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Abstract

This paper discusses the joint estimation of the long run equilibrium coefficients and the
parameters governing the short run dynamics of a fully parametric cointegrated system
formulated in continuous time. The model allows the stationary disturbances to be generated
by a stochastic differential equation system and for the variables to be a mixture of stocks and
flows. We derive a precise form for the exact discrete analogue of the continuous time model
in triangular error correction form, which acts as the basis for frequency domain Gaussian
estimation of the unknown parameters using discrete time data. We formally establish the
order of consistency and the asymptotic sampling properties of such an estimator. The
function of the data that estimates the cointegrating parameters is shown to converge at the
rate of the sample size to a mixed normal distribution, while that estimating the short run
parameters converges at the rate of the square root of the sample size to a limiting normal
distribution.
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1. Introduction

While it is recognised that the frequency with which time series data are observed is sel-

dom within the control of the econometrician, the consequences for estimation and inference

are often ignored. A dynamic model that is näıvely specified in terms of the observation

interval can suffer from severe misspecification, with estimates being contaminated by tem-

poral aggregation bias. This can arise owing to economic agents making decisions in finer

time intervals than the sampling interval and the attendant problems of not sampling fre-

quently enough to capture the movements of the economic variables. As a consequence it can

be difficult, in practice, to offer an economic interpretation of parameter estimates, rather

than just an interpretation of the observations; see Christiano and Eichenbaum (1987). An-

other aspect of the problem was exposited by Weiss (1984) who showed that the aggregation

of a discrete time autoregressive moving average (ARMA) process results in a model that

depends on the frequency with which the underlying process is observed.

One remedy to the above problem is to formulate the econometric model in continuous

time and indeed Phillips (1991a) established that, in a temporally aggregated (continuous

time) cointegrated system, the long run parameters can be estimated directly from a corre-

sponding error correction model formulated in discrete time.1 While this result is powerful,

it is really only pertinent when the focus is on estimating long run equilibria rather than

dynamic adjustment mechanisms, for it does not apply in the context of jointly estimating

short run and long run effects which is very much in the spirit of the literature on estimating

cointegrating systems. This is because the problem of estimating the parameters governing

the short run dynamics would be subject to temporal aggregation bias in the way described

above.

The purpose of this paper is to provide an analysis of estimating the temporally aggre-

gated cointegrated system that allows the long run and short run parameters to be treated

together. Kessler and Rahbek (2001) have offered a theoretical discussion based on con-

tinuously recorded data but here we provide an analysis more appropriate for econometric

time series data, which are observed discretely. We base the cointegrated system on the

continuous time triangular representation of Phillips (1991a), although in contrast to his

non-parametric approach we model the disturbances explicitly as a continuous time autore-

gressive process (in the form of a stochastic differential equation system). While we could,

in principle, use as the basis of estimation exact discrete time representations by Bergstrom

(1997) and Chambers (1999) that are applicable to cointegrated systems, we prefer to es-

timate the autoregressive parameters in conjunction with the cointegrating parameters by

maximising a frequency domain Gaussian likelihood function. The advantages of such an

1See also Stock (1987).
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approach in the context of stationary systems are outlined by Robinson (1993), and Phillips

(1991a), for example, uses spectral regression methods in a multivariate cointegrated system

context very similar to our own.

There are two main contributions contained in this paper. The first is the derivation of

the discrete time triangular error correction model (ECM) representation of the continuous

time system. The model allows for the variables to be a mixture of stocks and flows, and the

triangular version of the ECM assigns the system dynamics to the stationary disturbance

term. A time domain representation is provided that relates the discrete time disturbance

vector to the stationary disturbances in the continuous time model. This is used mainly to

establish an invariance principle for the discrete time disturbances based on certain assump-

tions concerning the continuous time disturbances. A filtering equation is also derived that

depicts the same relationship, and which is used to derive the spectral density function of

the discrete time process.

The second, more substantial, contribution is the derivation of the consistency and

asymptotic sampling properties of the frequency domain Gaussian estimator. This is not, in

fact, a trivial problem but we have found that recent work by Saikkonen (1995, 2001) has

been helpful in this regard. Firstly, as in stationary systems, we have to confront the problem

of establishing uniform convergence of the likelihood function over the parameter space owing

to the fact that our estimator is defined implicitly as the maximum of a function.2 Unlike

the stationary case, however, the likelihood diverges at different rates in different directions

of the parameter space. Based on techniques in Saikkonen (1995) we are able to establish the

different orders of consistency of the the estimator of the short run and long run parameter

vectors. Furthermore, it is not appropriate to use directly a mean value expansion of the

score vector to establish the limiting distribution of the estimator because of the way the

Hessian matrix behaves in our more general context. Saikkonen (1995) showed, however, that

the usual Taylor series expansion can be used provided the order of consistency of the long

run parameter estimator can be derived and the Hessian can be shown to satisfy a certain

stochastic equicontinuity condition. Here, however, we follow the approach in Saikkonen

(2001) and work directly with the normalised score vector, incorporating in an essential way

the previously established results on the order of consistency of the estimator and thereby

avoiding the need to verify the required stochastic equicontinuity conditions. Furthermore,

the frequency domain Gaussian estimator of the cointegrating parameters falls within the

class of optimal estimators defined by Phillips (1991b).

2This problem does not arise, for example, in Corradi (1997) who analyses ‘comovements’ between diffusion
processes. While her paper is similar to ours in that it uses the framework of Phillips (1991b) as the basis
of deriving a triangular error correction model, the allowable dynamics are constrained there to be driven by
Brownian motion. Here, we are implicitly following Phillips (1991a) that allows our dynamics to be driven
by processes whose paths, at least in principle, have appropriate degrees of differentiablility.
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The results obtained are applicable to cointegrated continuous time vector autoregressive

(VAR) processes of any (finite) order, and can be regarded as continuous time counterparts

of the discrete time VECM approach popularized by Johansen (1991) and extended by

Pesaran and Shin (2002). They also allow the observable data vector to comprise both

stock variables, observable at points in time, and flow variables, observable as the integral

of the underlying rate of flow over the observation interval. The coefficient matrices in the

continuous time cointegrated system are also allowed to be known functions of an underlying

unknown parameter vector. As a result, the dynamic responses, as well as the cointegrating

relationships, may contain nonlinear restrictions on the coefficients of the type that often

arise in economics.

The organization of the paper is as follows. Section 2 defines the model and derives

its discrete time triangular ECM representation. Section 3 defines the frequency domain

likelihood function and establishes some limiting distributional results that are used in the

asymptotic analysis of the estimator. The consistency of the estimator is established in

section 4, while section 5 derives the limiting distribution. Some further discussion of the

methods and results is provided in section 6, along with some concluding comments. An

appendix contains the proofs of all the lemmas and theorems presented in the paper.

Finally, the following notation is used in the paper. Ik denotes an identity matrix of

dimension k × k, det(A) and tr(A) denote the determinant and trace of a square matrix

A, respectively, while ‖A‖ = [tr(AA∗)]1/2 denotes the Euclidean norm of A, where A∗

denotes the complex conjugate transpose of a complex-valued matrix A. The notation vec(A)

denotes the column vector obtained by stacking the columns of A vertically on top of each

other. The symbols ⇒,
p→ and d→ are used to denote weak convergence of probability

measures, convergence in probability, and convergence in distribution, respectively. The

integrals
∫ 1
0 SS′ and

∫ 1
0 SdS′ denote, respectively, the stochastic integrals

∫ 1
0 S(r)S(r)′dr

and
∫ 1
0 S(r)dS(r)′, where S(r) is vector Brownian motion. Finally, A > 0 denotes that the

matrix A is positive definite, and [x] denotes the integer part of the scalar x.

2. The model and the ECM representation

The continuous time model of cointegration is defined by

y1(t) = B(θ1)y2(t) + u1(t), t > 0, (1)

dy2(t) = u2(t)dt, t > 0, (2)

where y1(t) and y2(t) are continuous time random vectors of dimensions m1 × 1 and m2 × 1
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respectively, B(θ1) is an m1 × m2 coefficient matrix whose elements are known functions

of a p1 × 1 vector θ1 of unknown cointegrating parameters (p1 ≤ m1m2) belonging to a

parameter space Θ1, and u1(t) and u2(t) are stationary continuous time random disturbance

vectors whose dimensions are conformable with y1 and y2 respectively. The initial conditions

y1(0) and y2(0) are taken to be fixed and to be known to be zero vectors. The long run

cointegrating relationships between y1 and y2 are depicted in (1), while the zero roots in

the system (corresponding to unit roots in discrete time) are captured by (2). Note that

the specification of the cointegrating relationships in (1) allows for the possibility that the

cointegrating parameters in θ1 enter the model nonlinearly.

The dynamics that drive the cointegrated system stem from the stationary disturbance

vector u(t) = [u1(t)′, u2(t)′]′, which is of dimension m×1, where m = m1+m2. The dynamics

for u(t) are assumed to be governed by the stochastic differential equation system

C(D)u(t)dt = db(t), −∞ < t < ∞, (3)

where C(z) = zqIm +
∑q−1

j=0 Cj(β)zj , C0, . . . , Cq−1 are m×m coefficient matrices whose ele-

ments are known functions of a pβ×1 vector β of unknown parameters (pβ ≤ qm2) belonging

to a parameter space B, and D is the mean square differential operator. It is assumed that

all the roots of the equation det[C(z)] = 0 have negative real parts so that the stochastic dif-

ferential equation system is stable. Furthermore, db(t) represents the increment in the m×1

vector Brownian motion process3 b(t), so that db(t) ∼ N(0,Σ(µ)dt) and E[db(t1)db(t2)′] = 0

for t1 6= t2, where Σ(µ) is a symmetric positive definite matrix whose elements are known

functions of a pµ × 1 vector µ of unknown parameters (pµ ≤ m(m + 1)/2) belonging to

the parameter space M = {µ : Σ(µ) > 0}. The unknown parameters may be combined,

for convenience, into the p × 1 vector θ = (θ′1, θ
′
2)
′, where θ2 = (β′, µ′)′ is a p2 × 1 vector

(p2 = pβ + pµ), and p = p1 + p2. Hence θ1 contains the long run (cointegrating) parameters

while θ2 contains the parameters that govern the short run dynamics.

It will be assumed that the vectors y1 and y2 are comprised of both stock and flow

variables, there being mS
j stock variables and mF

j flow variables in the vector yj , and where

mS
j +mF

j = mj (j = 1, 2). Without loss of generality, each vector will be organised with the

stock variables first, followed by the flow variables, so that

y1(t) =
[
yS
1 (t)′, yF

1 (t)′
]′

and y2(t) =
[
yS
2 (t)′, yF

2 (t)′
]′

,

3The Gaussian assumption was made at the suggestion of the Editor following an earlier version of the
paper which attempted to allow for possibly non-Gaussian distributions.
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the superscripts ‘S’ and ‘F’ denoting stocks and flows respectively. The observed vectors are

y1t =
[
yS
1 (t)′,

∫ 1

0
yF
1 (t− r)′dr

]′
and y2t =

[
yS
2 (t)′,

∫ 1

0
yF
2 (t− r)′dr

]′

for t = 1, . . . , T , where T denotes sample size. Stock variables are therefore observed at

(integer) points in time, while flows are observed as the integral of the underlying rate of

flow over the unit interval.

Although a number of approaches could be implemented for deriving the Gaussian like-

lihood function, the approach adopted here is based on the analytically-appealing triangular

ECM representation of cointegrated systems advanced by Phillips (1991b), which lends itself

readily to frequency domain likelihood methods. In what follows, it is convenient to partition

the coefficient matrix B(θ1), and the stationary disturbance in the ECM (ξt), as follows:

B(θ1) =

 BSS(θ1) BSF (θ1)

BFS(θ1) BFF (θ1)

 , ξt =

 ξ1t

ξ2t

 , ξ1t =

 ξS
1t

ξF
1t

 , ξ2t =

 ξS
2t

ξF
2t

 .

The sub-matrix BSF (θ1), for example, is of dimension mS
1 ×mF

2 , while ξF
1t is of dimension

mF
1 × 1. The vector u(t) is also partitioned conformably with y(t).

Lemma 1. Let y(t) = [y1(t)′, y2(t)′]
′ be generated by (1) and (2). Then yt = [y′1t, y

′
2t]
′

satisfies the triangular ECM given by

∆yt = −JA(θ1)yt−1 + ξt, t = 1, . . . , T, (4)

where J = [Im1 , 0]′, A(θ1) = [Im1 ,−B(θ1)], and ξt is related to u(t) as follows:

ξS
1t = uS

1 (t) + BSS(θ1)
∫ 1

0
uS

2 (t− s)ds

+BSF (θ1)
[∫ 1

0
uF

2 (t− s)ds +
∫ 1

0
(1− s)uF

2 (t− 1− s)ds

]
,

ξF
1t =

∫ 1

0
uF

1 (t− s)ds + BFS(θ1)
[∫ 1

0

∫ 1

0
uS

2 (t− r − s)drds

−
∫ 1

0
(1− s)uS

2 (t− 1− s)ds

]
+ BFF (θ1)

∫ 1

0

∫ 1

0
uF

2 (t− r − s)drds,

ξS
2t =

∫ 1

0
uS

2 (t− s)ds,

ξF
2t =

∫ 1

0

∫ 1

0
uF

2 (t− r − s)drds.
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An equivalent representation is given by the filtering equation ξt = M(D, θ1)u(t), where the

matrix filter function M(z, θ1) is defined by

M(z, θ1) =


ImS

1
0 g(z)BSS(θ1) [g(z) + h(z)]BSF (θ1)

0 g(z)ImF
1

[
g(z)2 − h(z)

]
BFS(θ1) g(z)2BFF (θ1)

0 0 g(z)ImS
2

0

0 0 0 g(z)2ImF
2

 ,

and where g(z) = (1− e−z)/z and h(z) = e−z [1− g(z)] /z.

The triangular ECM defined in Lemma 1 forms the basis for the estimation of the

unknown parameter vector θ. The time domain equations relating ξt to u(t) are used to

establish an invariance principle for ξt in the next section, while the filtering equation relating

ξt to u(t) is particularly useful for deriving the spectral density function of ξt. From (3), the

spectral density function of the continuous time process u(t) is given by

fu(λ, θ2) =
1
2π

C(iλ)−1Σ[C(−iλ)−1]′, −∞ < λ < ∞,

where i =
√
−1 and iλ denotes the frequency response of the operator D. The dependence

of fu(·) on θ2 arises because C(·) is a function of β and Σ is a function of µ. It follows

that the spectral density for ξt = M(D, θ1)u(t), regarded as a continuous time process, is

therefore4 f c(λ, θ) = M(iλ, θ1)fu(λ, θ2)M(−iλ, θ1)′. The spectral density for the discrete

time process ξt is then obtained by folding all the frequencies on the real line back into the

interval (−π, π] using the formula f(λ, θ) =
∑∞

j=−∞ f c(λ + 2πj, θ), yielding

f(λ, θ) =
∞∑

j=−∞
M (i(λ + 2πj), θ1) fu(λ + 2πj, θ2)M (i(λ + 2πj), θ1)

∗ , −π < λ ≤ π. (5)

Methods for accurately computing doubly infinite series of the type defining f(λ) are given in

Robinson (1993) and have been applied to spectral density functions arising from differential-

difference equations by Chambers (1998).

It should be noted that the triangular ECM in (4) is not the only possible representation

of the discrete time vector yt. An explicit vector ARMA representation can also be derived

from the stochastic differential equation system obtained from (1), (2) and (3), using the

techniques of Chambers (1999). An example of a discrete time vector ARMA model derived

from a mixed first- and second-order stochastic differential equation system with unobserv-

able stochastic trends is provided by Bergstrom (1997). Such discrete time representations

4Note that, when λ = 0, we define M(0, θ1) using the limits limλ→0 g(iλ) = 1 and limλ→0 h(iλ) = 1/2; see
Lemma A5 of Chambers (2003).
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provide an alternative way of constructing the Gaussian likelihood function in the time do-

main but would rely on the inversion of an mT × mT covariance matrix to compute the

likelihood function.

3. The Gaussian estimator and some asymptotic results

The frequency domain Gaussian likelihood function we consider is, for finite T , an

approximation to (ignoring a constant) minus twice the negative of the logarithm of the true

Gaussian likelihood function

ΛT (θ) = ln det(Vξ) + ξ′V −1
ξ ξ, (6)

where ξ′ = [ξ′1, . . . , ξ
′
T ]′ and Vξ = E(ξξ′). It is motivated by the fact that the sub-blocks of

the block Toeplitz covariance matrix Vξ are of the form Vξ,j = E(ξtξ
′
t+j) =

∫ π
−π f(λ, θ)eijλdλ.

Defining λj = 2πj/T and JT = {j : −T/2 < j ≤ [T/2]}, the discrete Whittle likelihood is

given by

Lξ
T (θ) =

∑
j∈JT

{
ln det[f(λj , θ)] + tr[f(λj , θ)−1Iξ(λj)]

}
, (7)

where f(λ, θ) is defined in (5) and Iξ(λ) = wξ(λ)wξ(λ)∗ is the periodogram of ξt in which

wξ(λ) = (2πT )−1/2∑T
t=1 ξte

−itλ denotes the discrete Fourier transform (dFt) of ξt.

The problem with implementing (7) in practice is that ξt is not observed. However,

noting that ξt = ∆yt + JA(θ1)yt−1 enables us to work with dFts of observable variables by

using

w(λ, θ1) = w∆(λ) + J [w1(λ)−B(θ1)w2(λ)] ,

where w∆(λ), w1(λ) and w2(λ) denote the dFts of ∆yt, y1,t−1 and y2,t−1 respectively. In view

of wξ(λ) = w(λ, θ1) we replace Iξ(λ) in (7) with I(λ, θ1) = w(λ, θ1)w(λ, θ1)∗ and therefore

consider the frequency domain Gaussian likelihood function

LT (θ) =
∑

j∈JT

{
ln det[f(λj , θ)] + tr[f(λj , θ)−1I(λj , θ1)]

}
, (8)

which converges to (6) as T →∞. The frequency domain Gaussian estimator is consequently

defined as

θ̂T =
(
θ̂′1T , θ̂′2T

)′
= arg min

θ∈Θ
LT (θ),

where Θ = Θ1 ×Θ2 denotes the parameter space for θ and where the subvectors θ1 and θ2

belong to the sets Θ1 and Θ2 = B ×M respectively. In what follows, the true value of the
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parameter vector is denoted θ0 = (θ′10, θ
′
20)

′. It is also convenient to define w0(λ) = w(λ, θ0),

which is the dFt of the stationary process ξ0t = [ξ′01,t, ξ
′
02,t]

′ = ∆yt + JA(θ10)yt−1.

It is useful, at this stage, to present a number of results that are utilised in establishing

the consistency and asymptotic distribution of θ̂T . The first of these establishes an invariance

principle for the partial sums of ξ0t.

Lemma 2. Let ξ0t = ∆yt + JA(θ10)yt−1. Then T−1/2∑[Tr]
j=1 ξ0j ⇒ S(r) as T → ∞,

where r ∈ [0, 1] and S(r) is an m × 1 Brownian motion process with covariance matrix

Ω = 2πf(0, θ0).

The validity of Lemma 2 is verified by showing that the conditions of Corollary 2.2

of Phillips and Durlauf (1986) are satisfied, thereby ensuring that the invariance principle

holds. The main role of Lemma 2 is to establish the limiting behaviour of various functions

of ξ0t. Noting, from the ECM representation of yt in Lemma 1, that ∆y2t = ξ02,t, it follows

that y2t =
∑t

j=1 ξ02,j , and so the limiting behaviour of the sample moments of y2t can be

derived straightforwardly using Lemma 2. It is also convenient to partition the Brownian

motion process as S(r) = [S1(r)′, S2(r)′]′ and to partition Ω conformably with S1 and S2.

Lemma 3. The following sample moments converge jointly as T →∞:

(a) T−1
T−s∑
t=1

ξ0tξ
′
0,t+s

p→ Γs;

(b) T−1
T−s∑
t=1

y2tξ
′
0,t+s ⇒

∫ 1

0
S2dS′ +

∞∑
j=s

Γ′2j;

(c) T−2
T∑

t=1

y2ty
′
2t ⇒

∫ 1

0
S2S

′
2,

where Γs = [Γ1s : Γ2s] = E[ξ00ξ
′
0s].

The convergence of the sample moments depicted in Lemma 3 is now standard in the

asymptotic theory of multivariate integrated processes; see, for example, Phillips and Durlauf

(1986). These results are used here to derive the limiting distributions of various functions

of such sample moments. In particular, we need to establish certain uniform convergence

results for weighted sums of periodogram estimates. The precise uniform convergence results
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that we require are presented in Lemma 4.5

Lemma 4. Let I00,j = w0(λj)w0(λj)∗, I02,j = w0(λj)w2(λj)∗, I22,j = w2(λj)w2(λj)∗, and

partition f(λ, θ) as f(λ, θ) = [f1(λ, θ) : f2(λ, θ)]. Furthermore, let φ(λ, θ) denote a complex-

valued matrix function that is continuous in λ, for every θ ∈ Θ, and continuous in θ, for

every λ ∈ (−π, π], and define φj(θ) = φ(λj , θ). Then, as T →∞:

(a) sup
θ∈Θ

∥∥∥∥∥∥T−1
∑

j∈JT

φj(θ)vec [I00,j ]−
1
2π

∫ π

−π
φ(λ, θ)vec [f(λ, θ0)] dλ

∥∥∥∥∥∥ p→ 0,

(b) sup
θ∈Θ

∥∥∥∥∥∥T−1
∑

j∈JT

φj(θ)I02,j −
1
2π

φ(0, θ)
∫ 1

0
dSS′2 − ḡ(θ)

∥∥∥∥∥∥⇒ 0,

(c) sup
θ∈Θ

∥∥∥∥∥∥T−2
∑

j∈JT

(
J ′φj(θ)J ⊗ I ′22,j

)
−
(

1
2π

J ′φ(0, θ)J ⊗
∫ 1

0
S2S

′
2

)∥∥∥∥∥∥⇒ 0,

where ḡ(θ) = (1/2π)
∫ π
−π φ(λ, θ)

∑∞
q=1 eiqλf2(λ, θ0)dλ.

Lemma 4 is a key result used primarily in establishing the limiting properties of com-

ponents of I(λ, θ1) and its derivatives. Its proof is based on an important and fundamental

result of Robinson (1976) whose Theorem 1 established almost sure convergence of similar

quantities in the stationary case. Lemma 4 extends Robinson’s result by allowing for a dif-

ferent mode of convergence and for integrated variables. Additional assumptions and results

that are used in establishing consistency and the limiting distribution of θ̂T will be presented

as required in the following sections.

4. Consistency of θ̂T

Establishing the consistency of the frequency domain Gaussian estimator in cointegrated

models is more difficult than in stationary models in which uniform convergence of the

likelihood function over the parameter space is a key ingredient. As pointed out by Saikkonen

(1995), whose method of proof we broadly follow, this is not a feature of the likelihood in

cointegrated models, because the likelihood converges to limiting values at different rates in

different directions of the parameter space (corresponding to θ1 and θ2, the long run and

short run parameters, respectively). In fact, we demonstrate that θ̂1T − θ10 = op(T−γ) for

0 < γ < 1 and that θ̂2T − θ20 = op(1). Note that the requirement is somewhat stronger for

the long run parameter vector θ1 than for the vector of short run parameters θ2. Saikkonen

5Note that the dimension of the function φ(λ, θ) defined in Lemma 4 can vary across parts (a)–(c) to
ensure conformability of the relevant products.
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(1995) shows6 that a sufficient condition for θ̂1T − θ10 = op(T−γ) is that, for every δ > 0,

lim
T→∞

Pr

{
inf

θ∈N̄T,γ(θ10,δ)×Θ2

[LT (θ)− LT (θ0)] > 0

}
= 1, (9)

where N̄T,γ(θ10, δ) = {θ1 ∈ Θ1 : ‖θ1 − θ10‖ ≥ δ/T γ} is the complement of an open ball in

Rp1 with centre θ10 and radius δ/T γ . The order of consistency is therefore determined by

the rate at which the radius of the ball tends to zero as T →∞. The consistency of θ̂2T can

be established by showing7 that, for every δ > 0,

lim
T→∞

Pr

{
inf

θ∈Θ1×B̄(θ20,δ)
[LT (θ)− LT (θ0)] > 0

}
= 1, (10)

where B̄(θ20, δ) = {θ2 ∈ Θ2 : ‖θ2 − θ20‖ ≥ δ} denotes the complement of an open ball of

radius δ centered at θ20. In fact, if (9) is satisfied, it is sufficient to show that (10) holds with

Θ1 replaced with NT,γ(θ10, δ1) = {θ1 ∈ Θ1 : ‖θ1 − θ10‖ < δ1/T γ}, where δ1 can be chosen

freely; see Saikkonen (1995, p. 905). Conditions (9) and (10) will be demonstrated in turn.

In what follows, it is convenient to write fj(θ) = f(λj , θ) and Ij(θ1) = I(λj , θ1), so that

the likelihood function becomes

LT (θ) =
∑

j∈JT

{
ln det[fj(θ)] + tr[fj(θ)−1Ij(θ1)]

}
. (11)

The difference LT (θ)− LT (θ0) can then be written

LT (θ)− LT (θ0) =
∑

j∈JT

{ln det[fj(θ)]− ln det[fj(θ0)]}

+
∑

j∈JT

{
tr[fj(θ)−1Ij(θ1)]− tr[fj(θ0)−1Ij(θ10)]

}
= AT (θ, θ0) + BT (θ, θ10) + CT (θ, θ0), (12)

where, noting that Ij(θ10) = I00,j ,

AT (θ, θ0) =
∑

j∈JT

{ln det[fj(θ)]− ln det[fj(θ0)]} , (13)

BT (θ, θ10) =
∑

j∈JT

tr
{
fj(θ)−1[Ij(θ1)− I00,j ]

}
, (14)

CT (θ, θ0) =
∑

j∈JT

tr
{[

fj(θ)−1 − fj(θ0)−1
]
I00,j

}
. (15)

6See equation (26) of Saikkonen (1995).
7See equation (31) of Saikkonen (1995).
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Furthermore, the difference Ij(θ1)− I00,j in (14) has the convenient representation

Ij(θ1)− I00,j = −I02,j [B(θ1)−B(θ10)]
′ J ′ − J [B(θ1)−B(θ10)] I∗02,j

+J [B(θ1)−B(θ10)] I22,j [B(θ1)−B(θ10)]
′ J ′. (16)

In order to examine (13), (14) and (15) in more detail, the following further assumptions are

also made.

Assumption 1. The parameter space Θ is a compact subset of Rp and θ0 ∈ Θ.

Assumption 2. (a) The elements of the matrices Cj(β), Σ(µ) and B(θ1) are continuously

differentiable functions of β ∈ B, µ ∈ M and θ1 ∈ Θ1 respectively. (b) For θ 6= θ0,

f(λ, θ) 6= f(λ, θ0) on a subset of (−π, π] having positive Lebesgue measure.

Assumption 3. Let F (θ̄1) be the m1m2 × p matrix whose i’th row is equal to the i’th row

of the matrix ∂vec [B(θ1)′]/∂θ′1 evaluated at θ̄1,i = αiθ1 + (1 − αi)θ10 for some 0 < αi < 1

(i = 1, . . . ,m1m2) and θ̄1 = [θ̄1,1, . . . , θ̄1,m1m2 ]. Then F (θ̄1) has full column rank p1 for all

θ̄1 ∈ Θm1m2
1 , where Θm1m2

1 = Θ1 × . . .×Θ1 (m1m2 times).

Assumption 1 is a standard assumption in consistency proofs, while Assumption 2(a)

ensures that the spectral density function f(λ, θ) is differentiable throughout the parameter

space. It is also positive definite on Θ owing to the definition of the subspaceM. Assumption

2(b) is an identification requirement but one that is typically difficult to verify in continuous

time models owing to aliasing effects; see Phillips (1973), Hansen and Sargent (1983) and

McCrorie (2003). Note, however, that the elements of the matrix B(θ1) are not subject to

the usual aliasing problem; see Phillips (1991a) for details. Finally, Assumption 3 imposes

a rank condition on a matrix of partial derivatives that arises in a mean value expansion of

vec[B(θ1)′]. A similar assumption on the matrix of cointegrating vectors can be found in

Assumption 1 of Saikkonen (2001).

Theorem 1. Under Assumptions 1–3, as T → ∞, θ̂1T − θ10 = op(T−γ) for 0 < γ < 1 and

θ̂2T − θ20 = op(1) .
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Theorem 1 establishes not only the consistency (in the usual sense) of the estimator

θ̂T , but also the order of consistency of θ̂1T , the estimator of the long run cointegrating

parameters. A key input into the proof of Theorem 1 for θ̂1T concerns the asymptotics of

the elements of the decomposition of the difference LT (θ) − LT (θ0) given in (13), (14) and

(15). This result is stated as Lemma B in the Appendix. The result for θ̂2T is based on

an alternative decomposition of the difference LT (θ)− LT (θ0) that enables (10) to be veri-

fied. The orders of consistency of θ̂1T and θ̂2T are important in establishing the asymptotic

distribution of the estimator, as will be seen in the next section.

5. Asymptotic distribution of θ̂T

The usual approach to deriving the limiting distribution of a normalised optimisation

estimator is based on a mean value expansion of the normalised score vector, defined by

sT (θ) =

 sT1(θ)

sT2(θ)

 =

 (1/T )∂LT (θ)/∂θ1

(1/
√

T )∂LT (θ)/∂θ2

 .

The mean value expansion then yields an expression of the form

(
T (θ̂1T − θ10)′,

√
T (θ̂2T − θ20)′

)′
= JT (θ̄)−1sT (θ0), (17)

where JT (θ̄) is the normalised Hessian matrix evaluated at the mean value points. Usually,

the consistency of θ̂T and the continuity of the Hessian ensure that JT (θ̄)
p→ J(θ0) as T →∞,

which, allied to the convergence of sT (θ0) to s(θ0) and the establishment of the distribution

of the latter vector, yields the limiting distribution of θ̂T . In the current situation, however,

the Hessian is not sufficiently smooth for the above arguments to be valid, although a

similar approach can be employed, provided that the normalised Hessian satisfies a stochastic

equicontinuity condition, which can be difficult to verify; see Saikkonen (1995) for details.

In this paper, an alternative approach is followed, based on the score vector directly and

inspired by the techniques employed by Phillips (1991b) and Saikkonen (2001). The advan-

tage of this approach is that it avoids the need to establish a certain stochastic equicontinuity

condition for the Hessian, and relies more directly on the previously established orders of

consistency of the estimators of the short-run and long-run parameters.

Assumption 4. The elements of the matrices Cj(β) (j = 0, . . . , q− 1), Σ(µ) and B(θ1) are

twice continuously differentiable functions of β ∈ B, µ ∈M and θ1 ∈ Θ1 respectively.
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Assumption 4 extends Assumption 2 to second-order differentiability of the relevant

matrices which ensures that the second derivatives of f(λ, θ) exist. The limiting distribution

of θ̂T is presented in Theorem 2.

Theorem 2. Under Assumptions 1–4, as T →∞,

T (θ̂1T − θ10) ⇒
[(

∂vec B(θ10)
∂θ′1

)′ (∫ 1

0
S2S

′
2 ⊗ Ω−1

11.2

)(
∂vec B(θ10)

∂θ′1

)]−1

×
(

∂vec B(θ10)
∂θ′1

)′ (
Im2 ⊗ Ω−1

11.2

)(∫ 1

0
S2 ⊗ dS1.2

)
,

√
T (θ̂2T − θ20)

d→ N
(
0, 2V (θ0)−1

)
,

where Ω11.2 = Ω11 − Ω12Ω−1
22 Ω21, ∂vec B(θ10)/∂θ′1 denotes the matrix ∂vec B(θ1)/∂θ′1 evalu-

ated at θ1 = θ10, and the (k, l) element of V (θ) is given by

Vkl(θ) =
1
2π

∫ π

−π
tr
{

f(λ, θ)−1 ∂f(λ, θ)
∂θ2k

f(λ, θ)−1 ∂f(λ, θ)
∂θ2l

}
dλ (k, l = 1, . . . , p2).

The limiting distribution of θ̂1T , the estimator of the long run cointegrating parameters,

is seen to be the familiar mixed normal distribution. It is identical to the limiting distri-

bution of the spectral regression estimator of cointegrating parameters in continuous time

systems given8 in Phillips (1991a). It is also a member of the class of ‘optimal’ estimators

as classified by Phillips (1991b), and is asymptotically efficient; see Saikkonen (1991) for

details. Note that efficiency is obtained here by the correct parametric modelling of the

dynamics, whereas the spectral regression estimators of Phillips (1991a) account for the dy-

namics nonparametrically in the frequency domain. The limiting distribution of θ̂2T , the

estimator of the short run dynamic parameters, corresponds to that of the Gaussian esti-

mator of parameters in correctly specified parametric stationary time series models; see, for

example, Dunsmuir (1979).

6. Discussion and concluding comments

Our concern in this paper has been with the derivation of the asymptotic properties

of the frequency domain Gaussian estimator of the parameters in a temporally aggregated

8Note that Phillips (1991a) uses row, rather than column, vectorisation, so that the representation of the
distribution in that paper is slightly different to that given here.
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cointegrated system. The underlying model is written as a triangular system in continuous

time, with the system dynamics driven by a continuous time VAR(q) in the form of a

stochastic differential equation system of order q. In Lemma 1 we have shown that the

discrete time observations also satisfy a triangular ECM, and the complicated form of the

dynamics of the resulting disturbance vector is a key motivation behind our use of the

frequency domain likelihood function, the dynamics effectively being represented by the

spectral density function.

Alternative time domain approaches are possible. Combining (1) and (2) we may write

dy(t) = −JAy(t)dt + w(t)dt, where the matrices J and A are defined in Lemma 1 and w(t)

depends on u(t); see equation (3) of Chambers (2003). Writing this as (DIm + JA)y(t)dt =

w(t)dt and assuming that w(t) may be represented as a continuous time VAR(q) process

of the form Ψ(D)w(t)dt = db(t), with Ψ(z) = zqIm +
∑q−1

j=0 Ψjz
j , we obtain the system

Ψ(D)(DIm + JA)y(t)dt = db(t) which may be written

d[Dqy(t)] =
q∑

j=0

Fj(θ)Djy(t)dt + db(t),

where F0 = −Ψ0JA, Fj = −(Ψj−1 + ΨjJA) (j = 1, . . . , q − 1), and Fq = −(Ψq−1 + JA).

The parallels with discrete time cointegrated VARs are apparent. The reduced rank due to

cointegration is evident in the matrix F0. It is possible to show that the observed vector yt

satisfies the discrete time cointegrated VARMA system

∆yt = Φ0yt−1 +
q∑

j=1

Φj∆yt−j + ηt,

where Φ0 has rank m1 and ηt is an MA(q+1) disturbance process. This discrete time VARMA

system is extremely parsimonious compared to an unrestricted discrete time VARMA and

is capable of producing a richer dynamic structure than a pure VAR in discrete time.

The results obtained in this paper are applicable more widely than to temporally ag-

gregated cointegrated systems. They can also be applied (with suitable modification) to

cointegrated models formulated directly in discrete time for which the triangular ECM rep-

resentation is valid. It is also possible to exclude frequency bands, for example some seasonal

frequencies, over which the model might not be felt to be entirely appropriate. The likelihood

function would then be defined not over the entire set of frequencies JT but over a restricted

set BT ⊂ JT . Band-limited methods have been proposed by Hannan and Robinson (1973)

and Robinson (1976) for stationary continuous time systems, by Phillips (1991a,1991c) for

(discrete and continuous time) cointegrated systems, and by Corbae, Ouliaris and Phillips

(2002) for stationary and nonstationary trending data. Subject to appropriate modifications,

our results will continue to hold in this setup.
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Appendix

Proof of Lemma 1. As shown by Phillips (1991a), the partially observable vector y(t)

generated by (1) and (2) satisfies the discrete time ECM ∆y(t) = −JAy(t−1)+x(t), where

x(t) = [x1(t)′, x2(t)′]′ is related to u(t) by the equations x1(t) = u1(t) + B
∫ 1
0 u2(t − s)ds

and x2(t) =
∫ 1
0 u2(t − s)ds; see Lemma A1 of Chambers (2003) for details. Re-writing the

ECM in more detail gives

∆yS
1 (t) = −yS

1 (t− 1) + BSSyS
2 (t− 1) + BSF yF

2 (t− 1) + xS
1 (t), (18)

∆yF
1 (t) = −yF

1 (t− 1) + BFSyS
2 (t− 1) + BFF yF

2 (t− 1) + xF
1 (t), (19)

∆yS
2 (t) = xS

2 (t), (20)

∆yF
2 (t) = xF

2 (t). (21)

In (18), the only unobservable variable (excluding the random disturbance) is yF
2 (t − 1).

Adding and subtracting BSF yF
2,t−1 yields ∆yS

1t = −yS
1,t−1 + BSSyS

2,t−1 + BSF yF
2,t−1 + ξS

1t,

where ξS
1t = xS

1 (t) + BSF [yF
2 (t − 1) − yF

2,t−1]. From the definition of x1(t), and noting from

Lemma A2 of Chambers (2003) that yF
2 (t − 1) − yF

2,t−1 =
∫ 1
0 (1 − s)uF

2 (t − 1 − s)ds, yields

the expression for ξS
1t in the lemma. Integrating (19) over [0, 1] gives

∆yF
1t = −yF

1,t−1 + BFS

∫ 1

0
yS
2 (t− 1− s)ds + BFF yF

2,t−1 +
∫ 1

0
xF

1 (t− s)ds

= −yF
1,t−1 + BFSyS

2,t−1 + BFF yF
2,t−1 + ξF

1t,

the second expression being obtained by adding and subtracting BFSyS
2 (t− 1) = BFSyS

2,t−1

and where ξF
1t =

∫ 1
0 xF

1 (t−s)ds+BFS

[∫ 1
0 yS

2 (t− 1− s)ds− yS
2 (t− 1)

]
. The expression for ξF

1t

in the lemma follows from the definition of x1(t) above and Lemma A2 in Chambers (2003).

Equation (20) readily yields ∆yS
2t = ξS

2t, with ξS
2t = xS

2 (t) following from the definition of

x2(t), while integrating (21) over [0, 1] yields ∆yF
2t = ξF

2t, where the expression for ξF
2t in the

lemma comes from integrating xF
2 (t). Finally, the filtering equation ξt = M(D)u(t) arises

straightforwardly because
∫ 1
0 u(t− s)ds = g(D)u(t),

∫ 1
0

∫ 1
0 u(t− r− s)drds = g(D)2u(t), and∫ 1

0 (1− s)u(t− 1− s)ds = h(D)u(t); see Lemma A4 of Chambers (2003). 2

Proof of Lemma 2. The proof establishes that the conditions of Corollary 2.2 of Phillips

and Durlauf (1986) are satisfied, which ensures that the stated invariance principle holds.

First, note that (3) may be written as dv(t) = Cv(t)dt + dbv(t) (−∞ < t < ∞), where

v(t) = [u(t)′, Du(t)′, . . . , Dq−1u(t)′]′, C is the associated companion matrix whose eigen-

values have negative real parts, and dbv(t) = [0, . . . , 0, db(t)′]′. Note that u(t) = Suv(t),

where Su = [Im, 0, . . . , 0] is the selection matrix that picks out u(t) from v(t). Since
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v(t) =
∫ t
−∞ eC(t−r)dbv(r), where erC =

∑∞
j=0(rC)j/j!, it follows that v(t), and hence u(t),

are Gaussian. In fact, u(t) ∼ N
(
0, Su

∫∞
0 eCrΣeC′rdrS′u

)
. Furthermore,

E[u(t)u(t + m)′] = Su

∫ ∞

0
eCrΣeC′rdr eC′mS′u, m > 0,

which decays exponentially with m by virtue of C having eigenvalues with negative real parts.

Now, Lemma 1 establishes that ξt is a measurable function of u(t) over a finite interval and

hence it inherits the same mixing properties; this follows from Theorem 14.1 of Davidson

(1994). Furthermore, ξt is Gaussian and inherits the exponential decay of autocorrelations

depicted above. Then, from Rozanov(1967, pp.181 and 186), the maximal linear correlation

coefficient of ξt, which is also equal to the maximal correlation coefficient due to the Gaussian

nature of ξt, also decays exponentially. But the latter coefficient bounds the strong mixing

numbers from above (see, for example, Davidson, 1994, p.209) and hence the mixing decay

rate condition of Corollary 2.2 of Phillips and Durlauf (1986) is satisfied. The remaining

conditions that need to be fulfilled are that E[ξt] = 0 and E|ξit|γ < ∞ (i = 1, . . . ,m) for

some 2 ≤ γ < ∞; these are trivially satisfied because ξt is a zero mean Gaussian process. 2

Proof of Lemma 3. The stated limiting properties follow from the now well-established

asymptotic theory for multivariate integrated processes. See, for example, Phillips and

Durlauf (1986). 2

The proof of Lemma 4 relies on the following additional result.

Lemma A. Let w0(λ) = [w01(λ)′, w02(λ)′]′. Then

w2(λ) =
1

eiλ − 1
w02(λ)− 1

eiλ − 1

(
e−iTλy2,T − y2,0√

2πT

)
.

Proof. Similar to Lemma B of Corbae, Ouliaris and Phillips (2002). Taking dFt’s of

the equation y2,t = y2,t−1 + ξ02,t gives (1/
√

2πT )
∑T

t=1 y2te
−itλ = w2(λ) + w02(λ). Noting

that (1/
√

2πT )
∑T

t=1 y2te
−itλ = eiλw2(λ) + (e−iTλy2,T − y2,0)/

√
2πT yields the result upon

substitution and rearrangement. 2

Proof of Lemma 4. The proof follows that of Theorem 1 of Robinson (1976) which

itself extends results by Hannan and Robinson (1973) and Jennrich (1969). Part (a) follows

immediately as an ‘in probability’ version of Robinson’s result but for parts (b) and (c) we

need to modify the proof slightly to account for the non-stationarity of the data. We begin by

establishing pointwise convergence with φ(λ, θ) periodic of period 2π. Pointwise convergence

then applies under the more general hypothesis of the theorem by applying the technique

used by Robinson (1976, pp.232–233). Finally, we demonstrate that the convergence is

uniform.

(b) Let gT (θ, φ) = T−1∑
j φj(θ)I02,j . By Fejér’s theorem, every continuous periodic function
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φ : R→ C can be uniformly approximated by trigonometric polynomials and, in particular,

by the Cesàro sum of its finite Fourier series representation. The Mth first-order Cesàro

mean, given by

φM (λ, θ) = (2π)−1
∫ π

−π
φ(µ, θ)FM (λ− µ)dµ,

therefore converges uniformly in λ to φ, where FM (λ) =
∑
|k|<M (1 − |k|M−1)eikλ denotes

Fejér’s kernel. Then, for given ε > 0, supλ ‖φ(λ, θ)− φM (λ, θ)‖ < ε for M sufficiently large.

Defining w0j = w(λj , θ0) and w2j = w2(λj), it follows that

‖gT (θ, φ)− gT (θ, φM )‖ <
ε

T

∑
j

‖I02,j‖ ≤
ε

T

∑
j

‖w0j‖ ‖w2j‖ = Op(ε) (22)

using Lemma A. Since ε is arbitrary, we can replace φ by φM . Noting that

I02,j = (2πT )−1
T∑

m=1

T∑
n=1

ξ0my′2,n−1e
i(n−m)λj ,

gT (θ, φM ) has the representation

1
2πT

∑
k

∑
m

∑
n

∑
j

∫ π

−π

(
1− |k|

M

)
φ(λ, θ)ξ0my′2,n−1e

i(n−m+k)λj−ikλdλ

=
(

1
2π

)2∑
k

[∫ π

−π
φ(λ, θ)

(
1− |k|

M

)
e−ikλdλ

]
Γ̂02,k+1 + op(1) (23)

for T > M , where Γ̂02,k = T−1∑T−k
t=1 ξ0ty

′
2,t+k. By Lemma 3(b), gT (θ, φM ) ⇒ g(θ, φM ),

where

g(θ, φM ) =
1
2π

φM (0, θ)
∫ 1

0
dSS′2 + ḡ(θ, φM ), (24)

and

ḡ(θ, φM ) =
(

1
2π

)2 ∫ π

−π
φ(λ, θ)

∑
k

(
1− |k|

M

)
e−ikλdλ

∞∑
j=k+1

Γ2j

=
(

1
2π

)2 ∫ π

−π
φ(λ, θ)

∑
k

(
1− |k|

M

)
e−ikλdλ

∞∑
j=k+1

∫ π

−π
eijωf2(ω, θ0)dω

=
(

1
2π

)2 ∫ π

−π
φ(λ, θ)

∑
k

(
1− |k|

M

)
e−ikλdλ

∞∑
q=1

∫ π

−π
ei(q+k)ωf2(ω, θ0)dω

=
1
2π

∫ π

−π

[∫ π

−π
φ(λ, θ)FM (ω − λ)dλ

] ∞∑
q=1

eiqωf2(ω, θ0)dω

=
1
2π

∫ π

−π
φM (ω, θ)

∞∑
q=1

eiqωf2(ω, θ0)dω,
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which uses the fact that Γ2j = E[ξ00ξ
′
02,j ] =

∫ π
−π eijωf2(ω, θ0)dω. But

‖g(θ, φM )− g(θ, φ)‖ ≤
∥∥∥∥ 1
2π

[φM (0, θ)− φ(0, θ)]
∫ 1

0
dSS′2

∥∥∥∥
+

∥∥∥∥∥ 1
2π

∫ π

−π
[φM (ω, θ)− φ(ω, θ)]

∑
q

eiqωf2(ω, θ0)dω

∥∥∥∥∥
<

ε

2π

∥∥∥∥∫ 1

0
dSS′2

∥∥∥∥+
ε

2π

∫ π

−π

∥∥∥∥∥∑
q

eiqωf2(ω, θ0)

∥∥∥∥∥ dω, (25)

which is Op(ε). We have therefore demonstrated that, for any θ ∈ Θ, gT (θ, φ) ⇒ g(θ, φ). The

result extends to φ not necessarily of period 2π on applying the argument on pp.232–233 of

Robinson (1976).

Uniformity of convergence is essentially implied generically by Theorem 1 of Jennrich

(1969) and in our context (omitting the dependence on φ for convenience)

‖gT (θ)− g(θ)‖ ≤ ‖gT (θ)− gT (θ̄)‖+ ‖gT (θ̄)− g(θ̄)‖+ ‖g(θ̄)− g(θ)‖

for given θ, θ̄ ∈ Θ. For given ε > 0 there exists a neighbourhood U of θ̄, U ∈ Θ, such that

sup
θ∈U

‖g(θ̄)− g(θ)‖ ≤ 1
2π

sup
θ∈U

∥∥φ(0, θ̄)− φ(0, θ)
∥∥ ∥∥∥∥∫ 1

0
dSS′2

∥∥∥∥
+

1
2π

∫ π

−π
sup
θ∈U

∥∥φ(λ, θ̄)− φ(λ, θ)
∥∥ ∥∥∥∥∥∑

q

eiqλf2(λ, θ0)

∥∥∥∥∥ dλ = Op(ε).

Moreover, for T sufficiently large, ‖gT (θ̄)− g(θ̄)‖ = Op(ε) and

sup
θ∈U

‖gT (θ)− gT (θ̄)‖ ≤ 1
T

∑
j

sup
θ∈U

∥∥φ(λj , θ)− φ(λj , θ̄)
∥∥ ‖I02,j‖ = Op(ε),

thus implying that supθ∈U ‖gT (θ)−g(θ)‖ = Op(ε). Under Assumption 1, every open cover of

Θ has a finite sub-cover and so the above results hold uniformly in θ ∈ Θ. As ε is arbitrary,

it follows that (b) holds.

(c) The proof proceeds as in part (b) with the function of interest defined as

gT (θ, φ) =
1
T 2

∑
j

J ′φj(θ)J ⊗ I ′22,j .

In place of (22) we have

‖gT (θ, φ)− gT (θ, φM )‖ < ε ‖J‖2 1
T 2

∑
j

‖I22,j‖ ≤ εm1
1
T 2

∑
j

‖w2j‖2 = op(ε),
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implying that φ can be replaced by φM as before. The function gT (θ, φM ) has the represen-

tation

(
1
2π

)2∑
k

J ′
[∫ π

−π
φ(λ, θ)

(
1− |k|

M

)
e−ikλdλ

]
J ⊗ 1

T
Γ̂′22,k + op(1),

where Γ̂22,k = T−1∑T−k
t=1 y2,ty

′
2,t+k. By Lemma 3(c), gT (θ, φM ) ⇒ g(θ, φM ), where

g(θ, φM ) =
1
2π

J ′φM (0, θ)J ⊗
∫ 1

0
S2S

′
2.

But

‖g(θ, φM )− g(θ, φ)‖ ≤ 1
2π
‖J‖2 ‖φJ(0, θ)− φ(0, θ)‖

∥∥∥∥∫ 1

0
S2S

′
2

∥∥∥∥
<

εm1

2π

∥∥∥∥∫ 1

0
S2S

′
2

∥∥∥∥ = Op(ε).

Hence pointwise convergence is established, and the uniformity follows from arguments iden-

tical to those in part (b). 2

The proof of Theorem 1 relies on various mean value expansions that in turn establish

Lemma B below. In particular,

ln det[fj(θ)] = ln det[fj(θ0)] + hj(θ̄)(θ − θ0),

where hj(θ̄) = ∂ ln det[fj(θ)]/∂θ′ evaluated at θ̄ = αθ + (1− α)θ0 for some 0 < α < 1;

vec [B(θ1)′] = vec [B(θ10)′] + F (θ̄1)(θ1 − θ10),

where the i’th row of the m1m2 × p matrix F (θ̄1) is equal to the i’th row of the matrix

∂vec [B(θ1)′]/∂θ′1 evaluated at θ̄1,i = αiθ1+(1−αi)θ10 for some 0 < αi < 1 (i = 1, . . . ,m1m2)

and θ̄1 = [θ̄1,1, . . . , θ̄1,m1m2 ];

vec
{
[fj(θ)−1]′

}
= vec

{
[fj(θ0)−1]′

}
+ Gj(θ̃)(θ − θ0),

where the i’th row of Gj(θ̃) is equal to the i’th row of the matrix ∂vec{[fj(θ)−1]′}/∂θ′

evaluated at θ̃i = ᾱiθ + (1− ᾱi)θ0 for some 0 < ᾱi < 1 (i = 1, . . . ,m2) and θ̃ = [θ̃1, . . . , θ̃m2 ].

Lemma B. Let AT (θ, θ0), BT (θ, θ10) and CT (θ, θ0) be defined as in (13), (14) and (15),

respectively. Then, under Assumptions 1–3,

(a) AT (θ, θ0) ≥ −TcAT
‖θ − θ0‖,

(b) BT (θ, θ10) ≥ −TcB1X1T ‖θ1 − θ10‖+ T 2cB2T
‖θ1 − θ10‖2,
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(c) CT (θ, θ0) ≥ −TX2T ‖θ − θ0‖,

where cAT
= O(1), cB1 is a positive constant, X1T = Op(1), cB2T

is positive with probability

approaching 1, and X2T = Op(1).

Proof. (a) Using the mean value expansion of ln det[fj(θ)] we obtain

AT (θ, θ0) =
∑
j

hj(θ̄)(θ − θ0) ≥ −
∑
j

∥∥hj(θ̄)
∥∥ ‖θ − θ0‖ ≥ −TcAT

‖θ − θ0‖,

where cAT
= T−1∑

j supθ∈Θ ‖hj(θ)‖ = O(1) under Assumption 1 and the continuity of the

hj(θ) which follows from Assumption 2.

(b) Using (16) we can write BT (θ, θ10) = B1T (θ, θ10) + B2T (θ, θ10) where

B1T (θ, θ10) = −2
∑
j

tr
{
fj(θ)−1I02,j(B −B0)′J ′

}

= −2Tvec
(
J ′
)′Im1 ⊗

1
T

∑
j

fj(θ)−1I02,j

 vec
[
(B −B0)′

]

= −2Tvec
(
J ′
)′Im1 ⊗

1
T

∑
j

fj(θ)−1I02,j

F
(
θ̄1
)
(θ1 − θ10)

≥ −2T‖J‖
√

m1

∥∥∥∥∥∥ 1
T

∑
j

fj(θ)−1I02,j

∥∥∥∥∥∥ ∥∥F (θ̄1
)∥∥ ‖θ1 − θ10‖

≥ −TcB1X1T ‖θ1 − θ10‖ ,

with cB1 = 2m1 supθ̄1∈Θ
m1m2
1

∥∥F (θ̄1
)∥∥ < ∞ and X1T = supθ∈Θ

∥∥∥ 1
T

∑
j fj(θ)−1I02,j

∥∥∥ = Op(1)

by Lemma 4(b), and, defining QT (θ) = F
(
θ̄1
)′ (

T−2∑
j J ′fj(θ)−1J ⊗ I ′22,j

)
F
(
θ̄1
)
,

B2T (θ, θ10) =
∑
j

tr
{
fj(θ)−1J(B −B0)I22,j(B −B0)′J ′

}

= T 2vec
[
(B −B0)′

]′ 1
T 2

∑
j

J ′fj(θ)−1J ⊗ I ′22,j

 vec
[
(B −B0)′

]
= T 2(θ1 − θ10)′QT (θ)(θ1 − θ10).

Hence B2T (θ, θ10) ≥ T 2cB2T
‖θ1 − θ10‖2, where cB2T

= infθ∈Θ µ1[QT (θ)] > 0 with probability

approaching 1 under Assumption 3 and where µ1[QT (θ)] denotes the smallest eigenvalue of

the matrix QT (θ).

(c) Utilising the mean value expansion of vec
{[

fj(θ)−1
]′} yields

CT (θ, θ0) =
∑
j

tr
{[

fj(θ)−1 − fj(θ0)−1
]
I00,j

}
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=
∑
j

vec
{[

fj(θ)−1 − fj(θ0)−1
]′}′

vec(I00,j)

= T (θ − θ0)′T−1
∑
j

Gj(θ̃)vec(I00,j)

≥ −TX2T ‖θ − θ0‖ ,

where X2T = sup
θ̃∈Θm2

∥∥∥T−1∑
j Gj(θ̃)vec(I00,j)

∥∥∥ = Op(1) by Lemma 4(a). 2

Proof of Theorem 1. Using Lemma B, (12) can be written

LT (θ)− LT (θ0) ≥ −T (cAT
+ X2T ) ‖θ − θ0‖ − TcB1X1T ‖θ1 − θ10‖+ T 2cB2T

‖θ1 − θ10‖2

= T 2cB2T
‖θ1 − θ10‖2 ZT ,

where

ZT = 1− cB1X1T

TcB2T
‖θ1 − θ10‖

− (cAT
+ X2T )

(
‖θ1 − θ10‖2 + ‖θ2 − θ20‖2

)1/2

TcB2T
‖θ1 − θ10‖2

= 1−Op(T−(1−γ))−Op(T−(1−γ)) = 1− op(1)

since 0 < γ < 1. Hence

inf
θ∈N̄T,γ(θ10,δ)×Θ2

[LT (θ)− LT (θ0)] ≥ T 2(1−γ)δ2cB2T
> 0

with probability approaching 1, thereby satisfying (9).

Given that (9) holds, it is sufficient to show that (10) holds with the set Θ1 replaced by

NT,γ(θ10, δ1) for arbitrary δ1, as noted in the text. We also need to take 1/2 < γ < 1; this

is also required by Saikkonen for the consistency of θ2.9 Note that

Pr

{
inf

θ∈NT,γ(θ10,δ1)×B̄(θ20,δ)
[LT (θ)− LT (θ0)] > 0

}

≥ Pr

{
inf

θ∈NT,γ(θ10,δ1)×B̄(θ20,δ)
[LT (θ)− LT (θ0)] > Tη

}

for some η > 0. We therefore consider T−1 [LT (θ)− LT (θ0)] = R(θ, θ0) + U(θ, θ0), where

R(θ, θ0) = L(θ)− L(θ0), U(θ, θ0) = T−1 [LT (θ)− LT (θ0)]− [L(θ)− L(θ0)], and

L(θ) =
1
2π

∫ π

−π

{
ln det [f(λ, θ)] + tr

[
f(λ, θ)−1f(λ, θ0)

]}
dλ.

9See Saikkonen (1995, pp.905 and 911).

21



Then we can write

Pr
{
inf T−1 [LT (θ)− LT (θ0)] > η

}
= Pr {inf [R(θ, θ0) + U(θ, θ0)] > η}

≥ Pr {inf R(θ, θ0) > η}+ Pr {sup |U(θ, θ0)| ≤ η} ,

where the infima and supremum are taken over θ ∈ NT,γ(θ10, δ1)× B̄(θ20, δ). Hence (10) is

satisfied if, for every δ > 0, some η > 0 and some δ1 > 0, the following two conditions hold:

(a) lim
T→∞

Pr

{
inf

θ∈NT,γ(θ10,δ1)×B̄(θ20,δ)
R(θ, θ0) > η

}
= 1,

(b) lim
T→∞

Pr

 sup
θ∈NT,γ(θ10,δ1)×B̄(θ20,δ)

|U(θ, θ0)| ≤ η

 = 1.

These conditions shall be demonstrated in turn.

(a) First, observe that, for i = 1, . . . , p,

∂R(θ, θ0)
∂θi

=
1
2π

∫ π

−π
tr
{[

f(λ, θ)−1 ∂f(λ, θ)
∂θi

]
−
[
f(λ, θ)−1 ∂f(λ, θ)

∂θi
f(λ, θ)−1f(λ, θ0)

]}
dλ

=
1
2π

∫ π

−π
tr
{

f(λ, θ)−1 ∂f(λ, θ)
∂θi

[
Ip − f(λ, θ)−1f(λ, θ0)

]}
dλ,

so that R(θ, θ0) is uniquely minimised at θ = θ0 under Assumption 2(b). Since ‖θ2 − θ20‖ > δ

on the set B̄(θ20, δ), condition (a) then follows from the uniform continuity of R(θ, θ0).

(b) From the definition of U(θ, θ0) we can write |U(θ, θ0)| ≤ |U1(θ)|+|U1(θ0)|, where U1(θ) =

T−1LT (θ)− L(θ). Now

|U1(θ)| =

∣∣∣∣∣∣ 1T
∑
j

{
ln det[fj(θ)] + tr

[
fj(θ)−1Ij(θ1)

]}
− 1

2π

∫ π

−π

{
ln det[f(λ, θ)] + tr

[
f(λ, θ)−1f(λ, θ0)

]}
dλ

∣∣∣∣
≤

∣∣∣∣∣∣ 1T
∑
j

ln det[fj(θ)]−
1
2π

∫ π

−π
ln det[f(λ, θ)]dλ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1T
∑
j

tr
[
fj(θ)−1Ij(θ1)

]
− 1

2π

∫ π

−π
tr
[
f(λ, θ)−1f(λ, θ0)

]
dλ

∣∣∣∣∣∣ .

Hence supθ∈NT,γ×B̄ |U1(θ)|
p→ 0 if:

(i) sup
θ∈NT,γ×B̄

∣∣∣∣∣∣ 1T
∑
j

ln det[fj(θ)]−
1
2π

∫ π

−π
ln det[f(λ, θ)]dλ

∣∣∣∣∣∣→ 0,
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(ii) sup
θ∈NT,γ×B̄

∣∣∣∣∣∣ 1T
∑
j

tr
[
fj(θ)−1Ij(θ1)

]
− 1

2π

∫ π

−π
tr
[
f(λ, θ)−1f(λ, θ0)

]
dλ

∣∣∣∣∣∣ p→ 0.

Part (i) is satisfied by the uniform convergence of the Riemann sums. Let U2(θ) denote the

function whose supremum is being considered in (ii). Then

|U2(θ)| ≤

∣∣∣∣∣∣ 1T
∑
j

tr
{
fj(θ)−1 [Ij(θ1)− I00,j ]

}∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1T
∑
j

tr
[
fj(θ)−1I00,j

]
− 1

2π

∫ π

−π
tr
[
f(λ, θ)−1f(λ, θ0)

]
dλ

∣∣∣∣∣∣
= |U21(θ)|+ |U22(θ)|.

Lemma 4(a) ensures that sup |U22(θ)|
p→ 0, while

|U21(θ)| ≤

∣∣∣∣∣∣ 1T
∑
j

tr
{
fj(θ)−1J [B −B0]I22,j [B −B0]′J ′

}∣∣∣∣∣∣
+2

∣∣∣∣∣∣ 1T
∑
j

tr
{
fj(θ)−1I02,j(B −B0)′J ′

}∣∣∣∣∣∣
=

∣∣∣∣∣∣Tvec
[
(B −B0)′

]′ 1
T 2

∑
j

J ′fj(θ)−1J ⊗ I ′22,j

 vec
[
(B −B0)′

]∣∣∣∣∣∣
+2

∣∣∣∣∣∣vec(J ′)′
Im1 ⊗

1
T

∑
j

fj(θ)−1I02,j

 vec
[
(B −B0)′

]∣∣∣∣∣∣
≤ T‖F (θ̄1)‖2‖θ1 − θ10‖2

∥∥∥∥∥∥ 1
T 2

∑
j

J ′f)j(θ)−1J ⊗ I ′22,j

∥∥∥∥∥∥
+2m1‖F (θ̄1)‖‖θ1 − θ10‖

∥∥∥∥∥∥ 1
T

∑
j

fj(θ)−1I02,j

∥∥∥∥∥∥ ,

which makes use of the mean value expansion of vec [(B −B0)′]. Hence

sup
θ∈NT,γ×B̄

|U21(θ)| ≤ T 1−2γδ2
1 sup

θ̄1∈Θm1m2

‖F (θ̄1)‖2 sup
θ∈Θ

∥∥∥∥∥∥ 1
T 2

∑
j

J ′f)j(θ)−1J ⊗ I ′22,j

∥∥∥∥∥∥
+2m1T

−γδ1 sup
θ̄1∈Θm1m2

‖F (θ̄1)‖ sup
θ∈Θ

∥∥∥∥∥∥ 1
T

∑
j

fj(θ)−1I02,j

∥∥∥∥∥∥ p→ 0

because 1/2 < γ < 1, supθ̄1∈Θm1m2 ‖F (θ̄1)‖ < ∞, and the two stochastic terms are each Op(1)

by Lemma 4(c) and 4(b) respectively. Finally, (ii) is established because sup |U1(θ0)|
p→ 0

by the uniform convergence of Riemann sums and Lemma 4(a). 2

23



Proof of Theorem 2. Consider, first, a typical element of the normalised score vector with

regard to θ1, denoted

[sT1(θ)]i =
1
T

∑
j

tr Γji(θ)−
1
T

∑
j

trΦji(θ)Ij(θ1) +
1
T

∑
j

tr fj(θ)−1Iji(θ1),

where i = 1, . . . , p1, all summations are over j ∈ JT and

Γji(θ) = fj(θ)−1 ∂fj(θ)
∂θ1i

, Φji(θ) = fj(θ)−1 ∂fj(θ)
∂θ1i

fj(θ)−1, and Iji(θ1) =
∂Ij(θ1)

∂θ1i
.

Evaluating the normalised score at θ̂T and expanding yields

[
sT1(θ̂T )

]
i

=
1
T

∑
j

tr Γji(θ̂T )− 1
T

∑
j

trΦji(θ̂T )Ij(θ̂1T ) +
1
T

∑
j

tr fj(θ̂T )−1Iji(θ̂1T )

=
1
T

∑
j

tr
{
Γji(θ̂T )− Φji(θ̂T )I00,j

}
+

1
T

∑
j

trΦji(θ̂T )
[
I00,j − Ij(θ̂1T )

]
+

1
T

∑
j

tr fj(θ̂T )−1Iji(θ̂1T ). (26)

The previously established consistency of θ̂T implies that θ̂T ∈ Θ with probability approach-

ing one, and so the first term in (26) is op(1) due to the uniform convergence of the Riemann

sums and Lemma 4(a), yielding the limit

1
2π

∫ π

−π
tr Γi(λ, θ0)dλ− 1

2π

∫ π

−π
trΦi(λ, θ0)f(λ, θ0)dλ = 0.

For the second term, recall that

I00,j − Ij(θ̂1T ) = I02,j [B0 − B̂]′J ′ + J [B0 − B̂]I∗02,j + J [B0 − B̂]I22,j [B0 − B̂]′J ′,

where B0 = B(θ10) and B̂ = B(θ̂1T ), and so

1
T

∑
j

trΦji(θ̂T )
[
I00,j − Ij(θ̂1T )

]
=

2
T

∑
j

trΦji(θ̂T )I02,j [B0 − B̂]′J ′ +
1
T

∑
j

trΦji(θ̂T )J [B0 − B̂]I22,j [B0 − B̂]′J ′

= 2vec(J)′
I ⊗ 1

T

∑
j

Φji(θ̂T )I02,j

 vec(B0 − B̂)

+vec(B0 − B̂)′
1
T

∑
j

(
J ′Φji(θ̂T )J ⊗ I ′22,j

)
vec

[
(B0 − B̂)′

]
.

The mean value expansion of vec(B̂) used in the proof of Lemma B indicates that vec(B0−

B̂) = −F (θ̄1)(θ̂1T − θ10) = op(T−γ) for 0 < γ < 1. Using Lemma 4(b) the first term above
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is 2vec(J)′(I ⊗ Op(1))op(T−γ) = op(1) while the second, using Lemma 4(c), can be seen to

be op(T−γ)Op(T )op(T−γ) = op(T 1−2γ) = op(1) for γ > 1/2. Hence the second term in (26)

is also op(1) and so we are led to concentrate on the third term, which can be written

1
T

∑
j

tr fj(θ̂T )−1Iji(θ̂1T ) =
1
T

∑
j

tr
[
fj(θ̂T )−1 − f−1

0j

]
Iji(θ10)

+
1
T

∑
j

tr fj(θ̂T )−1
[
Iji(θ̂1T )− Iji(θ10)

]
+

1
T

∑
j

tr f−1
0j Iji(θ10), (27)

where f0j = fj(θ0). Define Bi(θ1) = ∂B(θ1)/∂θ1i and note that Iji(θ10) = −JBi(θ10)I∗02,j −

I02,jBi(θ10)′J ′. Then the first term in (27) can be written

2
T

∑
j

tr
[
fj(θ̂T )−1 − f−1

0j

]
I02,jBi(θ10)′J ′

= 2vec(J)′
I ⊗ 1

T

∑
j

[
fj(θ̂T )−1 − f−1

0j

]
I02,j

 vec [Bi(θ10)] = op(1),

using the consistency of θ̂T and Lemma 4(b). For the second term, note that

Iji(θ̂1T )− Iji(θ10) = −J(B̂i −B0
i )I∗02,j − I02,j(B̂i −B0

i )′J ′

+JB̂iI22,j(B −B0)′J ′ + J(B̂ −B0)I22,jB̂
′
iJ
′,

where B̂i = Bi(θ̂1T ) and B0
i = Bi(θ10). Hence the second term is

1
T

∑
j

tr fj(θ̂T )−1
[
Iji(θ̂1T )− Iji(θ10)

]
= − 2

T

∑
j

tr fj(θ̂T )−1I02,j(B̂i −B0
i )′J ′ +

2
T

∑
j

tr fj(θ̂T )−1JB̂iI22,j(B −B0)′J ′

= −2vec(J)′
I ⊗ 1

T

∑
j

fj(θ̂T )−1I02,j

 vec[B̂i −B0
i )]

+2vec(B̂ −B0)′
1
T

∑
j

(
Jfj(θ̂T )−1J ′ ⊗ I ′22,j

)
vec(B̂′

i).

The first component is −2vec(J)′Op(1)op(1) = op(1), using the consistency of θ̂T and Lemma

4(b), while the second component is 2op(T−γ)Op(T )Op(1) = op(T 1−γ), using the consistency

of θ̂1T and Lemma 4(c). Therefore the second component of the second term of (27) is not
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asymptotically negligible, and it is convenient to write it as

2
T

∑
j

tr I22,j [B̂i −B0
i )]′J ′fj(θ̂T )−1JB̂i

= 2vec(B̂i)′
1
T

∑
j

(
I22,j ⊗ (J ′fj(θ̂T )−1J)′

)
vec[B̂i −B0

i ].

Using the mean value expansion of vec[B̂ − B0], the consistency of θ̂T , and stacking the

i = 1, . . . , p2 equations, yields

2
(

∂vecB(θ10)
∂θ′1

)′ 1
T 2

∑
j

(
I22,j ⊗ (J ′fj(θ̂T )−1J)′

)(∂vecB(θ10)
∂θ′1

)
T (θ̂1T −θ10)+op(1).(28)

For the third term in (27),

1
T

∑
j

tr f−1
0j Iji(θ10) = − 2

T

∑
j

tr f−1
0j JB0

i I∗02,j

= −2vec(B0
i )′(Im2 ⊗ J ′)vec

 1
T

∑
j

f−1
0j I02,j

 ,

which is Op(1) from Lemma 4(b). Stacking the i = 1, . . . , p1 equations yields

−2
(

∂vecB(θ10)
∂θ′1

)′
(Im2 ⊗ J ′)vec

 1
T

∑
j

f−1
0j I02,j

 . (29)

Now, since sT1(θ̂T ) = 0, it follows, combining (28) and (29), that

T (θ̂1T − θ10) =

(∂vecB(θ10)
∂θ′1

)′ 1
T 2

∑
j

(
I22,j ⊗ (J ′fj(θ̂T )−1J)′

)(∂vecB(θ10)
∂θ′1

)−1

×
(

∂vecB(θ10)
∂θ′1

)′
(Im2 ⊗ J ′)vec

 1
T

∑
j

f−1
0j I02,j

+ op(1). (30)

From Lemma 4(b),

1
T

∑
j

f−1
0j I02,j ⇒

1
2π

f(0, θ0)−1
∫ 1

0
dSS′2 + ḡ(θ0),

where

ḡ(θ0) =
1
2π

∫ π

−π

∞∑
q=1

eiqλf(λ, θ0)−1f2(λ, θ0)dλ =
1
2π

∫ π

−π

∞∑
q=1

eiqλdλ

 0

Im2

 ,
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because

f2(λ, θ0) = f(λ, θ0)

 0

Im2

 .

But∫ π

−π

∞∑
q=1

eiqλdλ =
∞∑

q=1

eiqπ − e−iqπ

iq
= 2

∞∑
q=1

sin qπ

q
= 0,

since, from equation 1.441.1 of Gradshteyn and Ryzhik (1994),
∑∞

j=1 sin jx/x = (π − x)/2.

Hence ḡ(θ0) = 0 and so

vec

 1
T

∑
j

f−1
0j I02,j

⇒ vec
(

Ω−1
∫ 1

0
dSS′2

)
, (31)

where Ω = 2πf(0, θ0). Now,

(I ⊗ J)vec
(

Ω−1
∫ 1

0
dSS′2

)
= (I ⊗ J)(I ⊗ Ω−1)vec

(∫ 1

0
dSS′2

)
= (I ⊗ JΩ−1)

(∫ 1

0
S2 ⊗ dS

)
= (I ⊗ Ω−1

11.2)
(∫ 1

0
S2 ⊗ dS1.2

)
, (32)

since J ′Ω−1S = Ω−1
11.2S1.2. Meanwhile, from Lemma 4(c),

1
T 2

∑
j

(
I22,j ⊗ (J ′fj(θ̂T )−1J)′

)
⇒

∫ 1

0
S2S

′
2 ⊗

1
2π

J ′f(0, θ0)−1J

=
∫ 1

0
S2S

′
2 ⊗ J ′Ω−1J =

∫ 1

0
S2S

′
2 ⊗ Ω−1

11.2. (33)

Combining (33) and (32) in (30), we obtain the result stated in the Theorem for T (θ̂1T−θ10).

Turning to the normalised score vector for θ2, a typical element can be written

[sT2(θ)]i =
1

T 1/2

∑
j

tr Λji(θ)−
1

T 1/2

∑
j

trΨji(θ)Ij(θ1), i = 1, . . . , p2,

where all summations are over j ∈ JT and

Λji(θ) = fj(θ)−1 ∂fj(θ)
∂θ2i

and Ψji(θ) = fj(θ)−1 ∂fj(θ)
∂θ2i

fj(θ)−1.

Since θ̂2T satisfies sT2(θ̂T ) = 0, consider

[
sT2(θ̂T )

]
i

=
1

T 1/2

∑
j

trΨji(θ̂T )
[
fj(θ̂T )− Ij(θ̂1T )

]
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=
1

T 1/2

∑
j

trΨji(θ̂T )
{
fj(θ̂T )− Ij(θ̂1T )− [f0j − I00,j ]

}
+

1
T 1/2

∑
j

tr
[
Ψji(θ̂T )−Ψji(θ0)

]
[f0j − I00,j ]

+
1

T 1/2

∑
j

trΨji(θ0) [f0j − I00,j ] ≡ AT + BT + CT .

The first term can be written AT = A1T + A2T , where

A1T =
1

T 1/2

∑
j

trΨji(θ̂T )
[
I00,j − Ij(θ̂1T )

]

= 2vec(J)′
I ⊗ 1

T

∑
j

Ψji(θ̂T )I02,j

T 1/2vec(B0 − B̂)

+T 1/2vec(B0 − B̂)′
1
T

∑
j

(
J ′Ψji(θ̂T )J ⊗ I ′22,j

)
vec

[
(B0 − B̂)′

]
.

The first component of A1T is 2vec(J)′(I ⊗ Op(1))op(T 1/2−γ) = op(1) if γ > 1/2 while the

second component is op(T 1/2−γ)Op(T )op(T−γ) = op(1) if γ > 3/4. Turning to A2T ,

A2T =
1

T 1/2

∑
j

trΨji(θ̂T )
[
fj(θ̂T )− f0j

]
=

1
T 1/2

∑
j

vec[Ψji(θ̂T )′]′vec[fj(θ̂T )− f0j ]

=
1
T

∑
j

vec[Ψji(θ̂T )′]′
∂vecfj(θ̄)

∂θ′1
T 1/2(θ̂1T − θ10)

+
1
T

∑
j

vec[Ψji(θ̂T )′]′
∂vecfj(θ̄)

∂θ′2
T 1/2(θ̂2T − θ20).

The first component of A2T is Op(1)op(T 1/2−γ) = op(1) if γ > 1/2 while the second compo-

nent is Op(1) and hence is important in contributing to the asymptotics. It is convenient,

for later reference, to stack the p2 equations in the second component, making use of the

matrix

KT (θ̂T ) =


T−1∑

j vec[Ψj1(θ̂T )′]′
∂vecfj(θ̄)

∂θ′2
...

T−1∑
j vec[Ψjp2(θ̂T )′]′

∂vecfj(θ̄)
∂θ′2

 ,

to give

KT (θ̂T )T 1/2(θ̂2T − θ20). (34)
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We shall next consider CT , which involves the periodogram, I00,j , of the stationary

process ξ0t. Theorem 2.1 and Corollary 2.2 of Dunsmuir (1979) ensure that CT = Op(1) and

its limiting distribution rests on establishing a central limit theorem for the elements crs(j)

of the matrix

C(j) =
1

T 1/2

T∑
t=1

[
ξ0tξ

′
0t+j − E(ξ0tξ

′
0t+j)

]
.

From Hannan (1976), any finite set of the crs(j) is asymptotically jointly normal, provided

that (i) the diagonal elements of f(λ, θ0) are square integrable, (ii) the ξ0t are ergodic with

square summable matrix norms in their Wold representation, and (iii) the first four condi-

tional moments of the innovations in the Wold representation are constant. Condition (i) is

clearly satisfied, so we need to demonstrate (ii) and (iii). Since f(λ, θ0) is continuous in both

arguments and Hermitian positive definite and ξ0t is a stationary sequence, Theorem 17.3.3

of Ibragimov and Linnik (1971) implies that ξ0t is strong mixing. It is therefore, from Hannan

(1970, p.202), also ergodic and has representation ξ0t =
∑∞

j=0 Cjεt−j with
∑∞

j=0 ‖Cj‖2 < ∞

and εt iid. Hence (ii) is satisfied, and (iii) follows from the Wold representation and the fact

that ξ0t is Gaussian. The results of Dunsmuir therefore apply, yielding

cT (θ0) =


T−1/2∑

j trΨj1(θ0)[f0j − I00,j ]
...

T−1/2∑
j trΨjp2(θ0)[f0j − I00,j ]

 d→ N(0, 2V (θ0)). (35)

Turning to BT , we make use of the mean value expansion

vec[Ψji(θ̂T )′] = vec[Ψji(θ0)′] + Pji(θ̃)(θ̂T − θ0),

where the k’th row of Pji(θ̃) is equal to the k’th row of ∂vec[Ψji(θ)′]/∂θ′ evaluated at

θ̃k = α̃kθ̂T + (1 − α̃k)θ0 for some 0 < α̃k < 1 (k = 1, . . . ,m2) and where θ̃ = [θ̃1, . . . , θ̃m2 ].

The existence of Pji(θ̃) is ensured under Assumption 4. Then BT can be written

BT =
1

T 1/2

∑
j

tr
[
Ψji(θ̂T )−Ψji(θ0)

]
[f0j − I00,j ]

=
1

T 1/2

∑
j

vec
{
[Ψji(θ̂T )−Ψji(θ0)]′

}′
vec[f0j − I00,j ]

= (θ̂T − θ0)′
1

T 1/2

∑
j

vec[Pji(θ̃)′]′vec[f0j − I00,j ],

which is op(1)Op(1) = op(1). From the properties of AT , BT and CT , and utilising the fact
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that sT2(θ̂T ) = 0, we find, from (27) and (35), and noting that KT (θ̂T )
p→ K(θ0), where

K(θ0) =


(1/2π)

∫ π
−π vec[Ψ1(λ, θ0)′]′

∂vecfj(θ0)
∂θ′2

dλ

...

1/2π)
∫ π
−π vec[Ψp2(λ, θ0)′]′

∂vecfj(θ0)
∂θ′2

dλ

 ,

that T 1/2(θ̂2T −θ20) has the same limiting distribution as that of the vector −K(θ0)−1cT (θ0),

which is N(0, 2K(θ0)−1V (θ0)(K(θ0)−1)′). Now, observe that

∂vecfj(θ)
∂θ′2

=

[
vec

(
∂fj(θ)
∂θ21

)
, . . . , vec

(
∂fj(θ)
∂θ2p2

)]
,

and so the (k, l) element of K(θ0) is

1
2π

∫ π

−π
trΨk(λ, θ0)

∂f(λ, θ0)
∂θ2l

dλ =
1
2π

∫ π

−π
tr f(λ, θ0)−1 ∂f(λ, θ0)

∂θ2k
f(λ, θ0)−1 ∂f(λ, θ0)

∂θ2l
dλ.

Hence K(θ0) = V (θ0) and the distribution stated in the Theorem follows. 2
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