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Obligation rules for minimum cost spanning
tree situations and their monotonicity

properties.

Stef Tijs1, Rodica Branzei2, Stefano Moretti3, Henk Norde4

June 9, 2004

Abstract: We introduce the class of Obligation rules for minimum cost
spanning tree situations. The main result of this paper is that such rules are
cost monotonic and induce also population monotonic allocation schemes.
Another characteristic of Obligation rules is that they assign to a minimum
cost spanning tree situation a vector of cost contributions which can be ob-
tained as product of a double stochastic matrix with the cost vector of edges
in the optimal tree provided by the Kruskal algorithm. It turns out that the
Potters value (P -value) is an element of this class.

Key-words: minimum cost spanning tree games, cost monotonicity, popu-
lation monotonic allocation schemes.

1 Introduction

A connection problem arises in the presence of a group of agents, each of
which needs to be connected directly or via other agents to a source. If
connections among agents are costly, then each agent will evaluate the op-
portunity of cooperating with other agents in order to reduce costs. In fact,
if a group of agents decides to cooperate, a configuration of links which min-
imizes the total cost of connection is provided by a minimum cost spanning
tree.
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However, solving the cost-minimization problem is only part of the problem:
agents must still support the cost of the minimum cost spanning tree and
then a cost allocation problem has to be addressed.

This class of allocation problems has been tackled with the aid of co-
operative game theory since the basic paper of Bird (1976). For a detailed
discussion of the problem let us refer to the dissertations of Aarts (1994) and
Feltkamp (1995), and to the papers of Granot and Huberman (1981).

Many cost allocation methods have been proposed and, as usual, different
properties have been considered as well, also in view of the applied economic
framework. In many applications the cardinality of the set of agents can vary
in time, and also increasing or decreasing of connection costs may occur.

Consider, for instance, a wireless telecommunication network where agents
are operators of transmitters for traffic exchange and the source is the cen-
tral hub station. Agents can decide to communicate directly with the main
exchange hub, by means of powerful and very expensive transmitters, or,
alternatively, to cooperate and construct a wireless network of less power-
ful, and consequently, cheaper transmitters. Since transmissions are costly,
such a situation can be handled as a minimum cost spanning tree problem.
Moreover, new owners of transmitters can be willing to enter the network
and the cost of connection can increase (i.e. to improve quality and quantity
of services supplied) or decrease (i.e. by improving telecommunication tech-
nologies). Of course, in all the connection situations suitable to evolve with
time, stability conditions satisfied for the original situation cannot guarantee
cooperation among agents also under the new conditions. Therefore many
authors have focused their attention in finding allocation methods which
can keep, in the most general setting, incentives for cooperation also under
modifications in the population of agents and in the structure of connection
costs.

In the papers of Kent and Skorin-Kapov (1996), Moretti et al. (2002), and
Norde et al. (2004), the question of the existence of population monotonic
allocation schemes (pmas) (Sprumont (1990)) is central. A pmas provides a
cost allocation vector for every coalition in a monotonic way, i.e. the cost
allocated to some player does not increase if the coalition to which he belongs
becomes larger.

In the paper of Dutta and Kar (2002), cost monotonic allocation rules
have been studied, requiring that the cost allocated to agent i does not
increase if the cost of a link involving i goes down, nothing else changing in
the network.

In this paper, we introduce a class of allocation rules for minimum cost
spanning situations, namely the class of Obligation rules, and show that
they have nice monotonicity properties: cost monotonicity and population
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monotonicity. Actually, our concept is stronger than the concept of cost
monotonicity introduced in Dutta and Kar (2002). We simply impose that
if some connection costs go down, then no agents will pay more.

It turns out that particular rules in this class are the P -value (Branzei
et al. (2003)) and the P τ -values, for each ordering τ of the players (Norde
et al. (2004)). Moreover it is shown that the P -value is the average of the
P τ -values over all the possible orderings τ .

We start with some preliminaries in the next section. In section 3 Obliga-
tion rules are introduced starting from the general notion of obligation maps,
and some basic properties are studied. In section 4 it is shown that Obli-
gation rules are cost monotonic and induce population monotonic allocation
schemes.

2 Preliminaries and notations

An (undirected) graph is a pair < V,E >, where V is a set of vertices or
nodes and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j.
The complete graph on a set V of vertices is the graph < V,EV >, where
EV = {{i, j}|i, j ∈ V and i 6= j}. A path between i and j in a graph < V,E >
is a sequence of nodes i = i0, i1, . . . , ik = j, k ≥ 1, such that {is, is+1} ∈ E
for each s ∈ {0, . . . , k − 1}. A cycle in < V, E > is a path from i to i for
some i ∈ V . Two nodes i, j ∈ V are connected in < V, E > if i = j or if
there exists a path between i and j in E. A connected component of V in
< V, E > is a maximal subset of V with the property that any two nodes in
this subset are connected in < V, E >.

Now, we consider minimum cost spanning tree (mcst) situations. In a
mcst situation a set N = {1, . . . , n} of agents is involved willing to be con-
nected as cheap as possible to a source (i.e. a supplier of a service) denoted
by 0. In the sequel we use the notation N ′ = N ∪{0}. An mcst situation can
be represented by a tuple < N ′, EN ′ , w >, where < N ′, EN ′ > is the complete
graph on the set N ′ of nodes or vertices, and w : EN ′ → IR+ is a map which
assigns to each edge e ∈ EN ′ a nonnegative number w(e) representing the
weight or cost of edge e. We call w a weight function. Since in our paper
the graph of possible edges is always the complete graph, we simply denote
an mcst situation with set of users N , source 0, and weight function w by
< N ′, w >. Often we identify an mcst situation < N ′, w > with the corre-
sponding weight function w. We denote by WN ′

the set of all mcst situations
< N ′, w > (or w) with node set N ′. For each S ⊆ N , one can consider the
mcst subsituation < S ′, w|S′ >, where S ′ = S ∪ {0} and w|S′ : ES′ → IR+ is
the restriction of the weight function w to ES′ ⊆ EN ′ , i.e. w|S′(e) = w(e) for
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each e ∈ ES′ .
Let < N ′, w > be an mcst situation. Two nodes i and j are called (w, N ′)-

connected if i = j or if there exists a sequence of nodes i = i0, . . . , ik = j in
N ′, k ≥ 1, with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}.

We define the set ΣEN′ of linear orders on EN ′ as the set of all bijections
σ : {1, . . . , |EN ′|} → EN ′ , where |EN ′| is the cardinality of the set EN ′ . For
each mcst situation < N ′, w > there exists at least one linear order σ ∈ ΣEN′
such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|)). We denote by wσ the

column vector
(
w(σ(1)), w(σ(2)), . . . , w(σ(|EN ′|)))t

.
For any σ ∈ ΣEN′ we define the set

Kσ = {w ∈ IR
EN′
+ | w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|EN ′|))}.

Any mcst situation gives rise to two problems: the construction of a
network Γ ⊆ EN ′ of minimal cost connecting all users to the source, and a
cost sharing problem of distributing this cost in a fair way among users. The
cost of a network Γ is w(Γ) =

∑
e∈Γ w(e). A network Γ is a spanning network

on S ′ ⊆ N ′ if for every e ∈ Γ we have e ∈ ES′ and for every i ∈ S there
is a path in Γ from i to the source. To construct a minimum cost spanning
network Γ on N ′ we use in this paper the Kruskal algorithm (Kruskal (1956)),
where the edges are considered one by one according to non-decreasing cost,
and an edge is either rejected, if it generates a cycle with the edges already
constructed, or it is constructed, otherwise.

Let < N ′, w > be an mcst situation. The minimum cost spanning tree
game (N, cw) (or simply cw), corresponding to < N ′, w >, is defined by

cw(S) = min{w(Γ)|Γ is a spanning network on S ′}

for every S ∈ 2N\{∅}, where 2N stands for the power set of the player set
N , with the convention that cw(∅) = 0.

We call a map F : WN ′ → IRN assigning to every mcst situation w a
unique cost allocation in IRN a solution. A solution F is efficient if we have∑

i∈N Fi(w) = w(Γ) for each w ∈ WN ′
, where Γ is a spanning network on N ′

of minimal cost. A solution F has the carrier property if Fi(w) = 0 for each
w ∈ WN ′

and for each i ∈ N such that i is (w,N ′)-connected to 0.
Finally a population monotonic allocation scheme or pmas (Sprumont

(1990)) for the game (N, c) is a table x = {xS,i}S∈2N\{∅},i∈S with the proper-
ties

i)
∑
i∈S

xS,i = c(S) for all S ∈ 2N\{∅};

ii) xS,i ≥ xT,i for all S, T ∈ 2N\{∅} and i ∈ N with i ∈ S ⊂ T .
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Note that conditions (i) and (ii) imply that each row of this table is a core
element of the corresponding subgame of the game (N, c) (cf. Sprumont
(1990)).

3 Obligation rules

Let ∆(N) = {x ∈ IRN
+ |

∑
i∈N xi = 1}. The sub-simplex ∆(S) of ∆(N) given

by ∆(S) = {x ∈ ∆(N)|∑i∈S xi = 1} is called, for reasons to be clarified
later, the set of obligation vectors of S. An obligation function is a map
o : 2N \ {∅} → ∆(N) assigning to each S ∈ 2N \ {∅} an obligation vector
o(S) ∈ ∆(S) in such a way that for each S, T ∈ 2N \ {∅} with S ⊂ T and for
each i ∈ S

oi(S) ≥ oi(T ). (1)

Such an obligation function o on 2N \ {∅} induces an obligation map ô :
Θ(N ∪{0}) → IRN , where Θ(N ∪{0}) is the family of partitions of N ∪{0},
and ô(θ) =

∑
S∈θ,0/∈S o(S) for each θ ∈ Θ(N ∪ {0}).

If θ = {N ∪{0}}, then the resulting empty sum is assumed, by definition,
to be the |N |-vector of zeroes: ô(θ) = 0 ∈ IRN .

Example 1 Let o∗ : 2N \ {∅} → ∆(N) be defined by o∗(S) = eS

|S| for each

S ∈ 2N \ {∅}, where eS is the |N |-vector such that eS
i = 1 if i ∈ S and

eS
i = 0 if i ∈ N \ S. Then o∗ is an obligation function and the corresponding

obligation map is

ô∗i (θ) =




|S(θ, i)|−1 if 0 /∈ S(θ, i)

0 otherwise,

for each θ ∈ Θ(N ∪{0}) and each i ∈ N . Here S(θ, i) ∈ θ is the set to which
i belongs.

Note that o∗(S) is the barycenter of ∆(S) and for N = {1, 2, 3, 4}, θ =
{{1, 2}, {0, 3}, {4}} we have o∗(θ) = (1

2
, 1

2
, 0, 1).

Example 2 Given a bijection τ : N → {1, 2, . . . , |N |}, let oτ on 2N \ {∅} be
the obligation function such that for each S ∈ 2N \ {∅} and i ∈ N

oτ
i (S) =





1 if τ(i) = min{τ(k)|k ∈ S}

0 otherwise.

If N = {1, 2, 3, 4}, θ = {{1, 2}, {0, 3}, {4}}, τ(1) = 4, τ(2) = 3, τ(3) = 1
and τ(4) = 2, then ôτ (θ) = oτ ({1, 2}) + oτ ({4}) = (0, 1, 0, 1).
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Example 3 Let ν ∈ IRN
++ be a vector of strictly positive real values. Let

oν : 2N \ {∅} → ∆(N) be defined by

oν
i (S) =





νiP
j∈S νj

if i ∈ S

0 otherwise.

Then oν is an obligation function. Note that if νi = 1 for each i ∈ N , then
oν

i (S) = o∗i (S) for each S ∈ 2N \ {∅}, where o∗(S) is as in Example 1.

Example 4 Let U ⊂ N and let oU : 2N \ {∅} → ∆(N) be such that

oU
i (S) =




|S|−1 if i ∈ S and U * S
|U |−1 if i ∈ U and U ⊆ S
0 otherwise.

Then, if N = {1, 2, 3, 4} and U = {2, 3}, oU({1, 2, 4}) = (1
3
, 1

3
, 0, 1

3
) and

oU({1, 2, 3, 4}) = (0, 1
2
, 1

2
, 0). So oU is not an obligation function since it does

not satisfy condition (1).

Remark 1 Let o•, o◦ : 2N \{∅} → ∆(N) be two distinct obligation functions.
For each α ∈ [0, 1] let oα : 2N \ {∅} → ∆(N) be defined by oα(S) = αo•(S) +
(1 − α)o◦(S) for each S ∈ 2N \ {∅}. Then

∑
i∈S oα

i (S) =
∑

i∈S

(
αo•i (S) +

(1 − α)o◦i (S)
)

= 1. Moreover, since condition (1) holds both for o• and o◦,
condition (1) holds for their convex combination oα too. Therefore, oα is an
obligation function which induces the corresponding obligation map ôα(θ) =
αô•(θ) + (1− α)ô◦(θ) for each θ ∈ Θ(N ∪ {0}).

Let w ∈ WN ′
and let σ ∈ ΣEN′ be such that w ∈ Kσ. We can consider

a sequence of precisely |EN ′| + 1 graphs < N ′, F σ,0 >,< N ′, F σ,1 >, . . . ,
< N ′, F σ,|EN′ | > such that F σ,0 = ∅, F σ,k = F σ,k−1 ∪ {σ(k)} for each
k ∈ {1, . . . , |EN ′|}. For each graph < N ′, F σ,k >, with k ∈ {0, 1, . . . , |EN ′ |},
let πσ,k be the partition of N ∪ {0} consisting of the connected components
of N ′ in < N ′, F σ,k >.

Remark 2 Note that for each k ∈ {1, . . . , |EN ′|}, πσ,k is either equal to
πσ,k−1 or is obtained from πσ,k−1 by forming the union of two elements of
πσ,k−1.

Now we define recursively a function ρσ : {0, 1, . . . , |N |} → {0, 1, . . . , |EN ′|}
by

• ρσ(0) = 0
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• ρσ(j) = min{k ∈ {ρσ(j − 1) + 1, . . . , |EN ′|}|πσ,k 6= πσ,ρσ(j−1)}
for each j ∈ {1, . . . , |N |}.

Note that πσ,ρσ(i) 6= πσ,ρσ(j) for each i, j ∈ {0, 1, . . . , |N |} with i 6= j, and
σ(ρσ(1)), . . . , σ(ρσ(|N |)) correspond to the |N | accepted edges in the Kruskal
procedure based on the ordering σ.

Example 5 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 1. Note that w ∈ Kσ, with σ(1) = {1, 3},
σ(2) = {1, 2}, σ(3) = {2, 3}, σ(4) = {1, 0}, σ(5) = {2, 0}, σ(6) = {3, 0}.

¡
¡

¡¡
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Figure 1: An mcst situation with three agents.

The sequence of seven graphs < N ′, F σ,k > and the corresponding se-
quence of partitions πσ,k are shown in the following table

k F σ,k πσ,k

0 {∅} {{0}, {1}, {2}, {3}}
1 {{1, 3}} {{0}, {1, 3}, {2}}
2 {{1, 3}, {1, 2}} {{0}, {1, 2, 3}}
3 {{1, 3}, {1, 2}, {2, 3}} {{0}, {1, 2, 3}}
4 {{1, 3}, {1, 2}, {2, 3}, {1, 0}} {N ∪ {0}}
5 {{1, 3}, {1, 2}, {2, 3}, {1, 0}, {2, 0}} {N ∪ {0}}
6 {{1, 3}, {1, 2}, {2, 3}, {1, 0}, {2, 0}, {3, 0}} {N ∪ {0}}

Then ρσ(0) = 0, ρσ(1) = 1, ρσ(2) = 2, ρσ(3) = 4.

Definition 1 Let ô be an obligation map on Θ(N ∪ {0}). Let σ ∈ ΣEN′ .
The contribution matrix w.r.t ô and σ is the matrix Dσ,ô ∈ IRN×EN′ where
the rows correspond to the agents and the columns to the edges, and where

Dσ,ô
ik = ôi(π

σ,k−1)− ôi(π
σ,k)

for each i ∈ N and each k ∈ {1, . . . , |EN ′|}.
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Some characteristics of the contribution matrix are given in the following
proposition.

Proposition 1 Let ô be an obligation map on Θ(N ∪ {0}). Let σ ∈ ΣEN′ .
Then Dσ,ô is a nonnegative matrix for which each row sum is equal to 1 and
the ρσ(j)-th column sum is equal to 1 for each j ∈ {1, . . . , |N |}, whereas each
k-th column sum with k ∈ {1, . . . , |EN ′|} \ {ρσ(j)|j ∈ {1, . . . , |N |}} is equal
to 0.

Proof First note that by Remark 2 and the definition of obligation map the
matrix Dσ,ô is nonnegative.

The sum of the elements in each row i ∈ N is equal to 1 because

|EN′ |∑

k=1

(
ôi(π

σ,k−1)− ôi(π
σ,k)

)
= ôi(π

σ,0)− ôi(π
σ,|EN′ |) = 1− 0 = 1

for each i ∈ N .
The ρσ(j)-th column sums, for each j ∈ {1, . . . , |N |}, are equal to 1

because
∑

i∈N Dσ,ô
iρσ(j) =

∑
i∈N

(
ôi(π

σ,ρσ(j)−1)− ôi(π
σ,ρσ(j))

)
=

=
∑

i∈N ôi(π
σ,ρσ(j)−1)−∑

i∈N ôi(π
σ,ρσ(j)) =

=
(|πσ,ρσ(j)−1| − 1

)− (|πσ,ρσ(j)| − 1
)

= 1

for each j ∈ {1, . . . , |N |}, where in the last equality we use Remark 2. The
k-th column sums, for each k ∈ {1, . . . , |EN ′ |} \ {ρσ(j)|j ∈ {1, . . . , |N |}}, are
equal to 0 because πσ,k−1 = πσ,k and then

∑
i∈N Dσ,ô

ik =
∑

i∈N

(
ôi(π

σ,k−1)− ôi(π
σ,k)

)
= 0.

Definition 2 Let ô be an obligation map on Θ(N ∪{0}). Let σ ∈ ΣEN′ . We
define the map φσ,ô : Kσ → IRN by

φσ,ô(w) = Dσ,ôwσ, (2)

for each mcst situation w in the cone Kσ.

Onwards, let ek ∈ IR|EN′ | be the column vector such that ek
i = 1 if i = k

and ek
i = 0 for each i ∈ {1, . . . , |EN ′|} \ {k}. From Proposition 1 it follows

directly that the matrix D̄σ,ô ∈ IRN×|N | defined by

D̄σ,ôej = Dσ,ôeρσ(j) (3)
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for each j ∈ N is a double stochastic matrix (i.e. all entries are nonnegative
and each row sum and each column sum are equal to 1), and

φσ,ô(w) = D̄σ,ô
(
w(σ(ρσ(1))), . . . , w(σ(ρσ(|N |))))t

. (4)

In order to define Obligation rules properly on the set WN ′
, we need Lemma

1. In the sequel, recall that, for each t ∈ {1, . . . , |EN ′|}, wσ
t is the t-th

coordinate of the vector wσ as defined in the Preliminaries.

Lemma 1 Let ô be an obligation map on Θ(N ∪{0}); let σ ∈ ΣEN′ , w ∈ Kσ.
Suppose that, for some t ∈ {1, . . . , |EN ′| − 1}, wσ

t = wσ
t+1. Then for the

ordering σ′ ∈ ΣEN′ such that σ′(i) = σ(i) for each i ∈ {1, . . . , |EN ′|} \
{t, t + 1}, σ′(t) = σ(t + 1) and σ′(t + 1) = σ(t), we have that w ∈ Kσ′ and
φσ,ô(w) = φσ′,ô(w).

Proof It is obvious that w ∈ Kσ′ . Let a = wσ
t . Note that ô(πσ,k) =

ô(πσ′,k) for all k ∈ {1, . . . , |EN ′ |} with k 6= t. This implies that wσ
k Dσ,ôek =

wσ′
k Dσ′,ôek for all k ∈ {1, . . . , |EN ′|} with k /∈ {t, t + 1} and

wσ′
t Dσ′,ôet + wσ′

t+1D
σ′,ôet+1 =

= a(ô(πσ′,t−1)− ô(πσ′,t)) + a(ô(πσ′,t)− ô(πσ′,t+1)) =
= a(ô(πσ′,t−1)− ô(πσ′,t+1)) = a(ô(πσ,t−1)− ô(πσ,t+1)) =
= a(ô(πσ,t−1)− ô(πσ,t)) + a(ô(πσ,t)− ô(πσ,t+1)) =
= wσ

t Dσ,ôet + wσ
t+1D

σ,ôet+1.

(5)

So, Dσ,ôwσ = Dσ′,ôwσ′ or, equivalently, φσ,ô(w) = φσ′,ô(w).

By repeatedly using Lemma 5 we obtain

Proposition 2 Let ô be an obligation map on Θ(N ∪{0}). If w ∈ Kσ ∩Kσ′

with σ, σ′ ∈ ΣEN′ , then φσ,ô(w) = φσ′,ô(w).

This proposition makes it possible to define an Obligation rule with respect
to an obligation map on Θ(N ∪ {0}) as a map on WN ′

.

Definition 3 Let ô be an obligation map on Θ(N ∪ {0}). The Obligation
(O-)rule w.r.t. ô is the map φô : WN ′ → IRN defined by

φô(w) = φσ,ô(w) (6)

for each w ∈ WN ′
, where σ ∈ ΣEN′ is such that w ∈ Kσ.

Remark 3 The P -value (Branzei et al. (2003)) and the P τ -values, with τ ∈
ΣN ′, introduced in Norde et al. (2004) and studied in Branzei et al.(2003),
are Obligation rules. In fact φô∗(w) = P (w) and φôτ

(w) = P τ (w) for each
τ ∈ ΣN , where ΣN is the set of all bijections τ : N → {1, . . . , |N |}.
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Now we make clear why we chose the name “Obligation rule”. Let ô an obli-
gation map on Θ(N ∪{0}) and let w ∈ WN ′

. According to the corresponding
O-rule φô, each player i ∈ N has to pay fractions of edges summing up to
1, which is the total obligation for player i in the mcst situation w. Stated
differently, an O-rule allocates the cost of an edge which forms in some step
k, k ∈ {1, . . . , |EN ′|}, of the Kruskal algorithm to the players in N according
to the k-th column of the contribution matrix Dσ,ô, with σ ∈ ΣEN′ such that
w ∈ Kσ. After step k, by Proposition 1, the quantity of remaining obliga-
tions for each player i ∈ N is given by 1−∑k−1

j=1 Dσ,ô
ij = ôi(π

σ,k).

We collect some interesting properties of O-rules in Proposition 3.

Proposition 3 The O-rules are efficient, satisfy the carrier property and
form a convex set.

Proof Let ô be an obligation map on Θ(N ∪ {0}), let w ∈ WN ′
and let

σ ∈ ΣEN′ be such that w ∈ Kσ.

i) From (3) and (6) it follows

φô
i (w) =

|N |∑

k=1

D̄σ,ô
ik w(σ(ρσ(k))),

for each i ∈ N , implying that

∑
i∈N

φô
i (w) =

|N |∑

k=1

w(σ(ρσ(k)))
∑
i∈N

D̄σ,ô
ik =

|N |∑

k=1

w(σ(ρσ(k))) = w(Γ),

where the second equality follows from Proposition 1 and where Γ is a
spanning network on N ′ of minimal cost. So efficiency is proved.

ii) Let i ∈ N be a player who is (w, N ′)-connected to the source 0. There
exists r ∈ {1, . . . , |EN ′|} such that i is connected to 0 in F σ,r but not in
F σ,r−1 and w(σ(r)) = 0. Moreover, by the definition of an obligation
map, ôi(π

σ,k) = 0 for k ∈ {r, . . . , |EN ′|}. It follows by (6) that φô
i (w) =

0 and then it is proved that φô satisfies the carrier property.

iii) Let ô•, ô◦ and ôα, with α ∈ [0, 1], be as in Remark 1. Then

αφô•(w) + (1− α)φô◦(w) =
= αDσ,ô•wσ + (1− α)Dσ,ô◦wσ =
=

(
αDσ,ô• + (1− α)Dσ,ô◦

)
wσ =

= Dσ,ôα
wσ = φôα

(w)
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for every w ∈ WN ′
and σ ∈ ΣEN′ such that w ∈ Kσ, where the third

equality follows from Remark 1 and the definition of Dσ,ôα
. Then it is

proved that the set of O-rules is a convex set.

We end this section with a proposition that enlightens the connection be-
tween the P -value and the P τ -values, τ ∈ ΣEN′ , according to Remark 3.

Proposition 4 Let w ∈ WN ′
. Then

P (w) =
1

n!

∑
τ∈ΣN

P τ (w). (7)

Proof By Remark 3 and (4) we have only to prove that

D̄σ,ô∗ =
1

n!

∑
τ∈ΣN

D̄σ,ôτ

. (8)

Let σ ∈ ΣEN′ be such that w ∈ Kσ.
To prove (8), note that for each i ∈ {1, . . . , |N |}, the edge σ(ρσ(i)) con-

nects two disconnected subsets of vertices S, T ∈ πσ,ρσ(i−1). Then, for each
player j ∈ N \ (S ∪ T ), if any, 1

n!

∑
τ∈ΣN

D̄σ,ôτ

ji = D̄σ,ô∗
ji = 0.

On the other hand, for players in S∪T , we have two possibilities regarding
the position of the source w.r.t. the sets S and T :

i) The source 0 belongs neither to S nor to T implying that for each j ∈ T
and for each τ ∈ ΣN

ôτ
j (π

σ,ρσ(i−1))− ôτ
j (π

σ,ρσ(i)) =





1 if τ(j) = min{τ(k)|k ∈ T} and
τ(j) 6= min{τ(k)|k ∈ S ∪ T};

0 otherwise.

The fraction of orderings τ ∈ ΣN such that arg min{τ(k)|k ∈ S∪T} ∈ S

is equal to |S|
|S∪T | = |S|

|S|+|T | whereas the fraction of such orderings τ ∈ ΣN

such that τ(j) = min{τ(k)|k ∈ T} is equal to 1
|T | . Then it follows that

for each j ∈ T

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji =

= 1
n!

∑
τ∈ΣN

(
ôτ

j (π
σ,ρσ(i−1))− ôτ

j (π
σ,ρσ(i))

)
=

= |S|
|S∪T |

1
|T | = 1

|T | − 1
|S∪T | =

= ô∗j(π
σ,ρσ(i−1))− ô∗j(π

σ,ρσ(i)) =

= D̄σ,ô∗
ji .
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Similar arguments hold for each j ∈ S too.

ii) The source 0 belongs either to S or to T . Without loss of generality,
suppose 0 ∈ S. Then, for each j ∈ S

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji =

= 1
n!

∑
τ∈ΣN

(
ôτ

j (π
σ,ρσ(i−1))− ôτ

j (π
σ,ρσ(i))

)
=

= 0 =
= ô∗j(π

σ,ρσ(i−1))− ô∗j(π
σ,ρσ(i)) =

= D̄σ,ô∗
ji .

On the other hand, for each j ∈ T

1
n!

∑
τ∈ΣN

D̄σ,ôτ

ji =

= 1
n!

∑
τ∈ΣN

(
ôτ

j (π
σ,ρσ(i−1))− ôτ

j (π
σ,ρσ(i))

)
=

= 1
|T | =

= ô∗j(π
σ,ρσ(i−1))− ô∗j(π

σ,ρσ(i)) =

= D̄σ,ô∗
ji .

A similar argument holds if 0 ∈ T .

Hence (8) is proved and P (w) = 1
n!

∑
τ∈ΣN

P τ (w).

An alternative proof of Proposition 4 is given in Branzei et al. (2004).

4 Cost Monotonicity and PMAS

In this section we will discuss some nice monotonicity properties of the O-
rules. First, we provide the definition of cost monotonic solutions for mcst
situations.

Definition 4 A solution F : WN ′ → IRN is a cost monotonic solution if for
all mcst situations w, w̄ ∈ WN ′

such that w(ē) ≤ w̄(ē) for one edge ē ∈ EN ′

and w(e) = w̄(e) for each e ∈ EN ′ \ {ē}, it holds that F (w) ≤ F (w̄).

We prove in Theorem 1 that O-rules are cost monotonic; the main step is
the following lemma.

Lemma 2 Let ô be an obligation map on Θ(N ∪{0}) and let w ∈ WN ′
. Let

ē ∈ EN ′ and let h > w(ē) be such that there is no e ∈ EN ′ with w(ē) <
w(e) < h. Define w̃ ∈ WN ′

by w̃(e) := w(e) if e ∈ EN ′ \ {ē} and w̃(ē) = h.
Then: φô(w̄) ≥ φô(w).
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Proof Let K := {e ∈ EN ′|w(e) = w(ē)} be the set of edges that have
the same cost as ē. Let σ ∈ ΣEN′ be such that w ∈ Kσ. Without loss of
generality we may assume that σ−1(ē) = max{σ−1(e)|e ∈ K}, i.e. σ ranks
the edges of K with ē last. By construction we also have w̃ ∈ Kσ and hence

φô(w̃) = Dσ,ôw̃σ ≥ Dσ,ôwσ = φô(w),

where at the inequality we used the fact that w̃σ ≥ wσ and the fact that the
matrix Dσ,ô is nonnegative.

Theorem 1 Obligation rules are cost monotonic.

Proof Let ô be an obligation map on Θ(N ∪{0}) and let φô the O-rule w.r.t
ô. Let w, w̄ ∈ WN ′

be as in Definition 4.
Let H := {h ∈ IR| there is an edge f ∈ EN ′ s.t. h = w(f) ∈ (w(e), w̄(ē))}.
If H = ∅ then the statement follows directly from Lemma 2. If H 6= ∅ write
H = {h1, . . . , hk} with h1 < . . . < hk.

Consider the sequence of precisely k + 2 mcst situations w0, . . . , wk+1 ∈
WN ′

such that w0 = w, wk+1 = w̄ and for each r ∈ {1, . . . , k}, wr(e) = w(e)
for each e ∈ EN ′ \ {ē} and wr(ē) = hr.

Applying Lemma 2 for each r ∈ {1, . . . , |H|}, with wr−1 in the role of w
and wr in the role of w̃, it follows that

φô(w̄) = φô(wk+1) ≥ φô(wk) . . . ≥ φô(w0) = φô(w),

which finally proves cost monotonicity of O-rules.

By Theorem 1 and Remark 3 the P -value and the P τ -values, for each τ ∈ ΣN ,
are cost monotonic O-rules. The following example illustrates the cost mono-
tonicity of the P -value.

Example 6 Consider the mcst situation < N ′, w > with N ′ = {0, 1, 2, 3}
and w as depicted in Figure 1. The contribution matrix Dσ,ô∗ is

Dσ,ô∗ =




1
2

1
6

0 1
3

0 0
0 2

3
0 1

3
0 0

1
2

1
6

0 1
3

0 0




and wσ = (10, 18, 20, 24, 24, 26)t.
Then P (w) = φô∗(w) = Dσ,ô∗wσ = (16, 20, 16)t.
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Now we consider the mcst situation < N ′, w̄ >∈ WN ′
where w̄ is equal to

w except for edge {1, 3} whose cost is now w̄({1, 3}) = 26. The contribution
matrix for w̄ is

Dσ̄,ô∗ =




1
2

1
6

1
3

0 0 0
1
2

1
6

1
3

0 0 0
0 2

3
1
3

0 0 0




and w̄σ = (18, 20, 24, 24, 26, 26)t. Therefore

φô∗(w) = P (w) =




1
2

1
6

1
3

0 0 0
1
2

1
6

1
3

0 0 0
0 2

3
1
3

0 0 0







18
20
24
24
26
26




=

= (9 +
10

3
+ 8, 9 +

10

3
+ 8,

40

3
+ 8)t = (

61

3
,
61

3
,
64

3
)t.

The following theorem shows that O-rules induce a pmas for the correspond-
ing mcst games.

Before introducing the theorem, we need to introduce some further no-
tations. Let o be an obligation function and ô the corresponding obligation
map. Let S ⊆ N , let oS denote the restriction of o to 2S \ {∅} and let ôS

denote the corresponding obligation map, i.e.

ôS(θ) =
∑

T∈θ,0/∈T

oS(T )

for every θ ∈ Θ(S ∪ {0}).
Recall also that if w ∈ WN ′

, then an O-rule φôS w.r.t the obligation
map ôS and applied to w|S′ , i.e. the restriction of the weight function w to
ES′ ⊆ EN ′ as defined in the Preliminaries, provides a vector in IRS according
to Definition 3 w.r.t. the set of nodes S ′.

Theorem 2 Let ô be an obligation map on Θ(N ∪ {0}), let φô the O-rule
w.r.t ô, and let w ∈ WN ′

. Then the table [φôS(w|S′)]S∈2N\{∅} is a pmas for
the mcst game (N, cw).

Proof Given S ⊂ T ⊆ N , define < T ′, w̄ > with T ′ = T ∪ {0} and

w̄({i, j}) =





w({i, j}) if i, j ∈ S ′

w({i, j}) + λS otherwise
(9)
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where λS = 1 + max{w({i, j})|i, j ∈ S ′}.
Then, in < T ′, w̄ > each edge with at least one node not in S ′ is more

expensive than in < T ′, w|T ′ >.
Further, let σ̄ ∈ ΣET ′ be such that w̄ ∈ K σ̄ and let σS′ ∈ ΣES′ be such

that σS′(i) = σ̄(i) for each i ∈ {1, . . . , |ES′|}. Then by (9) it follows that

w|S′ ∈ KσS′
.

Note that for each i ∈ S

φôT
i (w̄) = φôS

i (w|S′). (10)

This follows from the fact that in < S ′, w|S′ > the edges with at least one
node not in S ′ are discarded and in < T ′, w̄ > the edges with at least one node
not in S ′ are allowed but they are too expensive. The result is that applying
the Kruskal procedure on < T ′, w̄ > w.r.t. σ̄ the players in S ′ are already
connected to 0 before one of the edges with nodes not in S ′ is considered.
So, by definition of an obligation map, we have that the contribution matrix
with |T | rows and |ET ′| columns Dσ̄,ôT is of the form

Dσ̄,ôT =




DσS′ ,ôS N1

N2 R




99K players in S

99K players in T \ S,

where the four submatrices DσS′ ,ôS , N1, N2 and R are such that:

• DσS′ ,ôS is the contribution matrix w.r.t. to σS′ and to ôS with |S| rows
and |ES′| columns;

• N1 is the null matrix with |S| rows and |ET ′| − |ES′| columns;

• N2 is the null matrix with |T | − |S| rows and |ES′ | columns;

• R is a real valued matrix with |T | − |S| rows and |ET ′| − |ES′| columns
obtained according to the definition of the contribution matrix Dσ̄,ôT .

Hence, for each i ∈ S, φôT
i (w̄) = (DσS′ ,ôS w̄σS′

|S′ )i = φôS
i (w̄|S′) = φôS

i (w|S′),

which yields equation (10). [Here (DσS′ ,ôS w̄σS

|S′)i is the i-th component of the

vector DσS′ ,ôS w̄σS′

|S′ .]

Recall that O-rules are cost monotonic. Since w̄(e) ≥ w|T ′(e) for each
e ∈ ET ′ , then

φôT
i (w̄) ≥ φôT

i (w|T ′), for each i ∈ T. (11)
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From (10) and (11) we obtain

φôS
i (w|S′) ≥ φôT

i (w|T ′) for each i ∈ S. (12)

From (12) and the efficiency property it follows that [φôS(w|S′)]S∈2N\{∅} is a
pmas for the mcst game (N, cw)

From Theorem 2 and the definition of a pmas, it follows that O-rules provide
cost allocations which are core elements of the game (N, cw).

Example 7 Consider again the mcst situation < N ′, w > with N ′ = {0, 1, 2,
3} and w as depicted in Figure 1. Then the P -value, as the O-rule φô∗(w)
previously introduced, applied to each mcst situation < S ∪ {0}, w|S∪{0} >,
provides the following population monotonic allocation scheme

[φ
ô∗S
i (w|S′)]S∈2N\{∅},i∈S = [Pi(w|S′)]S∈2N\{∅},i∈S =





S 1 2 3
123 16 20 16
12 21 21 ∗
13 17 ∗ 17
23 ∗ 22 22
1 24 ∗ ∗
2 ∗ 24 ∗
3 ∗ ∗ 26

Final remarks

This paper considers the class of Obligation rules and studies their mono-
tonicity properties. They cover old results in Branzei et al. (2003) and Norde
et al. (2004). In the former, an axiomatic characterization of the P -value for
mcst situations is given. In the latter, existence of a pmas for mcst games is
proved. In this paper we introduce a class of solutions for mcst situations, the
Obligation rules, which are cost monotonic, induce a pmas and, as already
said in Remark 3, include among others the P -value and the P τ -values, for
each τ ∈ ΣN .

Further, it turns out that the class of O-rules is a subclass of the Construct
and Charge rules introduced and studied in Moretti et al. (2004), which are
also defined via a matrix product with the unique difference that the columns
in the contribution matrix do not necessarily derive from obligation maps.

Of course, other rules which are not of Obligation type can be cost mono-
tonic rules. For instance, the egalitarian rule, which allocates to each player
i ∈ N an equal amount of the total cost of the mcst, is cost monotonic but
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it is not an O-rule, since it does not satisfy the carrier property. Moreover,
the cost allocation provided by the egalitarian rule is generically not a core
element implying that this rule does not induce any pmas.

In Proposition 4, we illustrate a strong connection between the P -value
and the P τ -values, for each τ ∈ ΣN . In Branzei et al. (2004) we charac-
terize the link between these solutions, based on the notion of irreducible
core. Roughly speaking, given a mcst situation w ∈ WN ′

, the irreducible
core of the mcst game corresponding to w is the core of the concave mcst
game corresponding to a mcst situation which is obtained via an adaptation
of w introduced in Bird (1976). In Branzei et al. (2004), it is proved that the
P τ -values, with τ ∈ ΣN , are extreme points of the irreducible core and that
the P -value coincides with the Shapley value of the concave mcst game cor-
responding to the adaptation of w. This last fact is proven in an alternative
way in Bergantinos and Vidal-Puga (2004b).

For axiomatic characterizations of the P -value see Feltkamp et al. (1994),
Branzei et al. (2003), Bergantiños and Vidal-Puga (2004a).
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Bergañtinos, G., Vidal-Puga, J.J. (2004b), Defining rules in cost spanning
tree problems through the canonical form, EconPapers, RePEc:wpa:wuwpga:
0402004.

Branzei, R., Moretti, S., Norde, H., Tijs, S., (2003), The P -value for cost
sharing in minimum cost spanning tree situations, CentER DP 2003-129,
Tilburg University, The Netherlands (to appear in Theory and Decision,
Kluwer ed.).

Branzei, R., Moretti, S., Norde, H., Tijs, S., (2004), Cost monotonic rules
and the irreducible core for connection problems, Working paper.



18

Dutta, B., Kar, A. (2002), Cost monotonicity, consistency and minimum
cost spanning tree games, University of Warwick, Mimeo.

Feltkamp, V. (1995), Cooperation in controlled network structures, PhD Dis-
sertation, Tilburg University, The Netherlands.

Feltkamp, V., Tijs, S., Muto, S. (1994), On the irreducible core and the
equal remaining obligations rule of minimum cost spanning extension prob-
lems, CentER DP 106, Tilburg University, The Netherlands.

Granot, D., Huberman, G. (1981), On minimum cost spanning tree games,
Mathematical Programming, 21, 1-18.

Kent, K.J., Skorin-Kapov, D. (1996), Population monotonic cost allocations
on MSTs, DP, State University of New York at Stony Brook.

Kruskal, J.B. (1956), On the shortest spanning subtree of a graph and the
traveling salesman problem, Proceedings of the American Mathematical So-
ciety, 7, 48-50.

Moretti, S., Norde, H., Pham Do, K.H., Tijs, S. (2002), Connection problems
in mountains and monotonic allocation schemes, Top, 10, 83-99.

Moretti, S., Tijs, S., Branzei, R., Norde, H., (2004), Cost monotonic ‘con-
struct and charge’ rules, Working Paper.

Norde, H., Moretti, S., Tijs, S. (2004), Minimum cost spanning tree games
and population monotonic allocation schemes, European Journal of Opera-
tional Research, 154, 84-97.

Sprumont, Y. (1990), Population monotonic allocation schemes for coop-
erative games with transferable utility, Games and Economic Behavior, 2,
378-394.


