in L̃ and Ũ by
rewriting the expressions for L̃ and Ũ gives x1 � L̃ � τ � Ũ � L̃ � for (c) and (d), and x1 � Ũ � τ � Ũ �
L̃ � for (a) and (b). So for the improved golden section strategy the golden section property is
maintained for the interval � L̃ 
 Ũ � . Lemma 1 states that Ũ � L̃ � x2 � L and thus Ũ � L̃ � τ � U � L � .
Therefore, the starting interval of uncertainty is reduced by at least a factor τ. Furthermore, as the
new interval of uncertainty has the golden section property, the same reduction factor is guaranteed
for next function evaluations.

Now we show that x3 � � L � 
 U � � . For (a), x3 � U � � τ � U � � x1 � , so x3 � U � is obvious. Furthermore,
using τ � 1 and x1 � L � it follows that x3 � L � . Likewise, for (d) x3 � � L � 
 U � � holds. For (b) we can
make the following derivations:

x3 � 1
τ

x1 � τL �

� L � � U �
2τ

� τL �

� U �
τ
� � U � � L � �

2τ
� τU � � τ � U � � L � �

� U � � 1 � 2τ2

2τ
� U � � L � �

� U � �

x3 � 1
τ

x1 � τL �

� 1
τ
� U � � τ � U � � L � ����� τL �

� 1 � τ
τ

U � � � 1 � τ � L �
� τU � � � 1 � τ � L �� L � �

In a symmetrical manner it can be shown for (c) that x3 ��� L � 
 U � � .
�

In case f � x2 ��� f � x1 � we have the following strategy:

Improved golden section strategy, f � x2 � � f � x1 � . Determine the stretched interval � L̃ 
 Ũ � .
Choose the new point x3 for function evaluation as follows.
(a) x2 � L � � τ � U � � L � � x3 � L � � τ � x2 � L � � .
(b) 1

2 � L � � U � � � x2 � L � � τ � U � � L � � x3 � 1
τ x2 � τU � .

(c) U � � τ � U � � L � ��� x2 � 1
2 � L � � U � � x3 � 1

τ x2 � τL � .

8



(d) x2 � U � � τ � U � � L � � x3 � U � � τ � U � � x2 � .
In an analogous way as above we can show that this reduces the interval of uncertainty by at least
a factor τ.

Finally, we consider the possibility in which � L � 
 U � � , the interval of uncertainty obtained using the
convexity property, does not have one of the previous interior points x1, x2 as an interior point.
This can happen when f � x1 � � f � x2 � or at least three consecutive points that have already been
evaluated lie on one line; in the latter case the function f is at least partially piecewise linear. Then
the interval � L � 
 U � � lies between x1 and x2, i.e., � L � 
 U � ���	� x1 
 x2 � with either L � � x1 or U � � x2 or
both. Two new function evaluations are now required to decrease the interval further by at least a
factor τ. However, as x2 � x1 � τ2 � U � L � , already a reduction of τ2 has been obtained. Therefore,
for any function evaluation the two-step reduction, for the new and last function evaluation, will
be at least τ2, giving an average reduction of at least factor τ for each function evaluation. Instead
of immediately taking two new interior points for function evaluation, we choose one new point
using the golden section property, i.e., either x3 � x2 � τ � x2 � x1 � or x3 � x1 � τ � x2 � x1 � , which
ensures that for following function evaluations a reduction of at least τ can be guaranteed. The
resulting function evaluation of x3 is used to update the interval of uncertainty and another point
is chosen according to the described improved golden section strategy.

Now we have shown how the convexity property can be used to choose new points for evaluation
such that the interval of uncertainty is reduced by at least the same factor as for the golden section
method. However, in practice the reduction will be larger as we show with empirical results in
Section 5. In this section we continue with a method that decreases the range of uncertainty by at
least a factor 1/2 after two new function evaluations.

3.2 Function range reduction

As is shown in Figure 1(d) the convexity property can be used to obtain upper and lower bounds
for the function value of each point in the interval of uncertainty. As these upper and lower bounds
tighten for each new function evaluation, they can be used for a strategy that guarantees a reduction
of the range of uncertainty instead of the interval of uncertainty. Figure 7 depicts the area in which
the optimum can be, together with the points corresponding to the function evaluations and the
interval of uncertainty.

Let M be the point with the lowest function evaluation so far, f � M � . Then L � � M � U � . Now we
define ∆ f k

1 as the height of the triangle in the area of uncertainty between L � and M after k function
evaluations, and ∆ f k

2 as the height of the triangle between M and U � . We can express ∆ f k
1 and

∆ f k
2 using known function values and the interval of uncertainty, as derived in Appendix A, which

gives the following formulas:

∆ f k
1 � � M � L � � � f � L ��� f � M ��� � f � U ��� f � M ���

� f � L ��� f � M ��� � U � M � � � f � U � � f � M ��� � L � � L � 
 (1)

∆ f k
2 � � U � � M � � f � L ��� f � M ��� � f � U ��� f � M ���

� f � L ��� f � M ��� � U � U � � � � f � U � � f � M ��� � M � L � � (2)

The range of uncertainty is now given by the maximum height of the area of uncertainty, i.e.,
max � ∆ f k

1 
 ∆ f k
2 � . The point x we now choose for function evaluation lies in the middle of the area

with the largest height, i.e.,

x �
�

1
2 � L � � M � if ∆ f k

1 � ∆ f k
2

1
2 � M � U � � if ∆ f k

1 � ∆ f k
2

(3)
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L L’ U’ UM

f(M)

f(L)

f(U)

x

∆fk
1

∆fk
2

Figure 7. The areas of uncertainty. The three points with their function evaluations are given by
L, M, and U . The interval of uncertainty in the function domain begins at L � and ends at U � . The
height of the two areas after k function evaluations is given by ∆ f k

1 and ∆ f k
2 . The new point for

function evaluation is x.

We refer to the method that chooses a new point for function evaluation according to (3) as the
triangle section method. A greedy strategy is to take the point where the lower bound is minimal.
However, it can be easily shown that the performance bounds for this greedy strategy are worse
than the performance bounds for the triangle section strategy which we give in this paper.

In the remainder of this section we normalize, w.l.o.g., the function values and the size of the
interval of uncertainty and the range of uncertainty in the following way:

M � 0 
 f � M � � 0 
 ∆ f k
1 � 1 
 L � � � 1 �

After substituting these values into the expression for ∆ f k
1 it follows that f � U ��� f � L � U

1 � L � f � L � , if
1 � L � f � L ���� 0. The values of L 
 f � L � 
 U 
 and U � then determine the exact situation. For the ease
of notation we make the following substitutions, as shown in Figure 8:

A � L
B � f � L �
C � U �
D � U
E � f � x �

Furthermore, w.l.o.g. we assume that ∆ f k
1 � ∆ f k

2 . The new point for evaluation then is x �	� 1
2 .

For the values of A 
 B 
 C 
 D 
 and E we can derive the following properties:

(i) The lower corner of the left area should be to the left of M, i.e., � D
f � D � � 0. As f � D � � f � U � �

f � L � U
1 � L � f � L � � BD

1 � A � B , if 1 � A � B �� 0, we have � 1 � A � B
B � 0 and D �� 0. Since B � f � L � � 0, it

follows that 1 � A � B � 0.

(ii) L � L � , i.e., A � � 1 or � 1 � A � 0 or 1 � A � 0.

(iii) U � U � � 0, i.e., D � C � 0.

10



A −1 C D0

−1

B

f(D)

−1/2

∆fk
1 =1

∆fk
2

f(−1/2)=E

Figure 8. The areas of uncertainty with normalization of the function and interval values. The
point 0 has the lowest function evaluation of 0. The size of the range of uncertainty is given by
∆ f k

1 , which is set to 1. The lower bound of the interval of uncertainty in the function domain is
equal to � 1, thus the new point for function evaluation is �

1
2 .

(iv) ∆ f k
2 � ∆ f k

1 � 1. Substitution of ∆ f k
2 gives ∆ f k

2 � BCD� D � C � � 1 � A � B � � AD . So BCD � � D � C � � 1 �
A � B � � AD.

(v) Let f u � x � denote the upper bound for point x, i.e., the line � A 
 B � ��� 0 
 0 � . Then f � x ��� f u � x �
should hold, i.e., E � � B

2A or � 2AE � B.

(vi) Let f l � x � denote the lower bound for point x, i.e., the line parts below the y � 0-line of the lines
� A 
 B � � � � 1 
 0 � and � 0 
 0 � � � D 
 f � D ��� . Then f � x � � f l � x � should hold. The value of f l � x �
depends on whether the lowest corner of the left area lies to the left or to the right of x, i.e.,
f l � x � � max � � B

2 � 1 � A � B � 
 � B
2 � � 1 � A � � . This gives B ��� 2E � 1 � A � B � and B � � 2E � � 1 � A � .

Notice that this also holds if 1 � A � B � 0 or � 1 � A � 0.

We now show in Lemma 2 that in the special case the area of uncertainty consists of one triangle,
i.e., ∆ f k

1 � 0 or ∆ f k
2 � 0, the triangle section method at least halves the range of uncertainty for a

new function evaluation.

Lemma 2. Let a new function evaluation xk � 1 be chosen according to (3), and let either ∆ f k
1 � 0

or ∆ f k
2 � 0. Then the range of uncertainty decreases by at least a factor 1

2 after the function
evaluation f � xk � 1 � is known.

Proof. W.l.o.g. we assume that ∆ f k
2 � 0. We distinguish four possibilities for f � xk � 1 � ; cf. Fig-

ure 9(a).

1. f � xk � 1 � � f u � xk � 1 � , see Figure 9(b). Then the upper bound is equal to the lower bound for all
points in � L 
 U � and M � 0 is the optimum with function value f � M � � 0. Thus ∆ f k � 1

1 � 0.

2. f u � xk � 1 � � f � xk � 1 � � 0, see Figure 9(c). If we write ∆ f k � 1
1 as an expression of A 
 B 
 C 
 D 
 and

E we get

∆ f k � 1
1 � B � 12 B � AE �

B � � 1
2 � A � � � B � E � � 1 � A � B � � (4)
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xk+1

f u

f l

{

{
case 1

case 2

case 3

case 4

∆fk
1

(a)

xk+1

∆fk+1
1 =0

case 1: f(xk+1)=f u(xk+1)

(b)

xk+1

∆fk+1
1

case 2: f u(xk+1)>f(xk+1)>0

(c)

xk+1

∆fk+1
2∆fk+1

1

case 3: 0>f(xk+1)>f l(xk+1)>0

(d)

xk+1∆fk+1
1

case 4: f(xk+1)=f l(xk+1)

(e)

Figure 9. Decrease of range of uncertainty when ∆ f k
2
� 0. (a) Four possibilities are distinguished

for the new function evaluation f
�
xk
� 1
� . (b) f

�
xk
� 1
� � f u � xk

� 1
� . (c) f u � xk

� 1
��� f

�
xk
� 1
��� 0. (d)

0 � f
�
xk
� 1
��� f l � xk

� 1
� . (e) f

�
xk
� 1
� � f l � xk

� 1
� .
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Now we need to show that ∆ f k � 1
1 � 1

2 or 1
2 � ∆ f k � 1

1 � 0. From properties (i),(ii), and (v)
it follows that B � � 1

2 � A � �	� B � E � � 1 � A � B � � 0. So we need to show that 1
2 B � � 1

2 �
A � � 1

2 � B � E � � 1 � A � B � � B � 12B � AE � � 0. Rewriting the left part of this inequality gives
1
4 B � 1

2 E ��� � 1 � A � � 1 � B � � AB � . Since B 
 E 
 � � 1 � A � � 0 the inequality holds, and ∆ f k � 1
1 �

1
2 .

3. 0 � f � xk � 1 � � f l � xk � 1 � , see Figure 9(d). Then both ∆ f k � 1
1 � 0 and ∆ f k � 1

2 � 0 will hold. If we
write ∆ f k � 1

1 as an expression of A 
 B 
 C 
 D 
 and E we get

∆ f k � 1
1 � � E � 12 B � E � � 1 � A ���

1
2 B � E � � 1 � A � � (5)

Now we show that 1
2 � ∆ f k � 1

1 � 0. As B � 0, E � 0, and � 1 � A � 0, this can be done by
showing that 1

2 � 12 B � E � � 1 � A ��� ��� � E � 12B � E � � 1 � A ����� � 0. Rewriting the left part of this
inequality and using B ��� 2E � 1 � A � B � from property (vi) gives � � 1 � A � E 2 � 1

2 E � 1 � A �
B � � 1

4 B �	� � 1 � A � E2 � 0.
If we write ∆ f k � 1

2 as an expression of A 
 B 
 C 
 D 
 and E we get

∆ f k � 1
2 � E � B � E � � 1 � A � B � � 1

2 B � B � E �
� B � E � � 1 � A � B � � B � � 1

2 � A � � (6)

As B � E , 1 � A � B � 0, B � 0, and � 1
2 � A � � 1 � A � 0, it suffices to show that 1

2 ��� B �
E � � 1 � A � B � � B � � 1

2 � A ��� ��� E � B � E � � 1 � A � B � � 1
2 B � B � E ��� � 0. Rewriting the left part

of this inequality and using B � � 2E � � 1 � A � from property (vi) gives � 1
2 E � 1 � A � � 1

4 B �
E � B � E � � 1 � A � B � � � 1

2E � 1 � A ��� 1
4 � � 2E � � 1 � A ��� � E � B � E � � 1 � A � B � � � E � B �

E � � 1 � A � B � � 0.

4. f � xk � 1 � � f l � xk � 1 � , see Figure 9(e). Then ∆ f k � 1
2 � 0, and ∆ f k � 1

1 � ∆ f k
1 � � f � M � � f l � xk � 1 ��� �

∆ f k
1 � f l � xk � 1 � . So, for ∆ f k � 1

1 � 1
2 ∆ f k

1 � 1
2 we need to show that � f l � xk � 1 � � 1

2 � 0. The lower
bound is given by f l � xk � 1 � � max � � B

2 � 1 � A � B � 
 � B
2 � � 1 � A � � . If f l � xk � 1 � � � B

2 � 1 � A � B � we have

B
2 � 1 � A � B � �

1
2
� B ��� 1 � A � B �

2 � 1 � A � B � � � 1 � A
2 � 1 � A � B � � 0 �

If f l � xk � 1 � � � B
2 � � 1 � A � we have

B
2 � � 1 � A � �

1
2
� B ��� � 1 � A �

2 � � 1 � A � � 1 � A � B
2 � � 1 � A � � 0 � �

We use Lemma 2 to show that the triangle section method at least halves the range of uncertainty
after two new function evaluations.

Theorem 2. Let each new function evaluation xk � 1 be chosen according to (3). Then the range
of uncertainty at least halves after two function evaluations, i.e., for all k, max � ∆ f k � 2

1 
 ∆ f k � 2
2 � �

1
2 max � ∆ f k

1 
 ∆ f k
2 � .

Proof. W.l.o.g. we assume that ∆ f k
1 � ∆ f k

2 . We distinguish three possibilities for the function value
f � xk � 1 � .
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1. f � xk � 1 � � f u � xk � 1 � . Then for all y � � L 
 M � we have f u � y � � f l � y � , and ∆ f k � 1
1 � 0. Further-

more, ∆ f k � 1
2 � ∆ f k

2 . Now it follows from Lemma 2 that max � ∆ f k � 2
1 
 ∆ f k � 2

2 � � 1
2 ∆ f k � 1

2 �
1
2 max � ∆ f k

1 
 ∆ f k
2 � .

2. 0 � f � xk � 1 � � f l � xk � 1 � . Then ∆ f k � 1
1 and ∆ f k � 1

2 are identical to those given in the proof
of Lemma 2 for the corresponding value of f � xk � 1 � . It follows that max � ∆ f k � 1

1 
 ∆ f k � 1
2 � �

1
2 max � ∆ f k

1 
 ∆ f k
2 � and thus max � ∆ f k � 2

1 
 ∆ f k � 2
2 � � 1

2 max � ∆ f k
1 
 ∆ f k

2 � .
3. f u � xk � 1 � � f � xk � 1 � � 0. The expression for ∆ f k � 1

1 is identical to the one given in the proof of
Lemma 2, and it follows that ∆ f k � 1

1 � 1
2 ∆ f k

1 . For ∆ f k � 1
2 we distinguish two possibilities.

� ∆ f k � 1
2 � 1

2 ∆ f k
1 . Then max � ∆ f k � 1

1 
 ∆ f k � 1
2 � � 1

2 max � ∆ f k
1 
 ∆ f k

2 � and thus
max � ∆ f k � 2

1 
 ∆ f k � 2
2 � � 1

2 max � ∆ f k
1 
 ∆ f k

2 � .� ∆ f k � 1
2 � 1

2 ∆ f k
1 . Then also ∆ f k � 1

2 � ∆ f k � 1
1 . A new point xk � 2 is now chosen for function

evaluation according to (3). For the function value f � xk � 2 � we can also distinguish three
possibilities.
– f � xk � 2 � � f u � xk � 2 � . As ∆ f k � 1

2 � ∆ f k � 1
1 , it follows that ∆ f k � 2

2 � 0. Thus,
max � ∆ f k � 2

1 
 ∆ f k � 2
2 � � ∆ f k � 1

1 � 1
2 max � ∆ f k

1 
 ∆ f k
2 � .

– 0 � f � xk � 2 � � f l � xk � 2 � . Then max � ∆ f k � 2
1 
 ∆ f k � 2

2 � � 1
2 ∆ f k � 1

2 � 1
2 max � ∆ f k

1 
 ∆ f k
2 � .

– f u � xk � 2 � � f � xk � 2 � � 0. As ∆ f k � 1
2 � ∆ f k � 1

1 , it follows that ∆ f k � 2
2 � 1

2 ∆ f k � 1
2 �

1
2 max � ∆ f k

1 
 ∆ f k
2 � . Furthermore, ∆ f k � 2

1 � ∆ f k � 1
1 � 1

2 max � ∆ f k
1 
 ∆ f k

2 � . �

Corollary 1. Using the triangle section method, the decrease of the range of uncertainty is expo-
nential in the number of function evaluations.

Proof. Let the initial range of uncertainty be given by max � ∆ f 0
1 
 ∆ f 0

2 � , and the range of
uncertainty after k new function evaluations by max � ∆ f k

1 
 ∆ f k
2 � . Then max � ∆ f k

1 
 ∆ f k
2 � �

1
2 max � ∆ f k � 2

1 
 ∆ f k � 2
2 � �

�
1
2 �

� k
2 � max � ∆ f 0

1 
 ∆ f 0
2 � .

�

So we have shown that the range of uncertainty at least halves for each two new function evalua-
tions. However, the average reduction of the range of uncertainty generally is much bigger, which
is backed up by the empirical results that we present in Section 5.

3.3 Piecewise-linear functions

We now consider the case in which the function f is also known to be piecewise linear besides
convex or concave. An example of such a function is given in Section 4.

The piecewise-linear property of f can be used as follows to terminate the improved golden section
method or the triangle section method with the exact minimum as result. For a piecewise-linear
function the slope of a line segment will be identified as soon as three function evaluations are
made of points on the segment. Furthermore, the optimum lies at the intersection of two seg-
ments. When these two line segments have been identified, the exact minimum can be obtained
by determining the intersection of the two line segments.

When dealing with piecewise-linear functions, we use this fact as follows. We evaluate the point
xk with the lowest lower bound value, i.e., xk � arg min f l � x � , when a line segment containing the
point with the lowest function evaluation so far has been identified, i.e., when three adjacent points
lie on one line segment where the lowest function evaluation is either the first or the last point;
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xk

Figure 10. A line segment containing the point with the lowest function evaluation so far has
been identified by three adjacent function evaluations. The next point xk that is chosen for function
evaluation is the point with the lowest lower bound value.

see Figure 10 for an example. Both the improved golden section method and the triangle section
method can be adjusted to incorporate this strategy. For the improved golden section method it is
then required to check before each new function evaluation if the point with the lowest function
evaluation lies on one line segment with either the two points immediately before or the two points
immediately after itself. For the triangle section method either ∆ f k

1 � 0 or ∆ f k
2 � 0 holds in this

case. Although ∆ f k
1 � 0 or ∆ f k

2 � 0 also holds when there are two points with the lowest function
evaluation, we use it to determine when to deviate from (3) and to evaluate xk � arg min f l � x �
instead. If f � xk � � f l � xk � , then xk is the point with the minimum and we are done. Otherwise, we
continue with new function evaluations, also using the latest function evaluation f � xk � .

4 Application

In previous sections we described how we can find the optimum for a concave or convex function
of one variable with computationally hard function evaluations. In this section we give a real-life
example of such a function, stemming from resource management in an in-home network. For an
elaborate description of the problem from which this example originates we refer to Den Boef et
al.[1].

Consider a sender and a receiver of data and a network or data transportation device to which
both the sender and receiver are connected. At the connections of the sender and the receiver to
the network, buffers are placed. Time is discretized into time units t, and for each time unit t the
amount of data supplied at the sender is given by s � t � and the amount of data consumed at the
receiver is given by d � t � . All data is supplied into the buffer at the sender and is consumed from
the buffer at the receiver. Reservations of the buffers and transportation device are based on the
maximum usage during the time horizon. Costs of the buffers are given by cs and cr per unit buffer
size, and cost of the transportation device is given by cb per unit transportation capacity.

The problem is to determine reservations b of the transportation device, ms and mr of the buffers,
and a feasible transmission schedule of the data given by x � t � for each time unit t such that total
costs are minimized. The transmission schedule has to be such that whenever data is taken from
a buffer, it also is available in the buffer (no buffer underflow), and whenever data is put into a
buffer, the buffer reservation is not exceeded. Also, the amount transmitted during a time unit may
not exceed the transportation capacity reservation. This can be formulated as a linear program as
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follows.

minimize cbb � csms � crmr
subject to x � t � � b

∑t
k � 1 s � k � � ∑t

k � 1 x � k � � 0
∑t

k � 1 s � k � � ∑t � 1
k � 1 x � k � � ms

∑t
k � 1 x � k ��� ∑t

k � 1 d � k � � 0
∑t

k � 1 x � k ��� ∑t � 1
k � 1 d � k � � mr

(7)

In this LP all constraints are for every time unit t. Since a typical data stream can have a time
horizon that is split up into more than 100,000 time units, the LP consists of a large amount of
variables and constraints, leading to a relatively long calculation time when standard LP-methods
are used. To speed up the calculation time the following problem-specific method is used which
has complexity

� ��� T � � with T the set of time units. Given a transportation capacity the total buffer
costs can be minimized by first minimizing the buffer with the highest cost coefficient and then
minimizing the buffer with the lowest cost coefficient. So for a given value of b optimal values of
ms and mr can be determined. This leads to the following reformulation of the problem.

Let f be a function on transportation capacity b with function values that represent the minimum
total costs. So, for input b, function f determines optimal values of ms and mr given the cost
coefficients cs and cr and then calculates the total costs cbb � csms � crmr which are returned as
output. The problem now is to find the minimum of the function f . Since the original problem
is an LP-problem, f is a continuous, piecewise-linear, convex function. So, the method described
in this paper can be used to find an optimum. In Section 5 we show some results of the improved
golden section method and the triangle section method concerning this application.

5 Numerical test results

In this section we present numerical test results for the improved golden section method and
the triangle section method. These results are obtained by using these methods on the applica-
tion described in Section 4 and on numerous mathematical functions, which can be divided into
two types. Functions of type 1 are polynomial functions, given by f � x ��� a � x � b � 2c, with a �
0 � 5 
 1 
 1 � 5 
������ 
 9 � 5 
 10, b � 1 
 2 
������ 
 10, and c � 1 
 2 
������ 
 5. This gives a total of 1000 functions of
type 1. A function f of type 2 is given by f � x � � aeb � x � c � � dx, with a � 1 
 2 
������ 
 10, b � 1 
 2 
������ 
 5,
c � � 5 
 � 4 
������ 
 5, and d � 0 � 01 
 0 � 05 
 0 � 25 
 1 � 25 
 6 � 25 
 31 � 25 
 156 � 25 
 781 � 25 
 3906 � 25. This gives
a total of 4950 functions of type 2. For both functions of type 1 and functions of type 2 the ob-
jective was to find the minimum on the interval � � 10 
 10 � . Finally, for the application discussed in
the previous section we used 16 different video traces, each combined with a number of different
cost coefficients cb, cs, and cr, which resulted in 283 problem instances.

In Table 1 results are given for comparing regular golden section, improved golden section, and
triangle section using the (a) 1000 functions of type 1, (b) 4950 functions of type 2, and (c) 283
application instances. The results consist of the average difference between the best found solution
and the optimal solution, and the average size of the interval of uncertainty after a given number
of function evaluations, with both averages over all functions or instances. These results show
that for functions of type 1 and application instances the triangle section method on average gets
closest to the optimal function value. For functions of type 2, however, it is outperformed by the
improved golden section method, possibly due to the largely asymmetrical shape of these func-
tions. Regarding the interval of uncertainty, we notice that the improved golden section method
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(a) Type 1 Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 7126.103 8.087 2.054 6.111 5.733 5.638
6 3.649 3.137 0.163 3.708 3.404 2.993
7 0.200 0.192 0.008 2.265 2.076 1.678
8 0.068 0.041 0.003 1.390 1.264 1.069
9 0.030 0.013 0.001 0.855 0.770 0.799
10 0.005 0.002 0.000 0.527 0.470 0.765

(b) Type 2 Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 605.264 531.365 727.436 6.912 4.606 5.098
6 283.096 229.274 272.258 4.262 2.408 2.736
7 145.214 87.939 89.639 2.631 1.368 1.528
8 68.755 31.416 32.209 1.625 0.784 0.906
9 32.362 15.685 16.408 1.004 0.447 0.575
10 17.983 12.590 12.595 0.620 0.255 0.409

(c) App. Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 112082 81744 70924 5079 3990 3362
6 40726 28890 23090 3100 1803 1831
7 19950 11894 10123 1900 839 1017
8 11651 7053 5585 1168 391 610
9 7301 3857 2902 719 182 407
10 4255 1945 1712 444 78 325

Table 1. Results after 5–10 function evaluations for the golden section method (gs), the improved
golden section method (igs), and the triangle section method (ts). Tables (a), (b), and (c) give
the results for the functions of type 1 and type 2, and for the application, respectively. In each
table, the leftmost column gives the number of function evaluations. The next three columns give
for each method and number of function evaluations the average over all functions or application
instances of the difference between the function value of the best found solution and the optimal
function value. The three rightmost columns give for each method the average over all functions
or application instances of the resulting interval of uncertainty after the given number of function
evaluations. Finally, improved golden section and triangle section were stopped when for a function
the range of uncertainty was less than 0.01. When this happened, the last calculated result for a
function was also used as a result for a higher number of function evaluations. This explains why,
e.g. the average size of the interval of uncertainty for type 1 functions using triangle section is for
10 function evaluations the largest compared to regular and improved golden section, while for
fewer function evaluations it is the smallest.
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Figure 11. In these two graphs the number of function evaluations that two of the three methods
require are compared. Figure (a) compares the improved golden section method with the regular
golden section method for the 283 instances of the application. Both methods were stopped when
the interval of uncertainty was less than 1. The graph gives for all 283 instances the relative
decrease in the number of function evaluations required by improved golden section compared
to regular golden section, i.e., for each application instance

�
igs � gs ��� gs is given, with igs and

gs the number of function evaluations required for improved golden section and regular golden
section, respectively. The instances are sorted on non-decreasing size of the relative decrease.
Figure (b) compares the triangle section method to the improved golden section method, both
using the procedure that uses piecewise linearity to determine the exact optimum. The graph gives
for all 283 instances the relative decrease in the number of function evaluations required by triangle
section compared to improved golden section, i.e., for each application instance

�
ts � igs ��� igs is

given, with ts and igs the number of function evaluations required for triangle section and improved
golden section, respectively.

improves upon the results of regular golden section especially for functions of type 2 and the appli-
cation instances. For functions of type 1, it also returns better results than regular golden section,
but here the improvement is not so impressive. This can be explained by the relatively steep slopes
of the functions of type 1 surrounding both sides of the optimum.

Figure 11(a) compares improved golden section with regular golden section using the application
instances and as stop criterion the size of interval of uncertainty being less than 1. It shows that
the reduction in number of function evaluations can be as high as 80%, and on average around
40%. Figure 11(b) compares triangle section with improved golden section using the application
instances and the piecewise-linear property, thus obtaining the exact optimum. For about one half
of the instances triangle section requires fewer function evaluations than improved golden section.
However, for about one quarter of the instances it requires more function evaluations. Still, the
average number of function evaluations is lower for triangle section than for improved golden
section.

Figure 12 shows the reduction factors of the interval of uncertainty after a function evaluation,
which were observed when applying the improved golden section method on all functions and
instances. It shows that the reduction factor is often close to the golden section ( � 0 � 618) for
functions of type 1. However, for functions of type 2 and application instances the reduction is
much more significant, i.e., we get much smaller intervals of uncertainty.

Figure 13 shows again the reduction factors of the interval of uncertainty using the improved
golden section method for functions of type 1, but now split into quadratic functions (c � 1) and
functions of higher degree (c � 2). It shows that the reduction factors for quadratic functions are
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Figure 12. The observed reduction factors of the interval of uncertainty after a function evaluation
using the improved golden section method, sorted increasingly. The number of performed function
evaluations per function or application instance varies. Figure (a) gives the reduction factors for all
1000 type 1 functions, figure (b) for all 4950 type 2 functions, and figure (c) for all 283 application
instances.
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Figure 13. The observed reduction factors of the interval of uncertainty after a function evaluation
using the improved golden section method, sorted increasingly. The number of performed function
evaluations per function or application instance varies. Figure (a) gives the reduction factors for all
quadratic type 1 functions, figure (b) of all other type 1 functions.
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Figure 14. The observed reduction factors of the range of uncertainty after a single function
evaluation using the triangle section method, sorted increasingly. These reduction factors were
observed after at least three functions evaluations were made for a specific function or application
instance. The number of performed function evaluations per function or application instance varies.
Figure (a) gives the reduction factors for all 1000 type 1 functions, figure (b) for all 4950 type 2
functions, and figure (c) for all 283 application instances.
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Figure 15. The observed reduction factors of the range of uncertainty after two consecutive func-
tion evaluations using the triangle section method, sorted increasingly. These reduction factors
were observed after at least three functions evaluations were made for a specific function or appli-
cation instance. The number of performed function evaluations per function or application instance
varies. Figure (a) gives the reduction factors for all 1000 type 1 functions, figure (b) for all 4950
type 2 functions, and figure (c) for all 283 application instances.

distributed evenly between 0 � 45 and 0 � 6 in contrast with the reduction factors for higher-degree
functions, of which approximately 90% is close to 0 � 6. As the gradient of functions of higher
degree at the evaluated points is larger than the gradient of quadratic functions, the lower bounds
for the functions of higher degree have a steeper slope, and thus lead to a smaller reduction of the
interval of uncertainty.

Figure 14 shows the reduction factors of the range of uncertainty after a single function evaluation,
which were observed when applying the triangle section method on all functions and instances. It
shows that more than 90% of the recorded reduction factors is spread out over the interval � 0 
 0 � 5 � ,
and only a small fraction of the recorded reduction factors are between 0 � 5 and 1. Figure 15 shows
the reduction factors of the range of uncertainty after two consecutive function evaluations, cf.
Theorem 2. It shows a similar distribution, with most of the observed reduction factors between 0
and 0 � 25 and only a small fraction between 0 � 25 and 0 � 5.

6 Conclusion

In this paper we have considered the problem of line searching for convex functions. We have
shown how the convexity property can be used to obtain upper and lower bounds on the function
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using the performed function evaluations. For some well-known line search methods we have
shown, using these upper and lower bounds, that they may propose a candidate which is not
optimal. We have presented two new line search methods which use the convexity property. The
first method, the improved golden section method, uses the upper and lower bounds to improve
upon the regular golden section method and always proposes a candidate which can be optimal.
The second method, the triangle section method, focuses on minimizing the interval for possible
objective values, the range of uncertainty, and we have shown that it at least halves the range of
uncertainty after every two function evaluations.

Both methods were tested using a real-life example and two classes of convex functions. It was
shown that the new methods give better approximations of the optimum than regular golden section
after a fixed number of function evaluations. This also translated into a sometimes heavily reduced
number of function evaluations that was required to obtain the optimum. A direct comparison of
the new methods did not show a clear winner; depending on the instance either improved golden
section or triangle section gave the best results.

There are several possibilities for future research in line searching methods for convex functions.
The upper and lower bounds based on the convexity property can be used to adapt other well-
known line search methods. They can also be used to try to estimate the complete function as
efficiently as possible instead of only the optimum. Finally, it would be interesting to see how the
work presented in this paper extends to multivariate, convex functions.
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A Height of a triangle in the area of uncertainty

For the explanation of the triangle section method to obtain a guaranteed range reduction, the
heights of the triangles in the area of uncertainty, ∆ f k

1 and ∆ f k
2 , need to be determined. The

expressions of ∆ f k
1 and ∆ f k

2 in points L 
 M 
 and U with their function evaluations f � L � 
 f � M � 
 and
f � U � , and the interval of uncertainty � L � 
 U � � can be obtained by determining the intersection of
two appropriate lines and subtracting this from the minimum found function evaluation. We first
give a general expression of the intersection of two lines both determined by two points. Then we
indicate for equations (1), (2) , (4), (5), and (6) how they can be obtained.

Let � a 
 f � a ��� and � b 
 f � b ��� define a line l1, and � c 
 f � c ��� and � d 
 f � d ��� a line l2. So, l1 � x � is given
by

f � b � � f � a �
b � a

x � f � a � b � f � b � a
b � a

and l2 � x � is given by
f � d ��� f � c �

d � c
x � f � c � d � f � d � c

d � c �
Let line l1 and line l2 intersect at � y 
 f � y ��� . Then using the above line equations with x � y, we
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derive from l1 � y � � l2 � y � that

y �
f � c � d � f � d � c

d � c � f � a � b � f � b � a
b � a

f � b � � f � a �
b � a � f � d � � f � c �

d � c

�

Simplifying the above equation gives

y � � f � c � d � f � d � c � � b � a � � � f � a � b � f � b � a � � d � c �
� f � b � � f � a ��� � d � c � ��� f � d � � f � c ��� � b � a � �

Substituting the above equation for y into l1 � y � or l2 � y � gives for f � y �

f � y � � � f � c � d � f � d � c � � f � b � � f � a ������� f � a � b � f � b � a � � f � d ��� f � c ���
� f � b ��� f � a ��� � d � c ����� f � d � � f � c ��� � b � a � �

Equation (1):
� a 
 f � a ��� � � L 
 f � L ��� , � b 
 f � b ��� � � L � 
 f � M ��� , � c 
 f � c ��� � � M 
 f � M ��� , and � d 
 f � d ��� � � U 
 f � U ��� .
∆ f k

1 � f � M ��� f � y � .
Equation (2):
� a 
 f � a ��� � � L 
 f � L ��� , � b 
 f � b ��� � � M 
 f � M ��� , � c 
 f � c ��� � � U � 
 f � M ��� , and � d 
 f � d ��� � � U 
 f � U ��� .
∆ f k

1 � f � M ��� f � y � .
Equation (4):
� a 
 f � a ��� � � A 
 B � , � b 
 f � b ��� � � � 1

2 
 E � , � c 
 f � c ��� � � 0 
 0 � , and � d 
 f � d ��� � � D 
 f � D ��� .
∆ f k � 1

1 � 0 � f � y � .
Equation (5):
� a 
 f � a ��� � � A 
 B � , � b 
 f � b ��� � � � 1 
 0 � , � c 
 f � c ��� � � � 1

2 
 E � , and � d 
 f � d ��� � � 0 
 0 � .
∆ f k � 1

1 � E � f � y � .
Equation (6):
� a 
 f � a ��� � � A 
 B � , � b 
 f � b ��� � � � 1

2 
 E � , � c 
 f � c ��� � � 0 
 0 � , and � d 
 f � d ��� � � D 
 f � D ��� .
∆ f k � 1

1 � E � f � y � .

22


